(完整版)高一数学第一章集合单元测试题(一)

合集下载

(典型题)高中数学必修一第一单元《集合》测试题(答案解析)(1)

(典型题)高中数学必修一第一单元《集合》测试题(答案解析)(1)

一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉3.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤4.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,35.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( )A .()2∞+,B .[)2∞+,C .()3∞-+,D .[)3∞-+,6.集合2|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|()()0}B x x a x b =--<,若“2a =-”是“A B ⋂≠∅”的充分条件,则b 的取值范围是( ) A .1b <-B .1b >-C .1b ≤-D .12b -<<-7.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<8.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5119.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个10.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .11.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭12.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.14.已知()2f x x ax b =++,集合(){}0A x f x =≤,集合(){}3B x f f x ⎡⎤=≤⎣⎦,若A B =≠∅,则实数a 的取值范围是______.15.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法; ④{|2,,}G x x a b a b Q ==+∈,*运算:实数的乘法;其中为融洽集的是________16.已知集合{}2|60M x x x =+->,{}2|230,0N x x ax a =-+≤>,若M N ⋂中恰有一个整数,则a 的最小值为_________.17.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 18.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.19.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-. (1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围.22.设集合{|12A x a x a =-<<,}a R ∈,不等式2760x x -+<的解集为B . (1)当a 为0时,求集合A 、B ; (2)若A B ⊆,求实数a 的取值范围.23.已知0a ≠,集合{}2|60A x x x =--<,{}2|280B x x x =+-≥,{}22|430C x x ax a =-+<,且()RC A B ⊆.求实数a 的取值范围.24.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}|16B x x x =->.(1)求AB ;(2)若{}|11C x m x m =-<<+,()()RC A B ⊆,求实数m 的取值范围.25.已知函数()()2log 4f x x =-的定义域为集合A ,集合{}211B x m x m =-≤<+.(1)当0m =时,求A B ;(2)若B A ⊆,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.26.已知集合2211{|}A x x =-≤-≤,集合{}11B x a x a =-<<+. (1)若1a =,试通过运算验证:()()()RRR A B A B =;(2)若A B ⋂≠∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.3.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A .本题考查交集与补集的混合运算,属于中档题4.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.5.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】 解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.6.B解析:B 【分析】由题意知{}|12A x x =-<<,当2a =-时,()(){}|20B x x x b =+-<,且A B ⋂≠∅成立,通过讨论2b <-,2b =-,2b >-三种情况,可求出b 的取值范围.【详解】 解:{}2|0|121x A x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭,当2a =-时,()(){}|20B x x x b =+-< 当2b <- 时,{}|2B x b x =<<-,此时A B =∅不符合题意;当2b =-时,B =∅ ,此时AB =∅不符合题意;当2b >-时,{}|2B x x b =-<<因为A B ⋂≠∅,所以1b >-.综上所述,1b >-.【点睛】本题考查了分式不等式求解,考查了一元二次不等式,考查了由两命题的关系求参数的取值范围.本题的关键是由充分条件,分析出两集合的关系.7.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.9.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.10.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案. 【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.11.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.12.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.二、填空题13.【分析】根据得到之间的关系由此确定出可取的的值【详解】因为所以当时;当时若则所以;若则综上可知:的取值集合为故答案为:【点睛】本题考查根据集合间的包含关系求解参数难度一般分析集合间的子集关系时注意分 解析:{}1,0,2-【分析】 根据A B B =得到,A B 之间的关系,由此确定出可取的a 的值. 【详解】因为AB B =,所以B A ⊆,当B =∅时,0a =;当B ≠∅时,若{}2B =-,则22a -=,所以1a =-;若{}1B =,则2a =. 综上可知:a 的取值集合为{}1,0,2-, 故答案为:{}1,0,2-. 【点睛】本题考查根据集合间的包含关系求解参数,难度一般.分析集合间的子集关系时,注意分析空集的存在.14.【分析】根据设则设再根据则是的解集的子集求解【详解】因为设则设的解集为:所以是方程的两个根由韦达定理得:又因为所以所以即解得故答案为:【点睛】本题主要考查一元二次不等式的解法的应用还考查了转化求解的解析:⎡⎤⎣⎦【分析】根据A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =,再根据A B =,则2,04a b ⎡⎤-⎢⎥⎣⎦是()3f t ≤的解集的子集求解. 【详解】因为A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =, ()3f t ≤的解集为:()0|0t t t ≤≤ , 所以0,0t t t ==是方程23t at b ++=的两个根, 由韦达定理得:0,3t a b =-=,又因为A B =,所以2004a tb ≤-≤,所以2304a a -≤-≤,即22124120a a a ⎧≥⎨--≤⎩,解得 6a ≤≤.故答案为:⎡⎤⎣⎦【点睛】本题主要考查一元二次不等式的解法的应用,还考查了转化求解的能力,属于中档题15.①④【分析】逐一验证几个选项是否分别满足融洽集的两个条件若两个条件都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意非负整数则仍为非负整数即;取则故①符合题意;②对于任意偶数则仍为偶数即;但是解析:①④ 【分析】逐一验证几个选项是否分别满足“融洽集”的两个条件,若两个条件都满足,是“融洽集”,有一个不满足,则不是“融洽集” 【详解】①对于任意非负整数,a b ,则+a b 仍为非负整数,即a b G +∈;取0e =,则00a a a +=+=,故①符合题意;②对于任意偶数,a b ,则ab 仍为偶数,即ab G ∈;但是不存在e G ∈,使对一切a G ∈都有ae ea a ==,故②不符合题意;③对于G 是所有二次三项式组成的集合,若,a b G ∈,ab 不再是二次三项式,故③不符合题意;④对于{|,}G x x a a b Q ==+∈,设1x a =+2x c =+,则()(122x x ac bd ad bc ⋅=+++,即12x x G ⋅∈;取1e =,则11a a a ⨯=⨯=,故④符合题意,故答案为:①④ 【点睛】本题考查对新定义“融洽集”的理解,考查理解分析能力16.2【分析】解一元二次不等式求得集合根据交集结果可知在只有一个整数解由二次函数性质可得解方程组求得结果【详解】令则对称轴为恰有一个整数即在只有一个整数解即解得:的最小值为故答案为:【点睛】本题考查根据解析:2 【分析】解一元二次不等式求得集合M ,根据交集结果可知()2230f x x ax =-+≤在()(),32,-∞-+∞只有一个整数解,由二次函数性质可得()()3040f f ⎧≤⎪⎨>⎪⎩,解方程组求得结果. 【详解】()(){}()()320,32,M x x x =+->=-∞-⋃+∞,令()()2230f x x ax a =-+>,则对称轴为x a =,M N ⋂恰有一个整数,即()0f x ≤在()(),32,-∞-+∞只有一个整数解,()()3040f f ⎧≤⎪∴⎨>⎪⎩,即963016830a a -+≤⎧⎨-+>⎩,解得:1928a ≤<, a ∴的最小值为2.故答案为:2 【点睛】本题考查根据交集结果求解参数范围的问题,关键是能够将整数解个数问题转化为二次函数图象的讨论,通过约束二次函数的图象得到不等关系.17.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞) 【分析】先求出集合B ,再利用交集定义和不等式性质求解. 【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞. 故答案为:[)3,+∞. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题.18.【分析】根据函数性质求值域解出两个集合再根据新定义运算求交集并集进而求解【详解】对于P 集合即对于Q 集合即则故答案为:【点睛】本题考查函数的值域求法观察法集合的交集并集运算新定义题型属中等题 解析:{}01,2y y y ≤≤>【分析】根据函数性质求值域,解出两个集合,再根据新定义运算求交集并集,进而求解P Q ,【详解】对于P集合,y =2,2x ,[]0,2y ∈,即{}=02P y y ≤≤ 对于Q 集合,4xy =,()0,x ∈+∞,()1,y ∈+∞,即{}1Q y y =>{}12P Q y y ⋂=<≤,{}0P Q y y ⋃=≥ 则{}01,2P Q y y y =≤≤>故答案为:{}01,2y y y ≤≤> 【点睛】本题考查函数的值域求法观察法,集合的交集并集运算,新定义题型,属中等题. 19.【分析】由题意可知实数满足或解出即可得出实数的取值范围【详解】由题意可知实数满足或解不等式即即解得或因此实数的取值范围是故答案为【点睛】本题考查利用元素与集合的关系求参数解题的关键在于将问题转化为不 解析:()[),32,-∞-⋃+∞【分析】由题意可知,实数a 满足2312a --<-+或20a -+=,解出即可得出实数a 的取值范围. 【详解】由题意可知,实数a 满足2312a --<-+或20a -+=. 解不等式2312a --<-+,即5102a +>-,即302a a +>-,解得3a <-或2a >. 因此,实数a 的取值范围是()[),32,-∞-⋃+∞.故答案为()[),32,-∞-⋃+∞.【点睛】本题考查利用元素与集合的关系求参数,解题的关键在于将问题转化为不等式进行求解,考查化归与转化思想的应用,属于中等题.20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要 解析:[]16,17 【分析】先求得不等式34x b -<的解集4433b b x -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案.【详解】 由题意,不等式34x b -<,即434x b -<-<,解得4433b b x -++<<, 要使得不等式34x b -<的解集中的整数有且仅有5,6, 则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17. 故答案为[]16,17.【点睛】本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1){}2A B x x ⋃=≥, (){}36R C A B x x x ⋂=或(2) ()(),210,-∞-⋃+∞【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或. (2)由题意知M φ≠,且{}4,4R C M x x a x a =-+或. ∵{}26A x x =≤≤,R A C M ⊆,∴46a ->或42a +<,解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞.【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 22.(1){|10}A x x =-<<,{|16}B x x =<<;(2)1a -或23a .【分析】(1)根据题意,由0a =可得结合A ,解不等式2760x x -+<可得集合B ,(2)根据题意,分A 是否为空集2种情况讨论,求出a 的取值范围,综合即可得答案.【详解】解:(1)根据题意,集合{|12A x a x a =-<<,}a R ∈,当0a =时,{|10}A x x =-<<,276016x x x -+<⇒<<,则{|16}B x x =<<,(2)根据题意,若A B ⊆,分2种情况讨论:①,当12a a -时,即1a -时,A =∅,A B ⊆成立;②,当12a a -<时,即1a >-时,A ≠∅,若A B ⊆,必有1126a a -⎧⎨⎩, 解可得23a ,综合可得a 的取值范围为1a -或23a .【点睛】本题考查集合的包含关系的应用,(2)中注意讨论A 为空集,属于基础题.23.22,00,33a ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【分析】先化简集合,A B ,求出R AB ,再对a 分类讨论,根据()RC A B ⊆得解.【详解】 {}{}2|60|23A x x x x x =--<=-<<,{}{2|2804B x x x x =+-≥=≤-或}2x ≥,∴{}|42R B x x =-<<,则(){}|22R A B x x =-<<,又∵{}()(){}22|430|30C x x ax a x x a x a =-+<=--<, ∵0a ≠,∴当0a >时,{}|3C x a x a =<<,当0a <时,{}|3C x a x a =<<.∵()R C A B ⊆,∴0232a a a >⎧⎪≥-⎨⎪≤⎩或0322a a a <⎧⎪≥-⎨⎪≤⎩, 解得203a <≤或203a -≤<. 所以实数a 的取值范围是22,00,33a ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】本题主要考查一元二次不等式的解法,考查集合的关系和运算,意在考查学生对这些知识的理解掌握水平.24.(1){}|13AB x x x =<>或(2)[]1,0- 【分析】(1)解不等式得到集合A ,B ,利用并集定义求解A B ; (2)先求解,R B 再求解()R A B ,利用()()R C A B ⊆,列出不等关系,求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}|1A x x =<, 260x x -->,()()320x x -+>,得{}|32B x x x =><-或,∴{}|13AB x x x =<>或. (2){}|23R B x x =-≤≤,∴(){}|21R A B x x =-≤<,{}|21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题考查了集合运算综合,考查了学生综合分析,数学运算能力,属于中档题. 25.(1)[)1,4AB =-(2)3,4⎛⎫+∞ ⎪⎝⎭(3)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦ 【分析】(1)计算得到142A x x ⎧⎫=<<⎨⎬⎩⎭,[)1,1B =-,求并集得到答案. (2)讨论B =∅和B ≠∅两种情况,分别计算到答案.(3)讨论B =∅和B ≠∅两种情况,分别计算到答案.【详解】(1)由40210x x ->⎧⎨->⎩,解得142A x x ⎧⎫=<<⎨⎬⎩⎭,当0m =时,[)1,1B =-, 所以[)1,4A B =-.(2)当B =∅时,211m m -≥+,2m ≥,符合B A ⊆.当B ≠∅时,根据B A ⊆得211121214m m m m -<+⎧⎪⎪->⎨⎪+≤⎪⎩,解得324m <<. 综上所述,m 的取值范围是3,4⎛⎫+∞ ⎪⎝⎭. (3)当B =∅时,211m m -≥+,2m ≥,符合A B =∅.当B ≠∅时,211112m m m -<+⎧⎪⎨+≤⎪⎩或211214m m m -<+⎧⎨->⎩,解得12m ≤-. 综上所述,m 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查了集合的并集,根据集合包含关系求参数,根据交集结果求参数,意在考查学生对于集合运算的综合应用.26.(1)见解析;(2)3(,2)2-【分析】(1)先解不等式得集合A ,再分别求并集、补集、交集,根据结果进行验证; (2)结合数轴先求AB =∅情况,再根据补集得结果.【详解】 解:A ={2211}x x -≤-≤=1{|1}2x x -≤≤. (1)当1a =时,B ={02}x x <<∴A B =1{|1}2x x -≤≤{02}x x <<=1{|2}2x x -≤< ()R C A B =1{|2x x <-或2}x ≥ 又R C A =1{|2x x <-或1}x >,R C B ={|0x x ≤或2}x ≥ ∴()()R R C A C B =1{|2x x <-或2}x ≥ ∴()R C A B =()()R R C A C B . (2)若AB =∅,则:112a +≤-或11a -≥ ∴32a ≤-或2a ≥ ∴A B ⋂≠∅时,322a -<<,即实数a 的取值范围3(,2)2-. 【点睛】 本题考查集合交并补运算以及根据交集结果求参数,考查综合分析求解能力,属基础题.。

高中数学必修一第一章《集合与函数概念》单元测试题(含答案)

高中数学必修一第一章《集合与函数概念》单元测试题(含答案)

⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。

最新北师大版高中数学必修一第一单元《集合》测试(含答案解析)(1)

最新北师大版高中数学必修一第一单元《集合》测试(含答案解析)(1)

一、选择题1.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤< B .{}01x x <<C .{}02x x ≤<D .{}02x x <<2.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .3.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-4.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2805.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,06.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .47.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭8.已知()()()()22221234()4444f x x x c x x c x x c x x c =-+-+-+-+,集合{}{}127()0,,,M x f x x x x Z ===⋯⊆,且1234c c c c ≤≤≤,则41c c -不可能的值是( ) A .4B .9C .16D .649.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m < B .23m ≤≤C .3m ≤D .23m <<10.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)11.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .212.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.若集合A 具有以下两条性质,则称集合A 为一个“好集合”. (1)0A ∈且1A ∈;(2)若x 、y A ,则x y A -∈,且当0x ≠时,有1A x∈.给出以下命题:①集合{}2,1,0,1,2P =--是“好集合”; ②Z 是“好集合”; ③Q 是“好集合”; ④R 是“好集合”;⑤设集合A 是“好集合”,若x 、y A ,则x y A +∈;其中真命题的序号是________.14.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.15.若集合{}{,,,}1,2,3,4,a b c d =且下列四个关系:①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,则符合条件的所有有序数组(,,,)a b c d 的个数是________.16.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________17.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且AB =________.18.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.19.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________.20.已知集合{}A a =-,,2||b aB a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b +=______。

【高一】高一数学上册第一章集合单元测试题(附答案)

【高一】高一数学上册第一章集合单元测试题(附答案)

