集合单元测试卷精编版

合集下载

集合基础知识和单元测试卷(含答案)

集合基础知识和单元测试卷(含答案)

集合基础知识和单元测试卷(含答案)集合单元测试卷重点:集合的概念及其表示法;理解集合间的包含与相等的含义;交集与并集,全集与补集的理解。

难点:选择恰当的方法表示简单的集合;理解空集的含义;理解交集与并集的概念及其区别联系。

基础知识:一、理解集合中的有关概念1)集合中元素的特征:确定性,互异性,无序性。

集合元素的互异性:例如下列经典例题中的例2.2)常用数集的符号表示:自然数集N;正整数集Z+、N+;整数集Z;有理数集Q;实数集R。

3)集合的表示法:列举法,描述法,区间法,集合构造法。

注意:区分集合中元素的形式及意义,例如:2A={x|y=x^2+2x+1};B={y|y=x^2+2x+1};C={(x,y)|y=x+2x+1};D={x|x=x^2+2x+1};E={(x,y)|y=x^2+2x+1,x∈Z,y∈Z};4)空集是指不含任何元素的集合。

({}、∅和{∅}的区别;与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集。

注意:条件为A⊆B,在讨论的时候不要遗忘了A=∅的情况。

二、集合间的关系及其运算1)元素与集合之间关系用符号“∈”来表示。

集合与集合之间关系用符号“⊆”来表示。

A;A ⊆ A;并集A∪B={x|x∈A或x∈B};交集A∩B={x|x∈A且x∈B};补集CA={x|x∉A};2)对于任意集合A,B,则:①A∩B=B∩A;A∪B=B∪A;A∩B=A∪B②A∩CA=∅;A∪CA=U③(C∪A)∩(C∪B)=C∪(A∩B);(C∩A)∪(C∩B)=C∩(A∪B)④A∩B=A⇔A⊆B;A∪B=A⇔B⊆A三、集合中元素的个数的计算:1)若集合A中有n个元素,则集合A的所有不同的子集个数为2^n,所有真子集的个数是2^n-1,所有非空真子集的个数是2^n-1.2) A∪B中元素的个数为A和B中元素个数之和减去A∩B中元素的个数。

已知集合A为自然数集合中所有满足6-x是8的正约数的数,求A的所有子集。

集合单元测试题(含答案)精编版

集合单元测试题(含答案)精编版

高一数学集合测试题 总分150分第一卷一、选择题(共10题,每题5分) 1.下列集合的表示法正确的是( ) A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈; C .集合{}1,2,2,5,7; D .不等式14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( ) A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( ) A .5个 B .6个 C .7个 D.8个 4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则PQ =( )A .{}1,2B .{}3,4C .{}1D .{}2,1,0,1,2--5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆ ④0;∈∅⑤0⋂∅.=∅其中错误..写法的个数为 ( ) A .1 B .2 C .3 D .46.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( ) A .AB B .A BC .()()U U C A C BD .()()U U C A C B8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅,则实数m 的取值范围是( )A .1m ≥-B .1m >-C .1m ≤-D .1m <-9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( ) A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,1010.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( )A .1-B .0或1C .0D . 2第二卷 总分150分二、填空题:(共4题,每题5分) 11.满足{}{}1,21,2,3B =的所有集合B 的集合为 。

集合单元测试题含答案

集合单元测试题含答案

集合单元测试题含答案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】高一数学集合测试题 总分150分第一卷一、选择题(共10题,每题5分)1.下列集合的表示法正确的是( )A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( )A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( )A .5个B .6个C .7个 D.8个4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则P Q =( )A .{}1,2B .{}3,4C .{}1D .{}2,1,0,1,2--5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆ ④0;∈∅⑤0⋂∅.=∅其中错误..写法的个数为 ( )A .1B .2C .3D .46.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( )A .AB B .A BC .()()U U C A C BD .()()U U C A C B8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若MP =∅,则实数m 的取值范围是( )A .1m ≥-B .1m >-C .1m ≤-D .1m <-9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( )A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,1010.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( )A .1-B .0或1C .0D . 2第二卷 总分150分11.满足{}{}1,21,2,3B =的所有集合B 的集合为 。

(必考题)高中数学必修一第一单元《集合》测试题(有答案解析)(4)

(必考题)高中数学必修一第一单元《集合》测试题(有答案解析)(4)

