新人教版高二数学必修4期末测试题【附答案】
新人教版高中数学必修四期末试卷(附答案)

)
2
43
4
A. 2
B.1
C. 2 2
D.2
9.已知 tan , tan 是方程 x2 3 3x 4 0 两根,且 , ( , ) ,则 等于( )
22
A. 2
B. 2 或
C. 或 2
D.
3
33
33
3
10.函数 f (x) log 1 (sin 2x cos 2x) 的单调减区间是( )
2
C. 向左平移 个单位
4
D. 向右平移 个单位
4
4.已知是第三象限角且 sin 24 ,则 tan 的值是 ( )
25
2
4
A.
3
3
B.
4
C. 3 4
D. 4 3
5.下列命题正确的是( )
A.若α,β是第一象限角,α>β,则 sinα>sinβ
B.函数 y tan x 的图象的对称中心是 (2k , 0), k Z ; 2
3
A. (k
,
k
)
4
8
C. (k , k 3 )
8
8
(k∈Z) (k∈Z)
B.
(k
,
k
]
(k∈Z)
8
8
D. (k , k 5 ) (k∈Z)
8
8
11.已知 sin
3 , 5
2
,
, tan
1 2
,则
tan
新人教版高二数学必修四数学-期末测试题【通用版】

期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ).A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2范围内,与角-34π终边相同的角是( ).A .6πB .3πC .32πD .34π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ).A .41 B .23 C .21D .436.如图,在平行四边形ABCD 中,下列结论中正确的是( ).A .=B .-=C .+=D .+=7.下列函数中,最小正周期为 的是( ).A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos 4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).A .10B .5C .-25D .-109.若tan =3,tan =34,则tan(-)等于( ).A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥BC ,那么c 的值是( ).A .-1B .1C .-3D .312.下列函数中,在区间[0,2π]上为减函数的是( ).A .y =cos xB .y =sin xC .y =tan xD .y =sin(x -3π)13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ).C (第6题)A .254 B .257 C .2512 D .2524 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 的终边经过点P (3,4),则cos 的值为 . 16.已知tan =-1,且 ∈[0,),那么 的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 . 18.某地一天中6时至14时的温度变化曲线近似满足函数T =A sin(t +)+b (其中2π<<时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.(第18题)三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)已知0<<2π,sin =54.(1)求tan 的值; (2)求cos 2+sin ⎪⎭⎫ ⎝⎛2π + α的值.20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |; (2)当a ·b =21时,求向量a 与b 的夹角 的值.21.(本小题满分10分)已知函数f (x )=sin x (>0).(1)当 =时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式;(2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos >0知,为第一、四象限或 x 轴正方向上的角;由sin <0知,为第三、四象限或y 轴负方向上的角,所以 的终边在第四象限.5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知AD +AB =. 7.B 解析:由T =ωπ2=,得 =2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(-)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D 解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).二、填空题:15.53.解析:因为r =5,所以cos =53. 16.43π. 解析:在[0,)上,满足tan =-1的角只有43π,故 =43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5).18.20;y =10sin(8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(x +)+b 的半个周期的图象,所以A =21(-)=10,b =21(30+10)=20.因为21·ωπ2=14-6,所以 =8π,y =10sin ⎪⎭⎫ ⎝⎛ϕ + 8πx +20. 将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<<,可得 =43π. 综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<<2π,sin =54, 故cos =53,所以tan =34.(2)cos 2+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin2+cos =-2532+53=258. 20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos =ba ba ·=22,故=°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫ ⎝⎛0 , 32π点,得sin32π=0,所以32π=k ,k ∈.即 =23k ,k ∈.又>0,所以k ∈N*. 当k =1时,=23,f (x )=sin 23x ,其周期为34π,此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数;当k ≥2时,3,f (x )=sin x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,=23.。
【人教版】高中数学必修四期末模拟试题含答案

一、选择题1.若1sin 34a π⎛⎫-= ⎪⎝⎭,则sin 26a π⎛⎫-= ⎪⎝⎭( )A .78-B .78C .1516-D .15162.若()π,2πα∈,πcos sin 042αα⎛⎫+-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭( )A .B .0CD .或0 3.已知()1sin 30cos 3αα︒+=+,则()sin 230α+︒=( )A .79-B .79C D .9-4.设函数()f x =sin()cos()x x ωϕωϕ+++(ω>0,||ϕ<2π)的最小正周期为π,且()f x -=()f x ,则()f x ( )A .在0,2π⎛⎫⎪⎝⎭单调递减 B .在3,44ππ⎛⎫⎪⎝⎭单调递减 C .在0,2π⎛⎫⎪⎝⎭单调递增 D .在3,44ππ⎛⎫⎪⎝⎭单调递增 5.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )A .3B .2C .12D .236.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A 1B .1C .1-D 17.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D8.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==9.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值A .π4B .π3C .π2D .2π310.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 11.已知点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴.若()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,则ϕ=( ) A .6π B .3π C .23π D .56π 12.将函数()3sin()2f x x =--图象上每一点的纵坐标不变,横坐标缩短为原来的13,再向右平移29π个单位得到函数()g x 的图象,若()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则θ的最小值为( )A .12πB .6πC .3π D .18π 二、填空题13.求值:sin 50sin 30sin10cos50cos30sin10︒+︒︒︒-︒︒=_______14.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知b =22cos c a b A -=,则a c +的取值范围为______.15.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是A ,B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为________. 16.已知平面向量a ,b 夹角为30,若2=a ,则12b a b +-的最小值为______. 17.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 18.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的19.已知函数()()()sin 0,πf x x ωϕωϕ=+><的图像如图所示,则ϕ=__________.20.将函数()sin (0)f x x ωω=>的图象向右平移6π个单位长度,得到函数()y g x =的图像,若()y g x =是偶函数,则ω的最小值为________.三、解答题21.已知300cos 25παβπα<<<<=,,. (1)分别求cos 2sin 2sin 2ααα,,的值;(2)若1sin()3αβ+=,求cos β. 22.已知,2παπ⎛⎫∈⎪⎝⎭,且2sin cos 22αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 23.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢的往上转,可以从高处俯瞰四周的景色(如图1).某摩天轮的最高点距离地面的高度为90米,最低点距离地面10米,摩天轮上均匀设置了36个座舱(如图2).开启后摩天轮按逆时针方向匀速转动,游客在座舱离地面最近时的位置进入座舱,摩天轮转完一周后在相同的位置离开座舱.摩天轮转一周需要30分钟,当游客甲坐上摩天轮的座舱开始计时.(1)经过t 分钟后游客甲距离地面的高度为h 米,试将h 表示为时间t 的函数; (2)问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为30米?(3)若游客乙在游客甲之后进入座舱,且中间相隔5个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为h 米,求h 的最大值. 24.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域; (2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值; (2)若a b ⊥,求||a .26.已知4a =,3b =,()()23261a b a b -⋅+=, (1)求a 与b 的夹角θ; (2)求2a b +;(3)若2AB a b =+,BC b =,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】化简sin 2cos 2()63a ππα⎛⎫-=- ⎪⎝⎭,再利用二倍角公式化简求值. 【详解】22sin 2sin[(2)]cos(2)=cos 2()cos 2()632333a ππππππαααα⎛⎫-=-+=--=- ⎪⎝⎭=21712sin ()123168πα--=-⨯=. 故选:B 【点睛】方法点睛:三角恒等变换常用的方法有:三看(看角、看名、看式)三变(变角变名变式),要根据已知条件灵活选择方法化简求值.2.B解析:B 【分析】根据题意,化简得到cossin222αα+=-,所以3,24αππ⎛⎫∈⎪⎝⎭,取得1sin 2α=-,再利用三角函数的基本关系式和两角和的正弦函数公式,即可求解. 【详解】由cos sin 042παα⎛⎫+-= ⎪⎝⎭,可得22cos sin cos sin 022222αααα⎫-+-=⎪⎝⎭,即cos sin cos sin 022222αααα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭, 因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,所以cos sin 022αα-≠,解得cos sin 222αα+=-,所以3,24αππ⎛⎫∈ ⎪⎝⎭,所以11sin 2α+=,所以1sin 2α=-,又3,22παπ⎛⎫∈⎪⎝⎭,所以cos α==,所以π11sin 062222α⎛⎫+=-+⨯= ⎪⎝⎭. 【点睛】三角函数的化简求值的规律总结:1、给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题;2、给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系;3、给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围).3.B解析:B 【分析】根据条件展开化简得到()1sin 303α-︒=,再利用角的变换,得到()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒,再利用二倍角公式化简求值.【详解】由()1sin 30cos 3αα︒+=+,得11cos cos 23ααα=+, 化简得()1sin 303α-︒=; ()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒ ()21712sin 301299α=--︒=-⨯=故选:B . 【点睛】本题考查三角恒等变换,重点考查转化的思想,计算能力,属于基础题型.4.A解析:A 【分析】由题意结合三角恒等变换得()+4f x x πωϕ⎛⎫=+ ⎪⎝⎭,由三角函数的性质可得ω、ϕ,再由三角函数的图象与性质即可得解.【详解】由题意()sin()cos()+4f x x x x πωϕωϕωϕ⎛⎫=+++=+ ⎪⎝⎭,因为函数()f x 的最小正周期为π,且()f x -=()f x , 所以2ππω=,且+4πϕ=,2k k Z ππ+∈,解得ω=2,ϕ=,4k k Z ππ+∈,又||ϕ<2π,所以ϕ=4π,所以()f x =2+2x π⎛⎫⎪⎝⎭2x ,当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈,故()f x 在0,2π⎛⎫⎪⎝⎭上单调递减,故A 正确,C 错误; 当3,44x ππ⎛⎫∈ ⎪⎝⎭时,2,232x ππ⎛⎫∈ ⎪⎝⎭,故()f x 在3,44ππ⎛⎫⎪⎝⎭上不单调,故B 、D 错误. 故选:A. 【点睛】本题考查了三角函数图象与性质的综合应用,考查了三角恒等变换的应用,牢记三角函数图象的特征是解题关键,属于中档题.5.D解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果. 【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B ACy A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.6.C解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC +=由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立. 因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 7.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b aa b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.8.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.9.C解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】 解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.10.A解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.11.B解析:B 【分析】 先由点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴,求出ω的范围,再由()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调求出φ. 【详解】 由题意得:62484T πππ-=≥, 得1248ππω⨯≤,所以ω4≥. 又()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,所以3662T πππ-=≤,得1226ππω⨯≥,所以ω6≤ 所以ω=4或5或6.当ω=4时, ()()cos 4f x x ϕ=+,有cos 402424460f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩解得3πϕ=.当ω=5时, ()()cos 4f x x ϕ=+,有cos 502424560f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.当ω=6时, ()()cos 4f x x ϕ=+,有cos 602424660f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.综上: 3πϕ=.故选:B 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;(3)求φ通常利用函数上的点带入即可求解.12.D解析:D 【分析】由题先求出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,可得3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要满足题意,则332ππθ+≥,即可求出.【详解】将()f x 横坐标缩短为原来的13得到3sin(3)2y x =--,再向右平移29π个单位得到()23sin 323sin 3293g x x x ππ⎡⎤⎛⎫⎛⎫---=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=,,18x πθ⎡⎤∈-⎢⎥⎣⎦,则3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要使()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则332ππθ+≥,即18πθ≥,则θ的最小值为18π. 故选:D. 【点睛】本题考查正弦型函数的性质,解题的关键是通过图象变化得出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,再根据正弦函数的性质求解.二、填空题13.【分析】根据代入原式利用正余弦的和差角公式求解即可【详解】故答案为:【点睛】本题主要考查了非特殊角的三角函数化简与求值需要根据所给的角度与特殊角的关系并利用三角恒等变换进行求解属于中档题【分析】根据506010︒=︒-︒,代入原式利用正余弦的和差角公式求解即可. 【详解】()()sin 6010sin 30sin10sin 50sin 30sin10cos50cos30sin10cos 6010cos30sin10︒-︒+︒︒︒+︒︒=︒-︒︒︒-︒-︒︒sin 60cos10cos60sin10sin 30sin10cos60cos10sin 60sin10cos30sin10︒︒-︒︒+︒︒=︒︒+︒︒-︒︒sin 60cos10tan 60cos60cos10︒︒==︒=︒︒【点睛】本题主要考查了非特殊角的三角函数化简与求值,需要根据所给的角度与特殊角的关系,并利用三角恒等变换进行求解.属于中档题.14.【分析】将已知等式化边为角结合两角和的正弦公式化简可得已知由余弦定理和基本不等式求出的最大值结合即可求解【详解】由正弦定理及得因为所以化简可得因为所以因为所以由已知及余弦定理得即因为所以得所以当且仅解析:【分析】将已知等式化边为角,结合两角和的正弦公式化简可得B ,已知b ,由余弦定理和基本不等式,求出a c +的最大值,结合a c b +>,即可求解. 【详解】由正弦定理及22cos c a b A -=, 得2sin sin 2sin cos C A B A -=. 因为()C A B π=-+,所以()2sinsin 2sin cos A B A B A +-=.化简可得()sin 2cos 10A B -=.因为sin 0A ≠,所以1cos 2B =. 因为0B π<<,所以3B π=.由已知及余弦定理,得2223b a c ac =+-=, 即()233a c ac +-=,因为0a >,0c >,所以()22332a c a c +⎛⎫+-≤ ⎪⎝⎭,得()212a c +≤,所以a c +≤,当且仅当a c ==.又因三角形任意两边之和大于第三边,所以a c +>,a c <+≤故a c +的取值范围为.故答案为: 【点睛】本题考查正弦定理、余弦定理、三角恒等变换解三角形,利用基本不等式求最值,属于中档题.15.【分析】设点的坐标为由于为定值由正弦定理可知当取得最大值时的外接圆面积取得最小值也等价于取得最大值结合已知即可求得答案【详解】不妨设点的坐标为由于为定值由正弦定理可知当取得最大值时的外接圆面积取得最解析:22122x y -=.【分析】设点P 的坐标为()()2,0m m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值,结合已知,即可求得答案. 【详解】不妨设点P 的坐标为()()2,0m m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值,2tan a APF m +∠=,2tan aBPF m-∠=, ∴()2222tan tan 221a aa a m m APB APF BPF a ab b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当()20b m m m=>,即当m b =时,等号成立,此时APB ∠最大,即APB ∆的外接圆面积取最小值.点P 的坐标为()2,b ,代入22221x y a b-=,可得a =b =∴双曲线的方程为22122x y -=.故答案为:22122x y -=.【点睛】本题主要考查了求双曲线的方程,解题关键是掌握双曲线基础知识和灵活使用均值不等式,考查了分析能力和计算能力,属于难题.16.【分析】首先设则结合向量夹角为利用对称关系求得其最小值也可以建系利用向量的坐标去求解【详解】解析1:(对称)设则过作于点由于向量夹角为则故所以最小值为到的距离为即的最小值为故答案为:解法2:(建系) 解析:3【分析】首先设a OA =,b OB =,则a bBA -=,结合向量a ,b 夹角为30,利用对称关系,求得其最小值,也可以建系,利用向量的坐标去求解. 【详解】 解析1:(对称)设a OA =,b OB =,则a b BA -=,过B 作BH OA ⊥于点H . 由于向量a ,b 夹角为30,则12BH OB =,故12b a b BH AB BH A B '+-=+=+, 所以最小值为A '到OA 的距离为3,即12b a b +-的最小值为3.3 解法2:(建系)设()2,0a =,则3,3b m ⎛⎫= ⎪⎝⎭,不妨设0m >, 则()222131342442333mb a b m m m m +-=+-+=+-+ 令()234443x f x x x =+-+ 则()242334443x f x x x -'=+-+()0f x '=,解得1x =,即当1x =时,()min 3f x =所以12b a b +-的最小值为【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量模的和的最小值的求解,在解题的过程中,可以利用图形,从对称角度去分析,也可以建系,将其坐标化求解,属于中档题目.17.【详解】两端平方得又得即夹角为所以即又所以解析:2【详解】 两端平方得222114k ke e =++⋅, 又121122S e e sin θ==, 得1sin θ=,即12,e e 夹角为90︒,所以120e e ⋅=, 即234k =,又 0k >,所以k =.18.