【高一】高一数学上册第一章集合单元测试题(附答案)第一单元集合1、头衔1.集合{1,2,3}的真子集共有______________。

(a) 5(b)6(c)7(d)82.已知集合a={}b={}则a=______________。

3.如果a={1,2,a2-3a-1},B={1,3},a{3,1},那么。

(a)-4或1(b)-1或4(c)-1(d)44.设u={0,1,2,3,4},a={0,1,2,3},B={2,3,4},然后(CUA)(cub)=。

5.设s、t是两个非空集合,且st,ts,令x=s那么sx=____________。

6.设a={x}和B={x}。

如果AB={2,3,5},那么a和B是。

7.设一元二次方程ax2+bx+c=0(a<0)的根的判别式,则不等式ax2+bx+c0的解集为____________。

8.如果={},n={Z},那么n=_______;。

9.已知u=n,a={},则cua等于_______________。

10.如果二次函数的图像与x轴不相交,则的值范围为______。

11.不等式<x2-4的解集是_______________。

12.将整组设为,并使用集合a、B和C的交集、并集和补集在表中阴影部分签名。

(1)(2)(3)13.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是14.设a={},B={x},AB,则实数k的取值范围为。

三、解答题15.让完整的集合u={1,2,3,4},和={x2-5x+=0,Xu}如果CUA={1,4},则找到的值。

16.已知集合a={a关于x的方程x2-ax+1=0,有实根},b={a不等式ax2-x+1>0对一切xr成立},求ab。

17.如果你知道集合a={A2,a+1,-3},B={a-3,2a-1,A2+1},如果AB={3},找到实数a。

18.设a={x,其中xr,如果ab=b,求实数a的取值范围。

高一数学第一章集合单元测试题

高一数学第一章集合单元测试题

高一数学第一章集合单元测试题(一)班级__________ 学号___________姓名_____________一、选择题1、己知A= {x | x > - 1},那么正确的是 ( )(A )0⊆A (B){0}⊆A (C)A={0} (D)Φ∈A2、设U ={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6} 则集合 {2,7,8}是 ( )(A )A B (B )A B(C )(C U A ) (C U B ) (D )(C U A ) (C U B )3、下列四个命题 :①空集没有子集 ②空集是任何一个集合的真子集 ③空集中元素个数为0 ④任一集合必有两个或两个以上的子集。

其中正确的有 ( )(A )0 (B )1 (C )2 (D )34、设A={y | y = -1 + x –2 x 2} ,若m∈A 则必有 ( ) (A )m∈{正有理数} (B )m ∈{负有理数} (C )m ∈{正实数} (D )m ∈{负实数}5、已知=>+-==M C x x x M R U U 则},044{,2( )(A ) R (B )Φ (C ) {2} (D ) {0}6、已知全集},4{},,2{,+++∈==∈===N n n x x B N n n x x A N U 则(A) B A U = (B) B A C U U =(C) )(B C A U U = (D) )()(B C A C U U U =7、已知集合N M y x y x N y x y x M 那么}4),{(},2),{(=-==+=为( )(A)1,3-==y x (B) (3,-1) (C) {3,-1} (D) {(3,-1)}8、已知集合}1{},3,2,1{==A B A 则B 的子集最多可能有( )(A) 5个 (B) 6个 (C) 7个 (D) 8个9、已知},,1{},4,3,2,1{A x x y y B A ∈-===则{0}与B 的关系是( )(A) B ∈}0{ (B) B ⊂}0{ (C) B ⊄}0{ (D) B ⊇}0{10、已知},,14{},,1{22+∈+-==∈+==N m m m x x Q N n n x x P 则P 与Q 的关系是( )(A) Q P = (B) Q P ⊂ (C) P Q ⊂ (D)以上答案都不对11、已知则},,1{},,1{22R x x y y N R x x y y M ∈+-==∈+== N M 是( )(A) {0,1} (B) {(0,1)} (C) {1} (D)C 以上答案均不对12、符合条件{a ,b ,c} ⊆ P ⊆ {a ,b ,c ,d ,e}的集合P 的个数是( )(A )2 (B )3 (C )4 (D )8二、填空题13、{(1,2),(-3,4)}的所有真子集是 ;14、设直线的32+=x y 点集为P =___________________,则点(2,7)与P 的关系为(2,7)____ P15、已知},{b a P =又P 的所有子集组成集合Q ,用列举法表示Q ,则Q =_____________________16、如图所示,阴影部分表示的集合为17、已知,.,},3),{(},12),{(B a A a x y y x B x y y x A ∈∈+==-==则______=a18、若},,34{},,42{22R b b b y y B R a a a x x A ∈+-==∈++==试确定A 与B 的关系为 __________.三、解答题19、已知B A b b B a a A ==++=若},,1{},21,1,1{2,求b a ,20、已知,}1{},62{P Q a x a x Q x x P ⊆+≤≤=≤≤=若求a 的范围21、已知集合},02{2=+-=k x x x P 若集合P 中的元素少于两个,求.k22、已知全集}4{≤=x x U 集合},33{},32{≤<-=<<-=x x B x x A 求B A C B A C B A U U )(),(,23、设A 是数集,满足A a ∈时,必有A a∈-11, (1)若A ∈2,问:①A 中至少有几个元素?并把它列举出来? ② A 中还可以有其它元素吗?(2)若A 中只能有一个元素且A ∉2,实数a 是否存在?。

新北师大版高中数学必修一第一单元《集合》测试(包含答案解析)(1)

新北师大版高中数学必修一第一单元《集合》测试(包含答案解析)(1)

一、选择题1.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2802.在整数集Z 中,被5所除得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|}k n k n Z =+∈,0,1,2,3,4k =;给出四个结论:(1)2015[0]∈;(2)3[3]-∈;(3)[0][1][2][3][4]Z =⋃⋃⋃⋃;(4)“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个3.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤4.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .45.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥6.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{1}P x x Q x y x =-≤-≤==-∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 7.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >8.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞9.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1610.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤11.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是( ) A .{}a |0a 6≤≤B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤12.设集合{}21xA y y ==-,{}1B x x =≥,则()R A C B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞二、填空题13.已知2{|31,},x A x x -+=≥∈R 21{|1,}3x B x x R x -=≤∈+,则A ∩B =______. 14.已知集合{}2|60M x x x =+->,{}2|230,0N x x ax a =-+≤>,若M N ⋂中恰有一个整数,则a 的最小值为_________. 15.若规定集合{}()*12,,,n M a a a n N=⋅⋅⋅∈的子集{}()12*,,,mi i i a aa m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______.16.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 17.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.18.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________19.若集合{}2|20N x x x a =-+=,{}1M =,且N M ⊆,则实数a 的取值范围是_________ 20.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.已知集合612A xx ⎧⎫=≥⎨⎬+⎩⎭,{}2(4)70B x x m x m =-+++<.(1)若3m =时,求()RAB ;(2)若A B A ⋃=,求实数m 的取值范围.23.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}16B x x x =->. (1)求AB ;(2)若{}11C x m x m =-<<+,()()R C AC B ⊆,求实数m 的取值范围.24.设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≥-. (1)求()UA B ;(2)若集合{}0C x x a =->,满足C C =B ∪,求实数a 的取值范围. 25.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求UB A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.26.已知不等式()210x a x a -++≤的解集为A . (1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求出{2,4.6.8.10}M =后,分别求出含有2,4,6,8,10的子集个数,然后可求得结果. 【详解】{2,4.6.8.10}M =,其中含有元素2的子集共有4216=个,含有元素4的子集共有4216=个,含有元素6的子集共有4216=个,含有元素8的子集共有4216=个,含有元素10的子集共有4216=个, 所以123k P P P P S S S S ++++(246810)16480=++++⨯=.故选:B 【点睛】本题考查了对新定义的理解能力,考查了集合的子集个数的计算公式,属于基础题.2.C解析:C 【分析】根据新定义,对每个选项逐一判断,即可得到答案. 【详解】对于(1),因为20155403÷=,余数为0,所以2015[0]∈,故(1)正确; 对于(2),因为()3512-=⨯-+,所以33[]-∉,故(2)错误; 对于(3),因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故(3)正确;对于(4),因为整数,a b 属于同一“类”,所以整数,a b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”.故(4)正确.综上所述,正确的个数为:3个. 故选C . 【点睛】本题考查了集合的新定义,解题关键是理解被5所除得余数为k 的所有整数组成一个“类”,考查了分析能力和计算能力.3.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题4.B解析:B 【分析】先阅读题意,取特例{}1A = ,{}2B =,可得①③错误,由集合中元素的互异性可得②④正确. 【详解】解:对于①,取{}1A = ,{}2B =,满足||||A B ≤,但不满足A B ⊆,即①错误; 对于②,因为||||AB A B =,由集合中元素的互异性可得A B =,即②正确;对于③,取{}1A = ,{}2B =, 满足||0A B =,但不满足A 、B 中至少有个是空集,即③错误; 对于④,A B =∅,则集合A B 、中无公共元素,则||||||A B A B =+,即④正确;综上可得②④正确,故选B. 【点睛】本题考查了对新定义的理解及集合元素的互异性,重点考查了集合交集、并集的运算,属中档题.5.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.6.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.7.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.8.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.9.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.10.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.11.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.12.C解析:C 【解析】 【分析】化简集合A ,B 根据补集和交集的定义即可求出. 【详解】集合A ={y |y =2x ﹣1}=(﹣1,+∞),B ={x |x ≥1}=[1,+∞), 则∁R B =(﹣∞,1) 则A ∩(∁R B )=(﹣1,1), 故选:C . 【点睛】本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.二、填空题13.【分析】根据指数函数的单调性解不等式化简集合A 解分式不等式化简集合B 求交集即可【详解】由得:解得故由得:解得故所以A∩B=【点睛】本题主要考查了指数不等式分式不等式集合的交集运算属于中档题 解析:(]3,2-【分析】根据指数函数的单调性解不等式化简集合A ,解分式不等式化简集合B ,求交集即可. 【详解】由231x -+≥得:20x -+≥, 解得2x ≤, 故{|2}A x x =≤,由2113x x -≤+得:403x x -≤+, 解得34x , 故{|34}B x x =-<≤, 所以A ∩B = (]3,2- 【点睛】本题主要考查了指数不等式,分式不等式,集合的交集运算,属于中档题.14.2【分析】解一元二次不等式求得集合根据交集结果可知在只有一个整数解由二次函数性质可得解方程组求得结果【详解】令则对称轴为恰有一个整数即在只有一个整数解即解得:的最小值为故答案为:【点睛】本题考查根据解析:2 【分析】解一元二次不等式求得集合M ,根据交集结果可知()2230f x x ax =-+≤在()(),32,-∞-+∞只有一个整数解,由二次函数性质可得()()3040f f ⎧≤⎪⎨>⎪⎩,解方程组求得结果. 【详解】()(){}()()320,32,M x x x =+->=-∞-⋃+∞,令()()2230f x x ax a =-+>,则对称轴为x a =,M N ⋂恰有一个整数,即()0f x ≤在()(),32,-∞-+∞只有一个整数解,()()3040f f ⎧≤⎪∴⎨>⎪⎩,即963016830a a -+≤⎧⎨-+>⎩,解得:1928a ≤<, a ∴的最小值为2.故答案为:2 【点睛】本题考查根据交集结果求解参数范围的问题,关键是能够将整数解个数问题转化为二次函数图象的讨论,通过约束二次函数的图象得到不等关系.15.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.16.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞) 【分析】先求出集合B ,再利用交集定义和不等式性质求解. 【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞. 故答案为:[)3,+∞. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题.17.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果 【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意;0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.18.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】 根据条件()()[3,5]A B =R R 可得()(),35,AB =-∞+∞,结合[1,2]BA =R的意义,可得集合A . 【详解】因为集合A 、B 是实数集R 的子集,若AB =∅,则[2,0]AB A =-=R,[1,2]BA B ==R,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]BA =R表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]BA =R中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.19.【分析】根据条件得到或分别计算得到答案【详解】则或当时解得;当时满足综上所述:故答案为:【点睛】本题考查了根据集合的包含关系求参数忽略掉空集的情况是容易发生的错误 解析:[1,)+∝【分析】根据条件得到{}1N =或N =∅,分别计算得到答案. 【详解】N M ⊆,则{}1N =或N =∅当{}1N =时,{}{}2|201N x x x a =-+==,解得1a =;当N =∅时,{}2|20N x xx a =-+=,满足4401a a ∆=-<∴>.综上所述:1a ≥ 故答案为:[1,)+∝ 【点睛】本题考查了根据集合的包含关系求参数,忽略掉空集的情况是容易发生的错误.20.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】 解21x ->可得集合B ,对于A ,先将1|0x x a-≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤, 要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞. 【点睛】结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1){}22x x -<≤;(2)197,33⎡⎤-⎢⎥⎣⎦. 【分析】(1)依题意先求出集合A 和集合B ,再求出B R ,然后按照交集的定义求出结果即可; (2)由A B A ⋃=可得出B A ⊆,然后分B φ=和B φ≠两种情况进行分类讨论,进而求出结果即可.【详解】(1){}24A x x =-<≤,当3m =时,{}25B x x =<<, ∴{2C B x x =≤R 或}5x ≥,(){}22R A B x x ⋂=-<≤;(2)∵A B A ⋃=,∴B A ⊆,令()2(4)7=-+++f x x m x m , ①当B φ=时,即()0f x ≥恒成立,所以()2=44(7)0∆+-+≤m m ,解得:62m -≤≤;②当B φ≠时,即()0f x <有解,所以6m <-或2m >,令()0f x =,解得:x =,所以24≥-≤ , 解得1963-≤<-m 或723<≤m , 综合①②得m 的范围是197,33⎡⎤-⎢⎥⎣⎦. 【点睛】易错点点睛:由A B A ⋃=可得出B A ⊆,然后进行分类讨论,切记别漏掉B φ=的情形,否则容易漏解.23.(1){|1x x <或3}x >;(2)[]1,0-.【分析】(1)化简集合A ,B ,根据并集运算即可.(2)计算()R AC B ,根据()()R C A C B ⊆,建立不等式求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}1A x x =< 260x x -->,即()()320x x -+>, 解得{}32B x x x =><-或 A B ∴={|1x x <或3}x >,(2){}23R C B x x =-≤≤, (){}21R A C B x x ∴⋂=-≤<{}21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题主要考查了集合的并集运算,补集、交集的运算,子集的概念,属于中档题. 24.(1){2x x <或}3x ≥;(2)(),2-∞【分析】(1)求出集合B 中不等式的解集确定出集合B ,求出集合A 与集合B 的公共解集即为两集合的交集,根据全集为R ,求出交集的补集即可;(2)求出集合C 中的不等式的解集,确定出集合C ,由B 与C 的并集为集合C ,得到集合B 为集合C 的子集,即集合B 包含于集合C ,从而列出关于a 的不等式,求出不等式的解集即可得到a 的范围.【详解】(1)解不等式242x x -≥-可得:2x ≥, {}2B x x ∴=≥ 又集合{}13A x x =-≤<, 故{}23A B x x ⋂=≤<又U =R 从而(){|2U C A B x x ⋂=<或3}x ≥(2)易知集合{}{}0C x x a x x a =->=>由C C =B ∪可得:B C ⊆故有2a <即所求实数a 的取值范围是(),2-∞【点睛】本题主要考查了补集及其运算,集合的包含关系判断及应用,交集及其运算,考查了运算能力,属于中档题.25.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.26.(1){}|12x x ≤≤;(2)[]4,2.【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解.【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤, 即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤.(2)由()210x a x a -++≤,可得()()10x x a --≤,当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<,当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意;当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.。

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。

(好题)高中数学必修一第一单元《集合》测试题(有答案解析)(1)

(好题)高中数学必修一第一单元《集合》测试题(有答案解析)(1)