一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭, B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,3.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<4.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞5.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9B .16C .18D .276.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >7.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( ) A .2B .5C .6D .38.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个9.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥10.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .212.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,,D .{}12, 二、填空题13.设P 为非空实数集满足:对任意给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈,则称P 为幸运集.①集合{2,1,0,1,2}P =--为幸运集;②集合{|2,}P x x n n ==∈Z 为幸运集; ③若集合1P 、2P 为幸运集,则12PP 为幸运集;④若集合P 为幸运集,则一定有0P ∈;其中正确结论的序号是________ 14.在①AB A =,②A B ⋂≠∅,③R BC A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由.问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?15.设全集{}22,3,3U a a =+-,集合{},3A a =,{}2U C A =,则a =___________. 16.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 所有取值的集合为_____17.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.18.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;19.已知集合{1,2,3},{1,2}A B ==,则满足A C B C ⋂=⋃的集合C 有_______个. 20.若集合{}|121A x m x m =+<≤-,{}|25B x x =-≤<,若()()R R C A C B ⊇,则m 的取值范围是_____________.三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.已知集合A ={x |3<x <7},B ={x |4<x ≤10},C ={x ||x -a |>2}. (1)求A ∪B 与RR ()()A B ⋂(2)若A ∩B ⊆C ,求a 的取值范围. 23.在①{}23B x x =-<<,②{}35RB x x =-<<,③{}26B x x a =≥+且{}A B x x a ⋃=>这三个条件中任选一个,补充在下面的问题中,并解答该问题.问题:已知非空集合{}8A x a x a =<<-,______,若A B =∅,求a 的取值集合.24.已知集合{|1A x x =≤或5}x,集合{|221}B x a x a =-≤≤+(1)若1a =,求A B 和A B ;(2)若记符号{A B x A -=∈且}x B ∉,在图中把表示“集合A B -”的部分用阴影涂黑,并求当1a =时的A B -; (3)若AB B =,求实数a 的取值范围.25.已知集合A ={x |a -1<x <2a +1},B ={x |x 2-x <0} (I )若a =1,求AB ,()R AB ;(II )若A B =∅,求实数a 的取值范围26.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.A解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.3.B解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.4.A解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0,即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.5.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=; 若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=, 故选:D . 【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.6.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.7.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.8.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.9.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意;②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.10.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).11.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2A B =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.②④【分析】①取判断;②设判断;③举例判断;④由可以相同判断;【详解】①当所以集合P 不是幸运集故错误;②设则所以集合P 是幸运集故正确;③如集合为幸运集但不为幸运集如时故错误;④因为集合为幸运集则当时解析:②④ 【分析】①取2x y ==判断;②设122,2x k P y k P =∈=∈判断;③举例12{|2,},{|3,}P x x k k Z P x x k k Z ==∈==∈判断;④由x y 、可以相同判断; 【详解】①当2x y ==,4x y P +=∉,所以集合P 不是幸运集,故错误; ②设122,2x k P y k P =∈=∈,则()()1212122,2,2x y k k A x y k k A xy k k A +=+∈-=-∈=⋅∈,所以集合P 是幸运集,故正确;③如集合12{|2,},{|3,}P x x k k Z P x x k k Z ==∈==∈为幸运集,但12P P 不为幸运集,如2,3x y ==时,125x y P P +=∉⋃,故错误;④因为集合P 为幸运集,则x y P -∈,当x y =时,0x y -=,一定有0P ∈,故正确; 故答案为:②④ 【点睛】关键点点睛:读懂新定义的含义,结合“给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈”,灵活运用举例法.14.答案见解析【分析】求得集合化简集合分三种情况讨论得到集合;再分别得若选择①若选择②若选择③时实数a 的取值范围【详解】当时;当时;当时若选择①则当时要使则所以当时满足题意当时不满足题意所以选择①则实数解析:答案见解析 【分析】求得集合[1,1)B =-,化简集合{()(1)0,}A xx a x x R =-+<∈∣,分1a >-,1a =-,1a <-三种情况讨论得到集合A ;再分别得若选择①,若选择②,若选择③时,实数a的取值范围. 【详解】{}2log (1)1,R [1,1)B x x x =-≤∈=-∣,0,{()(1)0,}1x a A x x R x x a x x R x -⎧⎫=<∈=-+<∈⎨⎬+⎩⎭∣∣,当1a >-时,(1,)A a =-; 当1a =-时,A =∅; 当1a <-时,(,1)A a =- 若选择①AB A =,则A B ⊆,当1a >-时,要使(1,)[1,1)a -⊆-,则1a ≤,所以11a -<≤ 当1a =-时,A =∅,满足题意 当1a <-时,(,1)A a =-不满足题意 所以选择①,则实数a 的取值范围是[-1,1] 若选择②A B ⋂≠∅,当1a >-时,(1,),[1,1)A a B =-=-,满足题意; 当1a =-时,A =∅,不满足题意;当1a <-时,(,1),[1,1)A a B =-=-,不满足题意 所以选择②,则实数a 的取值范围是(1,)-+∞. 若选择③RB A ⊆,当1a >-时,(1,),(,1][,)RA a A a =-=-∞-⋃+∞,而[1,1)B =-,不满足题意当1a =-时,,R RA A =∅=,而[1,1)B =-,满足题意当1a <-时,(,1),(,][1,)RA a A a =-=-∞⋃-+∞,而[1,1)B =-,满足题意.所以选择③,则实数a 的取值范围是(,1]-∞-,综上得:若选择①,则实数a 的取值范围是[-1,1];若选择②,则实数a 的取值范围是(1,)-+∞;若选择③,则实数a 的取值范围是(,1]-∞-.【点睛】本题考查集合间的包含关系,集合间的运算,属于中档题.15.【分析】根据与可知再根据集合相等求解即可【详解】由可知即故当时当时即故不满足故故答案为:【点睛】本题主要考查了根据集合的基本关系求解参数的问题需要根据题意分情况讨论同时注意集合的互异性属于中档题【分析】根据{}2U C A =与{}22,3,3U a a =+-可知{}23,3A a a =+-,再根据集合相等求解即可.【详解】由{}2U C A =,{}22,3,3U a a =+-可知{}23,3A a a =+-,即{}{}23,3,3a a a +-=.