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】 由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN =AB +n (AN AB -)=(1-n )14AB nAC +=m 211AB AC +. 由14n=211,得m=1-n=311. 19.【分析】结合函数图象由解得得到进而得到然后由函数图象过点求解【详解】由图可知:所以所以所以因为函数图象过点所以所以解得又因为解得故答案为:【点睛】本题主要考查三角函数的图象和性质还考查了数形结合的思解析:9π10【分析】 结合函数图象由352244πππ=-=T ,解得52π=T ,得到45ω=,进而得到()45sin ϕ⎛⎫⎪=+⎝⎭f x x ,然后由函数图象过点()2,1π求解.【详解】 由图可知:352244πππ=-=T , 所以52π=T , 所以245πω==T , 所以()45sin ϕ⎛⎫⎪=+⎝⎭f x x , 因为函数图象过点()2,1π, 所以sin 815πϕ⎛⎫= ⎪⎝⎭+, 所以2825ππϕπ+=+k , 解得11210ϕππ=-k , 又因为π<ϕ,解得910πϕ=. 故答案为:9π10【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.20.3【分析】求出的解析式再利用函数为偶函数则从而得到的表达式进而得到其最小值【详解】由题意得因为是偶函数所以解得因为所以的最小值为3故答案为:【点睛】本题考查三角函数的平移变换及偶函数的性质考查函数与解析:3 【分析】求出()y g x =的解析式,再利用函数为偶函数,则(0)1g =±从而得到ω的表达式,进而得到其最小值. 【详解】由题意得()sin 6g x x πω⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦, 因为()y g x =是偶函数,所以(0)sin 16g πω⎛⎫=-=± ⎪⎝⎭,∴()62k k Z ππωπ-=+∈,解得63()k k Z ω=--∈.因为0>ω,所以ω的最小值为3.故答案为:3. 【点睛】本题考查三角函数的平移变换及偶函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.三、解答题21.(1)724cos 2,sin 2,sin 252525ααα=-==;(2)415- . 【分析】 (1)先由30cos 25παα<<=,,求出sin α,然后分别求cos 2sin 2sin 2ααα,,的值; (2)先判断αβ+的范围,再凑角()βαβα=+-,利用两角差的余弦公式即可求解. 【详解】 (1)因为30,cos 25παα<<=,所以24sin 1cos 5αα.所以27cos 22cos 1,2524sin 22sin cos ,25sin 2αααααα=-=-====;(2)因为0,02παβπ<<<<,所以302παβ<+<, 因为14sin()sin 35αβα+=<=,所以αβ+不可能是锐角,所以cos()αβ+==, 所以4cos cos[()]cos()cos sin()sin 15βαβααβααβα-=+-=+++=. 【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)根据条件进行合理的拆角,如()()2()βαβαααβαβ=+-=++-,等.22.(1);(2. 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值. 【详解】(1)将sincos22αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos α==.(2)由(1)知,1sin ,cos 2αα==, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-,所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值. 23.(1)()5040cos()15th t π=-;(2)5t =分钟或25t =分钟;(3)h 最大值为40米.【分析】(1)由题意可知高度h 与时间t 的关系符合()sin()h t A t B ωϕ=++,根据已知求出,,,A B ωϕ的值,写出解析式即可.(2)设()30h t =,解方程求出(0,30)t ∈即为距离地面的高度恰好为30米的时间. (3)有题意列出游客甲、游客乙距离地面的高度解析式分别为12(),()h t h t ,利用三角函数有12|()()|h t h t -的最大值为所求h 的最大值. 【详解】(1)由题意,设()sin()h t A t B ωϕ=++,得:9010A B A B +=⎧⎨-+=⎩,解得40,50A B ==,又当0t =时,(0)40sin 5010h ϕ=+=, ∴22k πϕπ=-,不妨令0k =有2πϕ=-,而230T πω==得15πω=,∴()5040cos()15th t π=-,(2)由题意有()5040cos()3015th t π=-=,即1cos()152tπ=, ∴153tππ=或5153tππ=,得5t =或25t =. (3)若游客甲高度解析式为1()5040cos()15th t π=-,则游客乙高度解析式为2()5040cos()153t h t ππ=--,∴12cos()cos()1515|()()|40|cos()cos()|40||40|cos()|1531522153ttt tt h t h t πππππππ-=--=-=+∴令153t πππ+=,解得10t =,此时12|()()|h t h t -的最大值为40米.【点睛】关键点点睛:根据实际问题构建三角函数模型,进而由题设求对应高度的时间,以及应用三角恒等变换求两游客的高度差最大值. 24.(1)[1,2]-; (2)1(0,]4. 【分析】 (1)由5·,46k k Z ππωπ+=∈,可得4156k ω⎛⎫=- ⎪⎝⎭,k Z ∈,结合()0,1ω∈,得23ω=,所以()42sin 22sin 636f x x x ππω⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,由30,4x π⎡⎤∈⎢⎥⎣⎦,利用正弦定理的单调性可得函数()f x 在30,4π⎡⎤⎢⎥⎣⎦上的值域;(2)令222,262k x k k Z ππππωπ-+≤+≤+∈,解得36k k x ππππωωωω-≤≤+,由函数()f x 在2,33ππ⎛⎫ ⎪⎝⎭上单调递增,可得002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪ ⎪⎝⎭⎝⎭,列不等式求解即可. 【详解】(1)由题意得:5·,46k k Z ππωπ+=∈,∴4156k ω⎛⎫=- ⎪⎝⎭,k Z ∈,∵()0,1ω∈,∴23ω=,∴()42sin 22sin 636f x x x ππω⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, ∵30,4x π⎡⎤∈⎢⎥⎣⎦,∴47,3666x πππ⎡⎤+∈⎢⎥⎣⎦,∴41sin ,1362x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 故函数()f x 在30,4π⎡⎤⎢⎥⎣⎦上的值域为[]1,2-.(2)令222,262k x k k Z ππππωπ-+≤+≤+∈,解得36k k x ππππωωωω-≤≤+,∵函数()f x 在2,33ππ⎛⎫ ⎪⎝⎭上单调递增,∴002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪ ⎪⎝⎭⎝⎭,0k Z ∈,∴0033263k k πππωωπππωω⎧-≤⎪⎪⎨⎪+≥⎪⎩,即0031614k k ωω≤+⎧⎨+≥⎩,又212·3322πππω-≤,∴302ω<≤,∴01566k -<≤,∴00k =, ∴104ω<≤,即ω的取值范围为10,4⎛⎤⎥⎝⎦. 【点睛】本题主要考查三角函数的单调性、三角函数的图象对称性,属于中档题.函数sin()y A x ωϕ=+的单调区间的求法:(1) 代换法:①若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间;②若0,0A ω><,则利用诱导公式先将ω的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间. 25.(1)23-;(2【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-; (2)由已知得122111cos 32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=, 所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =. 【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)2π3;(2)3) 【分析】(1)将等式展开得到6a b ⋅=-,再利用向量夹角公式得到答案.(2)计算22a b +,展开得到答案.(3)计算12BA BC ⋅=-得到cosB =,故sin B =案.【详解】(1)∵()()23261a b a b -⋅+=,∴2244361a a b b -⋅-=.又4a =,3b =,∴6442761a b -⋅-=,∴6a b ⋅=-.∴61cos 432a b a b θ⋅-===-⨯,又0πθ≤≤,∴2π3θ=. (2)()22222244a b a ba ab b +=+=+⋅+()224464328=+⨯-+⨯=, ∴227a b +=.(3)BA 与BC 的夹角B ,则()22261812BA BC a b b a b b ⋅=-+⋅=-⋅-=-=-,故cos2BA BCBA BC B ⋅⋅===∴sin B =27AB =,3BC =,∴11sin 322ABC S AB BC B ==⨯=△ 【点睛】本题考查了向量的夹角,向量的模,三角形的面积,意在考查学生的计算能力和转化能力.。
【人教版】高中数学必修四期末试题附答案

一、选择题1.已知tan 2α=,则sin cos 2sin cos αααα+=-( )A .1B .1-C .2D .2-2.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )AB. CD.10-3.已知()()()ππcos sin 22cos πtan πf ααααα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=---,则2020π3f ⎛⎫-= ⎪⎝⎭( )A. B .12-C .12D.24.已知A 是函数()3sin(2020))263f x x x ππ=++-的最大值,若存在实数1x ,2x 使得对任意实数x ,总有12()()()f x f x f x ≤≤成立,则12A x x 的最小值为( ) A .2020πB .1010π C .32020πD .20205.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )ABC .12D .236.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( ) A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)7.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .38.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .49.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( ) A .4149,66⎡⎫⎪⎢⎣⎭B .4953,66⎡⎫⎪⎢⎣⎭C .3741,66⎡⎫⎪⎢⎣⎭D .[8,9)10.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C11.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-12.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .13二、填空题13.给出下列命题:①()72cos 22f x x π⎛⎫=--⎪⎝⎭是奇函数;②若α、β都是第一象限角,且αβ>,则tan tan αβ>;③38x π=-是函数33sin 24y x π⎛⎫=-⎪⎝⎭的图像的一条对称轴;④已知函数()23sin12xf x π=+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2.其中正确命题的序号是______.14________.15.已知函数()sin 3cos f x x x =+,则下列命题正确的是_____.(填上你认为正确的所有命题序号) ①函数()0,2f x x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是06,π⎡⎤⎢⎥⎣⎦; ②函数()f x 的图像关于点,06π⎛⎫-⎪⎝⎭对称; ③函数()f x 的图像向左平移(0)m m >个单位长度后,所得的图像关于y 轴对称,则m 的最小值是6π; ④若实数m 使得方程()f x m =在[0,2]π上恰好有三个实数解123,,x x x ,则12373x x x π++=. 16.如图,已知四边形ABCD ,AD CD ⊥,AC BC ⊥,E 是AB 的中点,1CE =,若//AD CE ,则AC BD ⋅的最小值为___________.17.在AOB 中,已知1OA =,3OB =2AOB π∠=.若点C ,D 满足971616OC OA OB =-+,()12CD CO CB =⋅+,则CD CO ⋅的值为_______________. 18.在ABC △中,已知4CA =,3CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.19.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__.20.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+⎪⎝⎭,且(2)3f -=,则(2020)f =________.三、解答题21.已知函数()f x 满足:()()()22f x f x a a R +=+∈,若()12f =,且当(]2,4x ∈时,()22611f x x x =-+.(1)求a 的值;(2)当(]0,2x ∈时,求()f x 的解析式;并判断()f x 在(]0,4上的单调性(不需要证明);(3)设()24log 231x g x ⎛⎫=+⎪-⎝⎭,()2cos cos 2,22h x x m x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值.22.已知函数())2cos sin 3f x x x x x R π⎛⎫=++∈ ⎪⎝⎭. (1)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值; (2)设函数()g x 对任意x ∈R ,有()2g x g x π⎛⎫+= ⎪⎝⎭,且当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12g x f x =-.求()g x 在区间[],0π-上的解析式. 23.已知函数1()sin 22,23f x x x R π⎛⎫=-+∈ ⎪⎝⎭. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值 24.定义行列式运算法则为:12142334a a a a a a a a =-,已知函数()2cos 2sin x f x x=.(1)求()f x 的最小正周期; (2)若函数()()02g x f x m m π⎛⎫=+<<⎪⎝⎭是偶函数,求不等式()0g x ≤的解集. 25.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cossin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ;(2)若22212a b c =+,试求sin()A B -的值 26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =. (1)若()a a b ⊥+,求实数k 的值;(2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】已知正切值要求正余弦值,可以利用商的关系将“弦化切”,代入数值即可. 【详解】原式分子分母同除以cos α得 原=tan 12112tan 141αα++==--故选:A. 【点睛】已知正切值求正余弦值,通常有两种做法:一是将所求式子分子分母同除cos α或2cos α,化为tan α求解; 二是利用sin tan cos ααα=得sin tan cos ααα=代入消元即可. 2.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题. 【详解】因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下:(1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.3.B解析:B 【分析】根据诱导公式和同角三角函数关系式,化简函数式,最后代值计算即可. 【详解】()()()cos sin 22cos tan f ππαααπαπα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=--- ()()sin sin 2cos tan πααπαα⎡⎤⎛⎫-⋅-- ⎪⎢⎥⎝⎭⎣⎦=+⋅- ()()sin cos cos tan αααα-⋅-=-⋅-sin cos sin cos cos ααααα⋅=⋅cos α=,所以2020202020201cos cos cos 673cos 333332f ππππππ⎛⎫⎛⎫⎛⎫-=-==+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:B . 【点睛】本题考查利用诱导公式和同角三角函数关系式化简三角函数式并求值,注意三角函数值的符号变化,属于基础题.4.C解析:C 【分析】利用三角恒等变换化()f x 为正弦型函数,由此求出A 、T 以及12x x -的最小值,可得解. 【详解】()3sin(2020))2623f x x x ππ=++-,392020cos 2020cos 2020202044x x x x =+-,320220cos 2020x x =-3sin(2020)6x π=-,∴max ()3A f x ==,又存在实数1x ,2x ,对任意实数x 总有12()()()f x f x f x ≤≤成立, ∴2max ()()2f x f x ==,1min ()()2f x f x ==-, 则12x x -的最小值为函数()f x 的半个最小正周期长度,12min 1122220202020x x T ππ∴-==⨯=∴()12min32020A x x π⋅-=, 故选:C. 【点睛】本题考查三角函数的最值,着重考查两角和与差的正弦与余弦,考查三角恒等变换,突出正弦函数的周期性的考查,属于中档题.5.D解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果. 【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B AC y A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.6.C解析:C 【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C-,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=, 可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C-,设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--,当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=, 当3,1x y ==-时AP AB ⋅最小为(()3312--=-,所以AP AB ⋅的取值范围是(2,4)-, 故选:C 【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值. 7.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.8.C解析:C 【解析】在ABC ∆中,060BAC ∠=,5,6AB AC ==,D 是AB 是上一点,且5AB CD ⋅=-, 如图所示,设AD k AB =,所以CD AD AC k AB AC =-=-, 所以21()2556251552AB CD AB k AB AC k AB AB AC k k ⋅=⋅-=-⋅=-⨯⨯=-=-, 解得25k =,所以2(1)35BD AB =-=,故选C .9.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=; 当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<. 故选:A10.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.11.A【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-=⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭, 由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 12.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.二、填空题13.①③④【分析】对①化简得可判断;对②取特殊值可说明;对③代入求值可判断;对④化简求出其最小正周期即可判断【详解】对①是奇函数故①正确;对②如但故②错误;对③当时取得最大值故③正确;对④则的最小正周期解析:①③④ 【分析】 对①,化简得()()2sin 2f x x =可判断;对②,取特殊值可说明;对③,代入38x π=-求值可判断;对④,化简()f x ,求出其最小正周期即可判断. 【详解】 对①,()()72cos 22sin 22f x x x π⎛⎫=--= ⎪⎝⎭是奇函数,故①正确; 对②,如7,33ππαβ==,但tan tan αβ=,故②错误; 对③,当38x π=-时,333sin 2384y ππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,取得最大值,故③正确; 对④,()()2353sin1cos 222xf x x ππ=+=-+,则()f x 的最小正周期为22ππ=,则c 的最小值是2,故④正确. 故答案为:①③④. 【点睛】本题考查三角函数奇偶性的判断,考查三角函数的单调性和对称性以及周期性,解题的关键是正确化简,正确理解三角函数的性质.14.【分析】利用同角三角函数的基本关系式二倍角公式结合根式运算化简求得表达式的值【详解】依题意由于所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式二倍角公式考查根式运算属于基础题解析:4【分析】利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值. 【详解】=4==,由于342ππ<<=故答案为:4 【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题.15.①③④【分析】首先利用辅助角公式将函数化简为再根据正弦函数的性质一一验证即可【详解】解:的单调增区间为当增区间为∴①正确;∴②不正确;函数的图像向左平移个单位长度后得由题意得则的最小值是∴③正确;若解析:①③④ 【分析】首先利用辅助角公式将函数化简为()2sin 3f x x π⎛⎫=+ ⎪⎝⎭,再根据正弦函数的性质一一验证即可. 【详解】解:1()sin 2sin 2sin 23f x x x x x x π⎛⎫⎛⎫===+ ⎪ ⎪⎝⎭⎝⎭, ()f x ∴的单调增区间为52,2()66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 当0,2x π⎡⎤∈⎢⎥⎣⎦,增区间为06,π⎡⎤⎢⎥⎣⎦,∴①正确; 2sin 2sin 106636f ππππ⎛⎫⎛⎫-=-+==≠ ⎪ ⎪⎝⎭⎝⎭,∴②不正确;函数()f x 的图像向左平移(0)m m >个单位长度后得()2sin 3f x x m π⎛⎫=++⎪⎝⎭,由题意得32m k πππ+=+,6m k ππ=+,则m 的最小值是6π,∴③正确;若实数m 使得方程()f x m =在[0,2]π上恰好有三个实数解123,,x x x ,结合这两个函数图像可知,必有10x =,32x π=,此时()2sin 33f x x π⎛⎫=+= ⎪⎝⎭,另一个解为23x π=,12373x x x π∴++=,∴④正确. 故答案为:①③④【点睛】本题考查辅助角公式的应用,正弦函数的性质的综合应用,属于中档题.16.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果. 【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE , 所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2214sin 12θ⎛⎫=-- ⎪⎝⎭,当21sin 2θ=时,AC BD ⋅取得最小值1-,故答案为:1-. 【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.17.