一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( )A .-3或-1或2B .-3或-1C .-3或2D .-1或23.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-4.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .35.定义集合运算{},,A B x x a b a A b B ⊗==⨯∈∈,设{0,1},{3,4,5}A B ==,则集合A B ⊗的真子集个数为( )A .16B .15C .14D .86.已知区间1[,]3A m m =-和3[,]4B n n =+均为[]0,1的子区间,定义b a -为区间[],a b 的长度,则当A B 的长度达到最小时mn 的值为( )A .0B .112C .0或112D .0或17.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b c B .()(),,c a b d C .(][),,a c d b D .()(),,c a d b8.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( )A .9B .8C .7D .619.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 ()A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥10.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB 的子集个数是()A .6B .8C .4D .211.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤12.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________14.若{}2230P x x x =--<,{}Q x x a =>,且PQ P =,则实数a 的取值范围是______.15.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.16.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________17.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =. 18.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;19.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________.20.若集合{}|121A x m x m =+<≤-,{}|25B x x =-≤<,若()()R R C A C B ⊇,则m 的取值范围是_____________.三、解答题21.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-.(1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围. 22.已知全集U =R ,集合1{|28},{22x A x B x x m =<≤=<-或2}x m >+ (1)若A {}|03R B x x ⋂=≤≤,求实数m 的值; (2)若AB =B ,求实数m 的取值范围.23.已知集合{}220,A x x x x R =+-=∈,集合{}20,B x x px p x R =++=∈.(1)若{}1A B ⋂=,求AB ;(2)若12,x x B ∈且22123x x +=,求p 的值.24.已知全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{}2121M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围. 25.集合[]34,2,4x A y y x x ⎧⎫-==∈⎨⎬⎩⎭,{}|1B x x m =+≥. (1)若A B ⊆,求m 的取值范围;(2)设命题p :a A ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数.若p q∧为真,求a 的取值范围.26.关于x 的不等式22(21)(2)0x a x a a -+++->,223()0x a a x a -++<的解集分别为M 和N(1)试求M 和N ;(2)若M N ⋂=∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.3.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101ab +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.4.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.5.B解析:B 【分析】根据新定义得到{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=,再计算真子集个数得到答案. 【详解】{0,1},{3,4,5}A B ==,{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=其真子集个数为:42115-= 故选:B 【点睛】本题考查了集合的新定义问题,真子集问题,意在考查学生的应用能力.6.C解析:C 【分析】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时AB 的长度最小,解出方程组即可得结果.【详解】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时A B 的长度最小,解得1314m n ⎧=⎪⎪⎨⎪=⎪⎩或10m n =⎧⎨=⎩,即112mn =或0,故选C. 【点睛】本题主要考查集合的表示方法,两个集合的交集的定义,充分理解区间长度的定义是解题的关键,属于中档题.7.C解析:C 【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案.根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.8.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,x N ∈ 0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.9.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意; ②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.10.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.11.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.12.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.二、填空题13.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想14.【分析】先求出集合由已知条件中即可求出实数a 的取值范围【详解】由解得又因为且则所以即实数a 的取值范围是故答案为:【点睛】本题考查了集合的交集运算在解答此类题目的方法是将其转化为子集问题在取答案时可以 解析:(],1-∞-【分析】先求出集合P ,由已知条件中P Q P =,即可求出实数a 的取值范围.【详解】由{}2230P x x x =--<,解得{}13P x x =-<<,又因为{}Q x x a =>,且PQ P =,则P Q ⊆,所以1a ≤-,即实数a 的取值范围是(],1-∞-.故答案为:(],1-∞- 【点睛】本题考查了集合的交集运算,在解答此类题目的方法是将其转化为子集问题,在取答案时可以画出数轴来得到结果,本题较为基础.15.【分析】根据集合中的元素的互异性列出不等式组求解【详解】由题:集合则化简得:解得:即所以故答案为:【点睛】此题考查根据集合中元素的互异性求参数的取值范围需要注意不重不漏 解析:{}4,2,0,1,4--【分析】根据集合中的元素的互异性,列出不等式组求解. 【详解】由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩, 解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞, 即()()()()()(),44,22,00,11,44,M =-∞----+∞, 所以{}4,2,0,1,4R C M =--. 故答案为:{}4,2,0,1,4--【点睛】此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.16.【分析】根据集合所以集合没有公共元素列出两个集合的端点满足的不等关系结合数轴可以得出的范围得到结果【详解】集合由借助于数轴如图所示可得故答案为:【点睛】该题主要考查集合中参数的取值范围的问题两个集合解析:(,1]-∞-. 【分析】根据集合{|14}A x x =-≤≤,{|}B x x a =<,A B φ⋂=,所以集合,A B 没有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围,得到结果. 【详解】集合{|14}A x x =-≤≤,{|}B x x a =<, 由A B φ⋂=,借助于数轴,如图所示,可得1a ≤-, 故答案为:(,1]-∞-. 【点睛】该题主要考查集合中参数的取值范围的问题,两个集合的关系,属于中档题目.17.①②③【分析】①根据得到方程无实根推出或;再由此判断根的个数即可判断①;②取分别判断根的个数即可判断②;③取分别判断根的个数即可判断③;④当时方程有三个根所以由此求根的个数即可判断④【详解】①当时方解析:①②③ 【分析】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取240a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a c b c ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.【详解】①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立; ②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立;③当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错;故答案为:①②③ 【点睛】本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型.18.【分析】计算集合等价于在上恒成立计算的最小值得到答案【详解】等价于在上恒成立即设易知函数在单调递减故故答案为:【点睛】本题考查了集合的关系求参数将等价于在上恒成立是解题的关键解析:13a ≤-【分析】计算集合{}12A x x =≤≤,AB =∅等价于在[]1,2上11xa x -≥+恒成立,计算 21()1x f x -++=的最小值得到答案. 【详解】{}{}|22412x A x x x =≤≤=≤≤,11x B x a x ⎧⎫-=<⎨⎬+⎩⎭AB =∅,等价于在[]1,2上11x a x -≥+恒成立,即122111x x x a --+=-+++≤ 设21()1x f x -++= 易知函数在[]1,2单调递减,min 1()(2)3f x f ==-,故13a ≤- 故答案为:13a ≤- 【点睛】本题考查了集合的关系求参数,将A B =∅等价于在[]1,2上11xa x -≥+恒成立是解题的关键.19.①③④【分析】对各个选项分别进行分析利用类的定义直接求解【详解】在①中∵2014÷5=402…4∴2014∈4故①正确;在②中∵﹣3=5×(﹣1)+2∴﹣3∉3故②错误;在③中∵整数集中的数被5除的解析:①③④ 【分析】对各个选项分别进行分析,利用类的定义直接求解. 【详解】在①中,∵2014÷5=402…4,∴2014∈[4],故①正确; 在②中,∵﹣3=5×(﹣1)+2,∴﹣3∉[3],故②错误; 在③中,∵整数集中的数被5除的数可以且只可以分成五类, ∴Z =[0]∪[1]∪[2]∪[3]∪[4],故③正确; 在④中,∵2015÷5=403,2010÷5=402, ∴2015与2010属于同一个“类”[0],故④正确. 故答案为①③④. 【点睛】本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题.20.【分析】由进行反推可分为集合和集合两种情况进行分类讨论【详解】由进行反推若则解得成立由可知集合因应满足解得综上所述故答案为:【点睛】本题考查根据集合的补集与包含关系求解参数问题是中档题型在处理此类题 解析:(),3-∞【分析】由()()R R C A C B ⊇进行反推,可分为集合A =∅,和集合A ≠∅两种情况进行分类讨论 【详解】由()()R R C A C B ⊇进行反推,若A =∅,则121m m +≥-,解得2m ≤,成立 由A ≠∅可知,集合{}|121UA x x m x m =≤+>-或,{}|25UB x x x =<-≥或因()()R R C A C B ⊇,应满足12215211m m m m +≥-⎧⎪-<⎨⎪->+⎩,解得()2,3m ∈综上所述,(),3m ∈-∞ 故答案为:(),3-∞ 【点睛】本题考查根据集合的补集与包含关系求解参数问题,是中档题型,在处理此类题型中,易错点为忽略端点处等号取不取得到的问题,解题时要特别仔细三、解答题21.(1){}2A B x x ⋃=≥, (){}6R C A B x x x ⋂=或 (2) ()(),210,-∞-⋃+∞ 【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或.(2)由题意知M φ≠,且{}4,4RC M x x a x a =-+或.∵{}26A x x =≤≤,R A C M ⊆, ∴46a ->或42a +<, 解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞. 【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 22.(1)m =2;(2){5m m >或3}m ≤-.. 【分析】(1)分别求集合A 和B R,根据运算结果,求实数m 的值;(2)根据运算结果,转化为A B ⊆,列不等式求m 的取值范围.【详解】解:(1)由已知得{}13A x x =-<≤,{}22RB x m x m =-≤≤+,∵A {}|03R B x x ⋂=≤≤,∴2023m m -=⎧⎨+≥⎩,,即 2.1m m =⎧⎨≥⎩∴m =2.(2)A B B =,∴A B ⊆.∴23m ->或21m +≤-, ∴5m >或3m ≤-.即实数m 的取值范围为{5m m >或3}m ≤-. 【点睛】易错点点睛:1.一般涉及集合运算时,需注意端点值的开闭,以及列不等式时,需注意参数的端点值的开闭;2.根据集合交,并集的运算结果,转化为子集问题时,需注意有时有空集的情况,这点容易忽略.23.(1)12,,12A B ⎧⎫⋃=--⎨⎬⎩⎭;(2))322p =-或)322p =或1p =-.【分析】(1)由{}1A B ⋂=可得1B ∈,求出p 后可求B ,从而可求A B .(2)利用韦达定理可得关于p 的方程,从而可求p 的值. 【详解】(1)因为{}1A B ⋂=,故1B ∈,所以2110p p +⨯+=,解得12p =-, 故20x px p ++=即为211022x x --=,其解为1211,2x x ==-,故11,2B ⎧⎫=-⎨⎬⎩⎭,而{}2,1A =-,故12,,12A B ⎧⎫⋃=--⎨⎬⎩⎭.(2)因为12,x x B ∈,故12,x x 为20x px p ++=的根.若12x x =,则122x x ==或122x x ==-,此时20x px p ++=故)322p =-或)322p =.若12x x ≠,则12,x x 为20x px p ++=的两个不同的解,而22123x x +=即为()2121223x x x x +-=,所以2230p p --=,解得1p =-或3p =.又240p p ∆=->,故0p <或4p >,故3p =舍去.故p 的值为)322p =-或)322p =或1p =-.【点睛】易错点点睛:本题中,注意12,x x B ∈的含义为12,x x 为方程的根,解析中要注意根据两者是否相等分类讨论.24.(1){}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >;(2)52k <-或1k >.【分析】 (1)先求出B ,UA ,UB ,再求A B ,()()U UA B 即可;(2)先分类讨论①当M φ=时,k 不存在;②当M φ≠时,解得52k <-或1k >,最后写出实数k 的取值范围即可. 【详解】解:(1)因为全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, 所以{}23B x x =-≤≤,{|41}Ux x A =-≤≤,{2U B x x =<-或3}x >,所以{}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >,(2)因为集合{}2121M x k x k =-≤≤+是集合A 的子集,所以①当M φ=时,2121kk ,k 不存在;②当M φ≠时,214k +<-或211k ->,解得:52k <-或1k >,综上所述:实数k 的取值范围是52k <-或1k >. 【点睛】本题考查集合的运算、根据集合的基本关系求参数范围,是基础题. 25.(1)0m ≥;(2)∅. 【分析】(1)由于A B ⊆,根据子集的定义,即可求出m 的取值范围;(2)根据p q ∧为真,得出p 真且q 真,分别求出命题p 和命题q 对应的a 的范围,取交集后,即可得出a 的取值范围. 【详解】解:由题意得,集合[]1,2A =,{}|1B x x m =≥-, (1)∵A B ⊆, ∴11m -≤,则0m ≥;(2)由题可知,∵p q ∧为真,∴p 真且q 真,命题p :[]1,2a ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数,则抛物线对称轴大于等于5,即:5252a a ≥⇒≥, 则1252a a ≤≤⎧⎪⎨≥⎪⎩,解得:a ∈∅.所以a 的取值范围为∅.【点睛】本题考查根据集合间的关系求参数范围,以及根据复合命题的真假性判断命题真假,进而求参数范围.26.(1)(,1)(2,)M a a =-∞-⋃++∞,集合N 见解析;(2)[1,2]-. 【分析】(1)对两个不等式进行因式分解,分类讨论即可得解; (2)结合(1)的结论进行分类讨论求解. 【详解】(1)22(21)(2)0x a x a a -+++->即()()()120x a x a ---+>所以(,1)(2,)M a a =-∞-⋃++∞;223()0x a a x a -++<即()()20x a x a --<当1a >或0a <时,2(,)N a a =; 当01a <<时,2(,)N a a =; 当1a =或0a =时,N =∅;(2)分类讨论:当1a =或0a =时,N =∅,符合题意; 当01a <<时,2(,)N a a =,M N ⋂=∅,即212a a a a ≥-≤+⎧⎨⎩,2102a a a a -+≥≤+⎧⎨⎩恒成立,所以01a <<符合题意; 当1a >或0a <时,212a a a a ≥-≤+⎧⎨⎩解得:12a -≤≤,所以[)(]1,01,2a ∈-,综上所述:[1,2]a ∈- 【点睛】此题考查求二次不等式的解集,关键在于准确进行因式分解并分类讨论,根据两个集合的交集为空集求参数的取值范围,考查分类讨论思想.。

北师大版高中数学必修一第一单元《集合》检测题(有答案解析)(1)

北师大版高中数学必修一第一单元《集合》检测题(有答案解析)(1)