故232,3a a a a ⎧+-=⎪⎨≠⎪⎩ .当0a ≥时,23a a a a +-=⇒=当0a <时,23a a a +-=-即 ()()2230130a a a a +-=⇒-+=,故3a =-.不满足2,3a ≠.故a =【点睛】本题主要考查了根据集合的基本关系求解参数的问题,需要根据题意分情况讨论,同时注意集合的互异性,属于中档题.16.【分析】分类讨论:当时;当时分别讨论中元素为1和-1两种情况依次求解【详解】由题:当时符合题意;当时或所以或1所以实数所有取值的集合为故答案为:【点睛】此题考查通过集合的包含关系求参数的值其中的易漏 解析:{}1,0,1-【分析】分类讨论:当B =∅时,0a =;当B ≠∅时,分别讨论B 中元素为1和-1两种情况依次求解.【详解】由题:B A ⊆当0a =时,B =∅符合题意;当0a ≠时,1B A a ⎧⎫=-⊆⎨⎬⎩⎭,11a -=或11a -=- 所以,1a =-或1,所以实数a 所有取值的集合为{}1,0,1-.故答案为:{}1,0,1-【点睛】此题考查通过集合的包含关系求参数的值,其中的易漏点在于漏掉考虑子集为空集的情况,依次分类讨论即可避免此类问题.17.-2或0【分析】由可得即可得到或分别求解可求出答案【详解】由题意①若解得或当时集合中不符合集合的互异性舍去;当时符合题意②若解得符合题意综上的值是-2或0故答案为:-2或0【点睛】本题考查了交集的性解析:-2或0【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.18.【分析】计算集合等价于在上恒成立计算的最小值得到答案【详解】等价于在上恒成立即设易知函数在单调递减故故答案为:【点睛】本题考查了集合的关系求参数将等价于在上恒成立是解题的关键 解析:13a ≤- 【分析】 计算集合{}12A x x =≤≤,A B =∅等价于在[]1,2上11x a x -≥+恒成立,计算 21()1x f x -++=的最小值得到答案. 【详解】 {}{}|22412x A x x x =≤≤=≤≤,11x B x a x ⎧⎫-=<⎨⎬+⎩⎭ A B =∅,等价于在[]1,2上11x a x -≥+恒成立,即122111x x x a --+=-+++≤ 设21()1x f x -++= 易知函数在[]1,2单调递减,min 1()(2)3f x f ==-,故13a ≤- 故答案为:13a ≤-【点睛】本题考查了集合的关系求参数,将AB =∅等价于在[]1,2上11x a x -≥+恒成立是解题的关键. 19.2【分析】由题意首先确定集合ABC 的关系然后结合子集个数公式即可确定集合C 的个数【详解】由条件可知:则符合条件的集合C 的个数即为集合{3}的子集的个数共个事实上满足题意的集合C 为:或故答案为2【点睛解析:2【分析】由题意首先确定集合ABC 的关系,然后结合子集个数公式即可确定集合C 的个数.【详解】由条件A C B C ⋂=⋃可知:()()()()B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃=⋂⊆,则符合条件的集合C 的个数即为集合{3}的子集的个数,共122=个.事实上,满足题意的集合C 为:{}1,2C =或{}1,2,3C =.故答案为2.【点睛】本题主要考查集合的包含关系,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.20.【分析】由进行反推可分为集合和集合两种情况进行分类讨论【详解】由进行反推若则解得成立由可知集合因应满足解得综上所述故答案为:【点睛】本题考查根据集合的补集与包含关系求解参数问题是中档题型在处理此类题 解析:(),3-∞【分析】由()()R R C A C B ⊇进行反推,可分为集合A =∅,和集合A ≠∅两种情况进行分类讨论【详解】由()()R R C A C B ⊇进行反推,若A =∅,则121m m +≥-,解得2m ≤,成立 由A ≠∅可知,集合{}|121U A x x m x m =≤+>-或,{}|25U B x x x =<-≥或因()()R R C A C B ⊇,应满足12215211m m m m +≥-⎧⎪-<⎨⎪->+⎩,解得()2,3m ∈综上所述,(),3m ∈-∞故答案为:(),3-∞【点睛】本题考查根据集合的补集与包含关系求解参数问题,是中档题型,在处理此类题型中,易错点为忽略端点处等号取不取得到的问题,解题时要特别仔细三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞. 【点睛】结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1){|310}A B x x ⋃=<,()(){|3R R A B x x ⋂=或10}x >;(2){|9a a 或2}a【分析】(1)直接进行并集、交集和补集的运算即可;(2)先得出{|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<,根据AB C ⊆即可得出27a -或24a +,解出a 的范围即可.【详解】(1)因为集合A ={x |3<x <7},B ={x |4<x ≤10},所以{|310}A B x x ⋃=<,{|3R A x x =或7}x ,{|4R B x x =或10}x >;()(){|3R R A B x x ⋂=或10}x >;(2){|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<;A B C ⋂⊆;27a ∴-,或24a +;9a ∴,或2a ;a ∴的取值范围为{|9a a 或2}a .【点睛】考查描述法表示集合的定义,绝对值不等式的解法,交集、并集和补集的运算,以及子集的概念.属于中档题.23.答案见解析.【分析】选①:本题首先可根据A 是非空集合得出4a <,然后根据A B =∅得出3a ≥或82a -≤-,最后通过计算即可得出结果.选②:本题首先可以根据A 是非空集合得出4a <,然后根据{}R 35B x x =-<<求出集合B ,最后根据A B =∅列出不等式组,通过计算即可得出结果.选③:本题首先可以根据A 是非空集合得出4a <,然后根据题意得出268a a +=-,最后通过计算即可得出结果.【详解】选①:因为A 是非空集合,所以8a a ->,解得4a <,因为{}23B x x =-<<,A B =∅,所以3a ≥或82a -≤-,解得3a ≥或10a ≥,综上所述,a 的取值集合是{}34a a ≤<.选②:因为A 是非空集合,所以8a a ->,解得4a <,因为{}R 35B x x =-<<,所以{3B x x =≤-或}5x ≥,因为A B =∅,所以3854a a a ≥-⎧⎪-≤⎨⎪<⎩,解得34a ≤<,故a 的取值集合是{}34a a ≤<.选③:因为A 是非空集合,所以8a a ->,解得4a <,因为A B =∅,{}26B x x a =≥+,{}A B x x a ⋃=>,所以268a a +=-,解得2a =-或1,故a 的取值集合是{}2,1-.【点睛】关键点点睛:本题考查根据集合的运算结果求参数的取值范围,若两个集合的交集为空集,则这两个集合没有相同的元素,考查集合的混合运算,考查计算能力,是中档题. 24.(1){|01}AB x x =≤≤,{|2A B x x =≤或5}x ;(2)阴影图形见解析,{|0A B x x -=≤或5}x ;(3)0a ≤或3a >. 【分析】(1)当1a =时,求得集合B ,根据交集、并集的运算法则,即可求得答案;(2)阴影图形见解析,当1a =时,求得集合B ,根据A B -的定义,即可求得答案; (3)由题意得B A ⊆,分别讨论B =∅和B ≠∅两种情况,根据集合的包含关系,即可求得a 的范围.【详解】(1)当1a =时,02{}|B x x ≤≤=,所以{|01}A B x x =≤≤,{|2A B x x =≤或5}x ;(2)A-B 的部分如图所示:,当1a =时,{|0A B x x -=≤或5}x; (3)因为A B B =,所以B A ⊆,当B =∅时,221a a ->+,解得3a >,当B ≠∅时,则11221a a a +≤⎧⎨-≤+⎩或225221a a a -≥⎧⎨-≤+⎩, 解得0a ≤或∅,综上:0a ≤或3a >.【点睛】易错点为:根据集合包含关系求参数时,当B A ⊆,且集合B 含有参数时,需要讨论集合B 是否为空集,再进行求解,考查分析理解,计算求值的能力,属中档题.25.(I )(0,3),AB =()[1,3)R A B =;(II )12a ≤-或2a ≥ 【分析】(I )先解不等式得集合B ,再根据并集、补集、交集定义求结果;(II )根据A =∅与A ≠∅分类讨论,列对应条件,解得结果.【详解】(I )2{|0}(0,1)B x x x =-<= a =1,A ={x |0<x <3},所以(0,3),AB = (,0][1,)()[1,3)R R B A B =-∞+∞∴=;(II )因为A B =∅,所以当A =∅时,1212a a a -≥+∴≤-,满足题意;当A ≠∅时,须212112*********a a a a a a a a >-⎧-<+⎧⎪∴∴-<≤-⎨⎨+≤-≥≤-≥⎩⎪⎩或或或2a ≥ 综上,12a ≤-或2a ≥ 【点睛】本题考查集合交并补运算、根据并集结果求参数,考查基本分析求解能力,属中档题. 26.(1){a|a≤7};(2){a|a <6或a >152} 【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围【详解】(1)若A=∅,则A∩B=∅成立.此时2a+1>3a-5,即a<6.若A≠∅,则2135{2113516a aaa+≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B=∅的实数a的取值范围是{a|a≤7}.(2)因为A⊆(A∩B),且(A∩B)⊆A,所以A∩B=A,即A⊆B.显然A=∅满足条件,此时a<6.若A≠∅,则2135{351a aa+≤--<-或2135{2116a aa+≤-+>由2135{351a aa+≤--<-解得a∈∅;由2135{2116a aa+≤-+>解得a>152.综上,满足条件A⊆(A∩B)的实数a的取值范围是{a|a<6或a>152}.考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用。