【分析】以为基底向量表示再由数量积的运算律定义计算即可【详解】∵∴D 为OB 的中点从而∴∵∴∴故答案为:【点睛】本题考查平面向量的数量积需要根据题意确定基底向量再根据平面向量基本定理表示所求的向量数量解析:1564【分析】以,OA OB 为基底向量表示CD CO ,,再由数量积的运算律、定义计算即可. 【详解】 ∵1()2CD CO CB =+,∴D 为OB 的中点,从而12OD OB =,∴97191161621616CD CO OD OA OB OB OA OB =+=-+=+ ∵1OA =,OB =2AOB π∠=,∴0OA OB ⋅=∴9197()()16161616CD CO OA OB OA OB ⋅=+⋅- 221(817)256OA OB =-1(8173)256=-⨯1564=. 故答案为:1564.【点睛】本题考查平面向量的数量积,需要根据题意确定基底向量,再根据平面向量基本定理表示所求的向量数量积,进而根据数量积公式求解.属于中档题.18.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.19.【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数的奇偶性 3【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】 因为函数()()()3sin 2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈.又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案. 【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =, 故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)7;(2)()2f x x x =+,单调递增;(3)-1.【分析】(1)根据题意可得()()3214f f a a =+=+,再由()311f =即可求解. (2)设2(]0,x ∈,则2(2,4]x +∈,代入()()227f x f x +=+即可得出()2f x x x =+,再由分段函数单调性判断方法即可求解.(3)由(2)知,当4x >时,()21f x ≥,且由条件知,()12f =,根据()g x 的单调性可得()1h x ≥恒成立,设cos [0,1]x t =∈,只需不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,讨论m 的取值范围即可求解. 【详解】(1)由题意()12f =,所以()()3214f f a a =+=+, 又()2323631111f =⨯-⨯+=,因为411a +=,所以7a =; (2)设2(]0,x ∈,则2(2,4]x +∈,所以()2222(2)6(2)11227f x x x x x +=+-++=++,又()()227f x f x +=+,代入解得:()2f x x x =+;显然,()f x 在(0,2],(2,4]上分别是单增函数, 又()26f =,而当2x +→时,7y →, 因为76>,所以()f x 在(0,4]上单调递增; (3)由(2)知,()f x 是区间(0,4]上单调递增, 且(2,4]x ∈时,()419f =,()7f x >,且当4x >时,设(2,22](2,)x n n n n Z ∈+≥∈,则(22)(2,4]x n --∈,()232()2(2)72(4)7(21)2(6)7221f x f x f x f x =-+=-+⋅+=-+⋅++ ()1232[(22)]72221n n n f x n ---=⋅⋅⋅=--+⋅++⋅⋅⋅++ ()123727222121n n n --->⋅+⋅++⋅⋅⋅++≥且由条件知,()12f =; 再看函数()24 log 231x g x ⎛⎫=+ ⎪-⎝⎭, 由420031x x +>⇒>-,即定义域为(0,)+∞, 且4231x y =+-在(0,)+∞上单减, 所以()24log 231xg x ⎛⎫=+ ⎪-⎝⎭在(0,)+∞上单减,又发现()12g =,所以()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立, 即()22cos 2cos 11x m x +-≥在,22x ππ⎡⎤∈-⎢⎥⎣⎦上恒成立, 设cos [0,1]x t =∈,则不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立; ②当0m >时,当0t =代入得()10m -+≥,矛盾;③当0m <时,只需(1)01122(1)01m m m m m m ⎧-+≥≤-⎧⇒⇒=-⎨⎨+-+≥≥-⎩⎩, 综上,实数m 的值为-1. 【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.22.(1)最大值为14,最小值为12-;(2)()11sin 2,0223211sin 2,2232x x g x x x πππππ⎧⎛⎫+--≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪---≤< ⎪⎪⎝⎭⎩.【分析】(1)利用两角和的正弦公式,二倍角公式以及辅助角公式将()f x 化简,再由三角函数的性质求得最值;(2)利用0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12g x f x =-,对x 分类求出函数的解析式即可. 【详解】(1)()2cos sin 3f x x x x ⎛⎫ ⎪⎝⎭π=++2cos sin cos cos sin 334x x x x ππ⎛⎫=++⎪⎝⎭1sin 2244x x =- 1sin 223x π⎛⎫=- ⎪⎝⎭, 因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以52,366x πππ⎡⎤-∈-⎢⎥⎣⎦, 则1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,111sin 2,2324x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()f x 的最大值为14;()f x 的最小值为12-; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时, ()11sin 2223g x x π⎛⎫=-- ⎪⎝⎭, 当,02x ⎡⎤∈-⎢⎥⎣⎦π时,0,22x ππ⎡⎤+∈⎢⎥⎣⎦, ()11sin 22223g x g x x ππ⎛⎫⎛⎫=+=+- ⎪ ⎪⎝⎭⎝⎭, 当,2x ππ⎡⎫∈--⎪⎢⎣⎭时,0,2x ππ⎡⎫+∈⎪⎢⎣⎭; ()()11sin 2223g x g x x ππ⎛⎫=+=-- ⎪⎝⎭, 综上:()g x 在区间[],0π-上的解析式为:()11sin 2,0223211sin 2,2232x x g x x x πππππ⎧⎛⎫+--≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪---≤< ⎪⎪⎝⎭⎩. 【点睛】关键点睛:本题考查了三角函数中的恒等变换应用,三角函数的周期性及其求法.熟练掌握两角和的正弦公式,二倍角公式以及辅助角公式是解决本题的关键.23.(1)π;(2)()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)最小值为32;最大值为94. 【分析】(1)利用正弦型函数的周期公式可求得函数()f x 的最小正周期;(2)解不等式()3222232k x k k Z πππππ+≤-≤+∈,可得出函数()f x 的单调递减区间; (3)由44x ππ-≤≤求出23x π-的取值范围,利用正弦函数的基本性质可求得函数()f x 的最小值和最大值.【详解】 (1)因为1()sin 2223f x x π⎛⎫=-+ ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==; (2)由()3222232k x k k Z πππππ+≤-≤+∈,得()5111212k x k k Z ππππ+≤≤+∈. 即函数()f x 的单调递减区间为()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (3)因为44x ππ-≤≤,所以52636πππ-≤-≤x ,所以, 当232x ππ-=-即12x π=-时,函数()f x 取最小值,()min 13sin 2222f x π⎛⎫=-+= ⎪⎝⎭; 当236x ππ-=即4x π=时,函数()f x 取最大值,()max 19sin 2264f x π=+=. 【点睛】 方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤:第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).24.(1)π;(2),,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. 【分析】(1)先利用题中定义计算化简行列式,再利用周期的公式计算即可;(2)先利用()g x 是偶函数计算参数m ,再结合余弦函数图象与性质解不等式即可.【详解】解:(1)依题意得,()22cos 2sin cos 2sin x f x x x x x ==-2sin 2x x =-2cos 26x π⎛⎫=+ ⎪⎝⎭ 故()f x 的最小正周期为:22T ππ==; (2)函数()()2cos 22cos 2266g x x m x m ππ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭ 故2,6m k k Z ππ+=∈,即,122k m k Z ππ=-+∈,又02m π<<可知,1k =时512m π=,故5()2cos 222cos 2126g x x x ππ⎛⎫=+⋅+=- ⎪⎝⎭.故不等式()0g x ≤,即2cos 20x -+≤,即cos 2x ≥, 结合余弦函数图象与性质可知,222,66k x k k Z ππππ-+≤≤+∈, 解得,1212k x k k Z ππππ-+≤≤+∈. 故不等式的解集为,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. 【点睛】关键点点睛: 本题解题关键在于读懂新定义中行列式的计算法则,才能结合三角函数的图象与性质突破难点.25.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果.【详解】(1)由题意知,0m n =,即222cos 2sin 02C C -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒.(2)2222221122a b c a b c =+⇒-=, 222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。
新人教版高二数学必修4期末测试题【附答案】(提升练习)

高中数学必修4期末测试题【附答案】一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ).A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2范围内,与角-34π终边相同的角是( ).A .6πB .3πC .32πD .34π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ).A .41 B .23 C .21D .436.如图,在平行四边形ABCD 中,下列结论中正确的是( ).A .=B .-=C .+=D .+=7.下列函数中,最小正周期为 的是( ).A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos 4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).A .10B .5C .-25D .-109.若tan =3,tan =34,则tan(-)等于( ).A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥BC ,那么c 的值是( ).A .-1B .1C .-3D .312.下列函数中,在区间[0,2π]上为减函数的是( ).A .y =cos xB .y =sin xC .y =tan xD .y =sin(x -3π)13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ).C (第6题)A .254 B .257 C .2512 D .2524 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 的终边经过点P (3,4),则cos 的值为 . 16.已知tan =-1,且 ∈[0,),那么 的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 . 18.某地一天中6时至14时的温度变化曲线近似满足函数T =A sin(t +)+b (其中2π<<时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.(第18题)三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)已知0<<2π,sin =54.(1)求tan 的值; (2)求cos 2+sin ⎪⎭⎫ ⎝⎛2π + α的值.20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |; (2)当a ·b =21时,求向量a 与b 的夹角 的值.21.(本小题满分10分)已知函数f (x )=sin x (>0).(1)当 =时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式;(2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos >0知,为第一、四象限或 x 轴正方向上的角;由sin <0知,为第三、四象限或y 轴负方向上的角,所以 的终边在第四象限.5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知AD +AB =. 7.B 解析:由T =ωπ2=,得 =2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(-)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D 解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).二、填空题:15.53.解析:因为r =5,所以cos =53. 16.43π. 解析:在[0,)上,满足tan =-1的角只有43π,故 =43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5).18.20;y =10sin(8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(x +)+b 的半个周期的图象,所以A =21(-)=10,b =21(30+10)=20.因为21·ωπ2=14-6,所以 =8π,y =10sin ⎪⎭⎫ ⎝⎛ϕ + 8πx +20. 将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<<,可得 =43π. 综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<<2π,sin =54, 故cos =53,所以tan =34.(2)cos 2+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin2+=-2532+53=258. 20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos =ba ba ·=22,故=°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫ ⎝⎛0 , 32π点,得sin32π=0,所以32π=k ,k ∈.即 =23k ,k ∈.又>0,所以k ∈N*. 当k =1时,=23,f (x )=sin 23x ,其周期为34π,此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数;当k ≥2时,3,f (x )=sin x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,=23.。
【人教版】高中数学必修四期末试题带答案

一、选择题1.已知tan 2α=,则sin cos 2sin cos αααα+=-( )A .1B .1-C .2D .2-2.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( ) A .c <a <bB .b <c <aC .a <b <cD .b <a <c3.已知()0,απ∈,()2sin 2cos21παα-=-,则sin α=( ) A .15B .55C .55-D .2554.已知A 是函数()333sin(2020)sin(2020)2623f x x x ππ=++-的最大值,若存在实数1x ,2x 使得对任意实数x ,总有12()()()f x f x f x ≤≤成立,则12A x x 的最小值为( ) A .2020πB .1010π C .32020πD .32020π 5.设平面向量()a=1,2,()b=2,y -,若a b ,则2a b -等于( ) A .4B .5C .35D .45 6.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .7.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .68.如图,已知点D 为ABC 的边BC 上一点,3BD DC =,*()∈n E n N 为AC 边的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,10,1n a a >=,,则{}n a 的通项公式为( )A .1321n -⋅-B .21n -C .32n -D .1231n -⋅-9.已知实数a ,b 满足0<2a <b <3-2a ,则下列不等关系一定成立的是( ) A .sin sin2b a < B .()2cos >cos 3a b -C .()2sin sin3a b +<D .23cos >sin 2b a ⎛⎫-⎪⎝⎭10.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫ ⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6πB .6π-C .3π D .3π-11.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫= ⎪⎝⎭,()f x 在443,ππ⎛⎫- ⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.已知1sin cos 5αα-=,0απ≤≤,则sin(2)4απ-=__________; 14.已知cosα17=,cos(α﹣β)1314=,且0<β<α2π<,则sinβ=_____. 15.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________. 16.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.17.已知平面向量a ,b ,c 满足45a b ⋅=,4a b -=,1c a -=,则c 的取值范围为________.18.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 19.将函数()sin 24f x x π⎛⎫=-⎪⎝⎭的图像先向右平移8π个单位,再将横坐标缩短到原来的一半(纵坐标不变)后,得到函数()g x 的图像,则函数()g x 的解析式为_________. 20.已知函数()()()cos 0,0f x x ωϕωϕπ=+>≤≤是奇函数,且在,64ππ⎡⎤-⎢⎥⎣⎦上单调递减,则ω的最大值是__________.三、解答题21.已知函数21()cos cos 22f x x x x π⎛⎫=++- ⎪⎝⎭. (1)若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,求实数a 的取值范围; (2)若先将()y f x =的图像上每个点横坐标伸长为原来的2倍(纵坐标不变),再将所得图像向左平移6π个单位长度,得到函数()y g x =的图像,求函数1()3y g x =-在区间[],3ππ-内的所有零点之和.22.已知函数2()sin cos 0)f x x x x ωωωω=+>的最小正周期为π. (1)求()f x 的解析式;(2)将()f x 图象上所有的点向左平移4π个单位长度,得到函数()y g x =的图象,若对于任意的12,,66x x ππϕϕ⎛⎫∈---+ ⎪⎝⎭,当12x x >时,()()()()1212f x f x g x g x ->-恒成立,求ϕ的取值范围. 23.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值.24.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.25.已知函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的部分图象如图所示.(1)求()f x 的解析式;(2)若将函数()f x 的图象上各点的横坐标缩短到原来的一半,然后再向左平移12π个单位长度,得到()g x 的图象,求函数()g x 的单调递增区间. 26.在①()f x 的图象关于直线3x π=对称,②()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,③()f x 的图象上最高点中,有一个点的横坐标为6π这三个条件中任选一个,补充在下面问题中,并解答.问题:已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><<⎪⎝⎭的振幅为2,初相为3π,最小正周期不小于...π,且______. (1)求()f x 的解析式;(2)求()f x 在区间[],0π-上的最大值和最小值以及取得最大值和最小值时自变量x 的值.注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】已知正切值要求正余弦值,可以利用商的关系将“弦化切”,代入数值即可. 【详解】原式分子分母同除以cos α得 原=tan 12112tan 141αα++==--故选:A. 【点睛】已知正切值求正余弦值,通常有两种做法:一是将所求式子分子分母同除cos α或2cos α,化为tan α求解; 二是利用sin tan cos ααα=得sin tan cos ααα=代入消元即可. 2.A解析:A 【分析】利用两角和的正弦函数公式化简a ,利用二倍角的余弦公式及诱导公式化简b ,再利用特殊角的三角函数值化简c ,根据正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,甶角度的大小,得到正弦值的大小,进而得到,a b 及c 的大小关系.【详解】化简得()17cos45cos1745174562a sin sin sin sin =+=+=,()22cos 131cos26cos 906464b sin =-==-=,60c sin ==,正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数, 606264sin sin sin ∴<<,即c a b <<,故选A. 【点睛】本题考查了二倍角的余弦公式,两角和与差的正弦公式,诱导公式,以及特殊角的三角函数,正弦函数的单调性,属于中档题. 比较大小主要有四种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.3.D解析:D 【分析】先利用诱导公式化简,再利用正弦、余弦的二倍角公式化简可得结果 【详解】解:由()2sin 2cos21παα-=-,得2sin 2cos21αα=-, 所以24sin cos 12sin 1ααα=--,即22sin cos sin ααα=-, 因为()0,απ∈,所以sin 0α≠, 所以2cos sin αα=-, 因为22sin cos 1αα+=, 所以221sin sin 14αα+=,所以24sin 5α=,因为()0,απ∈,所以sin 0α>,所以sin 5α=, 故选:D 【点睛】此题考查诱导公式的应用,考查二倍角公式的应用,考查同角三角函数的关系,属于中档题4.C解析:C 【分析】利用三角恒等变换化()f x 为正弦型函数,由此求出A 、T 以及12x x -的最小值,可得解. 【详解】()3sin(2020))263f x x x ππ=+-,392020cos 2020cos 2020202044x x x x =+-,320220cos 20202x x =-3sin(2020)6x π=-,∴max ()3A f x ==,又存在实数1x ,2x ,对任意实数x 总有12()()()f x f x f x ≤≤成立, ∴2max ()()2f x f x ==,1min ()()2f x f x ==-, 则12x x -的最小值为函数()f x 的半个最小正周期长度,12min 1122220202020x x T ππ∴-==⨯=∴()12min32020A x x π⋅-=, 故选:C. 【点睛】本题考查三角函数的最值,着重考查两角和与差的正弦与余弦,考查三角恒等变换,突出正弦函数的周期性的考查,属于中档题.5.D解析:D 【分析】利用向量共线定理即可得出y ,从而计算出2a b -的坐标,利用向量模的公式即可得结果. 