一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,23.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃4.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =5.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤6.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥7.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,38.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( )ABCD .39.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈10.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =11.已知集合{}1A x x =>,{}1B x x =≥,则( ) A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R12.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<二、填空题13.若集合{}{,,,}1,2,3,4,a b c d =且下列四个关系:①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,则符合条件的所有有序数组(,,,)a b c d 的个数是________.14.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________15.已知集合{}2|60M x x x =+->,{}2|230,0N x x ax a =-+≤>,若M N ⋂中恰有一个整数,则a 的最小值为_________.16.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且A B =________.17.已知全集U =R 集合1|1A x x ⎧⎫=≤⎨⎬⎩⎭,则UA_______.18.设,,x y z 都是非零实数,则可用列举法将x y z xy xyz x y z xy xyz++++的所有可能值组成的集合表示为________.19.任意两个正整数x 、y ,定义某种运算⊗:()()x y x y x y x y x y +⎧⊗=⎨⨯⎩与奇偶相同与奇偶不同,则集合{(,)|6,,}M x y x y x y =⊗=∈*N 中元素的个数是________20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.已知全集U =R ,集合{4A x x =<-或1}x >,{|312}B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{|211}M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围. 22.设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B .(1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由;(3)若A B ⋂≠∅,求实数a 的取值范围.23.已知集合2A {x |x x 20}=--≥,集合()22{|1210,}B x mxmx m R =-+-<∈()1当m 2=时,求集合R A 和集合B ;()2若集合B Z ⋂为单元素集,求实数m 的取值集合;()3若集合()A B Z ⋂⋂的元素个数为()*n n N ∈个,求实数m 的取值集合24.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求(1)()UA B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.25.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.26.已知不等式()210x a x a -++≤的解集为A ,不等式2103x x +≤-的解集为B . (1) 当3a =时,求AB ;(2)若不等式的解集A B ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.B解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题. 【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.3.B解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.4.D解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.5.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题6.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.7.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.8.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤,∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.9.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.10.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R E C F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 11.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.12.A解析:A 【解析】 【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.二、填空题13.6【分析】因为①;②;③;④中有且只有一个是正确的故分四种情况进行讨论分别分析可能存在的情况即可【详解】若仅有①成立则必有成立故①不可能成立若仅有②成立则成立此时有两种情况若仅有③成立则成立此时仅有解析:6 【分析】因为①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,故分四种情况进行讨论,分别分析可能存在的情况即可. 【详解】若仅有①成立,则1a =必有1b ≠成立,故①不可能成立.若仅有②成立,则1a ≠,1b ≠,2c ≠,4d =成立,此时有(2,3,1,4),(3,2,1,4)两种情况. 若仅有③成立,则1a ≠,1b =,2c =,4d =成立,此时仅有(3,1,2,4)成立.若仅有④成立,则1a ≠,1b =,2c ≠,4d ≠成立,此时有(2,1,4,3),(3,1,4,2),(4,1,3,2)三种情况.综上符合条件的所有有序数组(,,,)a b c d 的个数是6个. 故答案为:6. 【点睛】本题主要考查了集合的综合运用与逻辑推理的问题,需要根据题设条件分情况讨论即可.属于中等题型.14.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭;因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式15.2【分析】解一元二次不等式求得集合根据交集结果可知在只有一个整数解由二次函数性质可得解方程组求得结果【详解】令则对称轴为恰有一个整数即在只有一个整数解即解得:的最小值为故答案为:【点睛】本题考查根据解析:2 【分析】解一元二次不等式求得集合M ,根据交集结果可知()2230f x x ax =-+≤在()(),32,-∞-+∞只有一个整数解,由二次函数性质可得()()3040f f ⎧≤⎪⎨>⎪⎩,解方程组求得结果. 【详解】()(){}()()320,32,M x x x =+->=-∞-⋃+∞,令()()2230f x x ax a =-+>,则对称轴为x a =,M N ⋂恰有一个整数,即()0f x ≤在()(),32,-∞-+∞只有一个整数解,()()3040f f ⎧≤⎪∴⎨>⎪⎩,即963016830a a -+≤⎧⎨-+>⎩,解得:1928a ≤<, a ∴的最小值为2.故答案为:2 【点睛】本题考查根据交集结果求解参数范围的问题,关键是能够将整数解个数问题转化为二次函数图象的讨论,通过约束二次函数的图象得到不等关系.16.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.17.【分析】先解分式不等式确定集合A 再求补集即可【详解】则故答案为:【点睛】本题考查补集运算准确求得集合A 是关键是基础题 解析:[0,1)【分析】先解分式不等式确定集合A,再求补集即可 【详解】()1|1=,0[1,)A x x ⎧⎫=≤-∞⋃+∞⎨⎬⎩⎭,则[0,1)UA故答案为:[0,1) 【点睛】本题考查补集运算,准确求得集合A 是关键,是基础题18.【分析】由题意分类讨论实数xyz 的符号列表求解所给式子的值然后确定其值组成的集合即可【详解】分类讨论xyz 的符号列表求值如下:x y z 计算结果 大于零 大于零 大于零 1 1 1 1 解析:{}5,1,1,3--【分析】由题意分类讨论实数x ,y ,z 的符号列表求解所给式子的值,然后确定其值组成的集合即可. 【详解】分类讨论x ,y ,z 的符号列表求值如下:据此可得:x y z xy xyz++++的所有可能值组成的集合表示为{}5,1,1,3--. 故答案为:{}5,1,1,3--. 【点睛】本题主要考查分类讨论的数学思想,集合中元素的互异性等知识,意在考查学生的转化能力和计算求解能力.19.【分析】根据正整数的奇偶讨论的不同取值情况:若一奇一偶则取;若都是奇数或都是偶数则取列举出所有可能即可【详解】集合若一奇一偶则取此时所有个数为此时共有4个;若都是偶数则取此时所有个数为此时共有2个;解析:9【分析】根据正整数的奇偶,讨论x y 、的不同取值情况:若一奇一偶,则取6xy =;若都是奇数或都是偶数,则取6x y +=,列举出所有可能即可.【详解】集合{(,)|6,,}M x y x y x y =⊗=∈*N若x y 、一奇一偶,则取6xy =,此时所有个数为16x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,61x y =⎧⎨=⎩,此时(),x y 共有4个;若x y 、都是偶数,则取6x y +=,此时所有个数为24x y =⎧⎨=⎩,42x y =⎧⎨=⎩,此时共(),x y 有2个; 若x y 、都是奇数,则取6x y +=,此时所有个数为15x y =⎧⎨=⎩,33x y =⎧⎨=⎩, 51x y =⎧⎨=⎩此时(),x y 共有3个;综上可知,满足条件的元素共有9个.故答案为:9【点睛】本题考查了新定义运算与集合的综合应用,注意分析题意并正确理解新定义是解决此类问题的关键,属于中档题. 20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1){|13}A B x x =<≤∩;()(){|13}U U A B x x x ⋃=≤>或;(2)5k <-或1k >.【分析】(1)首先求集合B ,再求U A 和U B ,再求集合的运算;(2)首先讨论集合M 是空集和非空集两种情况,再分别列不等式求解. 【详解】解:(1)因为全集U =R ,集合{4A x x =<-或1}x >,,{|312}B x x =-≤-≤, 所以23{|}B x x =-≤≤{|41}U x x A =-≤≤{2U B x x =<-或3}x >所以{|13}A B x x =<≤∩ ()()(){|1U U U A B A B x x ⋃=⋂=≤或3}x >,(2)因为集合{|211}M x k x k =-≤≤+是集合A 的子集,所以①当M =∅时,211k k ->+,解得2k >;②当M 时,21114k k k -≤+⎧⎨+<-⎩或211211k k k -≤+⎧⎨->⎩解得:5k <-或12k <≤综上所述:实数k 的取值范围是5k <-或1k >.【点睛】易错点睛:(1)已知子集关系求参数时,要记得讨论空集的情况,这是本题的易错点. (2)集合的交并补运算,需审题清楚,注意端点值的开闭,涉及复杂运算时可以参考补集运算的经典结论:()()()U U v A B A B ⋃=⋂,()()()U U v A B A B ⋂=⋃;22.(1){|2A x x a =>+或1}x a <-;(2)不存在;理由见解析;(3)01a <<.【分析】(1)解一元二次不等式能求出集合A .(2)由A B R =,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,得到不存在实数a ,使得AB R =. (3)由A B ≠∅,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,能求出实数a 的取值范围.【详解】解:(1)不等式2(21)(2)(1)0x a x a a -+++->可化为[(2)][(1)]0x a x a -+-->, 解得1x a <-或2x a >+,所以不等式的解集为{|1A x x a =<-或2}x a >+; (2)当0a =时,不等式2()()0x a x a --<化为20x <,此时不等式无解,当0a <时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当01a <<时,2a a <,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当1a =时,2a a =,不等式2()()0x a x a --<化为2(10)x -<,此时不等式无解, 当1a >时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,综上所述:当0a =或1a =时,B =∅,当0a <或1a >时,2{|}B x a x a =<<,当01a <<时,2{|}B x a x a =<<,要使A B R =, 当2{|}B a a x a =<<时,2a a >,2a x a <<,1a a - 或22a a +,无解,当2{|}B a a x a =<<时,2a a <,2a x a <<,2a a +,21a a =-,无解,故不存在实数a ,使得AB R =. (3)A B ≠∅,∴当2{|}B a a x a =<<时,1a a -<,或22a a +>,即220a a --<,解得10a -<< 或12a <<,此时实数a 的取值范围是(1-,0)(1⋃,2),当2{|}B a a x a =<<时,21a a -<或2a a +>,即210a a -+>,解得01a <<,此时,实数a 的取值范围是(0,1).【点睛】本题考查含参一元二次不等式的解法,解含参一元二次不等式需分类讨论,首先判断二次项系数是否为零,再对所对应的一元二次方程的根进行分类讨论;23.(1)R A {x |1x 2}=-<<,1{|3B x x =<或1}x >;(2){}0;(3)211 1.32m m -<<-<<或 【分析】(1)m =2时,化简集合A ,B ,即可得集合∁R A 和集合B ;(2)集合B ∩Z 为单元素集,所以集合B 中有且只有一个整数,而0∈B ,所以抛物线y =(1﹣m 2)x 2+2mx ﹣1的开口向上,且与x 轴的两个交点都在[﹣1,1]内,据此列式可得m =0;(3)因为A =(﹣∞,﹣1)∪(2,+∞),(A ∩B )∩Z 中由n 个元素,所以1﹣m 2>0,即﹣1<m <1;A ∩B 中至少有3或﹣2中的一个,由此列式可得.【详解】集合A ={x |x 2﹣x ﹣2≥0}={x |x ≥2或x ≤﹣1},集合{x |(1﹣m 2)x 2+2mx ﹣1<0,m ∈R}={x |[(1+m )x ﹣1][(1﹣m )x +1]<0}(1)当m =2时,集合∁R A ={x |﹣1<x <2};集合1{|3B x x =<或1}x > ; (2)因为集合B ∩Z 为单元素集,且0∈B ,所以,解得m =0,当m =0时,经验证,满足题意.故实数m 的取值集合为{0}(3)集合(A ∩B )∩Z 的元素个数为n (n ∈N *)个,A ∩B 中至少有3或﹣2中的一个, 所以令f (x )=(1﹣m 2)x 2+2mx ﹣1,依题意有或, 解得﹣1<m <﹣或<m <1∴【点睛】本题考查了交、并、补集的混合运算.属难题.24.(1){}|25x x <<;(2)()1,+∞.【解析】试题分析:(1)根据题意和并集的运算求出AB ,再由补集的运算求出()UC A B ;(2)由(1)得集合D ,由CD C =得C D ⊆,根据子集的定义对C 分类讨论,分别列出不等式求出a 的范围.试题(1)由题意知,A =x |x ≤-2或x ≥5},B =x |x ≤2},则A ∪B =x |x ≤2或x ≥5},又全集U =R ,∁U (A ∪B )=x |2<x <5}.(2)由(1)得D =x |2<x <5},由C ∩D =C 得C ⊆D ,①当C =∅时,有-a <2a -3,解得a >1;②当C ≠∅时,有232325a a a a -≤-⎧⎪->⎨⎪-<⎩,解得a ∈∅. 综上,a 的取值范围为(1,+∞).25.(1)R (2)106m <≤或413m ≤≤ 【分析】(1)求出集合A ,B ,根据集合的并集运算即可;(2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围.【详解】由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞,所以{|04}B x x =<,所以A B R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C A B ⊆, 所以0132m m <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤, 故实数m 的取值范围106m <≤或413m ≤≤. 【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 26.(1){}|13A B x x ⋂=≤<(2)132a -≤< 【分析】先求解不等式,可得1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,{}|13A x x =≤≤,再由交集的定义求解即可;(2)由A B ⊆,判断a 与集合B 的端点的位置即可.【详解】由题,因为()210x a x a -++≤,则()()10x a x --≤, 因为2103x x +≤-,即()()213030x x x ⎧+-≤⎨-≠⎩,所以132x -≤<,即集合1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,()()310x x --≤,解得13x ≤≤,即{}|13A x x =≤≤,所以{}|13A B x x ⋂=≤<(2)由题,当1a <时,{}|1A x a x =≤≤;当1a ≥时,{}|1A x x a =≤≤,因为A B ⊆,所以132a -≤< 【点睛】本题考查集合的交集运算,考查已知集合的包含关系求参数问题,考查解一元二次不等式和分式不等式.。

第一章 高一数学集合单元测试题

第一章 高一数学集合单元测试题

第一章高一数学集合单元测试题第一章高一数学集合单元测试题一、选择题1.下列命题正确的有很小的实数可以构成集合;集合?y|y?x2?1?与集合??x,y?|y?x2?1?是同一个集合;1,3,6,?1242,这些数组成的集合有5个元素;集合??x,y?|xy?0,x,y?R?是指第二和第四象限内的点集。

A.0个B.1个C.2个D.3个2.若集合A?{?1,1},B?{x|mx?1},且A?B?A,则m的值为A.1 B.?1 C.1或?1 D.1或?1或0 3.若集合M??(x,y)x?y?0?,N??(x,y)x2?y2?0,x?R,y? R?,则有?x2?y2?9的解集是A.R??R B.Z???x|x?0,x?Z? C.空集是任何集合的真子集D.????? 6.下列表述中错误的是A.若A?B,则A?B?A B.若A?B?B,则A?B C.(A?B)A(A?B)D.CU?A?B???CUA???CUB? 二、填空题1.用适当的符号填空)3______?x|x?2?,?1,2?____??x,y?|y?x?1? 2?5_______x|x?2?3,?x|????1??x,x?R?_ ______?x|x3?x?0? x?2.设U?R,A??x|a?x?b?,CUA??x|x?4或x?3? _,b?__________则a?__________。

3.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人。

24.若A??1,4,x?,B?1,x且A?B?B,则x?。

??5.已知集合A?{x|ax2?3x?2?0}至多有一个元素,则a的取值范围;若至少有一个元素,则a的取值范围。

三、解答题1.设y?x?ax?b,A??x|y?x???a?,M?2??a,b??,求M 2.设A?{xx?4x?0},B?{xx?2(a?1)x?a?1?0},其中x?R, 如果A?B?B,求实数a的取值范围。

新北师大版高中数学必修一第一单元《集合》检测(答案解析)(1)

新北师大版高中数学必修一第一单元《集合》检测(答案解析)(1)