集合单元测试题及详细答案

集合单元测试题及详细答案

集合单元测试题及详细答案一、选择题(每题2分,共10分)1. 集合中的元素具有什么特性?A. 唯一性B. 有序性C. 可重复性D. 可变性答案:A2. 下列哪个不是集合的基本运算?A. 并集B. 交集C. 对称差D. 排序答案:D3. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的交集是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的并集是什么?A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {4}答案:C5. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的差集是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:A二、填空题(每空1分,共10分)6. 集合的三种基本关系是:________、________、子集。

答案:相等,真子集7. 集合A={x|x<5}表示的是所有小于5的实数的集合,那么集合B={x|x>5}表示的是所有________的实数的集合。

答案:大于58. 集合的幂集是指一个集合所有子集的集合,如果集合A有n个元素,那么它的幂集有2^n个子集。

答案:正确9. 集合A={1, 2, 3},集合B={3, 4, 5},A与B的并集是________。

答案:{1, 2, 3, 4, 5}10. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的差集是________。

答案:{1}三、简答题(每题5分,共10分)11. 简述集合的并集和交集的区别。

答案:并集是指两个集合中所有元素的集合,不去除重复元素;交集是指两个集合中共有的元素组成的集合。

12. 举例说明什么是集合的补集。

答案:假设全集U={1, 2, 3, 4, 5},集合A={1, 2, 3},那么A的补集是U中不属于A的所有元素组成的集合,即{4, 5}。

集合单元测试题及详细答案

集合单元测试题及详细答案

集合单元测试题及详细答案集合单元测试题一、选择题1.设集合A={x∈Q|x>-1},则()A。

∅∈AB。

2∈AC。

2∈AD。

{2}⊆A2.如果U是全集,M,P,S是U的三个子集,则阴影部分所表示的集合为()A。

(M∩P)∩SB。

(M∩P)∪SC。

(M∩P)∩(C_U S)D。

(M∩P)∪(C_U S)3.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为()A。

x=3,y=-1B。

(3,-1)C。

{3,-1}D。

{(3,-1)}4.A={-4,2a-1,a^2},B={a-5,1-a,9},且A∩B={9},则a的值是(。

)A。

a=3B。

a=-3C。

a=±3D。

a=5或a=±35.若集合A={x|x^2+4x+4=0,x∈R}中只有一个元素,则实数k的值为(。

)A。

0B。

1C。

0或1D。

k<16.集合A={y|y=-x^2+4,x∈N,y∈N}的真子集的个数为(。

)A。

9B。

8C。

7D。

67.符号{a}⊈P⊆{a,b,c}的集合P的个数是(。

)A。

2B。

3C。

4D。

58.已知M={y|y=x^2-1,x∈R},P={x|x=a-1,a∈R},则集合M 与P的关系是(。

)A。

M=PB。

P∈RC。

M⊈PD。

M⊈P9.A={x|x^2+x-6=0},B={x|x*m+1=0},且A∪B=A,则m 的取值范围是(。

)A。

{3,-1/2}B。

{0,-1/3,-1/2}C。

{0,3,-2}D。

{3,2}二、选择题11.设集合M={小于5的质数},则M的真子集的个数为?答案:1412.设U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},则:(C_UA)∩(C_U B)=?答案:{1,2,6}C_U A)∪(C_U B)=?答案:{1,2,6,7,8}13.某班共有55名学生,其中34名喜欢音乐,43名喜欢体育,还有4名既不喜欢体育也不喜欢音乐。