【详解】//,220a b y ∴-⨯-=,解得4y =-,()()()221,22,44,8a b ∴-=---=,2224845a b ∴-=+=,故选D.【点睛】本题主要考查平面向量平行的性质以及向量模的坐标表示,属于中档题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.6.C解析:C 【解析】,,又,,则,故选7.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.8.D解析:D 【分析】以BA 和BC 为基底,表示n BE ,根据n E ,A ,C 三点共线,可得1193331442+-++=++n n n a a a ,构造等比数列,即可求出通项公式. 【详解】113(32),44+=-+=-=-n n n n n n n n E A a E B a E D E D BD BE BC BE , 113(32)()44n n n n n E A a E B a BC BE +∴=-+-113(32)(32)44n n n n a a E B a BC +=---+ 又=-n n E A BA BE113(32)(32=)44+∴---+-n n n n n a a E B a BC BA BE113(33)(32)44+-∴++=++n n n n a a BE a BC BA因为n E ,A ,C 三点共线113(33)1(32)44+-++=++∴n n n a a a ,即1=32++n n a a ,即1+1=3(1)++n n a a ,所以数列{1}n a +是等比数列,首项为2,公比为3.1+1=23-∴⋅n n a ,即1=23-1-⋅n n a , 故选:D . 【点睛】本题考查了平面向量基本定理和等比数列的通项公式,考查了运算求解能力和逻辑推理能力,属于中档题.9.D解析:D 【分析】对各个选项一一验证:对于A.由0<2a <b <3-2a ,可以判断出2ba <,借助于正弦函数的单调性判断; 对于B.由0<2a <b <3-2a ,可以判断出23a b <-,借助于余弦函数的单调性判断; 对于C.由0<2a <b <3-2a ,可以判断出23a b +<,借助于正弦函数的单调性判断; 对于D.先用诱导公式转化为同名三角函数,借助于余弦函数的单调性判断; 【详解】 因为0<2a <b <3-2a 对于A. 有0<2b a <, 若22b a π<<,有sin sin 2b a <;若22b a π<<,有sin sin 2ba >,故A 错; 对于B.有 23ab <-,若232a b π<<-,有()2cos >cos 3a b -,故B 错;对于C. 23a b +<,若232a b π<+<,有()2sin sin 3a b +>,故C 错;对于D. 222333sin cos cos 2222a a a ππ+⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为b <3-2a <3,所以2cos >cos(3)b a - ∵22332a a π+-<-∴()223cos 3cos 2a a π+⎛⎫->-⎪⎝⎭∴()22233cos cos 3cos sin 22a a b a π+⎛⎫⎛⎫>->-=- ⎪ ⎪⎝⎭⎝⎭,故D 对. 故选:D. 【点睛】利用函数单调性比较大小,需要在同一个单调区间内.10.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-= ⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭, 由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意;综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 11.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=-⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 0842f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A.【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t 的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.【分析】由题意和同角三角函数基本关系可得和进而由二倍角公式可得和代入两角差的正弦公式计算可得【详解】又故解得故答案为:【点睛】本题考查两角和与差的三角函数公式涉及同角三角函数的基本关系和二倍角公式属解析:50【分析】由题意和同角三角函数基本关系可得sin α和cos α,进而由二倍角公式可得sin 2α和cos2α,代入两角差的正弦公式计算可得. 【详解】221sin cos ,sin cos 15αααα-=+=又0απ≤≤,sin 0α∴≥,故解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,24sin 22sin cos 25ααα∴==, 227cos 2cos sin 25ααα=-=-,sin(2)224πααα∴-=247()22525=+50=.故答案为:50. 【点睛】本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系和二倍角公式,属中档题.14.【分析】利用同角三角函数的基本关系式求得的值由的值【详解】依题意则所以所以所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数学思想方法属于基础题【分析】利用同角三角函数的基本关系式求得()sin ,sin ααβ-的值,由()sin sin βααβ=--⎡⎤⎣⎦的值. 【详解】 依题意02πβα<<<,则02πβ>->-,所以02παβ<-<,所以sin α==,()sin αβ-==()sin sin βααβ=--⎡⎤⎣⎦()()sin cos cos sin ααβααβ=---131147=-==故答案为:2【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于基础题.15.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα 所以矩形的面积4cos 2sin 4sin2S ααα=⋅= 当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.16.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===, 则2223AB BC AC -=,32AB cos ABC BC ∠==, 故向量BA 在向量BC 方向上的投影为3233AB cos ABC ⨯∠==.故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.17.【分析】结合已知条件画出图象由的几何意义求得的取值范围【详解】如图所示设设是线段的中点依题意可知由于所以即解得所以即所以根据向量模的几何意义可知点在以为圆心为半径的圆上所以所以即的取值范围为故答案为 解析:[]4,10【分析】结合已知条件画出图象,由c 的几何意义求得c 的取值范围. 【详解】如图所示,设,,OA a OB b OC c ===,设D 是线段AB 的中点. 依题意可知4,1,2AB AC AD BD ====, 由于45a b ⋅=所以45OA OB ⋅=,即()()()()222224544OA OB OA OB OD BA +---==222441644OD BAOD --==,解得7OD =.所以59OD AD OA OD AD =-≤≤+=, 即59OA ≤≤,所以418,6110OA OA ≤-≤≤+≤根据向量模的几何意义可知,点C 在以A 为圆心,1为半径的圆上, 所以()()minmax11OA OC OA -≤≤+,所以410OC ≤≤,即c 的取值范围为[]4,10. 故答案为:[]4,10【点睛】本小题主要考查向量数量积的运算,考查向量模的几何意义,属于中档题.18.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①得:22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, ,设()1cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭, 又()(()1,0OC mOA nOB m n m =+=+=,得()1,=22m λ⎛⎫ ⎪ ⎪⎝⎭,即=212m λλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.19.【分析】利用函数的图象变换规律即可得到的解析式【详解】函数的图像先向右平移个单位后解析式变为:再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:所以故答案为:【点睛】方法点睛:函数的图像与函数的 解析:cos4x -【分析】利用函数()()sin f x A x =+ωϕ的图象变换规律,即可得到()g x 的解析式. 【详解】函数()sin 24f x x π⎛⎫=-⎪⎝⎭的图像先向右平移8π个单位后解析式变为: sin 2sin 2co 288s 2y x x x πππ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:()cos 22x y -=⨯,所以()cos 4g x x =-. 故答案为:cos4x -. 【点睛】方法点睛:函数sin ωφf xA xB 的图像与函数sin y x =的图像两者之间可以通过变化A ,ω,φ,B 来相互转化,A 、ω影响图像的形状,φ、B 影响图像与x 轴交点的位置,由A 引起的变换称为振幅变换,由ω引起的变换称为周期变换,它们都是伸缩变换;由φ引起的变换称为相位变换,由B 引起的变换称为上下平移变换,它们都是平移变换.三角函数图像变换的两种方法为先平移后伸缩和先伸缩后平移.20.【分析】先根据函数为奇函数结合的取值范围可求得的值化简可得由求得可得出进而得出关于的不等式组由此可得出实数的最大值【详解】函数是奇函数则函数在区间上单调递减则解得因此的最大值是故答案为:【点睛】本题 解析:2【分析】先根据函数()y f x =为奇函数结合ϕ的取值范围可求得ϕ的值,化简可得()sin f x x ω=-,由,64x ππ⎡⎤∈-⎢⎥⎣⎦求得,64x πωπωω⎡⎤∈-⎢⎥⎣⎦,可得出,,6422πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,进而得出关于ω的不等式组,由此可得出实数ω的最大值. 【详解】函数()()()cos 0,0f x x ωϕωϕπ=+>≤≤是奇函数,则()0cos 0f ϕ==,0ϕπ≤≤,2πϕ∴=,()cos sin 2f x x x πωω⎛⎫∴=+=- ⎪⎝⎭.,64x ππ⎡⎤∈-⎢⎥⎣⎦,,64x πωπωω⎡⎤∴∈-⎢⎥⎣⎦. 函数()y f x =在区间,64ππ⎡⎤-⎢⎥⎣⎦上单调递减,则,,6422πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 62420πωππωπω⎧-≥-⎪⎪⎪∴≤⎨⎪>⎪⎪⎩,解得02ω<≤,因此,ω的最大值是2.故答案为:2. 【点睛】本题考查三角函数的图象与性质,主要考查利用奇偶性与单调性求参数,考查计算能力,属中等题.三、解答题21.(1)1a ≤-,(2)6π 【分析】(1)先对函数()f x 化简变形,然后求出函数()f x 在,32x ππ⎡⎤∈-⎢⎥⎣⎦上的最小值,则可得到实数a 的取值范围;(2)根据题意,利用函数sin()y A x ωϕ=+的图像变换规律,先得到()g x 的解析式,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,再根据正弦函数图像的对称性得到结论 【详解】解:(1)21()cos cos 22f x x x x π⎛⎫=++-⎪⎝⎭21cos (2sin 1)2x x x =+-12cos 2sin(2)26x x x π=-=-, 若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,则只需min ()f x a ≥即可, 因为,32x ππ⎡⎤∈-⎢⎥⎣⎦,所以552[,]666x πππ-∈-,所以当262x ππ-=-即π6x =-时,()f x 取得最小值为1-,所以1a ≤-, (2)先将()f x 的图像上每个点的纵坐标不变,横坐标变为原来的2倍,可得sin()6y x π=-的图像,然后再向左平移6π个单位得到函数()sin g x x =的图像,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,设为1234,,,x x x x ,则根据对称性可知这4个根关于直线32x π=对称,所以1234342x x x x π+++=,所以12346x x x x π+++= 【点睛】关键点点睛:此题考查三角函数恒等变换、正弦函数的定义域和值域,函数恒成立问题,函数sin()y A x ωϕ=+的图像变换规律,第2问解题的关键是运用正弦函数的对称性进行求解,属于中档题22.(1)()sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)08πϕ<≤【分析】(1)利用二倍角公式以及辅助角公式可得()sin 23f x x πω⎛⎫=+ ⎪⎝⎭,再由22T ππω==即可求解.(2)由三角函数的平移变换可得()cos 23g x x π⎛⎫=+ ⎪⎝⎭,设()()()212h x f x g x x π⎛⎫=-=+ ⎪⎝⎭,将不等式化为()h x 在区间,66ππϕϕ⎛⎫---+ ⎪⎝⎭上单调递增,只需22,22,2,124422x k k k Z πππππϕϕππ⎛⎫⎡⎤+∈---+⊆-++∈ ⎪⎢⎥⎝⎭⎣⎦即可.【详解】(1)()2sin 2()sin cos 1cos 22x f x x x x x ωωωωω=+=++-1cos 2sin 2sin 2223x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又0>ω,22T ππω==,解得1ω=, 所以()sin 23f x x π⎛⎫=+⎪⎝⎭. (2)由题意可得()sin 2cos 2433g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 设()()()sin 2cos 233h x f x g x x x ππ⎛⎫⎛⎫=-=+-+ ⎪ ⎪⎝⎭⎝⎭223412x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,12,,66x x ππϕϕ⎛⎫∈---+ ⎪⎝⎭,当12x x >时,()()()()1212f x f x g x g x ->-恒成立,即()()()()1122f x g x f x g x ->-恒成立, 即()()12h x h x >恒成立,()h x ∴在区间,66ππϕϕ⎛⎫---+ ⎪⎝⎭上单调递增,,66x ππϕϕ⎛⎫∈---+ ⎪⎝⎭,则22,22,2,124422x k k k Z πππππϕϕππ⎛⎫⎡⎤+∈---+⊆-++∈ ⎪⎢⎥⎝⎭⎣⎦, 224222422244k k ππϕπππϕπππϕϕ⎧--≥-+⎪⎪⎪∴-+≤+⎨⎪⎪--<-+⎪⎩,8380k k πϕππϕπϕ⎧≤-⎪⎪⎪∴≤+⎨⎪>⎪⎪⎩, 08πϕ∴<≤【点睛】关键点点睛:本题考查了三角恒等变换、三角函数的平移变换,三角函数的单调性,解题的关键是结合不等式将问题转化为()()()212h x f x g x x π⎛⎫=-=+ ⎪⎝⎭在区间是单调递增函数,考查了计算能力、分析能力以及转化能力.23.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解.【详解】(1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=.(2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯. 【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题. 24.(1)3BC =;7BE =2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】 (1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒=∴3BC =又()12BE BO BC =+∴()222117213214424BE BO BC BO BC ⎛=++⋅=++⨯= ⎝⎭∴72BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题. 25.(1)1()sin(2)26f x x π=-;(2),,26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【分析】(1)由有图像,根据最大值求A ,利用周期求ω,利用最高点的坐标求φ;(2)根据图像变换求出()g x 的解析式,然后求正弦型函数的单调区间.【详解】(1)根据函数的图象得:1,42312A T πππ⎛⎫==-= ⎪⎝⎭,故=2ω, 将1,32π⎛⎫ ⎪⎝⎭代入函数的关系式,整理得22()32k k Z ππϕπ+=+∈, 由于0||2πϕ<<,所以6πϕ=-. 故1()sin(2)26f x x π=-. (2)1()sin(2)26f x x π=-,将函数()f x 的图象上各点的横坐标缩短到原来的一半得1sin(4)26y x π=-,再向左平移12π个单位长度,得到1()sin 4()2126g x x ππ⎡⎤=+-⎢⎥⎣⎦ 1()sin(4)26g x x π=+. 令242,262k x k k Z ππππ-≤+≤π+∈, 整理得,26212k k x k Z ππππ-≤≤+∈, 所以函数的单调递增区间为:,,26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .(3)求y =Asin (ωx +φ)+B 的单调区间通常用“同增异减”.26.(1)见解析(2)见解析【分析】(1)由题意可知2,3A πϕ==,选择条件①,由正弦函数的对称性求出ω,进而得出解析式;选择条件②,由正弦函数的对称性求出ω,进而得出解析式;选择条件③,由正弦函数的性质求出ω,进而得出解析式;(2)由[],0x π∈-,求出x ωϕ+的范围,再结合正弦函数的性质求出最值.【详解】(1)由题意可知2,3A πϕ==选择条件①因为()f x 的图象关于直线3x π=对称,所以332k πππωπ+=+,解得13,2k k Z ω=+∈ 由21321302k k k Z ππ⎧≥⎪+⎪⎪⎨⎪+>⎪⎪∈⎩,解得0k =,即12ω= 故1()2sin 23f x x π⎛⎫=+⎪⎝⎭ 选择条件②因为()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,所以,26,63k k k Z ππωπω-+==-∈ 由226260k k k Zππ⎧≥⎪-⎪⎨->⎪⎪∈⎩,解得0k =,即2ω= 故()2sin 23f x x π⎛⎫=+ ⎪⎝⎭ 选择条件③因为()f x 的图象上最高点中,有一个点的横坐标为6π,所以2,632k k Z πππωπ+=+∈,解得112,k k Z ω=+∈ 由21121120k k k Zππ⎧≥⎪+⎪⎨+>⎪⎪∈⎩,解得0k =,即1ω= 故()2sin 3f x x π⎛⎫=+⎪⎝⎭(2)选择条件① 1,2363x πππ⎡⎤+∈-⎢⎥⎣⎦当1236x ππ+=-,即x π=-时,min ()2sin 16f x π⎛⎫=-=- ⎪⎝⎭当1233x ππ+=,即0x =时,max ()2sin 3f x π== 选择条件② 52,333x πππ⎡⎤+∈-⎢⎥⎣⎦ 当5233x ππ+=-或233x ππ+=,即x π=-或0x =时,max ()2sin 3f x π== 当232x ππ+=-,即512x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭选择条件③2,333x πππ⎡⎤+∈-⎢⎥⎣⎦当33x ππ+=,即0x =时,max ()2sin 3f x π==当32x ππ+=-,即65x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭【点睛】关键点睛:解决本题的关键是将正弦型函数的问题转化为正弦函数的性质进行求解,利用已知知识解决未知问题.。
高中数学必修四(期末试卷 含答案)

数学必修四测试卷一、选择题(本大题共12道小题,每题5分,共60分)1.函数y =sin α+cos α⎪⎭⎫⎝⎛2π < < 0α的值域为( ).A .(0,1)B .(-1,1)C .(1,2]D .(-1,2)2.锐角三角形的内角A ,B 满足tan A -A2sin 1=tan B ,则有( ). A .sin 2A -cos B =0 B .sin 2A +cos B =0 C .sin 2A -sin B =0D .sin 2A +sin B =03.函数f (x )=sin 2⎪⎭⎫ ⎝⎛4π+x -sin 2⎪⎭⎫ ⎝⎛4π-x 是( ).A .周期为 π 的偶函数B .周期为π 的奇函数C .周期为2 π的偶函数D .周期为2π的奇函数4.下列命题正确的是( )A .单位向量都相等B .若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向量C .||||a b a b +=-,则0a b ⋅=D .若0a 与0b 是单位向量,则001a b ⋅=5.已知,a b 均为单位向量,它们的夹角为060,那么3a b +=( )A .7B .10C .13D .46.已知向量a ,b 满足1,4,a b ==且2a b ⋅=,则a 与b 的夹角为A .6π B .4π C .3π D .2π 7.在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A .3πB .6πC .6π或π65 D .3π或32π8. 若,则对任意实数的取值为( )A. 区间(0,1)B. 1C.D. 不能确定9. 在中,,则的大小为( )A.B.C.D.10. 已知角α的终边上一点的坐标为(32cos ,32sin ππ),则角α的最小值为( )。
A 、65π B 、32π C 、35π D 、611π 11. A ,B ,C 是∆ABC 的三个内角,且B A tan ,tan 是方程01532=+-x x 的两个实数根,则∆ABC 是( )A 、等边三角形B 、锐角三角形C 、等腰三角形D 、钝角三角形12. 已知y x y x sin cos ,21cos sin 则=的取值范围是( )A 、]1,1[-B 、]21,23[-C 、]23,21[-D 、]21,21[-二、填空题(本题共4小题,每小题5分,共20分)13.已知方程01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan ,且α、∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+的值是_________________.14. 若向量||1,||2,||2,a b a b ==-=则||a b += 。
新人教版高二数学必修4期末测试题【附答案】(真题演练)