一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =3.集合2|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|()()0}B x x a x b =--<,若“2a =-”是“A B ⋂≠∅”的充分条件,则b 的取值范围是( ) A .1b <-B .1b >-C .1b ≤-D .12b -<<-4.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈5.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4B .5C .6D .76.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( ) A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集 C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集 D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集7.已知()()()()22221234()4444f x x x c xx c x x c x x c =-+-+-+-+,集合{}{}127()0,,,M x f x x x x Z ===⋯⊆,且1234c c c c ≤≤≤,则41c c -不可能的值是( )A .4B .9C .16D .648.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈9.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦10.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<11.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇12.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.已知集合{|M m Z =∈关于x 的方程2420x mx +-=有整数解},集合A 满足条件:①A 是非空集合且A M ⊆;②若a A ∈,则a A -∈.则所有这样的集合A 的个数为______.14.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.15.设集合{}0,4A =-,B ={}22|2(1)10,x x a x a x R +++-=∈.若B A ⊆,求实数a 的取值范围_______________16.已知集合2{1,9,},{1,}A x B x ==,若A B A ⋃=,则x 的值为_________. 17.已知集合{|11},{|01}A x a x a B x x =-<<+=<<若A B φ⋂=,实数a 的取值范围是______.18.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________.19.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-. (1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围. 22.若集合{}24A x x =<<,{}3B x a x a =<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.23.设全集为R ,}{37A x x =≤<,}{510B x x =<<.求()R C A B ⋃. 24.已知集合|1|{|28}x A x -=<,2{|log (51)2}B x x =->,求AB .25.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围. 26.已知不等式()210x a x a -++≤的解集为A . (1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0, 即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.2.D解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.3.B解析:B 【分析】由题意知{}|12A x x =-<<,当2a =-时,()(){}|20B x x x b =+-<,且A B ⋂≠∅成立,通过讨论2b <-,2b =-,2b >-三种情况,可求出b 的取值范围.【详解】 解:{}2|0|121x A x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭,当2a =-时,()(){}|20B x x x b =+-< 当2b <- 时,{}|2B x b x =<<-,此时A B =∅不符合题意;当2b =-时,B =∅ ,此时AB =∅不符合题意;当2b >-时,{}|2B x x b =-<<因为A B ⋂≠∅,所以1b >-.综上所述,1b >-. 故选:B. 【点睛】本题考查了分式不等式求解,考查了一元二次不等式,考查了由两命题的关系求参数的取值范围.本题的关键是由充分条件,分析出两集合的关系.4.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.5.D解析:D 【分析】写出集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的非空子集,根据和美集合的定义验证即可. 【详解】先考虑含一个元素的子集,并且其倒数是其本身,有{}{}1,1,-再考虑 含有两个元素的和美集合,有{}11,1,,33⎧⎫-⎨⎬⎩⎭,含有三个元素的子集且为和美集合的是111,,3,1,,3,33⎧⎫⎧⎫-⎨⎬⎨⎬⎩⎭⎩⎭含有四个元素的子集且为和美集合的是11,1,,33⎧⎫-⎨⎬⎩⎭. 【点睛】本题主要考查了集合的子集,考查了创设新情景下解决问题的能力,属于中档题.6.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集;对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选: B. 【点睛】方法点睛:该题主要考查子集的判断,解题方法如下:(1)利用子集的概念,可以判断出1P 的元素,一定是2P 的元素,得到对任意a ,1P 是2P 的子集;(2)利用R 是R 的子集,结合判别式的符号,存在实数1b >时,有12Q Q R ==,得到结果.7.A解析:A 【分析】先设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,4,i i i i i x y x y c +=⋅=,再依题意分析根均为整数,列举根的所有情况,确定44c =和1c 的可能情况,得到41c c -的最小取值和其他可能的情况,即得结果. 【详解】设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,则由根和系数的关系知4,i i i i i x y x y c +=⋅=,又{}{}127()0,,,M x f x x x x Z ===⋯⊆,说明方程204i x x c -+=()1,2,3,4i =有一个方程是两个相等的根,其他三个方程是两个不同的根,由于根均为整数且和为4,则方程的根有以下这些情况:…,()()()()()()()()()6,105,9,4,8,3,7,2,6,1,5,0,4,1,3,2,2------,乘积分别为…,-60,-45,-32,-21,-12,-5,0,3,4.因为1234c c c c ≤≤≤,故44c =,123,,c c c 来自于4前面的任意可能三个不同的数字,1c 最小,故当15c =时41c c -最小,等于9,故不可能取4,能取9;当112c =-或160c =-时41c c -可以取16,64. 故选:A. 【点睛】本题解题关键是能依据题意分析方程204i x x c -+=()1,2,3,4i =的根的可能情况,既是整数又满足和为4,判断44c =,再根据1c 的可能情况,确定41c c -的可能结果,以突破难点.8.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.9.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<;∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.10.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.11.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).12.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.二、填空题13.15【分析】先依题意化简集合M 再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合即得这样的集合的个数【详解】设为方程的两个根则当时;当时;当时;当时;由条件①知且又由条件②知A 是有一些成对的解析:15 【分析】先依题意化简集合M ,再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合,即得这样的集合的个数. 【详解】设a ,b 为方程2420x mx +-=的两个根,则a b m +=-,42ab =-, 当1=a ,42b =时,41m =±; 当2=a ,21b =时,19m =±; 当3a =,14b =时,11m =±; 当6a =,7b =时,1m =±;{}{}{}{}{}1,111,1119,1941,411,1,11,11,19,19,41,41M =-⋃-⋃-⋃-=----,由条件①知A ≠∅且A M ⊆,又由条件②知A 是有一些成对的相反数组成的集合. 所以M 的4对相反数共能组成42115-=个不同的非空集合A . 故答案为:15. 【点睛】 关键点点睛:本题解题关键在于明确题中条件要求集合A 是由互为相反数的四组数字构成的非空集合,即计算集合个数突破难点.14.【解析】因为所以为方程的解则解得所以集合 解析:{}1,3【解析】 因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解, 则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =.15.或【分析】分类讨论四种情况讨论再求并集即可【详解】因为所以或或或当时方程无实根所以解得;当时方程有两个相等的实根所以解得:;当时方程有两个相等的实根所以此时无解;当时方程有两个不相等的实根所以解得:解析:1a ≤-或1a = 【分析】分类讨论B =∅,{}0B =、{}4B =、{}0,4B =四种情况讨论,再求并集即可. 【详解】因为B A ⊆,所以B =∅或{}0B =或{}4B =或{}0,4B =, 当B =∅时,方程222(1)10x a x a +++-=无实根, 所以()()224141220a a a ∆=+--=+<,解得1a <-;当{}0B =时,方程222(1)10x a x a +++-=有两个相等的实根120x x ==,所以()1221221010x x a x x a ⎧+=-+=⎨=-=⎩ ,解得:1a =-; 当{}4B =-时,方程222(1)10x a x a +++-=有两个相等的实根124x x ==-,所以()12212218116x x a x x a ⎧+=-+=-⎨=-=⎩ ,此时无解; 当{}0,4B =时,方程222(1)10x a x a +++-=有两个不相等的实根1204,x x ==-,所以()1221221410x x a x x a ⎧+=-+=-⎨=-=⎩,解得:1a =; 综上所述:1a ≤-或1a =, 【点睛】本题主要考查了集合之间的包含关系,分类讨论的思想,属于中档题.16.或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值【详解】由可知B ⊆A 则或解得:或或当时满足题意;当时满足题意;当时满足题意;当时不满足集合元素的互异性舍去综上可得:x 的值为或0故解析:3,3-或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值.【详解】由A B A ⋃=可知B ⊆A ,则29x =或2x x =, 解得:3x =±或0x =或1x =,当3x =时,{}{}1,9,3,1,9A B ==,满足题意;当3x =-时,{}{}1,9,3,1,9A B =-=,满足题意;当0x =时,{}{}1,9,0,1,0A B ==,满足题意;当1x =时,不满足集合元素的互异性,舍去.综上可得:x 的值为3,3-或0.故答案为:3,3-或0.【点睛】本题主要考查并集的定义,集合中元素的互异性,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.17.【分析】由根据集合的交集的运算得到或即可求解【详解】由题意集合因为则满足或解得或即实数的取值范围是故答案为:【点睛】本题主要考查了集合的运算以及利用集合的交集求参数其中解答中熟记集合交集运算列出相应 解析:(][),12,-∞-⋃+∞【分析】由A B φ⋂=,根据集合的交集的运算,得到11a -≥或10a +≤,即可求解.【详解】由题意,集合{|11},{|01}A x a x a B x x =-<<+=<<,因为A B φ⋂=,则满足11a -≥或10a +≤,解得2a ≥或1a ≤-,即实数a 的取值范围是(][),12,-∞-⋃+∞.故答案为:(][),12,-∞-⋃+∞.【点睛】本题主要考查了集合的运算,以及利用集合的交集求参数,其中解答中熟记集合交集运算,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题. 18.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题 解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可.【详解】若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意;若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =. 【点睛】本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题. 19.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1){}2A B x x ⋃=≥, (){}36R C A B x x x ⋂=或(2) ()(),210,-∞-⋃+∞【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或. (2)由题意知M φ≠,且{}4,4R C M x x a x a =-+或. ∵{}26A x x =≤≤,R A C M ⊆,∴46a ->或42a +<,解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞.【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 22.(1)423a ≤≤;(2)23a ≤或4a ≥ 【分析】(1)考虑A 是B 的子集即可求解;(2)分类讨论当B 为空集和不为空集两种情况求解.【详解】(1)若x A ∈是x B ∈的充分条件,234a a ≤⎧⎨≥⎩,解得423a ≤≤; (2)A B =∅,当B =∅时,即3,0a a a ≥≤,当B ≠∅时,04a a >⎧⎨≥⎩或032a a >⎧⎨≤⎩,即203a <≤或4a ≥. 综上所述:23a ≤或4a ≥ 【点睛】此题考查根据充分条件与集合关系求解参数取值范围,易错点在于漏掉考虑空集情况. 23.{|3x x <或}5x >【分析】根据补集的定义求出R C A ,再有并集的定义对R C A 和B 集合取并集即可.【详解】因为}{37A x x =≤<,所以由补集定义知, }{73R C A x x x =≥<或,因为}{510B x x =<<,所以作图如下:由图可知,()}{35R C A B x x x ⋃=<>或.故答案为:{|3x x <或}5x >【点睛】本题主要考查集合交、补混合运算;熟练掌握各自定义是求解本题关键;对于此类题目学生应掌握画数轴辅助解题,画数轴时应注意实点和虚点的区别;属于中档题,常考题型.24.{|14}A B x x ⋂=<<. 【分析】根据题意,先求出集合A 与集合B ,再利用交集的定义即可. 【详解】由题意,集合{}{}{}{}113|28|22|13|24x x A x x x x x x --=<=<=-<=-<<, 集合(){}(){}{}{}222|log 512|log 51log 4|514|1B x x x x x x x x =->=->=->=>, 所以,{}|14AB x x =<<. 【点睛】本题考查绝对值不等式,对数不等式的解法,考查交集的定义,属于基础题.25.(1)()[)4,1U AB =--(2)[)3,-+∞ 【分析】(1)先化简集合A ,再求()U A B ∩;(2)先求出[)4,A B =-+∞,得14a -≥-,解不等式即得解.【详解】(1)由题得[]4,2A =-,[)1,B =-+∞,(,1)U B =-∞-, 所以()[)4,1U A B =--;(2)由题得[)4,AB =-+∞,若C A B ⊆⋃,则14a -≥-,所以3a ≥-. 所以a 的取值范围是[)3,-+∞.【点睛】本题主要考查集合的运算和关系,意在考查学生对这些知识的理解掌握水平.26.(1){}|12x x ≤≤;(2)[]4,2.【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解.【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤, 即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤.(2)由()210x a x a -++≤,可得()()10x x a --≤, 当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<,当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意;当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.。

(常考题)北师大版高中数学必修一第一单元《集合》测试(包含答案解析)(1)

(常考题)北师大版高中数学必修一第一单元《集合》测试(包含答案解析)(1)

一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃2.由实数x ,﹣x ,|x | ) A .2个 B .3个C .4个D .5个3.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( )A .-3或-1或2B .-3或-1C .-3或2D .-1或24.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞5.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个6.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .07.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9B .16C .18D .278.已知()()()()22221234()4444f x x x c x x c x x c x x c =-+-+-+-+,集合{}{}127()0,,,M x f x x x x Z ===⋯⊆,且1234c c c c ≤≤≤,则41c c -不可能的值是( ) A .4B .9C .16D .649.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈10.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,111.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,112.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .2二、填空题13.已知集合{}2|60M x x x =+->,{}2|230,0N x x ax a =-+≤>,若M N ⋂中恰有一个整数,则a 的最小值为_________. 14.若{}2230P x x x =--<,{}Q x x a =>,且P Q P =,则实数a 的取值范围是______.15.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 16.已知{}2|340,{|10}A x x x B x ax a =+-==-+=,且B A ⊆,则所有a 的值所构成的集合M =_________. 17.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;18.设集合{}[1,2),0M N x x k =-=-≤,若M N ⋂=∅,则实数k 的取值范围为_______.19.已知集合2{1,9,},{1,}A x B x ==,若A B A ⋃=,则x 的值为_________. 20.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____. 三、解答题21.设集合{}|34A x x =-≤≤,{|132}B x m x m =-≤≤- (1)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围; (2)若AB B =,求实数m 的取值范围.22.设{}{},1,05U R A x x B x x ==≥=<<,求()UA B 和()U A B ∩23.已知集合{}13A x x =<<,{}21B x m x m =<<-.(1)当1m =-时,求A B ;(2)若A B B ⋃=,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.24.已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围.25.已知集合|1|{|28}x A x -=<,2{|log (51)2}B x x =->,求A B .26.设集合{}|36A x x =≤<,集合{}|19B x x =<≤. 求:(1)AB ;(2)()R C A B ⋃.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.A解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.3.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.4.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.5.C解析:C 【分析】先求集合B ,再求并集、交集、补集,最后根据元素确定子集个数. 【详解】因为{}2|1,{1,2,5,10}B x x t t A ==+∈=, 所以{}{}1,0,1,2,3510,1,2,AB A B =-=,,*{1,0,3,5,10}A B ∴=-因此集合*A B 的子集有5232=个, 故选:C 【点睛】本题考查并集、交集、补集定义以及子集个数,考查综合本分析求解能力,属基础题.6.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题7.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=; 若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=, 故选:D . 【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.8.A解析:A【分析】先设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,4,i i i i i x y x y c +=⋅=,再依题意分析根均为整数,列举根的所有情况,确定44c =和1c 的可能情况,得到41c c -的最小取值和其他可能的情况,即得结果. 【详解】设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,则由根和系数的关系知4,i i i i i x y x y c +=⋅=,又{}{}127()0,,,M x f x x x x Z ===⋯⊆,说明方程204i x x c -+=()1,2,3,4i =有一个方程是两个相等的根,其他三个方程是两个不同的根,由于根均为整数且和为4,则方程的根有以下这些情况:…,()()()()()()()()()6,105,9,4,8,3,7,2,6,1,5,0,4,1,3,2,2------,乘积分别为…,-60,-45,-32,-21,-12,-5,0,3,4.因为1234c c c c ≤≤≤,故44c =,123,,c c c 来自于4前面的任意可能三个不同的数字,1c 最小,故当15c =时41c c -最小,等于9,故不可能取4,能取9;当112c =-或160c =-时41c c -可以取16,64. 故选:A. 【点睛】本题解题关键是能依据题意分析方程204i x x c -+=()1,2,3,4i =的根的可能情况,既是整数又满足和为4,判断44c =,再根据1c 的可能情况,确定41c c -的可能结果,以突破难点.9.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.10.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.11.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.12.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题13.2【分析】解一元二次不等式求得集合根据交集结果可知在只有一个整数解由二次函数性质可得解方程组求得结果【详解】令则对称轴为恰有一个整数即在只有一个整数解即解得:的最小值为故答案为:【点睛】本题考查根据解析:2 【分析】解一元二次不等式求得集合M ,根据交集结果可知()2230f x x ax =-+≤在()(),32,-∞-+∞只有一个整数解,由二次函数性质可得()()3040f f ⎧≤⎪⎨>⎪⎩,解方程组求得结果. 【详解】()(){}()()320,32,M x x x =+->=-∞-⋃+∞,令()()2230f x x ax a =-+>,则对称轴为x a =,M N ⋂恰有一个整数,即()0f x ≤在()(),32,-∞-+∞只有一个整数解,()()3040f f ⎧≤⎪∴⎨>⎪⎩,即963016830a a -+≤⎧⎨-+>⎩,解得:1928a ≤<, a ∴的最小值为2.故答案为:2 【点睛】本题考查根据交集结果求解参数范围的问题,关键是能够将整数解个数问题转化为二次函数图象的讨论,通过约束二次函数的图象得到不等关系.14.【分析】先求出集合由已知条件中即可求出实数a 的取值范围【详解】由解得又因为且则所以即实数a 的取值范围是故答案为:【点睛】本题考查了集合的交集运算在解答此类题目的方法是将其转化为子集问题在取答案时可以 解析:(],1-∞-【分析】先求出集合P ,由已知条件中PQ P =,即可求出实数a 的取值范围.【详解】由{}2230P x x x =--<,解得{}13P x x =-<<,又因为{}Q x x a =>,且PQ P =,则P Q ⊆,所以1a ≤-,即实数a 的取值范围是(],1-∞-.故答案为:(],1-∞- 【点睛】本题考查了集合的交集运算,在解答此类题目的方法是将其转化为子集问题,在取答案时可以画出数轴来得到结果,本题较为基础.15.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞) 【分析】先求出集合B ,再利用交集定义和不等式性质求解. 【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞. 故答案为:[)3,+∞. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题.16.【分析】计算根据得到四种情况分别计算得到答案【详解】当时:此时;当时:解得;当时:解得;当时:无解;综上所述:故答案为:【点睛】本题考查了根据集合关系求参数忽略掉空集是容易发生的错误解析:110,,23⎧⎫-⎨⎬⎩⎭【分析】计算{}1,4A =-,根据B A ⊆得到B =∅,{}1B =,{}4B =-,{}1,4B =-四种情况,分别计算得到答案. 【详解】{}{}2|3401,4A x x x =+-==-,B A ⊆当B =∅时:{|10}B x ax a =-+==∅,此时0a =; 当{}1B =时:{}{|10}1B x ax a =-+==,解得12a =;当{}4B =-时:{}{|10}4B x ax a =-+==-,解得13a =-; 当{}1,4B =-时:{}{|10}1,4B x ax a =-+==-,无解;综上所述:110,,23a ⎧⎫∈-⎨⎬⎩⎭故答案为:110,,23⎧⎫-⎨⎬⎩⎭【点睛】本题考查了根据集合关系求参数,忽略掉空集是容易发生的错误.17.【分析】计算集合等价于在上恒成立计算的最小值得到答案【详解】等价于在上恒成立即设易知函数在单调递减故故答案为:【点睛】本题考查了集合的关系求参数将等价于在上恒成立是解题的关键解析:13a ≤-【分析】计算集合{}12A x x =≤≤,AB =∅等价于在[]1,2上11xa x -≥+恒成立,计算 21()1x f x -++=的最小值得到答案. 【详解】{}{}|22412x A x x x =≤≤=≤≤,11x B x a x ⎧⎫-=<⎨⎬+⎩⎭A B =∅,等价于在[]1,2上11x a x -≥+恒成立,即122111x x x a --+=-+++≤ 设21()1x f x -++= 易知函数在[]1,2单调递减,min 1()(2)3f x f ==-,故13a ≤- 故答案为:13a ≤- 【点睛】本题考查了集合的关系求参数,将A B =∅等价于在[]1,2上11xa x -≥+恒成立是解题的关键.18.【分析】首先求得集合N 然后确定实数k 的取值范围即可【详解】由题意可得:结合可知实数k 的取值范围是:故答案为:【点睛】本题主要考查交集的运算由集合的运算结果求参数取值范围的方法等知识意在考查学生的转化 解析:{}|1k k <-【分析】首先求得集合N ,然后确定实数k 的取值范围即可.【详解】由题意可得:{}|N x x k =≤,结合M N ⋂=∅可知实数k 的取值范围是:1k <-.故答案为:{}|1k k <-.【点睛】本题主要考查交集的运算,由集合的运算结果求参数取值范围的方法等知识,意在考查学生的转化能力和计算求解能力.19.或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x的值【详解】由可知B ⊆A 则或解得:或或当时满足题意;当时满足题意;当时满足题意;当时不满足集合元素的互异性舍去综上可得:x 的值为或0故 解析:3,3-或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值.【详解】由A B A ⋃=可知B ⊆A ,则29x =或2x x =, 解得:3x =±或0x =或1x =,当3x =时,{}{}1,9,3,1,9A B ==,满足题意;当3x =-时,{}{}1,9,3,1,9A B =-=,满足题意;当0x =时,{}{}1,9,0,1,0A B ==,满足题意;当1x =时,不满足集合元素的互异性,舍去.综上可得:x 的值为3,3-或0.故答案为:3,3-或0.【点睛】本题主要考查并集的定义,集合中元素的互异性,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】求A B 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】{}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-; 当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-; 当[]0x =时,[]222x x x +==⇒=,不满足[]0x =; 当[]1x =时,[]223x x x +==⇒=x []1x =; 即同时满足[]22x x -=和2x <的x 值有则A B={-故答案为:{- 【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题.三、解答题21.(1)4m ≥;(2)2m ≤.【分析】(1)根据已知条件得集合A 是B 的真子集,由此可得答案;(2)由于AB B =,故B 是A 的子集,分两种情况,分别列不等式求得m 的取值范围. 【详解】(1) 由x A ∈是x B ∈的充分不必要条件,所以A B ,13324m m -≤-⎧⎨-≥⎩等号不同时成立得4m ≥ ∴实数m 的取值范围为4m ≥(2)由题意知B A ⊆当B =∅,3132,4m m m ->-< 当B ≠∅,13324132m m m m -≥-⎧⎪-≤⎨⎪-≤-⎩,324m ≤≤ 综上所述:实数m 的取值范围为2m ≤.【点睛】本题主要考查集合的运算,根据包含关系求参数的取值范围,属于基础题.22.(){}|5U A B x x ⋃=<,(){}|5U A B x x ⋂=≥.【分析】首先根据题中所给的集合,根据补集的定义,求得{}|1U A x x =<,{0U B x =≤或5}x ,之后利用交集并集的定义求得结果.【详解】因为U =R ,{}{}1,05A x x B x x =≥=<<,所以{}|1U A x x =<,{0U B x =≤或5}x , 所以(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目. 23.(1){}23A B x x ⋃=-<<;(2){}2m m ≤-;(3){}0m m ≥.【分析】(1)当1m =-时,求出集合B ,利用并集的定义可求得集合A B ;(2)由A B B ⋃=可得出A B ⊆,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围;(3)分B =∅和B ≠∅两种情况讨论,结合AB =∅可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<; (2)由A B B ⋃=,可得A B ⊆,所以,2113m m ≤⎧⎨-≥⎩,解得2m ≤-. 因此,实数m 的取值范围是{}2m m ≤-;(3)A B =∅,分以下两种情况讨论:①若21m m 时,即当13m ≥时,B =∅,符合题意; ②若21m m 时,即当13m <时,则11m -≤或23m ≥,解得0m ≥,此时103m ≤<. 综上所述,0m ≥.即实数m 的取值范围为{}0m m ≥.【点睛】本题考查并集的计算,同时也考查了利用交集和并集的运算求参数的取值范围,考查计算能力,属于中等题.24.(1)A ∪B ={x |-2≤x ≤7};(∁R A )∩B ={x |-2≤x <1};(2){4a a <-或11}2a -≤≤.【分析】(1)由a =2,得到A ={x |1≤x ≤7},然后利用集合的基本运算求解.(2)由A ∩B =A ,得到A ⊆B .然后分A =∅,A ≠∅两种情况讨论求解. 【详解】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}.(2)∵A ∩B =A ,∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4;若A ≠∅,由A ⊆B ,得12312234a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得-1≤a ≤12综上,a 的取值范围是{4a a <-或 11}2a -≤≤.【点睛】本题主要考查集合的基本要和基本运算,还考查了分类讨论的思想和运算求解的能力,属于中档题.25.{|14}A B x x ⋂=<<.【分析】根据题意,先求出集合A 与集合B ,再利用交集的定义即可.【详解】 由题意,集合{}{}{}{}113|28|22|13|24x x A x x x x x x --=<=<=-<=-<<, 集合(){}(){}{}{}222|log 512|log 51log 4|514|1B x x x x x x x x =->=->=->=>, 所以,{}|14AB x x =<<.【点睛】本题考查绝对值不等式,对数不等式的解法,考查交集的定义,属于基础题.26.(1){}|36A B x x ⋂=≤<;(2)()R C A B R ⋃=【分析】(1)根据集合的交集运算即可(2)根据集合的补集、并集运算.【详解】因为集合{}|36A x x =≤<,集合{}|19B x x =<≤所以{}|36A B x x ⋂=≤<.所以{|3R C A x x =<或}6x ≥,∴R C A B R ⋃=.【点睛】本题主要考查了集合的交集,补集,并集运算,属于容易题.。