集合单元测试题及详细答案

集合单元测试题及详细答案

集合单元测试题一、选择题1.设集合{}1->∈=x Q x A ,则( )A . A ∅∉B 2AC 2AD .{}2⊆A2、如果U 是全集,M ,P ,S 是U 的三个子集,则阴影部分所表示的集合为 ( )(A )(M ∩P )∩S ; (B )(M ∩P )∪S ; (C )(M ∩P )∩(C U S ) (D )(M ∩P )∪(C U S )3、已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合N M ⋂为( ) A 、3,1x y ==- B 、(3,1)- C 、{3,1}- D 、{(3,1)}- 4. 2{4,21,}A a a =--,B={5,1,9},a a --且{9}A B ⋂=,则a 的值是 ( ) A. 3a = B. 3a =- C. 3a =± D. 53a a ==±或 5.若集合2{440,}A x kx x x R =++=∈中只有一个元素,则实数k 的值为 ( ) A.0 B. 1 C. 0或1 D. 1k < 6. 集合2{4,,}A y y x x N y N ==-+∈∈的真子集的个数为 ( ) A. 9 B. 8 C. 7 D. 67. 符号{}a ⊂≠{,,}P a b c ⊆的集合P 的个数是 ( ) A. 2 B. 3 C. 4 D. 5 8. 已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈,则集合M 与P 的关系是( )A. M=PB. P R ∈ C . M ⊂≠P D. M ⊃≠P9. 2{60},{10}A x x x B x mx =+-==+=,且A B A ⋃=,则m 的取值范围是( )A.11{,}32-B. 11{0,,}32-- C. 11{0,,}32- D. 11{,}32二、选择题11. 设集合{=M 小于5的质数},则M 的真子集的个数为 . 12. 设{1,2,3,4,5,6,7,8}U =,{3,4,5},{4,7,8}.A B ==则:()()U U C A C B ⋂= , ()()U U C A C B ⋃= .13 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人.14. 已知{15},{4}A x x x B x a x a =<->=≤<+或,若A ⊃≠B,则实数a 的取值范围是 .15. 已知集合22{31},{31}P x x m m T x x n n ==++==-+,有下列判断:①5{}4P T y y ⋂=≥- ②5{}4P T y y ⋃=≥- ③ P T ⋂=∅ ④P T =其中正确的是 .三、解答题16.已知含有三个元素的集合2{,,1}{,,0},ba a ab a=+求20082007b a +的值.17.若集合}10{的正整数小于=S ,S B S A ⊆⊆,,且}8,6,4{)()(},2{},9,1{)(=⋂=⋂=⋂B C A C B A B A C S S S ,求A 和B18.设}01)1(2|{},04|{222=-+++==+=a x a x x B x x x A ,若B B A =⋂,求a 的值19.已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R . (Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.20.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}. (Ⅰ)若A =B,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.21.已知方程02=++q px x 的两个不相等实根为βα,.集合},{βα=A ,=B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值?集合单元测试题参考答案1、B2、C3、D 4. B 5.C 6. C 7. B 8. A 9. C11. 3 12. {1,2,6},{1,2,3,5,6,7,8} 13.26 14. (,5](5,)-∞-⋃+∞ 15. ①②④ 16. 解析:由题意分析知0a ≠,由两个集合相等得220011b ba aa ab a a a b a ⎧⎧==⎪⎪⎪⎪⎪=+=⎨⎨⎪⎪+==⎪⎪⎪⎩⎩或 解得01b a =⎧⎧⎨⎨=⎩⎩b=0或a=-1 经检验0,1b a ==不合题意, 0,1,b a ∴==- 所以20082007b a +=1-.17. 解析:此题可利用Venn 图来辅助解决 如图所示,易得 }7,5,3,2{=A ,B=}9,2,1{18. 解析:∵B B A =⋂ ∴ B ⊆A ,由A={0,-4},∴B=Φ,或B={0},或B={-4},或B={0,-4} 当B=Φ时,方程01)1(222=-+++a x a x 无实数根,则△ =0)1(4)1(422<--+a a 整理得 01<+a 解得 1-<a ; 当B={0}时,方程01)1(222=-+++a x a x 有两等根均为0,则⎩⎨⎧=-=+-010)1(22a a 解得 1-=a ; 当B={-4}时,方程01)1(222=-+++a x a x 有两等根均为-4,则⎩⎨⎧=--=+-1618)1(22a a 无解; 当B={0,-4}时,方程01)1(222=-+++a x a x 的两根分别为0,-4,则⎩⎨⎧=--=+-014)1(22a a 解得 1=a 综上所述:11=-≤a a 或 19.解:(Ⅰ)A ∪B={x|1≤x<10}(C R A)∩B={x|x<1或x ≥7}∩{x|2<x<10} ={x|7≤x<10}(Ⅱ)当a >1时满足A ∩C ≠φ 20.解: 由已知,得B ={2,3},C ={2,-4}(Ⅰ)∵A =B 于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根, 由韦达定理知:⎩⎨⎧-=⨯=+1932322a a解之得a =5. (Ⅱ)由A ∩B ∅A ⇒∩≠B Φ,又A ∩C =∅, 得3∈A ,2∉A ,-4∉A , 由3∈A ,得32-3a +a 2-19=0,解得a =5或a =-2 当a =5时,A ={x |x 2-5x +6=0}={2,3},与2∉A 矛盾; 当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意.∴a =-2. 21.解:由A ∩C=A 知A ⊆C 又},{βα=A ,则C ∈α,C ∈β. 而A ∩B =φ, 故B ∉α,B ∉β显然即属于C 又不属于B 的元素只有1和3. 不仿设α=1,β=3. 对于方程02=++q px x 的两根βα,应用韦达定理可得3,4=-=q pA 3,5,72B 1,94,6,8S。