高中数学必修4期末测试题【附答案】一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ).A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2范围内,与角-34π终边相同的角是( ).A .6πB .3πC .32πD .34π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ).A .41 B .23 C .21D .436.如图,在平行四边形ABCD 中,下列结论中正确的是( ).A .=B .-=C .+=D .+=7.下列函数中,最小正周期为 的是( ).A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos 4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).A .10B .5C .-25D .-109.若tan =3,tan =34,则tan(-)等于( ).A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥BC ,那么c 的值是( ).A .-1B .1C .-3D .312.下列函数中,在区间[0,2π]上为减函数的是( ).A .y =cos xB .y =sin xC .y =tan xD .y =sin(x -3π)13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ).C (第6题)A .254 B .257 C .2512 D .2524 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 的终边经过点P (3,4),则cos 的值为 . 16.已知tan =-1,且 ∈[0,),那么 的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 . 18.某地一天中6时至14时的温度变化曲线近似满足函数T =A sin(t +)+b (其中2π<<时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.(第18题)三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)已知0<<2π,sin =54.(1)求tan 的值; (2)求cos 2+sin ⎪⎭⎫ ⎝⎛2π + α的值.20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |; (2)当a ·b =21时,求向量a 与b 的夹角 的值.21.(本小题满分10分)已知函数f (x )=sin x (>0).(1)当 =时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式;(2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos >0知,为第一、四象限或 x 轴正方向上的角;由sin <0知,为第三、四象限或y 轴负方向上的角,所以 的终边在第四象限.5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知AD +AB =. 7.B 解析:由T =ωπ2=,得 =2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(-)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D 解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).二、填空题:15.53.解析:因为r =5,所以cos =53. 16.43π. 解析:在[0,)上,满足tan =-1的角只有43π,故 =43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5).18.20;y =10sin(8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(x +)+b 的半个周期的图象,所以A =21(-)=10,b =21(30+10)=20.因为21·ωπ2=14-6,所以 =8π,y =10sin ⎪⎭⎫ ⎝⎛ϕ + 8πx +20. 将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<<,可得 =43π. 综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<<2π,sin =54, 故cos =53,所以tan =34.(2)cos 2+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin2+=-2532+53=258. 20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos =ba ba ·=22,故=°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫ ⎝⎛0 , 32π点,得sin32π=0,所以32π=k ,k ∈.即 =23k ,k ∈.又>0,所以k ∈N*. 当k =1时,=23,f (x )=sin 23x ,其周期为34π,此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数;当k ≥2时,3,f (x )=sin x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,=23.。
人教版高二数学必修4期末测试题及答案[精选样本]
![人教版高二数学必修4期末测试题及答案[精选样本]](https://img.taocdn.com/s3/m/6741ef7f581b6bd97e19ea24.png)
高中数学必修4期末测试题【附答案】一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ).A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2范围内,与角-34π终边相同的角是( ).A .6πB .3πC .32πD .34π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ). A .41 B .23 C .21D .436.如图,在平行四边形ABCD 中,下列结论中正确的是( ).A .=B .AB -AD =BDC .+=D .+=7.下列函数中,最小正周期为 的是( ).A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).A .10B .5C .-25D .-109.若tan =3,tan =34,则tan(-)等于( ).A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥,那么c 的值是( ).A .-1B .1C .-3D .312.下列函数中,在区间[0,2π]上为减函数的是( ).A .y =cos xB .y =sin xC (第6题)C .y =tan xD .y =sin(x -3π) 13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ). A .254 B .257 C .2512 D .252414.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 的终边经过点P (3,4),则cos 的值为 . 16.已知tan =-1,且 ∈[0,),那么 的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 . 18.某地一天中6时至14时的温度变化曲线近似满足函数T =A sin(t +)+b (其中2π<<时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.(第18题)三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)已知0<<2π,sin =54.(1)求tan 的值; (2)求cos 2+sin ⎪⎭⎫ ⎝⎛2π + α的值.20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |; (2)当a ·b =21时,求向量a 与b 的夹角 的值.21.(本小题满分10分)已知函数f (x )=sin x (>0). (1)当=时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式;(2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos >0知,为第一、四象限或 x 轴正方向上的角;由sin <0知,为第三、四象限或y 轴负方向上的角,所以 的终边在第四象限. 5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知+=. 7.B解析:由T =ωπ2=,得 =2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(-)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D 解析:易知AB =(2,2),BC =(-1,c -2),由AB ⊥BC ,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).二、填空题:15.53. 解析:因为r =5,所以cos =53. 16.43π. 解析:在[0,)上,满足tan =-1的角只有43π,故 =43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5).18.20;y =10sin(8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(x +)+b 的半个周期的图象,所以A =21(-)=10,b =21(30+10)=20.因为21·ωπ2=14-6,所以 =8π,y =10sin ⎪⎭⎫ ⎝⎛ϕ + 8πx +20. 将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<<,可得 =43π. 综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<<2π,sin =54, 故cos =53,所以tan =34.(2)cos 2+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin2+=-2532+53=258. 20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos =ba ba ·=22,故=°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫ ⎝⎛0 , 32π点,得sin32π=0,所以32π=k ,k ∈.即 =23k ,k ∈.又>0,所以k ∈N*.当k =1时,=23,f (x )=sin 23x ,其周期为34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数; 当k ≥2时,3,f (x )=sin x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,=23.。
【人教版】高中数学必修四期末试卷含答案

一、选择题1.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( )A .0,3πβ⎛⎫∈ ⎪⎝⎭B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭2.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形 B .等边三角形 C .等腰三角形或直角三角形 D .等腰直角三角形3.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .9,10ππ⎛⎫⎪⎝⎭B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫⎪⎝⎭4.若tan 2θ=,则cos2(θ= ) A .45B .45-C .35D .35-5.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .26.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .47.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .48.设非零向量a 与b 的夹角是23π,且a a b =+,则22a tb b+的最小值为( )A.3B .2C .12D .19.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z10.函数()()sin cos y x =的部分图象大致为( )A .B .C .D .11.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .3D .3212.函数2()cos sin (R)f x x x x =+∈的最小值为( ) A .54B .1C .1-D .2-二、填空题13.已知函数()2cos 3sin cos f x x x x =+在区间[]0,m 上单调递增,则实数m 的最大值是______.14.函数2cos sin y x x =+的最大值为____________. 15.已知α满足1sin 3α=,那么ππcos cos 44αα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值为________. 16.已知0a b c ++=,3a =,4b =,5c =,则a b b c c a ⋅+⋅+⋅=______; 17.已知P 为圆22(4)2x y +-=上一动点,点()1,1Q ,O 为坐标原点,那么OP OQ ⋅的取值范围为________.18.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.19.函数f (x )=A sin(ωx +φ)(00)2A πωϕ>><,,的部分图象如图所示,则f (0)的值为___________.20.将函数sin y x =图像上所有点向左平移4π个单位,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得到函数()y f x =图像,若函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心,则ω的取值范围为_______________.三、解答题21.在下列三个条件中任选一个,补充在下面问题中,并解答. ①函数1()cos sin (0)2264f x x x ωωπω⎛⎫⎛⎫=+-> ⎪ ⎪⎝⎭⎝⎭.②函数31()sin +cos()(0)224f x x x x ωωωω⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭; ③函数()1()sin 0,||22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立;已知_______(填所选条件序号),函数()f x 图象的相邻两条对称轴之间的距离为2π. (1)求3f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间和对称中心、对称轴. 注:如果选择多个条件分别解答,按第一个解答计分. 22.已知函数()cos23f x x =-,()2cos 4g x a x a =-.(1)求函数()()2h x x f x =+的最大值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,求a 的取值范围. 23.已知函数()22cos sin 226f x x x π⎛⎫=-+-+ ⎪⎝⎭. (1)求512f π⎛⎫⎪⎝⎭;(2)求()f x 的单调递增区间.24.已知函数()21cos 22f x x x =-+. (1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围; (2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 25.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cossin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ;(2)若22212a b c =+,试求sin()A B -的值 26.已知向量()()()2,2,2,1,2,1,a b c t R =-==-∈. (1)若()//ta b c +,求t 的值; (2)若3a tb -=,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得1cos (,0)2β=-,从而得解. 【详解】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈.又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()αβ+==. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++4236(0353515-=-⨯+⨯=<.102+=>,所以1cos (,0)2β∈-所以2,23ππβ⎛⎫∈ ⎪⎝⎭. 故选:C. 【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.2.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 3.D解析:D【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 4.D解析:D 【分析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为221tan 1tan θθ-+,把已知条件代入运算,求得结果. 【详解】tan 2θ=,22222222cos sin 1tan 3cos2cos sin cos sin 1tan 5θθθθθθθθθ--∴=-===-++, 故选D . 【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.5.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB=+,2132MNAD AB=-+,再结合向量的数量积的运算公式,即可求解.【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB=+=+,2132MN CN CM CB CD=-=-21213232BC DC AD AB=-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C.【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.6.C解析:C【分析】由题意可知,2222()2b ta a t a bt b+=+⋅+,令222()2g t a t a bt b=+⋅+,由二次函数的性质可知,当22cos62ba btaaπ⋅=-=-时,()g t取得最小值1,变形可得22sin16bπ=,从而可求出b【详解】解:由题意可知,2222()2b ta a t a bt b+=+⋅+,令222()2g t a t a bt b=+⋅+,因为2222224()44(cos1)06a b a b a bπ∆=⋅-=-<,所以()g t恒大于零,所以当232cos622b b a b t aaaπ⋅=-=-=-时,()g t 取得最小值1,所以22233321222b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题7.C解析:C 【解析】在ABC ∆中,060BAC ∠=,5,6AB AC ==,D 是AB 是上一点,且5AB CD ⋅=-, 如图所示,设AD k AB =,所以CD AD AC k AB AC =-=-, 所以21()2556251552AB CD AB k AB AC k AB AB AC k k ⋅=⋅-=-⋅=-⨯⨯=-=-, 解得25k =,所以2(1)35BD AB =-=,故选C .8.B解析:B 【分析】利用向量a 与b 的夹角是23π,且a a b =+,得出a b a b ==+,进而将22a tb b+化成只含有t 为自变量的二次函数形态,然后利用二次函数的特性来求出最值. 【详解】对于a ,b 和a b +的关系,根据平行四边形法则,如图a BA CD ==,b BC =,a b BD +=,23ABC π∠=,3DCB π∴∠=, a a b =+,CD BD BC ∴==, a b a b ∴==+, 2222222==222a tb a tb a tb bbb+++,a b =,22222222244cos 223=224a t a b t b a tb a tb b b bπ++++=, 222222222244cos42312444a t a b t b a t a a t a t t baπ++-+==-+当且仅当1t =时,22a tb b+的最小值为3故选:B. 【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tb b+化成只含有t 为自变量的二次函数形态,进而求最值.9.D解析:D 【分析】根据图象得到函数()f x 解析式,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,可得()y g x =解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论. 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+. 将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中, 整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈,则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确; 故选:D. 【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.10.A解析:A 【分析】先确定奇偶性,再取特殊值确定函数值可能为负,排除三个选项后得出结论. 【详解】记()()sin cos f x x =,则()()()sin cos()sin cos ()f x x x f x -=-==,为偶函数,排除D ,当23x π=时,21()sin cos sin 032f x π⎛⎫⎛⎫⎛⎫==-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,排除B ,C .故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可通过研究函数的性质如奇偶性、单调性等排除一些选项,再由特殊的函数值,函数值的正负,变化趋势等排除一些选项后得出正确结论.11.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.12.C解析:C 【分析】由平方关系化为sin x 的函数,换元后利用二次函数性质得最小值. 【详解】由已知2()1sin sin f x x x =-+,令sin t x =,则[1,1]t ∈-,2()()1f x g t t t ==-++215()24t =--+,∵[1,1]t ∈-,∴1t =-时,min ()1g t =-. 故选:C . 【点睛】本题考查与三角函数有关的复合函数的最值.求三角函数的最值有两种类型:(1)利用三角恒等变换公式化函数为()sin()f x A x k ωϕ=++形式,然后由正弦函数性质得最值或值域.(2)转化为关于sin x (或cos x )的函数,用换元法,设sin t x =(或cos t x =)变成关于t 的二次函数,利用二次函数的性质求得最值或值域.二、填空题13.【分析】利用辅助角公式进行化简结合函数的单调性进行求解即可【详解】解:当时∵在区间上单调递增∴得即m 的最大值为故答案为:【点睛】本题考查二倍角公式和辅助角公式化简考查三角函数的单调性属于基础题 解析:6π【分析】利用辅助角公式进行化简,结合函数的单调性进行求解即可. 【详解】解:()1cos 212sin 22262x f x x x π+⎛⎫=+=++ ⎪⎝⎭, 当0x m ≤≤时,266x m ππ≤≤+,∵()f x 在区间[]0,m 上单调递增, ∴262m ππ+≤,得6m π≤,即m 的最大值为6π. 故答案为:6π. 【点睛】本题考查二倍角公式和辅助角公式化简,考查三角函数的单调性,属于基础题.14.【分析】将函数解析式变形为且有利用二次函数的基本性质可求出该函数的最大值【详解】且因此当时函数取得最大值故答案为:【点睛】本题考查二次型三角函数的最值利用二倍角余弦公式将问题转化为二次函数的最值问题解析:98【分析】将函数解析式变形为22sin sin 1y x x =-++,且有1sin 1x -≤≤,利用二次函数的基本性质可求出该函数的最大值. 【详解】2219cos 2sin 12sin sin 2sin 48y x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,且1sin 1x -≤≤,因此,当1sin 4x =时,函数2cos sin y x x =+取得最大值98. 故答案为:98. 【点睛】本题考查二次型三角函数的最值,利用二倍角余弦公式将问题转化为二次函数的最值问题是解题的关键,考查计算能力,属于中等题.15.【分析】化简原式为即得解【详解】由题得故答案为:【点睛】本题主要考查和角差角的余弦考查二倍角的余弦意在考查学生对这些知识的理解掌握水平 解析:718【分析】 化简原式为21(12sin )2α-,即得解. 【详解】由题得cos()cos()sin )+sin )4422ππαααααα+-=-⋅222111(cos sin )cos 2(12sin )222αααα=-==- 117(12)2918=-⨯=. 故答案为:718【点睛】本题主要考查和角差角的余弦,考查二倍角的余弦,意在考查学生对这些知识的理解掌握水平.16.【分析】由已知得再两边平方求得代入可求得答案【详解】因为所以又因为所以即又所以所以所以故答案为:【点睛】本题考查向量的线性运算向量的数量积以及向量的模的计算属于中档题 解析:25-【分析】由已知得()c a b =-+,再两边平方22+2+25a a b b ⋅=,求得0a b ⋅=,代入可求得答案. 【详解】因为0a b c ++=,所以()c a b =-+,又因为5c =, 所以()225a b+=,即22+2+25a a b b ⋅=,又3a =,4b =,所以9+2+1625a b ⋅=,所以0a b ⋅=,所以()()20+25a b b c c a a b c ba c c c ⋅+⋅+⋅=⋅+⋅+=⋅-=-=-, 故答案为:25-. 【点睛】本题考查向量的线性运算,向量的数量积,以及向量的模的计算,属于中档题.17.【分析】先将圆的方程化为参数方程设利用数量积运算结合三角函数的性质求解【详解】因为圆的方程所以其参数方程为:设所以因为所以故答案为:【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函 解析:[2,6]【分析】先将圆的方程化为参数方程,4x R y θθθ⎧=⎪∈⎨=+⎪⎩,设,4)P θθ+,利用数量积运算结合三角函数的性质求解. 【详解】因为圆的方程22(4)2x y +-=,所以其参数方程为:,4x R y θθθ⎧=⎪∈⎨=⎪⎩,设,4)P θθ,所以2cos (4)2sin()44πθθθ⋅=++=++OP OQ ,因为[]sin()1,14πθ+∈-,所以[2,6]⋅∈OP OQ . 