第一章 集合与常用逻辑用语(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第一章 集合与常用逻辑用语(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第一章集合与常用逻辑用语(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表述中正确的是( )A.{0}=∅B.{(1,2)}={1,2}C.{∅}=∅D.0∈N2.已知集合A={1,2},B={1},则下列关系正确的是( )A.B AB.B∈AC.B⊆AD.A⊆B3.已知集合A={a-2,2a2+5a,12},且-3∈A,则a=( )A.-1B.-23C.-32D.-134.集合A={1,2},B={2,4,6},则A∪B=( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}5.“x为整数”是“2x+1为整数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为( )A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P7.已知a,b为实数,M:a<b ,N:a<b,则M是N的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.若命题“p:∀x∈R,x2-2x+m≠0”是真命题,则实数m的取值范围是( )A.{m|m≥1}B.{m|m>1}C.{m|m<1}D.{m|m≤1}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.下列关系正确的有( )A.12∈R B.2∉R C.|-3|∈N D.|-3|∈Q10.方程组Error!的解集可表示为( )A.Error!B.Error!C.(1,2)D.{(2,1)}11.已知A ={x|x +1>0},B ={-2,-1,0,1},则(A)∩B 中的元素有( )A.-2B.-1C.0D.1三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.若a ,b ∈R ,且a ≠0,b ≠0,则|a|a +|b|b的可能取值所组成的集合中元素的个数为________13.已知命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p 为________14.已知集合A ={-2,1},B ={x|ax =2},若A ∪B =A ,则实数a 值集合为________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U =R ,集合A ={x|-1≤x ≤2},B ={x|-3≤x ≤1}.(1)求A ;(2)求B ∪(A).16.(14分)命题p 是“对任意实数x ,有x -a >0或x -b ≤0”,其中a ,b 是常数.(1)写出命题p 的否定;(2)当a ,b 满足什么条件时,命题p 的否定为真?R ð R ðR ð17.(15分)已知集合A ={x|2≤x <7},B ={x|5<2x -1<17}.(1)求A ∩B ,(B)∪A ;(2)已知C ={x|m +2<x ≤2m},若C ∩B =C ,求实数m 的取值范围.18.(16分)已知P ={x|1≤x ≤2},S ={x|1-m ≤x ≤1+m}.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的取值范围;若不存在,请说明理由.19.(18分)设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a -1)x +(a 2-5)=0}.(1)若A∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.R ð参考答案及解析:一、选择题1.D 解析:由集合的性质可知,∅表示没有任何元素的集合,而{0}表示有一个元素0,故A 错误;{(1,2)}表示有一个元素,是点的集合,而{1,2}表示有2个元素的集合,是数集,故B 错误;∅表示没有任何元素的集合,而{∅}表示有一个元素∅,故C 错误.故选D .2.C 解析:因两个集合之间不能用“∈或”,首先排除选项A ,B .因为集合A ={1,2},B ={1},所以集合B 中的元素都是集合A 中的元素,由子集的定义知B ⊆A .故选C .3.C 解析:因为-3∈A ,所以-3=a -2或-3=2a 2+5a ,所以a =-1或a =-32.所以当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去;当a =-32时,a -2=-72,2a 2+5a =-3,满足,所以a =-32.故选C .4.D 解析:∵A ={1,2},B ={2,4,6},∴A ∪B ={1,2,4,6}.故选D .5.A 解析:x 为整数时,2x +1也是整数,充分性成立;2x +1为整数时,x 不一定是整数,如2x +1=2时,x =12,所以必要性不成立,是充分不必要条件.故选A .6.B 解析:正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形.故选B .7.A 解析:因为a ,b 为实数,所以由a <b ,能够得到a <b ,反之,由a <b ,不一定有a <b ,如-3<-2,而-3无意义,所以M 是N 的充分不必要条件.故选A .8.B 解析:命题p :∀x ∈R ,x 2-2x +m ≠0是真命题,则Δ<0,即m >1.二、选择题9.AC 解析:AC 正确,BD 错误.10.ABD 解析:方程组Error!只有一个解,解为Error!所以方程组Error!的解集中只有一个元素,且此元素是有序数对,所以A ,B ,D 都符合题意.11.AB 解析:∵A ={x|x +1>0}={x|x >-1},∴A ={x|x≤-1}.又∵B ={-2,-1,0,1},∴(A)∩B ={-2,-1}.∴(A)∩B 中的元素有-2,-1.三、填空题12.答案:3解析:当a ,b 同正时,|a|a +|b|b =a a +b b=1+1=2.当a ,b 同负时,|a|a +|b|b =-a a +-b b =-1-1=-2.当a ,b 异号时,|a|a +|b|b=0. R ðR ðR ð∴|a|a +|b|b的可能取值所组成的集合中元素共有3个.13.答案:x ∈R ,x 2-3x +3>0 解析:命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p :x ∈R ,x 2-3x +3>0.14.答案:{0,-1,2} 解析:因为A ∪B =A ,所以B ⊆A ,当B =∅时,a =0;当B ≠∅时,B ={2a },则2a =-2或2a=1,解得a =-1或a =2,所以实数a 值集合为{0,-1,2}.四、解答题15.解:(1)∵A ={x|-1≤x ≤2},∴A ={x|x <-1或x >2}.(2)B ∪(A)={x|-3≤x ≤1}∪{x|x <-1或x >2}={x|x ≤1或x >2}.16.解:(1)命题p 的否定:存在实数x ,有x -a ≤0且x -b >0.(2)要使命题p 的否定为真,则需要使不等式组Error!的解集不为空集,通过画数轴(画数轴略)可看出,a ,b 应满足的条件是b <a .17.解:(1)因为B ={x|5<2x -1<17}={x|3<x <9},所以A ∩B ={x|3<x <7},B ={x|x ≤3或x ≥9},所以(B)∪A ={x|x <7或x ≥9}.(2)因为C ∩B =C ,所以C ⊆B .当C =∅时,m +2≥2m ,解得m ≤2;当C ≠∅时,{m +2<2m ,m +2≥3,2m <9,解得2<m <92.综上可得,实数m 的取值范围为Error!.18.解:(1)要使x ∈P 是x ∈S 的充要条件,需使P =S ,即Error!此方程组无解,故不存在实数m ,使x ∈P 是x ∈S 的充要条件.(2)要使x ∈P 是x ∈S 的必要条件,需使S ⊆P .当S =∅时,1-m >1+m ,解得m <0,满足题意;当S ≠∅时,1-m ≤1+m ,解得m ≥0,要使S ⊆P ,则有Error!解得m ≤0,所以m =0.综上可得,当实数m ≤0时,x ∈P 是x ∈S 的必要条件.∀∃∀R ðR ðR ðR ð19.解:(1)由题可知A ={x|x 2-3x +2=0}={1,2}.因为A∩B ={2},所以2∈B ,将2代入集合B 中,得4+4(a -1)+(a 2-5)=0,解得a =-5或a =1.当a =-5时,集合B ={2,10}符合题意;当a =1时,集合B ={2,-2},符合题意.综上所述,a =-5或a =1.(2)若A ∪B =A ,则B ⊆A .因为A ={1,2},所以B =∅或B ={1}或{2}或{1,2}.若B =∅,则Δ=4(a -1)2-4(a 2-5)=24-8a <0,解得a >3;若B ={1},则{Δ=24-8a =0,x =-2(a -1)2=1-a =1,不存在满足式子同时成立的a 值;若B ={2},则{Δ=24-8a =0,x =-2(a -1)2=1-a =2,不存在满足式子同时成立的a 值;若B ={1,2},则{Δ=24-8a >0,1+2=-2(a -1),1×2=a 2-5,不存在满足式子同时成立的a 值.综上所述,a >3.。

高一数学第一章集合单元测试题

高一数学第一章集合单元测试题

高中数学必修第一单元集合测试题11.设A={x|x ≤4},a=17,则下列结论中正确的是( )(A ){a} A (B )a ⊆A (C ){a}∈A (D )a ∉A 2.若{1,2} A ⊆{1,2,3,4,5},则集合A 的个数是( )(A )8 (B )7 (C )4 (D )3 3.下面表示同一集合的是( )(A )M={(1,2)},N={(2,1)} (B )M={1,2},N={(1,2)} (C )M=Φ,N={Φ} (D )M={x|2210}x x -+=,N={1}4.若P ⊆U ,Q ⊆U ,且x ∈C U (P ∩Q ),则( )(A )x ∉P 且x ∉Q (B )x ∉P 或x ∉Q (C )x ∈C U (P ∪Q) (D )x ∈C U P 5. 若M ⊆U ,N ⊆U ,且M ⊆N ,则( )(A )M ∩N=N (B )M ∪N=M (C )C U N ⊆C U M (D )C U M ⊆C U N 6.已知集合M={y|y=-x 2+1,x ∈R},N={y|y=x 2,x ∈R},全集I=R ,则M ∪N 等于( )(A ){(x,y)|x=21,,}22y x y R ±=∈, (B ){(x,y)|x 21,,,}22y x y R ≠±≠∈(C ){y|y ≤0,或y ≥1} (D ){y|y<0, 或y>1}7.50名学生参加跳远和铅球两项测试,跳远和铅球测试成绩分别及格40人和31人,两项测试均不及格的有4人,则两项测试成绩都及格的人数是( )(A )35 (B )25 (C )28 (D )15 8.设x,y ∈R,A={}(,)x y y x =,B= {}(,)1y x y x=,则A 、B 间的关系为( )(A )AB (B )BA (C )A=B (D )A ∩B=Φ9. 设全集为R ,若M={}1x x ≥ ,N= {}05x x ≤<,则(C U M )∪(C U N )是( )(A ){}0x x ≥ (B ) {}15x x x <≥或 (C ){}15x x x ≤>或 (D ) {}05x x x <≥或10.已知集合{|31,},{|32,}M x x m m Z N y y n n Z ==+∈==+∈,若00,,x M y N ∈∈ 则00y x 与集合,M N 的关系是 ( )(A )00y x M ∈但N ∉(B )00y x N ∈但M ∉(C )00y x M ∉且N ∉(D )00y x M ∈且N ∈ 11.集合U ,M ,N ,P 如图所示,则图中阴影部分所表示的集合是( ) (A )M ∩(N ∪P ) (B )M ∩C U (N ∪P ) (C )M ∪C U (N ∩P ) (D )M ∪C U (N ∪P ) 12.设I 为全集,A ⊆I,B A,则下列结论错误的是( )(A )C I AC I B (B )A ∩B=B (C )A ∩C I B =Φ (D ) C I A ∩B=Φ13.已知x ∈{1,2,x 2},则实数x=__________.14.已知集合M={a,0},N={1,2},且M ∩N={1},那么M ∪N 的真子集有 个. 15.已知A={-1,2,3,4};B={y|y=x 2-2x+2,x ∈A},若用列举法表示集合B ,则B= . 16.设{}1,2,3,4I =,A 与B 是I 的子集,若{}2,3A B =,则称(,)A B 为一个“理想配集”,那么符合此条件的“理想配集”的个数是 .(规定(,)A B 与(,)B A 是两个不同的“理想配集”)17.已知全集U={0,1,2,…,9},若(C U A)∩(C U B)={0,4,5},A ∩(C U B)={1,2,8},A ∩B={9}, 试求A ∪B . ⊂≠ ⊂ ≠NU PM18.设全集U=R,集合A={}14x x -<<,B={}1,y y x x A =+∈,试求C U B, A ∪B, A ∩B,A ∩(C U B), ( C U A) ∩(C U B).19.设集合A={x|2x 2+3px+2=0};B={x|2x 2+x+q=0},其中p ,q ,x ∈R ,当A ∩B={}12时,求p 的值和A ∪B .20.设集合A={(,)462x y y x x a=++{}(,)2x y y x a =+,问:(1) a 为何值时,集合A ∩B 有两个元素; (2) a 为何值时,集合A ∩B 至多有一个元素.21.已知集合A={}1234,,,a a a a ,B={}22221234,,,a a a a ,其中1234,,,a a a a均为正整数,且1234a a a a <<<,A ∩B={a 1,a 4},a 1+a 4=10, A ∪B 的所有元素之和为124,求集合A 和B .22.已知集合A={x|x 2-3x+2=0},B={x|x 2-ax+3a -5},若A ∩B=B ,求实数a 的值.22已知,全集U={x |-5≤x ≤3},A={x |-5≤x <-1},B={x |-1≤x <1},求C U A , C U B ,(C U A)∩(C U B),(C U A)∪(C U B),C U (A ∩B),C U (A ∪B),并指出其中相关的集合.23.(12分)集合A={(x,y )022=+-+y mx x },集合B={(x,y )01=+-y x ,且02≤≤x },又A φ≠⋂B ,求实数m 的取值范围.24已知集合M={}{}{}2,2,4,3,2,46,2a a N a a a a M N +-=++-+⋂=且,求实数a 的的值.25已知集合{}{}0,60,,A x x bx c B x x mx A B B A =++==++=⋃=且B ⋂={}2,求实数b,c,m 的值.高中数学必修第一单元集合测试题2一、选择题1.集合},{b a 的子集有 ( )A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则AB = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞用描述法表示一元二次方程的全体,应是 ( )A .{x |ax 2+bx +c =0,a ,b ,c ∈R }B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0}C .{ax 2+bx +c =0|a ,b ,c ∈R }D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0}2.图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于( )A .B .2C .{2}D .N 二、填空题1.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB = .2.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .14.某班50名学生参加跳远、铅球两项测试,成绩及格人数分别为40人和31人,两项测试均不及格的人数是4人,两项测试都及格的有 人.3设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .4设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -= 5、设集合M =},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则M N 。