集合单元测试题(含答案)之欧阳术创编

集合单元测试题(含答案)之欧阳术创编

高一数学集合测试题总分150分第一卷一、选择题(共10题,每题5分) 1.下列集合的表示法正确的是( ) A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7; 14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( )A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( ) A .5个 B .6个 C .7个 D.8个 4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则P Q =( )A .{}1,2B .{}3,4C .{}1D .{}2,1,0,1,2--5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆ ④0;∈∅⑤0⋂∅.=∅其中错误写法的个数为( ) A .1 B .2 C .3 D .46.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( )A .AB B .A BC .()()U U C A C BD .()()U U C A C B8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅,则实数m 的取值范围是()A .1m ≥-B .1m >-C .1m ≤-D .1m <-9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( )A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,10 10.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( )A .1-B .0或1C .0D .2第二卷 总分150分一选择题(共10题,每题5分)二、填空题:(共4题,每题5分)11.满足{}{}1,21,2,3B =的所有集合B 的集合为。

最新集合单元测试题及详细答案

最新集合单元测试题及详细答案

集合单元测试题一、选择题1.设集合{}1->∈=x Q x A ,则( )A . A ∅∉B .2A ∉C .2A ∈D .{}2⊆A2、如果U 是全集,M ,P ,S 是U 的三个子集,则阴影部分所表示的集合为 ( )(A )(M ∩P )∩S ; (B )(M ∩P )∪S ; (C )(M ∩P )∩(C U S ) (D )(M ∩P )∪(C U S )3、已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合N M ⋂为( ) A 、3,1x y ==- B 、(3,1)- C 、{3,1}- D 、{(3,1)}- 4. 2{4,21,}A a a =--,B={5,1,9},a a --且{9}A B ⋂=,则a 的值是 ( ) A. 3a = B. 3a =- C. 3a =± D. 53a a ==±或 5.若集合2{440,}A x kx x x R =++=∈中只有一个元素,则实数k 的值为 ( ) A.0 B. 1 C. 0或1 D. 1k < 6. 集合2{4,,}A y y x x N y N ==-+∈∈的真子集的个数为 ( ) A. 9 B. 8 C. 7 D. 67. 符号{}a ⊂≠{,,}P a b c ⊆的集合P 的个数是 ( ) A. 2 B. 3 C. 4 D. 5 8. 已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈,则集合M 与P 的关系是( )A. M=PB. P R ∈ C . M ⊂≠P D. M ⊃≠P9. 2{60},{10}A x x x B x mx =+-==+=,且A B A ⋃=,则m 的取值范围是( )A.11{,}32-B. 11{0,,}32--C. 11{0,,}32- D. 11{,}32二、选择题11. 设集合{=M 小于5的质数},则M 的真子集的个数为 . 12. 设{1,2,3,4,5,6,7,8}U =,{3,4,5},{4,7,8}.A B ==则:()()U U C A C B ⋂= , ()()U U C A C B ⋃= .13 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人.14. 已知{15},{4}A x x x B x a x a =<->=≤<+或,若A ⊃≠B,则实数a 的取值范围是 .15. 已知集合22{31},{31}P x x m m T x x n n ==++==-+,有下列判断:①5{}4P T y y ⋂=≥- ②5{}4P T y y ⋃=≥- ③ P T ⋂=∅ ④P T =其中正确的是 .三、解答题16.已知含有三个元素的集合2{,,1}{,,0},ba a ab a=+求20082007b a +的值.17.若集合}10{的正整数小于=S ,S B S A ⊆⊆,,且}8,6,4{)()(},2{},9,1{)(=⋂=⋂=⋂B C A C B A B A C S S S ,求A 和B18.设}01)1(2|{},04|{222=-+++==+=a x a x x B x x x A ,若B B A =⋂,求a 的值19.已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R . (Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.20.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}. (Ⅰ)若A =B,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.21.已知方程02=++q px x 的两个不相等实根为βα,.集合},{βα=A ,=B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值?集合单元测试题参考答案1、B2、C3、D 4. B 5.C 6. C 7. B 8. A 9. C11. 3 12. {1,2,6},{1,2,3,5,6,7,8} 13.26 14. (,5](5,)-∞-⋃+∞ 15. ①②④ 16. 解析:由题意分析知0a ≠,由两个集合相等得220011b ba aa ab a a a b a ⎧⎧==⎪⎪⎪⎪⎪=+=⎨⎨⎪⎪+==⎪⎪⎪⎩⎩或 解得01b a =⎧⎧⎨⎨=⎩⎩b=0或a=-1 经检验0,1b a ==不合题意, 0,1,b a ∴==- 所以20082007b a +=1-.17. 解析:此题可利用Venn 图来辅助解决如图所示,易得 }7,5,3,2{=A ,B=}9,2,1{18. 解析:∵B B A =⋂ ∴ B ⊆A ,由A={0,-4},∴B=Φ,或B={0},或B={-4},或B={0,-4} 当B=Φ时,方程01)1(222=-+++a x a x 无实数根,则 △ =0)1(4)1(422<--+a a 整理得 01<+a 解得 1-<a ; 当B={0}时,方程01)1(222=-+++a x a x 有两等根均为0,则⎩⎨⎧=-=+-010)1(22a a 解得 1-=a ; 当B={-4}时,方程01)1(222=-+++a x a x 有两等根均为-4,则⎩⎨⎧=--=+-1618)1(22a a 无解; 当B={0,-4}时,方程01)1(222=-+++a x a x 的两根分别为0,-4,则⎩⎨⎧=--=+-014)1(22a a 解得 1=a 综上所述:11=-≤a a 或 19.解:(Ⅰ)A ∪B={x|1≤x<10}(C R A)∩B={x|x<1或x ≥7}∩{x|2<x<10} ={x|7≤x<10}(Ⅱ)当a >1时满足A ∩C ≠φ20.解: 由已知,得B ={2,3},C ={2,-4}(Ⅰ)∵A =B 于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根,由韦达定理知:⎩⎨⎧-=⨯=+1932322a a解之得a =5. (Ⅱ)由A ∩ B ∅A ⇒∩≠B Φ,又A ∩C =∅,得3∈A ,2∉A ,-4∉A , 由3∈A ,得32-3a +a 2-19=0,解得a =5或a =-2 当a =5时,A ={x |x 2-5x +6=0}={2,3},与2∉A 矛盾;当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意.∴a =-2.21.解:由A ∩C=A 知A ⊆C 又},{βα=A ,则C ∈α,C ∈β. 而A ∩B =φ, 故B ∉α,B ∉β显然即属于C 又不属于B 的元素只有1和3. 不仿设α=1,β=3.对于方程02=++q px x 的两根βα,应用韦达定理可得3,4=-=q pA 3,5,72B 1,94,6,8S。