故答案为:[2,6] 【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函数的性质,还考查了运算求解的能力,属于中档题.18.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a a b b a a b b +⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b +=,由不等式可知3a b ≤,再由-①②,得32a b ⋅=,最后由cos ,a b a b a b ⋅=可得解.【详解】由3a b +=,3a b -=,得()()2239ba ab ⎧⎪⎨⎪-==+⎩,即22222923a a b b a a b b +⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b +=,即226a b +=由-①②,得32a b ⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.19.【分析】由图可得的周期振幅即可得再将代入可解得进一步求得解析式及【详解】由图可得所以即又即又故所以故答案为:【点睛】本题考查由图象求解析式及函数值考查学生识图计算等能力是一道中档题解析: 【分析】由图可得()f x 的周期、振幅,即可得,A ω,再将(,0)6π代入可解得ϕ,进一步求得解析式及()0f . 【详解】由图可得2A =,1()46124T πππ=--=,所以2T ππω==,即2ω=,又()06f π=,即2sin(2)06πϕ⨯+=,,3k k Z πϕπ+=∈,又||2ϕπ<,故3πϕ=-,所以()sin()f x x π=-223,(0)2sin()3f π=-=故答案为:. 【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.20.【分析】根据图象变换求出解析式再结合正弦函数的性质建立不等式即可求出的取值范围【详解】将函数图像上所有点向左平移个单位得到的图象再将横坐标变为原来的倍纵坐标不变得函数在上有且仅有一条对称轴和一个对称解析:35,22⎛⎤⎥⎝⎦【分析】根据图象变换求出()f x 解析式,再结合正弦函数的性质建立不等式,即可求出ω的取值范围. 【详解】将函数sin y x =图像上所有点向左平移4π个单位,得到sin 4y x π⎛⎫=+ ⎪⎝⎭的图象,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得()sin 4y f x x πω⎛⎫==+ ⎪⎝⎭,函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心, 由0,2x π⎛⎫∈ ⎪⎝⎭,得,4424x ,3242,解得3522. 故答案为:35,22⎛⎤⎥⎝⎦.【点睛】本题考查三角函数的图象变换,以及根据相关性质求参数,属于中档题.三、解答题21.条件性选择见解析,(1)14;(2)单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;对称中心的坐标为,0,212k k Z ππ⎛⎫-∈ ⎪⎝⎭;对称轴为直线26k x ππ=+,k Z ∈. 【分析】 选择条件①:()f x 11cos cos22224x x x ωωω⎫⎛⎫=+-⎪⎪⎪⎝⎭⎝⎭11cos sin 4426x x x πωωω⎛⎫=+=+ ⎪⎝⎭,再根据相邻两对称轴之间距离为2π,可得ω从而求出()f x ;选择条件②:()f x 11sin cos sin 4426x x x πωωω⎛⎫=+=+ ⎪⎝⎭,相邻两对称轴之间距离为2π,可得ω,从而求出()f x ; 选择条件③:()f x 相邻两对称轴之间距离为2π,求出ω,对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立,则()f x 的图象关于5,012π⎛⎫ ⎪⎝⎭对称,可求出ϕ,从而得出()f x ;(1)由于选择哪种情况,都有1()sin 226f x x π⎛⎫=+ ⎪⎝⎭,代入3f π⎛⎫⎪⎝⎭可得答案. (2)分别根据正弦函数的单调递增区间、对称中心、对称轴可得答案. 【详解】选择条件①:依题意,()1cos sin 2264f x x x ωωπ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,即有:()11cos sin cos222224f x x x x ωωω⎛⎫⎛⎫=+- ⎪⎪ ⎪⎝⎭⎝⎭,化简得:211()cos cos 222224f x x x x ωωω⎛⎫=+- ⎪⎝⎭,即有:11()cos sin 4426f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又因为()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭ ;选择条件②:依题意,()1cos cos 2224f x x x x ωωω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,即有:11()cos sin 4426f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又因为()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭; 选择条件③:依题意,()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立, 则()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称,则5212k πϕπ⨯+=,k Z ∈,由||2ϕπ<知6π=ϕ,从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭;(1)由于选择哪种情况,都有1()sin 226f x x π⎛⎫=+ ⎪⎝⎭,所以11sin 233264f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.(2)1()sin 226f x x π⎛⎫=+ ⎪⎝⎭, 单调递增区间为2222621,k x k k z πππππ-≤+≤+∈, 解得,,36x k k k Z ππππ⎡⎤∈-+∈⎢⎥⎣⎦, 从而()f x 的单调增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦又由2,6x k k Z ππ+=∈,所以212k x k Z ππ=-∈,, 得()f x 的对称中心的坐标为,0,212k k Z ππ⎛⎫-∈ ⎪⎝⎭, ()f x 的对称轴为直线2,62x k k Z πππ+=+∈,即26k x ππ=+,k Z ∈. 【点睛】 关键点点睛:本题考查了三角函数解析式的化简,以及三角函数的图象与性质的应用,其中解答中利用三角恒等变换的公式,化简函数的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.22.(1)-1;(2)()4-+∞ 【分析】(1)易得()2sin 233h x x π⎛⎫=+- ⎪⎝⎭,再利用正弦函数的性质求解. (2)将0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,转化为0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立,令[]cos 0,1t x =∈,利用二次函数的性质求()22244r t t at a =-+-的最小值即可.【详解】(1)因为函数()cos23f x x =-,所以()2cos 232sin 233h x x x x π⎛⎫=+-=+- ⎪⎝⎭, 当22,32x k k Z πππ+=+∈,即 ,12x k k Z ππ=+∈时, sin 213x π⎛⎫+= ⎪⎝⎭,所以()h x 的最大值是-1;(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,cos232cos 4x a x a >--恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立, 令[]cos 0,1t x =∈ ()22244r t t at a =-+- 当02a≤,即 0a ≤时, ()()min 0440r t r a ==->,解得 1a >,此时无解; 当012a <<,即 02a <<时, ()2min 44022a a r t r a ⎛⎫==-+-> ⎪⎝⎭,解得44-<+,此时42a -<;当12a≥,即 2a ≥时, ()()min 1220r t r a ==->,解得 1a >,此时2a ≥;综上:a 的取值范围是()4-+∞ 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.23.(11;(2)5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【分析】(1)先利用二倍角公式化简,再用辅助角公式化为()f x 213x π⎛⎫=-+ ⎪⎝⎭,代入求值;(2)利用换元法,借助于正弦函数的增区间就可以得到()y f x =的单增区间. 【详解】解:(1)()()12cos 21cos 222f x x x x ⎛⎫=-+- ⎪ ⎪⎝⎭32cos 212x x ⎫=-+⎪⎪⎝⎭213x π⎛⎫=-+ ⎪⎝⎭,因此511122f ππ⎛⎫=+= ⎪⎝⎭; (2)令23u x π=-,由2,222u k k ππππ⎡⎤∈-+⎢⎥⎣⎦ 522,2,3221212x k k x k k πππππππππ⎡⎤⎡⎤⇒-∈-+⇒∈-+⎢⎥⎢⎥⎣⎦⎣⎦, 即()f x 的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【点睛】 (1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.24.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】 (1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=-⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间.【详解】(1)()211πcos cos2sin 2226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭, π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,. ∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,. (2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈,∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】 本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题.25.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果.【详解】(1)由题意知,0m n =,即222cos 2sin 02C C -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒.(2)2222221122a b c a b c =+⇒-=, 222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.26.(1)2t =-;(2)1t =-或15t =. 【分析】(1)利用向量平行的坐标表示列方程,解方程求得t 的值.(2)利用向量模的坐标运算列方程,解方程求得t 的值.【详解】(1)()22,21ta b t t +=-++,由于()//ta b c +,所以()()()221212t t -+⨯-=+⨯,即22422t t t -=+⇒=-.(2)()()()2,22,22,2a tb t t t t -=--=---,依题意3a tb -=,所以3=,解得1t =-或15t =. 【点睛】本小题主要考查向量线性运算的坐标表示,考查向量平行的坐标表示,考查向量模的坐标表示,属于中档题.。
【人教版】高中数学必修四期末试卷附答案

一、选择题1.已知2tan 23θ=,则1cos sin 1cos sin θθθθ-+++的值为( )A .23B .23-C .32D .32-2.函数()sin 3cos ([,0])f x x x x π=-∈-的单调递增区间是( ) A .5[,]6ππ--B .5[,]66ππ-- C .[,0]3π-D .[,0]6π-3.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-74.若3sin 2sin 703παα⎛⎫-+-= ⎪⎝⎭,则tan α=( ) A .233-B .23C .3-D .3 5.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .326.如图,在平行四边形ABCD 中,点E F 、满足2,2BE EC CF FD ==,EF 与AC 交于点G ,设AG GC λ=,则λ=( )A .97B .74C .72D .927.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53C .523+D .58.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭9.在平面直角坐标系中,AB 是单位圆上的一段弧(如右图),点P 是圆弧AB 上的动点,角α以Ox 为始边,OP 为终边.以下结论正确的是( )A .tan α<cos α<sin αB .cos α<tan α<sin αC .sin α<cos α<tan αD .以上答案都不对10.如图,一个摩天轮的半径为10m ,轮子的最低处距离地面2m .如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P (点P 与摩天轮天轮中心O 的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是( )A .8分钟B .10分钟C .12分钟D .14分钟11.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B 151+C .1916D .3412.若函数)22()sin 23cos sin f x x x x =-的图像为E ,则下列结论正确的是( )A .()f x 的最小正周期为2πB .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E二、填空题13.已知10cos ,0,4102ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭______14.关于x 的方程()22310x x m +++=的两个根为sin θ和cos θ,则sin cos 11tan 1tan θθθθ+=--______. 15.tan 25tan353tan 25tan35++︒︒︒︒的值为________.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.18.已知,a b 都是单位向量,且a 与b 的夹角是120,||a b -=_________________.19.函数f (x )=A sin(ωx +φ)(00)2A πωϕ>><,,的部分图象如图所示,则f (0)的值为___________.20.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 三、解答题21.已知函数2())2cos1(0,0)2x f x x ωϕωϕωϕπ+=++-><<为偶函数,且()f x 图象的相邻两个最高点的距离为π.(1)当5,66x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的单调递增区间; (2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来12(纵坐标不变),得到函数()y g x =的图象.求函数()g x 在区间,126ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.22.已知14cos ,sin()435πββα⎛⎫-=+= ⎪⎝⎭,其中π0π2αβ<<<<. (1)求tan β的值; (2)求cos 4πα⎛⎫+⎪⎝⎭的值. 23.已知平面向量34,55a ⎛⎫= ⎪⎝⎭,2||2b =,a与b 夹角为4π.(1)求向量a 在b 方向上的投影; (2)求a b -与a b +夹角的余弦值. 24.定义行列式运算法则为:12142334a a a a aa a a =-,已知函数()2cos 2sin x f x x=.(1)求()f x 的最小正周期; (2)若函数()()02g x f x m m π⎛⎫=+<<⎪⎝⎭是偶函数,求不等式()0g x ≤的解集. 25.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表:()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?26.(1)已知平面向量a 、b 的夹角为3π,且1a =,2b =,求2a b +与b 的夹角; (2)已知平面向量()1,2a =,()2,1b =-,()1,c λ=,若()a b c +⊥,求λ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据半角公式得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,再分子分母同除以2cos 2θ得2tan 1cos sin 21cos si tan2n 31ta 2n 2θθθθθθθ-+=++=++. 【详解】解:根据半角公式得:22cos 12sin2cos 122θθθ=-=-,sin 2sincos22θθθ=所以22222sin 2sin cos sin sin cos2222222cos 2sin cos cos sin cos 21cos sin 1cos 222n 2i 2s θθθθθθθθθθθθθθθθ-+==++++++, 对上述式子分子分母同除以2cos 2θ得: 222sin sin cos tan22222cos s 42ta in cos 22n 1cos sin 1029321cos sin 1531tan 1322θθθθθθθθθθθθθ+-+==+++===++++. 故选:A. 【点睛】本题解题的关键在于利用半角公式化简得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,进而构造齐次式求解即可,考查运算求解能力,是中档题.2.D解析:D 【解析】()sin 23f x x x sin x π⎛⎫==-⎪⎝⎭,因为[],0x π∈-4,,333x πππ⎡⎤∴-∈--⎢⎥⎣⎦,由1,323x πππ⎡⎤-∈--⎢⎥⎣⎦,得,06x π⎡⎤∈-⎢⎥⎣⎦,函数()[]()sin ,0f x x x x π=∈-的单调递增区间是,06π⎡⎤-⎢⎥⎣⎦,故选D. 3.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.4.A解析:A 【分析】由两角和的正弦公式化简,并引入锐角β,cosβ=,sin β=,已知条件化为sin()1αβ-=,这样可得22k παβπ=++,k Z ∈,代入tan α,应用切化弦公式及诱导公式可得结论. 【详解】由已知3sin 2sin 3sin 2sin cos cos sin 0333πππααααα⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭2sin αα=1αα=,设cosβ=,sin β=,且β为锐角,cos sin sin cos sin()1ααβαβααβ=-=-=,∴22k παβπ-=+,k Z ∈,即22k παβπ=++,k Z ∈,tan tan 2tan 22k ππαβπβ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭sin cos 2327sin 3cos 27πββπββ⎛⎫+ ⎪⎝⎭===-=--⎛⎫+ ⎪⎝⎭, 故选:A . 【点睛】本题考查两角和与差的正弦公式,考查诱导公式及同角间的三角函数关系,化简变形求值是解题的基本方法.5.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =|,∴225AB OA OB =+= , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,55m n =,,求得455m =,∴4525,D⎛⎫⎪⎪⎝⎭;则45254525,,OE ODλλλλ⎛⎫⎛⎫===⎪ ⎪⎪ ⎪⎝⎭⎝⎭,45255,EAλλ⎛⎫=--⎪⎪⎭;∵34OE EA⋅=,∴2454525354λλλ⎛⎫⎛⎫⋅--=⎪ ⎪⎪ ⎪⎭⎝⎭,解得34λ=或14λ=;∴向量EA在向量OD上的投影为()()45251,1ED OD OEλλ⎛⎫=-=--⎪⎪⎝⎭,当34λ=时,551,2ED⎛⎫==⎪⎪⎝⎭;当14λ=时,35353,2ED⎛⎫==⎪⎪⎝⎭.即向量EA在向量OD上的投影为12或32,故选A.6.C解析:C【分析】设H是BC上除E点外的令一个三等分点,判断出G是三角形CFH的重心,得出,CG CO的比例,由此得出λ的值.【详解】设H是BC上除E点外的令一个三等分点,连接FH,连接BD交AC于O,则//BD FH.在三角形CFH中,,CG FG是两条中线的交点,故G是三角形CFH的重心,结合23CH CFBH DF==可知24.5CGCO=,由于O是AC中点,故224.529CGAC==⨯.所以72AGCG=,由此可知72λ=,故选C.【点睛】本小题主要考查平行线分线段成比例,考查三角形的重心,考查比例的计算,属于中档题.解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos 602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ONOM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+.故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.8.D解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】 设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB y AB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭, 又因为()1AO xAB x AC =+-,所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.解析:D 【分析】根据三者的符号可得sin cos ,sin tan αααα>>,利用作差法可得tan ,cos αα大小关系不确定,从而可得正确的选项. 【详解】由题设可得AB 上的动点P 的坐标为()cos ,sin αα且()()1122cos ,sin ,cos ,sin A B θθθθ,其中122πθαθπ<<<<,12324ππθθπ<<<<, 注意到当13,4παθ⎛⎤∈ ⎥⎝⎦,tan 1α≤-,故按如下分类讨论: 若1324ππθα<<≤,则sin 0,cos 1,tan 1ααα>>-≤-, 故sin cos tan ααα>>.若234παθ<≤,则sin 0,cos 0,tan 0ααα><<,且20sin sin 2θα<≤<所以22221sin sin 1sin sin 12θθαα+-≤+-<,因为234πθπ<<,故20sin 2θ<<,故22211sin sin 12θθ-<+-<, 所以222sinsin 1θθ+-有正有负,所以2sin sin 1αα+-有正有负,而2sin sin 1tan cos cos ααααα+--=,cos 0α<,故tan cos αα-有正有负,故tan ,cos αα大小关系不确定. 故选:D. 【点睛】方法点睛:三角函数式的大小比较,可先依据终边的位置判断出它们的符号,也可以利用作差作商法来讨论,注意根据三角函数值的范围确定代数式的符号.10.B解析:B 【分析】由题可得此人相对于地面的高度h 与时间t 的关系是()10sin1203015h t t π=+≤≤,再令10sin121715t π+≥求出t 的范围即可得出. 【详解】设时间为t 时,此人相对于地面的高度为h , 则由题可得当0t =时,12h =, 在时间t 时,此人转过的角为23015t t ππ=, 此时此人相对于地面的高度()10sin 1203015h t t π=+≤≤,令10sin 121715t π+≥,则1sin 152t π≥, 所以56156t πππ≤≤,解得52522t ≤≤, 故在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是()25510min 22-=. 故选:B. 【点睛】本题考查三角函数的实际应用,解题的关键是得出高度与时间的关系()10sin1203015h t t π=+≤≤,再解三角函数不等式即可.11.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫-⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.12.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π== ()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.二、填空题13.