北师大版高中数学必修一第一单元《集合》检测卷(含答案解析)(1)

北师大版高中数学必修一第一单元《集合》检测卷(含答案解析)(1)

一、选择题1.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,2.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >3.已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( ) A .77n = B .49n ≤C .64n =D .81n ≥4.下列各式中,正确的是( )A .{}22x x ⊆≤B .{32x x ∈>且}1x <C .{}{}41,21,x x k k Z x x k k Z =±∈≠=+∈D .{}{}31,32,x x k k Z x x k k Z =+∈==-∈ 5.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞6.已知集合2{|120}A x x x =--≤, {|211}B x m x m =-<<+.且A B B =,则实数m 的取值范围为 ( ) A .[-1,2)B .[-1,3]C .[-2,+∞)D .[-1,+∞)7.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭8.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈9.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UBD .∅10.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<11.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭12.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤二、填空题13.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2230,B x x x x R =--≥∈,则A B =_________. 14.在①AB A =,②A B ⋂≠∅,③R BC A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由.问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?15.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______.16.集合1{}2|Ax x ≤=<,{|}B x x a =<,若A B B ⋃=,则a 的取值范围是_______.17.已知{}A x x =>,{|(3)(3)0}B x x x x =-+>,则AB =________18.若关于x 的方程2210ax x ++=的解集有唯一子集 ,则实数a 的取值范围是_____. 19.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 20.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________.三、解答题21.设全集U =R ,集合A ={x |-1<x -m <5},集合1{|24}.2x B x =<< (1)当m =-1时,求();UA B ⋂(2)若A ∪B =A ,求实数m 的取值范围. 22.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.23.已知集合{}43A x x =-≤≤,集合{}121B x m x m =-≤≤+. (1)若B A ⊆,求实数m 的取值范围;(2)若不存在实数x 使x A ∈,x B ∈同时成立,求实数m 的取值范围. 24.已知集合{|14}A x x =<<,集合{|21}B x m x m =<<- (1)当1m =-时,求A B ,()R A B ⋂;(2)若AB =∅,求实数m 的取值范围.25.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤ (1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围.26.已知集合{}|2,12xA y y x ==≤≤,()(){}|20B x x a x a =---≤. (1)若3a =,求AB ;(2)若()R B C A ⊆.求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.2.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.3.A解析:A 【分析】先理解题意,然后分①当11x =±,10y =时,②当10x =,11y =±时, ③当10x =,10y =时,三种情况讨论即可. 【详解】解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈, ①当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----,123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,②当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---,124,3,2,1,0,1,2,3,4y y +=----,这种情况和第①种情况除124,4y y +=-外均相同,故新增7214⨯=个, ③当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个,综合①②③可得:A B ⊕的元素个数为6314077++=个, 故选:A. 【点睛】本题考查了元素与集合关系的判断,重点考查了计数原理的应用,属中档题.4.D解析:D 【分析】根据元素与集合的关系,集合与集合的关系即可求解. 【详解】因为2与集合{}2x x ≤的关系是属于或者不属于,故A 选项错误; 因为{2x x >且}1x <是空集,3不是集合中的元素,故B 选项错误;因为集合{}{}41,,21,x x k k Z x x k k Z =±∈=+∈都表示奇数构成的集合,相等,故C 选项错误;因为集合{}{}31,,32,x x k k Z x x k k Z =+∈=-∈都表示被3整数余1的整数构成的集合,故D 选项正确. 【点睛】本题主要考查了集合的描述法,元素与集合的关系,集合与集合的关系,属于中档题.5.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.6.D解析:D 【分析】 先求出集合A ,由A B B =,即B A ⊆,再分B φ=和B φ≠两种情况进行求解.【详解】由2120x x --≤,得34x -≤≤. 即[3,4]A =-.由A B B =,即B A ⊆.当B φ=时,满足条件,则211m m -≥+解得2m ≥.当B φ≠时,要使得B A ⊆,则12121314m m m m +>-⎧⎪-≥-⎨⎪+≤⎩.解得:12m -≤<.综上满足条件的m 的范围是:1m ≥-. 故选:D. 【点睛】本题主要考查集合的包含关系的判断及应用,以及集合关系中的参数范围问题,考查分类讨论思想,属于中档题.7.B解析:B 【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论. 【详解】由题意,A ∪B ={x |﹣1<x <2}, ∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0; ②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1, 综上所述,12-≤m ≤1, 故选:B . 【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.8.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=.【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.9.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.10.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.11.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项.由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.12.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.二、填空题13.【分析】分别根据分式不等式和一元二次不等式的解法求出集合和再根据交集的定义求出【详解】∵集合∴故答案为【点睛】本题考查集合的交集的运算解题时要认真审题注意分式不等式和一元二次不等式的合理运用是基础题解析:(]5,1--. 【分析】分别根据分式不等式和一元二次不等式的解法求出集合A 和B ,再根据交集的定义求出A B ⋂.【详解】 ∵集合2{|0}{|52}5x A x x x x -=<=-<<+, 2{|230}{|13}B x x x x R x x x =--≥∈=≤-≥,或,∴{|51}A B x x ⋂=-<≤-,故答案为(]5,1--. 【点睛】本题考查集合的交集的运算,解题时要认真审题,注意分式不等式和一元二次不等式的合理运用,是基础题.14.答案见解析【分析】求得集合化简集合分三种情况讨论得到集合;再分别得若选择①若选择②若选择③时实数a 的取值范围【详解】当时;当时;当时若选择①则当时要使则所以当时满足题意当时不满足题意所以选择①则实数解析:答案见解析 【分析】求得集合[1,1)B =-,化简集合{()(1)0,}A xx a x x R =-+<∈∣,分1a >-,1a =-,1a <-三种情况讨论得到集合A ;再分别得若选择①,若选择②,若选择③时,实数a的取值范围. 【详解】{}2log (1)1,R [1,1)B x x x =-≤∈=-∣,0,{()(1)0,}1x a A x x R x x a x x R x -⎧⎫=<∈=-+<∈⎨⎬+⎩⎭∣∣,当1a >-时,(1,)A a =-; 当1a =-时,A =∅; 当1a <-时,(,1)A a =- 若选择①AB A =,则A B ⊆,当1a >-时,要使(1,)[1,1)a -⊆-,则1a ≤,所以11a -<≤ 当1a =-时,A =∅,满足题意 当1a <-时,(,1)A a =-不满足题意 所以选择①,则实数a 的取值范围是[-1,1] 若选择②A B ⋂≠∅,当1a >-时,(1,),[1,1)A a B =-=-,满足题意; 当1a =-时,A =∅,不满足题意;当1a <-时,(,1),[1,1)A a B =-=-,不满足题意 所以选择②,则实数a 的取值范围是(1,)-+∞. 若选择③RB A ⊆,当1a >-时,(1,),(,1][,)RA a A a =-=-∞-⋃+∞,而[1,1)B =-,不满足题意当1a =-时,,R RA A =∅=,而[1,1)B =-,满足题意当1a <-时,(,1),(,][1,)RA a A a =-=-∞⋃-+∞,而[1,1)B =-,满足题意.所以选择③,则实数a 的取值范围是(,1]-∞-,综上得:若选择①,则实数a 的取值范围是[-1,1];若选择②,则实数a 的取值范围是(1,)-+∞;若选择③,则实数a 的取值范围是(,1]-∞-.【点睛】本题考查集合间的包含关系,集合间的运算,属于中档题.15.{-101}【分析】由已知得B ⊆A 从而B=∅或B={-1}或B={1}进而或=-1或由此能求出实数a 的取值集合【详解】∵A={x|x2=1}={-11}A∩B=B ∴B ⊆A ∴B=∅或B={-1}或B=解析:{-1,0,1}【分析】由已知得B ⊆A ,从而B=∅或B={-1},或B={1},进而0a =,或1a =-1或11a=,由此能求出实数a 的取值集合. 【详解】∵A={x|x 2=1}={-1,1}, A∩B=B ,∴B ⊆A , ∴B=∅或B={-1},或B={1}, ∴0a =,或1a =-1或11a=, 解得a=0或a=-1或a=1. ∴实数a 的取值集合为{-1,0,1}. 故答案为:{-1,0,1}. 【点睛】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.16.【分析】根据可知A 为B 的子集利用数轴求解即可【详解】根据题意作图如下:由图可知实数的取值范围为【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题常考题型 解析:2a >【分析】根据A B B ⋃=,可知A 为B 的子集,利用数轴求解即可. 【详解】 根据题意,作图如下:由图可知,实数a 的取值范围为2a >. 【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题、常考题型.17.【分析】先分别求解集合中元素的所满足的不等式再由交集的定义求解即可【详解】由题因为解得则因为解得或则或所以故答案为:【点睛】本题考查集合的交集运算考查含根式的不等式的运算考查解高次不等式 解析:{|30}-<<x x【分析】先分别求解集合中元素的所满足的不等式,再由交集的定义求解即可 【详解】由题,因为20x x >-≥⎪⎩,解得1x <,则{}|1A x x =<, 因为()()330x x x -+>,解得30x -<<或3x >,则{|30B x x =-<<或}3x >, 所以{}|30A B x x ⋂=-<<,故答案为:{|30}-<<x x【点睛】本题考查集合的交集运算,考查含根式的不等式的运算,考查解高次不等式18.【分析】由题意知关于的方程无实数解可得出由此可解出实数的取值范围【详解】由题意知关于的方程无实数解当时原方程为解得不合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】本题考查利用集合的 解析:()1,+∞【分析】由题意知,关于x 的方程2210ax x ++=无实数解,可得出00a ≠⎧⎨∆<⎩,由此可解出实数a 的取值范围.【详解】由题意知,关于x 的方程2210ax x ++=无实数解.当0a =时,原方程为210x +=,解得12x =-,不合乎题意; 当0a ≠时,则有440a ∆=-<,解得1a >.综上所述,实数a 的取值范围是()1,+∞.故答案为:()1,+∞.【点睛】本题考查利用集合的子集个数求参数,将问题转化为方程无实解是解题的关键,考查分类讨论思想的应用,属于中等题.19.【分析】由题意可知实数满足或解出即可得出实数的取值范围【详解】由题意可知实数满足或解不等式即即解得或因此实数的取值范围是故答案为【点睛】本题考查利用元素与集合的关系求参数解题的关键在于将问题转化为不 解析:()[),32,-∞-⋃+∞【分析】由题意可知,实数a 满足2312a --<-+或20a -+=,解出即可得出实数a 的取值范围. 【详解】由题意可知,实数a 满足2312a--<-+或20a -+=.解不等式2312a --<-+,即5102a +>-,即302a a +>-,解得3a <-或2a >. 因此,实数a 的取值范围是()[),32,-∞-⋃+∞.故答案为()[),32,-∞-⋃+∞.【点睛】本题考查利用元素与集合的关系求参数,解题的关键在于将问题转化为不等式进行求解,考查化归与转化思想的应用,属于中等题.20.①③④【分析】对各个选项分别进行分析利用类的定义直接求解【详解】在①中∵2014÷5=402…4∴2014∈4故①正确;在②中∵﹣3=5×(﹣1)+2∴﹣3∉3故②错误;在③中∵整数集中的数被5除的解析:①③④【分析】对各个选项分别进行分析,利用类的定义直接求解.【详解】在①中,∵2014÷5=402…4,∴2014∈[4],故①正确;在②中,∵﹣3=5×(﹣1)+2,∴﹣3∉[3],故②错误;在③中,∵整数集中的数被5除的数可以且只可以分成五类,∴Z =[0]∪[1]∪[2]∪[3]∪[4],故③正确;在④中,∵2015÷5=403,2010÷5=402,∴2015与2010属于同一个“类”[0],故④正确.故答案为①③④.【点睛】本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题.三、解答题21.(1)(){|21U AB x x =-<≤-或24}x ≤<;(2)30m -≤≤. 【分析】(1)求出集合B ,再根据集合的运算法则计算.由A B A ⋃=得B A ⊆,根据集合的包含关系得出不等式式,从而可求解.【详解】(1)1m =-时,{|115}{|24}A x x x x =-<+<=-<<,{|12}B x x =-<<, {|1U B x x =≤-或2}x ≥,∴(){|21U AB x x =-<≤-或24}x ≤<; (2)∵A B A ⋃=,∴B A ⊆,又{|15}A x m x m =-<<+,∴1152m m -≤-⎧⎨+≥⎩,解得30m -≤≤.【点睛】本题考查集合的综合运算,考查集合的包含关系,考查指数函数的性质.解题时注意集合的运算与包含关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1)(1,1]A B ⋂=-;(2)1m .【分析】(1)先利用分式不等式的解法和绝对值不等式的解法化简集合A ,B ,再利用交集运算求解.(2)根据()C AC ⊆,得到C A ⊆,然后分C =∅和C ≠∅两种情况讨论求解. 【详解】(1)因为集合423(1,5]1a A aa ⎧⎫-=≤=-⎨⎬+⎩⎭,{}12[3,1]B a a =+≤=-, 所以(1,1]A B ⋂=-.(2)因为()C A C ⊆,所以C A ⊆,①当3m m -≥+即32m ≤-时,C =∅,符合题意, ②当3m m -<+即32m >-时,则135m m -≥-⎧⎨+≤⎩, 解得132m -<≤, 综上:1m【点睛】 本题主要考查集合的基本运算和集合的基本关系的应用以及分式不等式和绝对值不等式的解法,还考查了分类讨论思想和运算求解的能力,属于中档题.23.(1)1m ;(2)2m <-或4m >.【分析】(1)分B =∅和B ≠∅两种情况讨论,结合B A ⊆可得出关于实数m 的不等式组,由此可解得实数m 的取值范围;(2)由题意可得AB =∅,分B =∅和B ≠∅两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】(1)当121m m ->+,即2m <-时,B A =∅⊆,故2m <-符合题意; 当B ≠∅且B A ⊆时,有12114213m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得21m -≤≤.综上可知,m 的取值范围是1m ;(2)因为不存在实数x 使得x A ∈且x B ∈,所以AB =∅.当B =∅时,有2m <-;当B ≠∅且A B =∅时,有12113m m m -≤+⎧⎨->⎩或121214m m m -≤+⎧⎨+<-⎩,解得4m >. 故实数m 的取值范围是2m <-或4m >.【点睛】易错点点睛:在利用集合的包含关系以及集合运算求参数时,不能忽略对含参数的集合为空集的情况的讨论,从而导致解题不完整.24.(1){|24}A B x x ⋃=-<<,()=R A B {|21}x x -<≤;(2)0m ≥. 【分析】(1)当1m =-时,求集合B ,再求集合的交并补集;(2)讨论B =∅ 和B ≠∅两种情况讨论当AB =∅时,求参数的取值范围. 【详解】(1)1m =-时,{|22}Bx x ,{|24}A B x x ⋃=-<<, {1R A x x =≤或4}x ≥,{|21}R A B x x ⋂=-<≤() (2)由A B =∅,当B =∅时,21m m ,解得:13m ≥ 当B ≠∅时,2111m m m <-⎧⎨-≤⎩,解得:103m ≤< 或2124m m m <-⎧⎨≥⎩,无解 综上可得:0m ≥【点睛】易错点睛:根据集合的运算结果求参数或是根据集合的包含关系求参数时,容易忽略空集的情况,这一点需注意.25.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出AB 即可; (2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.26.(1)=[3,4]AB ; (2)4a >或0a < 【分析】(1)写出集合A ,B 的区间形式,代入数值计算即可;(2)写出集合R C A ,根据边界判断a 的取值范围即可.【详解】集合{}|2,12=[2,4]x A y y x ==≤≤,()(){}|20[,2]B x x a x a a a =---≤=+ (1)若3a =,[3,5]B =,则=[3,4]AB ; (2)(,2)(4,)R C A =-∞+∞,()R B C A ⊆, 因此:4a >或22a +<故:4a >或0a <【点睛】 本题考查了集合的交并补运算,考查了学生的数学运算能力,属于基础题.。