(完整版)集合单元测试题(含答案)

(完整版)集合单元测试题(含答案)

高一数学集合测试题 总分150分第一卷一、选择题(共10题,每题5分)1.下列集合的表示法正确的是( )A .实数集可表示为R ;B .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.对于{,(3)0,(4)0,x x Q N ≤∈∉∅其中正确的个数是( )A . 4 B. 3 C. 2 D. 13.集合{},,a b c 的子集共有 ( )A .5个B .6个C .7个 D.8个4.设集合{}{}1,2,3,4,|2P Q x x ==≤,则P Q =I ( )A .{}1,2B .{}3,4C .{}1D .{}2,1,0,1,2--5.下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅⑤0⋂∅.=∅其中错误..写法的个数为 ( ) A .1 B .2 C .3 D .46.已知全集{}{}|09,|1U x x A x x a =<<=<<,若非空集合A U ⊆,则实数a 的取值范围是( )A .{}|9a a <B .{}|9a a ≤C .{}|19a a <<D .{}|19a a <≤7.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( )A .AB U B .A B IC .()()U U C A C B UD .()()U U C A C B I8.设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅I ,则实数m 的取值范围是( )A .1m ≥-B .1m >-C .1m ≤-D .1m <-9.定义A-B={},,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= ( ) A.{}4,8 B.{}1,2,6,10 C.{}1 D.{}2,6,1010.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( ) A .1- B .0或1 C .0 D . 2第二卷 总分150分二、填空题:(共4题,每题5分)11.满足{}{}1,21,2,3B =U 的所有集合B 的集合为 。

高中集合单元测试题及答案

高中集合单元测试题及答案

高中集合单元测试题及答案一、选择题(每题3分,共30分)1. 集合A={1,2,3},集合B={2,3,4},那么A∩B等于:A. {1}B. {2,3}C. {4}D. {1,2,3,4}2. 对于任意集合A和B,下列哪个表达式是正确的:A. A∪B = B∪AB. A∩B = B∩AC. A∪B = A∩BD. 所有选项都正确3. 如果集合C={x|x>5},那么C的补集C'等于:A. {x|x≤5}B. {x|x<5}C. {x|x≥5}D. {x|x=5}4. 集合{1,2,3}与{2,3,4}的并集是:A. {1,2,3}B. {2,3}C. {1,2,3,4}D. {4}5. 集合{1,2,3}与{2,3,4}的差集是:A. {1}C. {4}D. {1,4}6. 集合{1,2,3}的幂集包含多少个元素?A. 2^3B. 3^2C. 3^3D. 4^37. 集合{1,2,3}的子集个数是:A. 3B. 4C. 7D. 88. 集合{1,2,3}的真子集个数是:A. 3B. 4C. 6D. 79. 如果A={1,2},B={2,3},那么A∪B∩C={3},C可能是什么?A. {1,3}B. {2,3}C. {3}D. 所有选项都正确10. 集合{1,2,3}的对称差集与{2,3,4}是:A. {1,4}B. {1,2,3,4}D. {1,4,5}二、填空题(每题2分,共10分)11. 集合A={x|x是小于10的正整数},A的元素有________个。

12. 如果A={1,2,3},B={3,4,5},那么A∩B={________}。

13. 集合A={x|x是偶数},B={x|x是奇数},则A∪B=________。

14. 如果A={1,2,3},B={2,3,4},那么A⊆B是________(填“真”或“假”)。

15. 集合{1,2,3}的幂集的元素个数是________。

第一章 集合 单元测试题(含答案)

第一章 集合 单元测试题(含答案)

第一章集合单元测试姓名日期成绩一.选择题(每小题5分,共50分)1、如果M={x|x+1>0},则()(A)∅∈M (B)0 ∈M (C){0}∈M (D)0包含于M2、集合A={3,1,7,9,5},集合B={2,9,8,3,1},则A∩B= ()A、{3,1,7}B、{1,3,9}C、{3,1,5}D、{3,1,7,9,5,2,8}3、已知M={x|x=3k+2,k∈Z},则( )(A)4∈M (B)5 ∈M (C)3∈M (D){3}∈ M4、下列各组对象能构成集合的有()(1)所有的长方体(2)福州市区内的所有好人(3)所有的数学难题(4)有名的舞蹈家(5)去年学校毕业的所有学生(6)直角坐标平面坐标轴上所有的点A、(1)(3)(5)B、(1)(2)(4)C、(1)(5)(6)D、(2)(4)(6)5、若A={(1,-5),(3,3)},则集合A中元素的个数是()个。