【分析】先由求得的值进而求得的值再根据两角差的正弦公式求得的值【详解】依题意即故由于而所以故因此所以【点睛】本小题主要考查二倍角公式考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数【分析】 先由cos 4πθ⎛⎫+⎪⎝⎭求得πcos 22θ⎛⎫+ ⎪⎝⎭的值,进而求得sin 2,cos 2θθ的值,再根据两角差的正弦公式,求得sin 23πθ⎛⎫- ⎪⎝⎭的值. 【详解】依题意πcos 22θ⎛⎫+⎪⎝⎭2π42cos 145θ⎛⎫=+-=- ⎪⎝⎭,即4sin 25θ-=-,故4sin 25θ=,由于πππ3π0,,,2444θθ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭,而πcos 04θ⎛⎫+> ⎪⎝⎭,所以πππ,442θ⎛⎫+∈ ⎪⎝⎭,故ππ0,,20,42θθ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,因此3cos 25θ===.所以ππsin 2sin 2cos cos 2sin 333πθθθ⎛⎫-=- ⎪⎝⎭=【点睛】本小题主要考查二倍角公式,考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于中档题.14.【分析】利用方程的根得到的关系化简所求式代入求值即可【详解】因为方程的两个根为和所以因此故答案为:【点睛】本题考查了韦达定理和三角函数正余弦和正切化简求值属于基础题解析:【分析】利用方程的根得到sin ,cos θθ的关系,化简所求式,代入求值即可. 【详解】因为方程)2210x x m ++=的两个根为sin θ和cos θ,所以1sin cos 2θθ+=-,sin cos 2mθθ=,因此,2222sin cos sin cos sin cos sin cos 11tan sin cos cos sin sin cos 1tan θθθθθθθθθθθθθθθθ-+=+==+=-----故答案为: 【点睛】本题考查了韦达定理和三角函数正余弦和正切化简求值,属于基础题.15.【分析】根据展开化简得到答案【详解】故故答案为:【点睛】本题考查了正切和差公式的应用意在考查学生的计算能力【分析】根据()tan60tan 2535︒=︒+︒,展开化简得到答案. 【详解】()tan 25tan 35tan 60tan 253531tan 25tan 35︒+︒︒=︒+︒==-︒⋅︒,故tan 25tan353tan 25n33ta 5︒︒︒+︒=+. 故答案为:3. 【点睛】本题考查了正切和差公式的应用,意在考查学生的计算能力.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC 相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果. 【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58.【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.18.【分析】根据数量积公式得出的值再由得出答案【详解】故答案为:【点睛】本题主要考查了由数量积求模长属于中档题【分析】根据数量积公式得出a b ⋅的值,再由2||()a b a b -=-得出答案.【详解】111cos1202a b ⋅=⨯⨯︒=-22222||()2||2||111a b a b a a b b a a b b ∴-=-=-⋅+=-⋅+=++=【点睛】本题主要考查了由数量积求模长,属于中档题.19.【分析】由图可得的周期振幅即可得再将代入可解得进一步求得解析式及【详解】由图可得所以即又即又故所以故答案为:【点睛】本题考查由图象求解析式及函数值考查学生识图计算等能力是一道中档题解析:由图可得()f x 的周期、振幅,即可得,A ω,再将(,0)6π代入可解得ϕ,进一步求得解析式及()0f . 【详解】由图可得2A =,1()46124T πππ=--=,所以2T ππω==,即2ω=,又()06f π=,即2sin(2)06πϕ⨯+=,,3k k Z πϕπ+=∈,又||2ϕπ<,故3πϕ=-,所以()sin()f x x π=-223,(0)2sin()3f π=-=故答案为: 【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.20.【分析】可拆分理解构造由对勾函数可得时取得最小值又当时也取到最小值即可求解【详解】令由对勾函数性质可知当时;因为当时所以当时取到最小值所以故答案为:【点睛】本题考查函数最值的求解拆分构造函数是解题关解析:52【分析】可拆分理解,构造251616()5x x g x x x x-+==+-,由对勾函数可得4x =时取得最小值,又当4x =时,12sin 236x ππ⎛⎫-- ⎪⎝⎭也取到最小值,即可求解 【详解】令251616()5x x g x x x x-+==+-,由对勾函数性质可知当4x =时,min ()3g x =;因为121sin 2362x ππ⎛⎫--- ⎪⎝⎭,当4x =时,121sin 2362x ππ⎛⎫--=-⎪⎝⎭,所以当4x =时,()f x 取到最小值,5(4)2f =,所以min5()2f x =. 故答案为:52【点睛】本题考查函数最值的求解,拆分构造函数是解题关键,属于中档题三、解答题21.(1)单调递增区间为,06π⎡⎤-⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦;(2)最大值为2,最小值1-. 【分析】(1)首先利用二倍角公式和辅助角公式对()f x 化简,再利用偶函数求出ϕ的值,再利用T π=求出ω的值,即可得()f x 的解析式,再利用余弦函数的单调递增区间即可求解;(2)利用三角函数图象变换的规律求出()g x 的解析式,再利用余弦函数的性质即可求值域. 【详解】(1)由题意函数2())2cos12x f x x ωϕωϕ+=++-)cos()2sin 6x x x πωϕωϕωϕ⎛⎫=+++=++ ⎪⎝⎭,因为函数()f x 图象的相邻两个最高点的距离为π, 所以T π=,可得2ω=.又由函数()f x 为偶函数可得(0)2sin 26f πϕ⎛⎫=+=± ⎪⎝⎭, 所以62k ππϕπ+=+,k ∈Z ,则3k πϕπ=+,k ∈Z .因为0ϕπ<<,所以3πϕ=,所以函数()2cos 2f x x =,令222k x k πππ-≤≤,k ∈Z ,解得2k x k πππ-≤≤,k ∈Z ,当0k =时,02x ;当1k =时,2x ππ≤≤,又5,66x ππ⎡⎤∈-⎢⎥⎣⎦, 可得函数()f x 的单调递增区间为,06π⎡⎤-⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦. (2)将函数()f x 的图象向右平移6π个单位长度可得2cos 23y x π⎛⎫=- ⎪⎝⎭的图象,再把各点的横坐标缩小为原来的12,得到函数()2cos 43g x x π⎛⎫=- ⎪⎝⎭的图象, 当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,24,333x πππ⎡⎤-∈-⎢⎥⎣⎦. 当2433x ππ-=-,即12x π=-时, 函数()g x 取得最小值,最小值为1-; 当403x π-=,即12x π=时,函数()g x 取得最大值,最大值为2. 所以函数()g x 在区间,126ππ⎡⎤-⎢⎥⎣⎦上的最大值是2,最小值是1-. 【点睛】方法点睛:已知三角函数的解析式求单调区间先将解析式化为()()sin 0y A x A ωϕω=+>>0,或()()cos 0,0y A x A ωϕω=+>>的形式,然后将x ωϕ+看成一个整体,根据sin y x =与cos y x =的单调区间列不等式求解. 22.(1)2)315; 【分析】由已知函数值以及角的范围得3444πππβ<-<,322ππαβ<+<,且()44ππββ=-+,()()44ππαβαβ+=+--,结合两角和差公式即可求值.【详解】(1)2πβπ<<知:3444πππβ<-<,∵1cos 43πβ⎛⎫-= ⎪⎝⎭,则sin()43πβ-=,∴tan 4πβ⎛⎫-= ⎪⎝⎭tan tan[()]44ππββ=-+,∴tan()tan944tan 71tan()tan 44ππββππβ-++===---, (2)由cos cos[()()]44ππαβαβ⎛⎫+=+-- ⎪⎝⎭, ∴cos cos()cos()sin()sin()444πππαβαββαβ⎛⎫+=+-++- ⎪⎝⎭, 由π0π2αβ<<<<知:322ππαβ<+<, ∴由题意,得3cos()5βα+=-,结合(1)有sin()43πβ-=,∴314cos 4535πα⎛⎫+=-⨯+= ⎪⎝⎭ 【点睛】关键点点睛:根据已知确定4πβ-,αβ+范围,并确定β,4πα+与已知角的关系,进而求函数值.23.(1)2;(2) 5. 【解析】试题分析:(1)由向量数量积的几何意义可求向量a 在b 方向上的投影; (2)由向量夹角公式可求a -b 与a +b 的夹角的余弦值 试题 (1)|a |=|(34,55)|=1 ∴向量a 在b 方向上的投影为a cosθ=a ?bb=(2)cos<a -b ,a +b>=()()a b a b a b a b-+-+|a -b |2=|a |2+|b |2-2ab =12,|a b - |a b +|2=|a |2+|b |2+2ab =52,|a b +|=102(a b -)(a b +)=a 2-b 2=12cos<,a b a b-+>=()()a b a b a b a b-+-+=24.(1)π;(2),,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.【分析】(1)先利用题中定义计算化简行列式,再利用周期的公式计算即可;(2)先利用()g x 是偶函数计算参数m ,再结合余弦函数图象与性质解不等式即可. 【详解】解:(1)依题意得,()22cos2sin cos 2sin x f x x x x x==-sin 2x x =-2cos 26x π⎛⎫=++⎪⎝⎭故()f x 的最小正周期为:22T ππ==; (2)函数()()2cos 22cos 2266g x x m x m ππ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭故2,6m k k Z ππ+=∈,即,122k m k Z ππ=-+∈, 又02m π<<可知,1k =时512m π=,故5()2cos 222cos 2126g x x x ππ⎛⎫=+⋅+=-⎪⎝⎭.故不等式()0g x ≤,即2cos20x -≤,即cos 22x ≥, 结合余弦函数图象与性质可知,222,66k x k k Z ππππ-+≤≤+∈,解得,1212k x k k Z ππππ-+≤≤+∈.故不等式的解集为,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.【点睛】 关键点点睛:本题解题关键在于读懂新定义中行列式的计算法则,才能结合三角函数的图象与性质突破难点.25.(1)()2sin 566f t t ππ⎛⎫=++⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭求解.【详解】由表格可知()()max min 7,3f t f t ==,, 则()()()()max minmax min2,522f t f t f t f t A B -+====,又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++=⎪⎝⎭,即sin 13πϕ⎛⎫+=⎪⎝⎭, 所以232k ππϕπ+=+, 又2πϕ<, 所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭. (2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭, 即1sin 662t ππ⎛⎫+≥⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+,又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时.【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.26.(1)6π;(2)3λ=-. 【分析】(1)设2a b +与b 的夹角为θ,计算出()2a b b +⋅的值和2a b +的值,利用平面向量的数量积的运算求得cos θ,结合θ的取值范围可求得θ的值;(2)求得平面向量a b +的坐标,由()0a b c +⋅=,结合平面向量数量积的坐标运算可求得实数λ的值.【详解】(1)设2a b +与b 的夹角为θ, 由于1a =,2b =,且平面向量a 、b 的夹角为3π,()22222cos 63a b b a b b a b b π∴+⋅=⋅+=⋅+=, ()22222224444cos 233a b a b a a b b a a b b π+=+=+⋅+=+⋅+=, 所以,()2cos 2232a b b a b bθ+⋅===⨯+⋅,0θπ≤≤,因此,6πθ=; (2)平面向量()1,2a =,()2,1b =-,()1,c λ=,()3,1a b ∴+=,()a b c +⊥,()30a b c λ∴+⋅=+=,解得3λ=-.【点睛】本题考查利用平面向量的数量积计算向量的夹角,同时也考查可利用向量垂直的坐标表示求参数,考查计算能力,属于中等题.。
【人教版】高中数学必修四期末试题含答案

一、选择题1.函数2()sin 223cos 3f x x x =+-,()cos(2)2 3 (0)6g x m x m m π=--+>,若对任意1[0,]4x π∈,存在2[0,]4x π∈,使得12()()g x f x =成立,则实数m 的取值范围是( )A .4(1,)3B .2(,1]3C .2[,1]3D .4[1,]32.如下图,圆O 与x 轴的正半轴的交点为A ,点,C B 在圆O 上,且点C 位于第一象限,点B 的坐标为43,,,55AOC α⎛⎫-∠= ⎪⎝⎭若1BC =,则233cos sin cos 2222ααα--的值为( )A .45B .35C .45-D .353.已知,22ππα⎛⎫∈- ⎪⎝⎭,1cos 63πα⎛⎫+= ⎪⎝⎭,则sin α=( )A 126-B 223-C .261+D 261- 4.在ABC 中三内角A ,B ,C 的对边分别为a ,b ,c ,且2223b c bc a +=,23bc a =,则角C 的大小是( )A .6π或23π B .3πC .23π D .6π 5.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-16.在ABC ∆中,5,6AB AC ==,若2B C =,则向量BC 在BA 上的投影是( )A .75-B .77125-C .77125D .757.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( ) A .18-B .116-C .316-D .08.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-9.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)10.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断: ①该函数的解析式为2sin 210y x π⎛⎫=+⎪⎝⎭; ②该函数图象关于点,02π⎛⎫⎪⎝⎭对称;③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增; ④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增. 其中,正确判断的序号是( ) A .②③B .①②C .②④D .③④11.已知奇函数()f x 满足()(2)f x f x =+,当(0,1)x ∈时,函数()2x f x =,则12log 23f ⎛⎫= ⎪⎝⎭( ) A .1623-B .2316-C .1623D .231612.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .59169二、填空题13.经过点(4,1)P -作圆2220x y y +-=的切线,设两个切点分别为A ,B ,则tan APB ∠=__________.14.已知tan 2α=,则2sin 2cos αα+=________.15.已知方程23310x ax a +++=,()2a >的两根为tan α,tan β,α,,22ππβ⎛⎫∈- ⎪⎝⎭,则αβ+=________.16.已知向量a 、b 满足1a b +=,2a b -=,则a b +的取值范围为___________. 17.如图,边长为2的菱形ABCD 的对角线相交于点O ,点P 在线段BD 上运动,若1AB AO ⋅=,则AP PD ⋅的最大值为______.18.在AOB 中,已知1OA =,3OB =2AOB π∠=.若点C ,D 满足971616OC OA OB =-+,()12CD CO CB =⋅+,则CD CO ⋅的值为_______________. 19.已知函数()2sin()(0)f x x ωϕω=+>满足()24f π=,()0f π=,且()f x 在区间(,)43ππ上单调,则ω的值有_________个. 20.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?三、解答题21.已知函数()2sin cos cos 3f x x xx π⎡⎤⎛⎫=⋅-+ ⎪⎢⎥⎝⎭⎣⎦,0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求6f π⎛⎫⎪⎝⎭; (2)求()f x 的值域.22.如图,以x 轴非负半轴为始边,角α的终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,将角α的终边绕着原点O 顺时针旋转4π得到角β.(1)求3sin()5cos()2sin sin()2πααπαπα-+-⎛⎫-++ ⎪⎝⎭的值; (2)求sin 22cos ββ+的值.23.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点. (1)若AB AC ⊥求实数m 的值; (2)在(1)的条件下,求△ABC 的面积.24.已知,,a b c 是同一平面内的三个向量,其中()1,2a =. (1)若35b =,且//a b ,求b 的坐标;(2)若2c =,且()()2a c a c +⊥-,求a 与c 的夹角θ的余弦值.25.已知函数()2sin(2)f x x ϕ=+. (1)当,0,62x ππϕ⎡⎤=∈⎢⎥⎣⎦时,求()f x 的值域和单调减区间; (2)若()f x 关于3x π=对称,且(0,)ϕπ∈,求ϕ的值.26.己知函数()sin 3cos (0, 0 )f x A x A x A ωωω=+>>,其部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】222332321f x sin x cos x sin x cos x =+-=+-()()132322222223sin x cos x sin x x sin x π==+=+()(), 当0,4x π⎡⎤∈⎢⎥⎣⎦时,552[]21[12]3366min x f x sin f x ππππ+∈∴==∴∈,,(),(),, 对于22306g x mcos x m m π=--+()()(>),2[]2[]36662m x mcos x m ππππ-∈--∈,,(),,3[33]2g x m m ∴∈-+-(),, ∵对任意10,4x π⎡⎤∈⎢⎥⎣⎦,存在20,4x π⎡⎤∈⎢⎥⎣⎦,使得()()12g x f x =成立,331232m m ⎧-+≥⎪∴⎨⎪-≤⎩ ,解得实数m 的取值范围是41,3⎡⎤⎢⎥⎣⎦.故选D .【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,2.B解析:B 【解析】 ∵点B 的坐标为43,55⎛⎫-⎪⎝⎭,设AOB θ∠=, ∴325sinπθ-=-(),425cos πθ-=(), 即35sin θ=,45cos θ=, ∵AOC α∠=,若1BC =,∴3πθα+=,则3παθ=-,则213sincossin cos cos sin 2222625αααππαααθθ⎛⎫⎛⎫-=-=+=-== ⎪ ⎪⎝⎭⎝⎭故选B.点睛:本题主要考查三角函数的化简和求值,利用三角函数的定义以及三角函数的辅助角公式是解决本题的关键;利用降幂公式可将所求表达式化简为关于α的表达式,设AOB θ∠=,当角α的终边与单位圆的交点坐标为(),u v 时,sin v α=,cos u α=,可先求出关于θ的三角函数式,结合等边三角形寻找,αθ之间的关系即可.3.D解析:D 【分析】结合同角三角函数基本关系计算sin 6πα⎛⎫+ ⎪⎝⎭的值,再利用两角差的正弦公式进行求解即可.【详解】 由,22ππα⎛⎫∈-⎪⎝⎭可得2,633πππα⎛⎫+∈- ⎪⎝⎭, 又11cos cos 6323ππα⎛⎫+=<= ⎪⎝⎭,所以2,633πππα⎛⎫+∈ ⎪⎝⎭所以sin 63πα⎛⎫+== ⎪⎝⎭, sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11332=-⨯=故选:D 【点睛】本题主要考查两角和与差的正余弦公式与同角三角函数基本关系,解题的关键是熟练运用公式.4.A解析:A 【分析】由222b c a +=可得cosA =2bc =可得2A =C 值. 【详解】∵222b c a +=,∴cos A 2222b c a bc +-===, 由0<A <π,可得A 6π=,∵2bc =,∴2A =∴5sin 64C sinC π⎛⎫-=⎪⎝⎭,即()1sinCcosC 12244cos C +-=解得50C 6π<< ∴2C=3π或43π,即C=6π或23π 故选A 【点睛】本题考查正弦定理和余弦定理的运用,同时考查两角和差的正弦公式和内角和定理,属于中档题.5.A解析:A【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩ 可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
【人教版】高中数学必修四期末模拟试题(附答案)