(好题)高中数学必修一第一单元《集合》测试(答案解析)(1)

(好题)高中数学必修一第一单元《集合》测试(答案解析)(1)

一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃2.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤3.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个4.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0AB =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( )A .1B .2C .3D .45.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q xx P Q =∈★∣且}x P Q ∉⋂.如果{111},{P x x Q x y =-≤-≤==∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 6.已知集合A ={x |-3≤x -1<1},B ={-3,-2,-1,0,1,2},若C ⊆A ∩B ,则满足条件的集合C的个数是( ). A .7B .8C .15D .167.集合{}*|421A x x N =--∈,则A 的真子集个数是( )A .63B .127C .255D .5118.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅9.对于非空实数集A ,定义{|A z *=对任意},x A z x ∈≥.设非空实数集(],1C D ≠⊆⊂-∞.现给出以下命题:(1)对于任意给定符合题设条件的集合C ,D ,必有D C **⊆;(2)对于任意给定符合题设条件的集合C ,D ,必有C D *≠∅;(3)对于任意给定符合题设条件的集合C ,D ,必有CD *=∅;(4)对于任意给定符合题设条件的集合C ,D ,必存在常数a ,使得对任意的b C *∈,恒有a b D *+∈.以上命题正确的个数是( ) A .1B .2C .3D .410.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( ) A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]211.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集12.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤二、填空题13.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >;③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +. 其中所有真命题的序号为__________. 14.在①AB A =,②A B ⋂≠∅,③R BC A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由.问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?15.若集合(){}2220A x Z x a x a =∈-++-<中有且只有一个元素,则正实数a 的取值范围是_____.16.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.17.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________18.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.19.函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[ 3.5]4-=-,[2.1]2=.若{|[][2][3],01}A y y x x x x ==++≤≤,则A 中所有元素的和为_______.20.已知集合{}{}2430,21xA x x xB x =++≥<,则AB =____________三、解答题21.已知集合{}12,U xx x P =-≤≤∈∣,{}02,A x x x P =≤<∈,{}1,(11)B x a x x P a =-<≤∈-<<.(1)若P =R ,求U A 中最大元素m 与U B 中最小元素n 的差m n -;(2)若P =Z ,求AB 和UA 中所有元素之和及()UAB .22.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.23.设集合1|2432x A x -⎧⎫=≤≤⎨⎬⎩⎭,{}22|3210B x x mx m m =-+--<. (1)当x ∈Z 时,求A 的非空真子集的个数; (2)若B =∅,求m 的取值范围; (3)若A B ⊇,求m 的取值范围.24.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围. 25.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}|16B x x x =->.(1)求AB ;(2)若{}|11C x m x m =-<<+,()()RC AB ⊆,求实数m 的取值范围.26.已知全集U =R ,设集合{}213A x x =-≤,集合(){}2440B x x a x a =+-->,若A B A =,求实数a 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题3.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C.【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.4.B解析:B 【分析】先阅读题意,取特例{}1A = ,{}2B =,可得①③错误,由集合中元素的互异性可得②④正确. 【详解】解:对于①,取{}1A = ,{}2B =,满足||||A B ≤,但不满足A B ⊆,即①错误; 对于②,因为||||AB A B =,由集合中元素的互异性可得A B =,即②正确;对于③,取{}1A = ,{}2B =, 满足||0A B =,但不满足A 、B 中至少有个是空集,即③错误; 对于④,A B =∅,则集合A B 、中无公共元素,则||||||A B A B =+,即④正确;综上可得②④正确,故选B. 【点睛】本题考查了对新定义的理解及集合元素的互异性,重点考查了集合交集、并集的运算,属中档题.5.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.6.D解析:D 【分析】推导出C ⊆A ∩B ={-2,-1,0,1},由此能求出满足条件的集合C 的个数. 【详解】∵集合A ={x |-3≤x -1<1}={x |-2≤x <2},B ={-3,-2,-1,0,1,2},C ⊆A ∩B ={-2,-1,0,1}, ∴满足条件的集合C 的个数是:24=16. 故选:D . 【点睛】本题考查满足条件的集合C 的个数的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.7.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N =--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3, 故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.8.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.9.B解析:B 【分析】根据题干新定义{|A z *=对任意},x A z x ∈≥,通过分析举例即可判断。

(完整版)高中数学必修1第一章集合测试题

(完整版)高中数学必修1第一章集合测试题

新课标人教 A 版会集单元测试题一、选择题:〔每题〔时间4 分,共计80 分钟,总分值40 分〕100 分〕1、若是会集U1,2,3,4,5,6,7,8, A2,5,8, B1,3,5,7,那么 (U A)B等于〔〕(A)5(B)1,3,4,5,6,7,8(C)2,8(D)1,3,72、若是 U是全集, M,P,S 是U 的三个子集,那么阴影局部所表示的会集为〔〕〔A〕〔 M∩P〕∩ S;〔B〕〔 M∩P〕∪ S;〔C〕〔M∩P〕∩〔 C U S〕〔D〕〔M∩P〕∪〔 C U S〕3、会集M {( x, y) | x y2},N{( x, y) | x y 4} ,那么会集M I N 为〔〕A、x3, y1B、(3,1)C、 {3,1}D、 {(3,1)}4.A{4, 2a1, a2} ,B= { a5,1a,9},且 A B {9} ,那么 a 的值是()A. a 3B.a3C.a3D. a 5或 a35.假设会集A{ x kx24x 40, x R} 中只有一个元素 , 那么实数 k 的值为 ()B. 1C. 0或 1D.k16.会集 A{ y y x24, x N , y N} 的真子集的个数为()A. 9B. 8C. 7D. 67.符号 { a}P { a,b,c} 的会集P的个数是()A. 2B. 3C. 4D. 58. M{ y y x21, x R}, P{ x x a 1, a R} , 那么会集 M与 P 的关系是()A. M=PB.P R C .M P D.M P9.设 U为全集 , 会集 A、B、C满足条件 A B A C ,那么以下各式中必然成立的是(〕A.A B A CB.B CC.A(C U B)A(C U C)D.(C U A) B (C U A) C10.A{ x x 2x60}, B{ x mx10} ,且A B A ,那么的取值范围是( )mA.{ 1,1} B.{0, 1 ,1} C.{0,1,1} D.{1,1}323232 3 2二、选择题:〔每题 4 分,总分值 20 分〕11.设会集 M { 小于5的质数 } ,那么M的真子集的个数为.12. 设U{1,2,3,4,5,6,7,8} , A {3,4,5}, B {4,7,8}. 那么: (C U A) (C U B) ,(C U A)(C U B) .13 . 某班有学生 55 人, 其中音乐爱好者34 人 , 体育爱好者 43 人, 还有 4 人既不爱好体育也不爱好音乐 , 那么班级中即爱好体育又爱好音乐的有人.14.A{ x x1或x 5}, B{ x a x a4} ,假设A B, 那么实数a 的取值范围是.15.会集P{ x x m23m1}, T{ x x n23n1} , 有以下判断:① P T { y y 5}②P4T { y y5}③P4T④ P T其中正确的选项是 .三、解答题16. 〔此题总分值 10 分〕含有三个元素的会集 { a, b,1}{ a2 , a b,0}, 求a2007b 2021 a的值 .17.〔此题总分值 10 分〕假设会集S {小于10的正整数},A S,B S ,且 (C S A) B {1,9}, A B { 2}, (C S A) (C S B) {4,6,8} ,求A和B。

高中数学单元测试题必修1第一章《集合》

高中数学单元测试题必修1第一章《集合》

高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为A .1B .1-C .1或1-D .1或1-或0 3.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则A .U AB = B .()U U A B = ðC .()U U A B = ðD .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧, 则下列结论正确的是A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<216.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ7.下列四个集合中,是空集的是 A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 A .M N = B .M ÜNC .N ÜMD .M N ϕ=9.表示图形中的阴影部分A .()()A CBC B .()()A B A CC .()()A B B CD .()A B C 10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.下列命题之中,U 为全集时,不正确的是A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b = .14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为 .15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.CB A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.19.(12分)在1到100的自然数中有多少个能被2或3整除的数?20.(12分)已知集合22{|320},{|20}A x x x B x x x m =-+==-+=且=B A ,A 求m的取值范围.21.设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①当A B =A B 时,求a 的值;②当φÜA B ,且A C =φ时,求a 的值; ③当A B =A C ≠φ时,求a 的值;(12分)22.(12分)设1a ,2a ,3a ,4a ,5a 为自然数,A={1a ,2a ,3a ,4a ,5a }, B={21a ,22a ,23a ,24a ,25a },且1a <2a <3a <4a <5a ,并满足A ∩B={1a ,4a }, 1a +4a =10,A ∪B 中各元素之和为256,求集合A ?高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为(D )A .3,1x y ==-B .(3,1)-C .{3,1}-D .{(3,1)}-2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为(D ) A .1 B .1- C .1或1- D .1或1-或03.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则(C ) A .U A B = B .()U U A B = ð C .()U U A B = ð D .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧,则下列结论正确的是 ( B )A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于(A )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 设集合{1,2,3,4,5,6},{|26}P Q x R x ==∈≤≤,那么下列结论正确的是(D )A .P Q P =B .P Q Q ÝC .P Q Q =D .P Q P Ü 集合{|22},{|13}A x x B x x =-<<=-≤<,那么A B = (A )A .{|23}x x -<<B .{|12}x x ≤<C .{|21}x x -<≤D .{|23}x x <<以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φÜ}0{,其中正确的个数是( A )A .1B .2C .3D .4 下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅⑤0 ∅.=∅ 其中错误..写法的个数为 (C ) A .1 B .2 C .3 D .4 如果集合{}1->=x x P ,那么 (D )A .P ⊆0B .{}P ∈0C .P ∈∅D .{}P ⊆06.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 ( B ) A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ 7.下列四个集合中,是空集的是 ( D )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 ( B ) A .M N = B .M ÜNC .N ÜMD .M N ϕ= 已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, =P x x |{+=2p },61Z p ∈,则P N M ,,的关系 (B ) A .N M =ÜP B .M ÜP N = C .M ÜN ÜP D . N ÜP ÜM设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( C ) A .M B . P C .Q D .P M ⋃9.表示图形中的阴影部分( A )A .()()A CBC B .()()A B A CC .()()A B B CD .()A B CB A10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于( B )A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是(C ) A .8 B .7 C .6 D .5满足{,}M N a b = 的集合N M ,共有(C )A .7组B .8组C .9组D .10组 满足条件{1}{1,2,3}M = 的集合M 的个数是 ( C )A .4B .3C .2D .112.下列命题之中,U 为全集时,不正确的是 (B )A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b =2.14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为A ∪B.15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围a =0或89≥a . 16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是{|1}a a -?设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅ ,则实数m 范围是(D ) A .1m ≥- B .1m >- C .1m ≤- D .1m <-三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.证明:(1)3=22-12 ∴3∈A ;(2)设4k -2∈A,得存在m,n ∈Z,使4k -2=m 2-n 2成立.(m -n )(m +n )=4k -2,当m,n 同奇或同偶时,m -n,m +n 均为偶数.∴(m -n )(m +n )为4的倍数,与4k -2不是4 倍数矛盾.当m,n 同分别为奇,偶数时,m -n,m +n 均为奇数.(m -n)(m +n )为奇数,与4k -2是偶数矛盾.∴4k -2∉A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.解:(1)a =0,S =φ,φ⊆P 成立 a ≠0,S ≠φ,由S ⊆P ,P ={3,-1}得3a +2=0,a =23-或-a +2=0,a =2; ∴a 值为0或23-或2. (2)B =φ,即m +1>2m -1,m <2 φ⊆A 成立.B≠φ,由题得121,21,215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩得2≤m ≤3,∴m <2或2≤m ≤3 , 即m ≤3为取值范围.注:(1)特殊集合φ作用,常易漏掉;(2合思想常使集合问题简捷比. 用描述法表示图中的阴影部分(包括边界)解:}0,121,231|),{(≥≤≤-≤≤-xy y x y x19.(12分)在1到100的自然数中有多少个能被2或3整除的数?解:设集合A 为能被2整除的数组成的集合,集合B 为能被3整除的数组成的集合,则A B 为能被2或3整除的数组成的集合,A B 为能被2和3(也即6)整除的数组成的集合.显然集合A 中元素的个数为50,集合B 中元素的个数为33,集合A B 中元素的个数为16,可得集合A B 中元素的个数为50+33-16=67.某市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

For personal use only in study and research; not for
commercial use
高一数学第一章集合单元测试题(一)
班级__________ 学号___________姓名_____________
一、选择题
1、己知A= {x | x > - 1},那么正确的是 ( )
(A )0⊆A (B){0}⊆A (C)A={0} (D)Φ∈A
2、设U ={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6} 则集合 {2,7,8}是 ( )
(A )A B (B )A B
(C )(C U A ) (C U B ) (D )(C U A ) (C U B )
3、下列四个命题 :①空集没有子集 ②空集是任何一个集合的真子集 ③空集中元素个数为0 ④任一集合必有两个或两个以上的子集。

其中正确的有 ( )
(A )0 (B )1 (C )2 (D )3
4、设A={y | y = -1 + x –2 x 2} ,若m
∈A 则必有 ( ) (A )m
∈{正有理数} (B )m ∈{负有理数} (C )m ∈{正实数} (D )m ∈{负实数}
5、已知=>+-==M C x x x M R U U 则},044{,2( )
(A ) R (B )Φ (C ) {2} (D ) {0}
6、已知全集},4{},,2{,+++∈==∈===N n n x x B N n n x x A N U 则
(A) B A U = (B) B A C U U =
(C) )(B C A U U = (D) )()(B C A C U U U =
7、已知集合N M y x y x N y x y x M 那么}4),{(},2),{(=-==+=
为( )
(A)1,3-==y x (B) (3,-1) (C) {3,-1} (D) {(3,-1)}
8、已知集合}1{},3,2,1{==A B A 则B 的子集最多可能有( )
(A) 5个 (B) 6个 (C) 7个 (D) 8个
9、已知},,1{},4,3,2,1{A x x y y B A ∈-===则{0}与B 的关系是( )
(A) B ∈}0{ (B) B ⊂}0{ (C) B ⊄}0{ (D) B ⊇}0{
10、已知},,14{},,1{2
2+∈+-==∈+==N m m m x x Q N n n x x P 则P 与Q 的关系是
( )
(A) Q P = (B) Q P ⊂ (C) P Q ⊂ (D)以上答案都不对
11、已知则},,1{},,1{22R x x y y N R x x y y M ∈+-==∈+== N M 是( )
(A) {0,1} (B) {(0,1)} (C) {1} (D)C 以上答案均不对
12、符合条件{a ,b ,c} ⊆ P ⊆ {a ,b ,c ,d ,e}的集合P 的个数是( )
(A )2 (B )3 (C )4 (D )8
二、填空题
13、{(1,2),(-3,4)}的所有真子集是 ;
14、设直线的32+=x y 点集为P =___________________,则点(2,7)与P 的关系为
(2,7)____ P
15、已知},{b a P =又P 的所有子集组成集合Q ,用列举法表示Q ,则
Q =_____________________
16、如图所示,阴影部分表示的集合为
17、已知,.,},3),{(},12),{(B a A a x y y x B x y y x A ∈∈+==-==则______=a
18、若},,34{},,42{2
2R b b b y y B R a a a x x A ∈+-==∈++==试确定A 与B 的关系为 __________. 三、解答题
19、已知B A b b B a a A ==++=若},,1{},21,1,1{2,求b a ,
20、已知,}1{},62{P Q a x a x Q x x P ⊆+≤≤=≤≤=若求a 的范围
21、已知集合},02{2=+-=k x x x P 若集合P 中的元素少于两个,求.k
22、已知全集}4{≤=x x U 集合},33{},32{≤<-=<<-=x x B x x A 求B A C B A C B A U U )(),(,
23、设A 是数集,满足A a ∈时,必有A a
∈-11, (1)若A ∈2,问:
①A 中至少有几个元素?并把它列举出来?
② A 中还可以有其它元素吗?
(2)若A 中只能有一个元素且A ∉2,实数a 是否存在?
仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文
仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Stud ien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文。

相关文档
最新文档