A、1B、2C、3D、46、设集合A={x|x≤13 },a=23 ,那么下列关系正确的是()A、a 不属于AB、a∈AC、a 被包含于AD、{a}∈A7已知U={x|-1≤x≤3},A={x|-1<x<3},B={x|x2-2x-3=0},C={x|-1≤x<3},则有()A、CuA=BB、CuB=CC、CuA =CD、A =C8、设X={0,1,2,4,5,7},Y={1,4,6,8,9},Z={4,7,9},则X∩Y等于()A、{1,4}B、{1,7}C、{4,7}D、{1,4,7}9、如果全集U={a,b,c,d,e},M={a,c,d},N={b,d,e},那么(CuM)U(CuN)等于()A、∅B、{d}C、{a,b,c,e}D、{b,e}10、已知集合A={y|y=-x2+3,x∈R},B={y|y=-x+3,x∈R},则A∩B=()(A){(0,3),(1,2)} (B){0,1} (C){3,2} (D){y|y≤3}二、填空题(每小题4分,共20分)11、用符号填空(1)-2____ {4的平方根}(2)(2,0)____ {(x,y)|y=x2-3x+2}(3)0____ N* ,5____ Q12、设A={1,2,3} ,B={4,5,6},则A∩B=13、已知A 被包含于{1,2,3},则符合条件的集合A的个数有____个14、已知集合A={1,2},集合B满足A∪B={1,2}且A∩B={2},则集合B =15、已知集合A ={x|(x-4)(x-1)=0} B={x|x2 +2=0},则A∩B=B∪A=三、解答题(每小题10分,共30分)16、若-3∈{a-3,2a-1,a2-4},求实数a17、已知集合A={y|y=x2-4x+5}, B={y|y= x2 }求A∩B,A∪B19、已知集合A={x | x2-x-6<0}, B={x | 0<x-m<9}.,若A∩B≠ ,求实数m 的取值范围.四、附加题(共20分)20、已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足Q包含于...P,求a的值。

集合单元测试题含答案

集合单元测试题含答案

高一数学集合测试题总分150分第一卷一、选择题(共10题,每题5分)1 •下列集合的表示法正确的是()A .实数集可表示为R;B .第二、四象限内的点集可表示为〈(x, y) xy _0,x・ R,y・R ;C .集合「1,2,2,5,7 1;D .不等式x-仁:4的解集为X 52. 对于(1)3 2 :x .?7?,(2).3Q,(3)0 • N,(4)0 F .一,其中正确的个数是()A. 4B. 3C. 2D. 13. 集合:a, b, C的子集共有()A. 5个B . 6个C . 7个D. 8个4. 设集合P =〔1,2,3,4 ?,Q」x|x 乞2?,则PDQ =()A.讣2?B. 〈3“C.皿D. 〈一2,—1,0,1,215•下列五个写法:①{。

}€ {0,1,2};②09 {。

};③{0,1,2}匸{1,2,0};④.一;⑤:".其中错误写法的个数为()A. 1 B . 2 C . 3 D . 46. 已知全集U —x|0 :::x :::9;,A—x|1 :::x :::a;,若非空集合A U,则实数a的取值范围是()A . :a|a ::9fB . :a|a_9fC . 、a|1:a :9D . :a|1::a_9/7. 已知全集U .1,2,3,4,5,6,7,8 ?,A「3,4,5?, B「1,3,6?,则集合C「2,7,8?是()A . A UB B. A D B C.C U A U C U B D. C U AD C U B8. 设集合M - -::,m〕,P」y| y二)2 -1,x・R,若M D P ,则实数m的取值范围是()A . m _ TB . m TC . m _ -1D . m ::-19. 定义A-B= {xx^A,且x 更B},若人={1,2,4,6,8,10}, B= {1,4,8〉,则A-B= ()A . 「4,8? B. 〈1,2,6,10? c. 1 D. 「2,6,10^10 .集合A」a2,a+1,—1>,B={2a—1,a—2,3a2+4>, A c B={-1},则a 的值是()A . -1C. 0D. 2第二卷总分150分一选择题(共10题,每题5 分)二、填空题:(共4题,每题5分)11 •满足\1,2^JB =「1,2,3 /的所有集合B的集合为 _____________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合单元测试卷精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】
第一章集合单元测试卷
一、 选择题
1、下列各组对象中,不能组成集合的是()
A.所有的正三角形
B.<<高一数学>>课本中的所有习题
C.所有的数学难题
D.所有的无理数
2、下列四个关系中,正确的是()
{}0∈Φ{}00⊂Φ∈0{}0⊂Φ、集合A={x|x ≤10},a=32+,则() A ∈A ∉A ⊆A ∈、若A={-1,1}B={x|x A ∈}则A 与B 的关系是() B A ⊆A B ⊆B A ∈A B ∈、集合M ={}Z x x x ∈≤≤且82,则集合的子集个数为() 、下列集合是无限集的是()
A.接近于1的实数组成的集合
B.全世界的人口组成的集合
C.{141.314.322+=+x x x }
D.{}40<<x x
7、全集U={1,2,3,4,5}A={1,2,3}B={2,4}则集合{2,4,5}=()
B A B A B A B A 、点的集合M={0),(≥xy y x }是指()
A.第一象限内的点集
B.第三象限内的点集
C.第一、三象限内的点集
D.不在第二、四象限内的点集
9、4的正约数组成的集合的真子集个数为()
、设全集U={1,2,3,4},M={1,3,4},N={2,4},P={2},那么下列关系正确的是() N M P =N M P = M P =N N M 二、填空题
1、{}1),(=+=y x y x A ,}{1),(-=-=y x y x B 则=B A 。

2、若{}5≤=x x P Q={}1->x x 则=Q P
3、设U=Z A={}Z m m ∈-12则C U A=
4、集合M={3,1,a-1}N={-2,3,a 2}若M=N ,则a 的值为
5、用适当的符号()=⊄⊇⊆∉∈,,,,,填空
①{a,d}{a,b,c,d,e}②{}1=x x {}1-
③Q ④若A B B A ⊆⊆且则AB
⑤0N *⑥{}20<≤n n {0,1}
⑦ {}Z m m ∈2{}Z m m ∈3⑧Ф{}
R x x x ∈=+,132
三、解答题
1、已知U={1,2,3,4,5,6,7},A={3,6,1,4},B={1,3,5,7},求
2、已知U=R,A={x|2<x<8},B={x︱5﹤x﹤12},求。

相关文档
最新文档