一、选择题1.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )A .72B .7210-C .2 D .210-2.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形 B .等边三角形 C .等腰三角形或直角三角形 D .等腰直角三角形3.已知0,2x π⎛⎫∈ ⎪⎝⎭,3cos 45x π⎛⎫+= ⎪⎝⎭,则sin x 的值为( ) A .2-B .2 C .7210D .72-4.已知函数()23sin 22cos 1f x x x =-+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( )A .54π B .34π C .2π D .3π5.延长正方形CD AB 的边CD 至E ,使得D CD E =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,若λμAP =AB +AE ,下列判断正确的是( )A .满足2λμ+=的点P 必为CB 的中点 B .满足1λμ+=的点P 有且只有一个C .λμ+的最小值不存在D .λμ+的最大值为36.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,7.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .48.已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103B .103-C .2D .2-9.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④10.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A wt =.音有四要素:音调、响度、音长和音色,它们都与函数sin y A wt =中的参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖利.像我们平时听到乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音函数是111sin sin 2sin 3sin 4234y x x x x =++++.结合上述材料及所学知识,你认为下列说法中正确的有( ).A .函数1111sin sin 2sin3sin 4sin100234100y x x x x x =+++++不具有奇偶性; B .函数111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增;C .若某声音甲对应函数近似为111()sin sin 2sin3sin 4234f x x x x x =+++,则声音甲的响度一定比纯音1()sin 22h x x =响度大; D .若某声音甲对应函数近似为1()sin sin 22g x x x =+,则声音甲一定比纯音1()sin33h x x =更低沉.11.设函数()2sin cos f x x x x =+,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③12.将函数()sin 3f x x π⎛⎫=-⎪⎝⎭的图象横坐标缩短到原来的12(纵坐标不变),然后向左平移3π个单位,所得函数记为()g x .若1x ,20,2x π⎛⎫∈ ⎪⎝⎭,12x x ≠,且()()12g x g x =,则()12g x x +=( )A .12-B .C .12D 二、填空题13.已知(0,)θπ∈,且sin 410πθ⎛⎫-= ⎪⎝⎭,则sin 2θ=__________. 14.已知π0π2αβ<<<<,3cos 5α=,()3sin 5αβ+=-,则cos β的值为______. 15.在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若112tan tan tan A C B+=,则222b a c=+_____. 16.如图,在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =,若3AB AC AD EC ⋅=⋅,则ABAC的值为___________.17.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭; ② A 、B 两点间的距离为()()221212x x y y -+-;③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号)18.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________.19.已知sin 78a =︒,cos10b =︒,tan55c =︒,则a ,b ,c 的大小关系为______.20.函数f (x )=A sin(ωx +φ)(00)2A πωϕ>><,,的部分图象如图所示,则f (0)的值为___________.三、解答题21.先将函数2sin 2326y x x π⎛⎫=+- ⎪⎝⎭图像上所有点的纵坐标伸长为原来的2倍(横坐标不变),再将所得到的图像横坐标伸长为原来的2倍(纵坐标不变)得到函数()f x 的图像. (1)求函数()f x 的解析式; (2)若α,β满足42()()3f f αβ⋅=,且4παβ+=,设232sin()sin()()cos x x g x xαβ+⋅+=,求函数()g x 在,44x ππ⎡⎤∈-⎢⎥⎣⎦上的最大值. 22.①角α的终边上有一点()2,4M ;②角α的终边与单位圆的交点在第一象限且横坐标为13;③2α为锐角且22sin 42cos 22sin 2ααα=-.在这三个条件中任选一个,补充在下面问题中的横线上,并加以解答.问题:已知角α的顶点在原点O ,始边在x 轴的非负半轴上,___________.求cos 23πα⎛⎫+ ⎪⎝⎭的值.注:如果选择多个条件分别解答,则按第一个解答记分.23.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥. 24.已知函数()22sin cos 2cos ,x x R f x x x =+∈. (1)求()f x 的最小正周期;(2)求()f x 在[]0,π上的单调递减区间; (3)令()18g x f x π⎛⎫=+- ⎪⎝⎭,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,求实数a 的取值范围.25.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.26.已知712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,其中0,4πα⎛⎫∈ ⎪⎝⎭. (1)求tan α的值;(2)求3sin sin 3cos ααα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题. 【详解】 因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下: (1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.2.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 3.B解析:B【分析】 先求得πsin 4x ⎛⎫+ ⎪⎝⎭的值,然后利用ππsin sin 44x x ⎛⎫=+-⎪⎝⎭,展开后计算得出正确选项. 【详解】由于πππ3π0,,,2444x x ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭, 所以π4sin 45x ⎛⎫+== ⎪⎝⎭.故ππsin sin 44x x ⎛⎫=+- ⎪⎝⎭ππππsin cos cos sin4444x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭4355=-=,故选B. 【点睛】本小题主要考查同角三角函数的基本关系式,考查化归与转化的数学思想方法,属于基础题.4.C解析:C 【分析】根据三角恒等变换化简函数()f x ,再由图象的平移得到函数()g x 的解析式,利用函数()g x 的值域,可知12x x -的值为函数()y g x =的最小正周期T 的整数倍,从而得出选项.【详解】函数2()22cos 12cos 22sin 26f x x x x x x π⎛⎫=-+=-=- ⎪⎝⎭, 将函数()y f x =的图象上的所有点的横坐标缩短到原来的12倍,得2sin 46y x π⎛⎫=- ⎪⎝⎭的图象;再把所得图象向上平移1个单位,得函数()2sin 416y g x x π⎛⎫==-+ ⎪⎝⎭的图象,所以函数()y g x =的值域为[1,3]-.若()()129g x g x ⋅=,则()13g x =且()23g x =,均为函数()y g x =的最大值, 由42()62x k k Z πππ-=+∈,解得()62k x k Z ππ=+∈; 其中1x 、2x 是三角函数()y g x =最高点的横坐标,12x x ∴-的值为函数()y g x =的最小正周期T 的整数倍,且242T ππ==. 故选:C. 【点睛】本题考查三角函数的恒等变换,三角函数的图象的平移,以及函数的值域和周期,属于中档题.5.D解析:D 【解析】试题分析:设正方形的边长为1,建立如图所示直角坐标系,则,,,,A B C D E 的坐标为(0,0),(1,0),(1,1),(0,1),(1,1)-,则(1,0),(1,1)AB AE ==-设(,)AP a b =,由λμAP =AB +AE 得(,)(,)a b λμμ=-,所以{a b λμμ=-=,当P 在线段AB 上时,01,0a b ≤≤=,此时0,a μλ==,此时a λμ+=,所以01λμ≤+≤;当P 在线段BC 上时,,此时,1b a b μλμ==+=+,此时12b λμ+=+,所以13λμ≤+≤;当P 在线段CD 上时,,此时1,1a a μλμ==+=+,此时2a λμ+=+,所以13λμ≤+≤;当P 在线段DA 上时,0,01,a b =≤≤,此时,b a b μλμ==+=,此时2b λμ+=,所以02λμ≤+≤;由以上讨论可知,当2λμ+=时,P 可为BC 的中点,也可以是点D ,所以A 错;使1λμ+=的点有两个,分别为点B 与AD 中点,所以B 错,当P 运动到点A 时,λμ+有最小值0,故C 错,当P 运动到点C 时,λμ+有最大值3,所以D 正确,故选D .考点:向量的坐标运算.【名师点睛】本题考查平面向量线性运算,属中档题.平面向量是高考的必考内容,向量坐标化是联系图形与代数运算的渠道,通过构建直角坐标系,使得向量运算完全代数化,通过加、减、数乘的运算法则,实现了数形的紧密结合,同时将参数的取值范围问题转化为求目标函数的取值范围问题,在解题过程中,还常利用向量相等则坐标相同这一原则,通过列方程(组)求解,体现方程思想的应用.6.D解析:D 【分析】设出(,)c x y =,根据向量的共线与垂直的坐标运算,列出方程组,即可求解. 【详解】设(,)c x y =,向量()1,2a =,()2,3b =-,可得(1,2),(3,1)c a x y a b +=+++=-, 由()//c a b +,可得3(1)2(2)x y -⨯+=+,即3270x y ++=,由()c a b ⊥+,可得30x y -=, 联立方程组327030x y x y ++=⎧⎨-=⎩,解得77,93x y =-=-,即77(,)93c =--.故选:D. 【点睛】本题主要考查了向量的坐标表示,以及向量的共线与垂直的坐标运算及应用,其中解答中熟记向量的共线和垂直的坐标运算时解答的关键,着重考查推理与运算能力.7.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零, 所以当232cos622b b a b t aaaπ⋅=-=-=-时,()g t 取得最小值1,所以2223332122bb bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题8.D解析:D 【分析】根据题意得出()12BD BA BC =+,13AE BC BA =-,运用数量积求解即可. 【详解】解:等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭, 2=-.故选:D . 【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.9.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯, )213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(22227342m π-⨯==,))271222l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯,所以211m l n≠+,故④不正确;所以①②正确,故选:A【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n的值.10.B解析:B【分析】A.结合奇偶性的定义判断即可B.用正弦型函数的单调性作出判断CD可取特值说明【详解】A. ()1111sin sin2sin3sin4sin100234100f x x x x x x=+++++()()()()()()() 1111sin sin2sin3sin4sin100234100f x x x x x x f x-=-+-+-+-++-=-,()f x为奇函数B. ,1616xππ⎡⎤∈-⎢⎥⎣⎦时,2,88xππ⎡⎤∈-⎢⎥⎣⎦,333,1616xππ⎡⎤∈-⎢⎥⎣⎦,4,44xππ⎡⎤∈-⎢⎥⎣⎦,故sin,sin2,sin3,sin4x x x x在,1616ππ⎡⎤-⎢⎥⎣⎦上均为增函数故111()sin sin2sin3sin4234f x x x x x=+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增.C. ()()11()sin sin3sin434g x f x h x x x x=-=++()()11()sin sin3sin434g x f x h x x x x=-=++()()11()sin sin3sin4034g f hππππππ=-=++=故声音甲的响度不一定比纯音1()sin22h x x=响度大D. ()11()()sin sin2sin323h x g x h x x x x=-=+-()11()()sin sin2sin3023h g hππππππ=-=+-=甲不一定比纯音1()sin33h x x =更低沉 故选:B 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.11.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+, 即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确;令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦,则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误;把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.12.D解析:D 【分析】先利用函数()sin y A ωx φ=+的图像变换规律求得()g x 的解析式,再利用正弦函数的图像的对称性,求得12x x +的值,可得()12g x x +的值. 【详解】将函数()sin 3f x x π⎛⎫=-⎪⎝⎭的图象横坐标缩短到原来的12(纵坐标不变),可得sin 23y x π⎛⎫=- ⎪⎝⎭的图象;再向左平移3π个单位,所得函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭,若1x ,20,2x π⎛⎫∈ ⎪⎝⎭,12x x ≠,则142,333x πππ⎛⎫+∈ ⎪⎝⎭,242,333x πππ⎛⎫+∈ ⎪⎝⎭, ()()12g x g x =,12223322x x πππ+++∴=,126x x π∴+=,则()122sin 2sin 633g x x πππ⎛⎫+=⨯+==⎪⎝⎭. 故选:D. 【点睛】本题考查函数()sin y A ωx φ=+的图像变换规律,正弦函数的对称性,属于中档题.二、填空题13.【分析】根据利用诱导公式和二倍角公式转化为求解【详解】因为所以故答案为:【点睛】本题主要考查二倍角公式及诱导公式的应用还考查了转化求解问题的能力属于中档题解析:2425【分析】根据sin 4πθ⎛⎫-= ⎪⎝⎭,利用诱导公式和二倍角公式转化为2sin 2cos 2122sin 4πθθπθ⎛⎫=-=- ⎪⎛⎫- ⎪⎝⎝⎭⎭求解.【详解】因为sin 410πθ⎛⎫-= ⎪⎝⎭, 所以224sin 4sin 2cos 2co 25s 21224πππθθθθ⎡⎤⎛⎫⎛⎫=-=-=- ⎪⎛⎫-= ⎪⎝⎭ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故答案为:2425【点睛】本题主要考查二倍角公式及诱导公式的应用,还考查了转化求解问题的能力,属于中档题.14.【分析】根据角的范围求出和的值再将变成利用两角差的余弦公式即可求得【详解】因为且所以因为所以因为所以所以故答案为:【点睛】本题考查了同角公式以及两角差的余弦公式考查了学生的计算能力属于中档题 解析:2425-【分析】根据角的范围,求出sin α和cos()αβ+的值,再将cos β变成cos()αβα+-利用两角差的余弦公式即可求得. 【详解】因为02πα<<,且3cos 5α=,所以4sin 5α, 因为π0π2αβ<<<<,所以322ππαβ<+<,因为3sin()5αβ+=-,所以4cos()5αβ+=-, 所以cos cos()βαβα=+-cos()cos sin()sin αβααβα=+++433424555525=-⨯-⨯=-.故答案为:2425-【点睛】本题考查了同角公式以及两角差的余弦公式,考查了学生的计算能力,属于中档题.15.【分析】先利用同角三角函数的商数关系可得再结合正弦定理及余弦定理化简可得然后求解即可【详解】解:因为则所以即所以则即即即故答案为:【点睛】本题考查了同角三角函数的商数关系重点考查了正弦定理及余弦定理 解析:12【分析】先利用同角三角函数的商数关系可得2cos sin sin cos c i o s n s BA C A BC +=,再结合正弦定理及余弦定理化简可得2222b a c =+,然后求解即可. 【详解】解:因为112tan tan tan A C B +=, 则2cos sin sin cos c i o s n s BA C A BC +=, 所以2cos s sin cos cos sin in sin sin BA C A C C AB =+,即2cos sin si i n s sin n BA CB B =,所以2cos b ac bB =, 则22cos b ac B =, 即2222b a c b =+-, 即2222b a c =+即22212b ac =+, 故答案为:12. 【点睛】本题考查了同角三角函数的商数关系,重点考查了正弦定理及余弦定理的应用,属中档题.16.【分析】将作为平面向量的一组基底再根据平面向量基本定理用表示出再由即可得出结论【详解】因为在中D 是的中点E 在边上且所以又所以即所以故答案为:【分析】将AB AC 、作为平面向量的一组基底,再根据平面向量基本定理用AB AC 、表示出AD EC ⋅,再由3AB AC AD EC ⋅=⋅即可得出结论.【详解】因为在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =,所以111()()()223AD EC AB AC AC AE AB AC AC AB ⎛⎫⋅=+⋅-=+⋅-= ⎪⎝⎭22111263AC AB AB AC -+⋅, 又3AB AC AD EC ⋅=⋅,所以2211026AC AB -=,即||3AB AC =,所以ABAC17.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++ ∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确. 对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 12e ,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.18.【分析】根据向量的夹角公式及数量积的运算计算即可求解【详解】因为又所以故答案为:【点睛】本题主要考查了向量数量积的定义运算法则性质向量的夹角公式属于中档题解析:6π【分析】根据向量的夹角公式及数量积的运算计算即可求解.【详解】因为22cos(cos,|||||2)2|aa c aa caba bcπ→→→→→→→→→→→→→→-⋅〈〉==--===⋅,又,0a cπ→→〈≤〉≤,所以,6a cπ→→〈〉=,故答案为:6π【点睛】本题主要考查了向量数量积的定义,运算法则,性质,向量的夹角公式,属于中档题. 19.【分析】同角三角函数关系知又由的区间单调性知根据的区间单调性知即可知的大小关系【详解】而∴故答案为:【点睛】本题考查了比较三角函数值的大小根据正弦函数正切函数的区间单调性及正弦函数的值域范围比较函数解析:c b a>>【分析】同角三角函数关系知sin80b=︒,又由siny x=的区间单调性知b a>,根据tany x=的区间单调性知1c>,即可知a,b,c的大小关系【详解】cos10cos(9080)sin80sin78b a=︒=︒-︒=︒>=︒,而tan55tan451c=︒>︒=∴c b a>>故答案为:c b a>>【点睛】本题考查了比较三角函数值的大小,根据正弦函数、正切函数的区间单调性及正弦函数的值域范围,比较函数值的大小20.【分析】由图可得的周期振幅即可得再将代入可解得进一步求得解析式及【详解】由图可得所以即又即又故所以故答案为:【点睛】本题考查由图象求解析式及函数值考查学生识图计算等能力是一道中档题解析: 【分析】由图可得()f x 的周期、振幅,即可得,A ω,再将(,0)6π代入可解得ϕ,进一步求得解析式及()0f . 【详解】由图可得2A =,1()46124T πππ=--=,所以2T ππω==,即2ω=,又()06f π=,即2sin(2)06πϕ⨯+=,,3k k Z πϕπ+=∈,又||2ϕπ<,故3πϕ=-,所以()sin()f x x π=-223,(0)2sin()3f π=-=故答案为:. 【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.三、解答题21.(1)()2cos f x x =;(2)4. 【分析】(1)先对函数化简变形可得cos 2y x =,再由三角函数图像变换规律可求出()f x 的解析式;(2)由已知条件可得cos cos 3αβ=,sin sin 6αβ=-2()2tan 3tan 1g x x x =+-,然后令tan [1,1]t x =∈-,则2()231h t t t =+-,从而可求出其最值 【详解】(1)原函数化简得到2sin 2coscos 2sin2cos 266y x x x x ππ⎡⎤=+=⎢⎥⎣⎦,将cos 2y x =图像上所有点的纵坐标伸长为原来的2倍(横坐标不变),可得2cos2y x =,再将2cos2y x =的图像横坐标伸长为原来的2倍(纵坐标不变)得到2cos y x = 所以()2cos f x x =.(2)由题意知cos cos 3αβ=, 因为4παβ+=所以cos()cos cos sin sin 2αβαβαβ+=-=,解得sin sin 6αβ=-2cos cos sin )(sin cos cos sin )()cos x x x x g x xααββ++=.222sin cos cos sin cos sin()cos sin sin cos x x x x xαβαβαβ⎤+++⎣⎦=222sin sin cos cos 326cos x x x x x⎤⎛⋅+⋅+⋅-⎥⎥⎝⎭⎣⎦=22tan 3tan 1x x =+-令tan [1,1]t x =∈-,2()231h t t t =+-,则对称轴为34t =-.所以max ()(1)4h t h ==. 【点睛】关键点点睛:此题考查三角恒等变换公式的应用,考查三角函数图像变换规律,考查数学转化思想,解题的关键是由()()3f f αβ⋅=求出cos cos 3αβ=,再对4παβ+=两边取余弦化简可求出sin sin 6αβ=-()g x 化简可得2()2tan 3tan 1g x x x =+-,再利用换元法可求得结果,属于中档题22.答案见解析 【分析】选条件①,则根据三角函数定义得cos α=,sin α=,进而根据二倍角公式得3cos25α=-,4sin 25α=,再结合余弦的和角公式求解即可;选条件②,由三角函数单位圆的定义得1cos 3α=,sin α=,进而根据二倍角公式得7cos 29α=-,sin 29α=,再结合余弦的和角公式求解即可; 选条件③,由二倍角公式得222sin 42tan 22cos 22sin 212tan 2ααααα==--,并结合题意得1tan 22α=,故cos 2α=,sin 2α=【详解】解:方案一:选条件①. 由题意可知2cos ||OM α===4sin ||OM α===. 所以23cos 22cos15αα=-=-,4sin 22sin cos 5ααα==.所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭3145252=-⨯-⨯= 方案二:选条件②.因为角α的终边与单位圆的交点在第一象限且横坐标为13,所以1cos 3α=,sin 3α==.所以27cos 22cos 19αα=-=-,sin 22sin cos ααα==所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭7192=-⨯-718+=-. 方案三:选条件③.22222sin 42sin 2cos 22tan 22cos 22sin 2cos 22sin 212tan 2ααααααααα===---, 结合2α为锐角,解得1tan 22α=, 所以cos 2α=,sin 2α=. 所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭122=10=.【点睛】本题解题的关键在于根据三角函数的定义求得cos ,sin αα,进而根据三角恒等变换求解,考查运算求解能力,是基础题.23.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】 (1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案. 【详解】(1)∵CA a =,CD b =,点D 是CB 的中点,∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系, 设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫ ⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a a AD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.24.(1)T π=;(2)5,88ππ⎡⎤⎢⎥⎣⎦;(3)()2+∞. 【分析】(1)化简函数()214f x x π⎛⎫=++ ⎪⎝⎭,结合三角函数的图象与性质,即可求解; (2)由正弦函数的单调性可得答案;(3)化简()2g x x =,根据,63x ππ⎡⎤∈-⎢⎥⎣⎦,求得()g x ,再根据题意,得到2a ->,即可求解. 【详解】(1)由题意,函数()sin 2cos21214f x x x x π⎛⎫=++=++ ⎪⎝⎭, 可得其最小正周期是22T ππ==. (2)由3222,242k x k k Z πππππ+≤+≤+∈得 5,88k x k k Z ππππ+≤≤+∈ 又∵[]0,x π∈,∴5,88x ππ⎡⎤∈⎢⎥⎣⎦ 故单减区间为5,88ππ⎡⎤⎢⎥⎣⎦.(3)由()122844g x f x x x πππ⎛⎫⎛⎫=+-=++= ⎪ ⎪⎝⎭⎝⎭ 因为,63x ππ⎡⎤∈-⎢⎥⎣⎦,得22,33x ππ⎡⎤∈-⎢⎥⎣⎦,则1cos 2,12x ⎡⎤∈-⎢⎥⎣⎦,所以()2g x x ⎡=∈⎢⎣,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则()max 2a g x ->所以2a >+,即求实数a 的取值范围()2+∞.【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质综合应用,其中解答中利用三角恒等变换的公式,求得函数的解析式,结合三角函数的图象与性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.25.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310CGCB =. 【点睛】 本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.26.(1)3tan 4α=;(2)3sin 3sin 3cos 25ααα=--. 【分析】(1)利用诱导公式可得出12cos sin 25αα=,根据题意可得出关于cos α、sin α的值,求出cos α、sin α的值,利用同角三角函数的商数关系可求得tan α的值; (2)将所求代数式变形为()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+,在分式的分子和分母中同时除以3cos α,利用弦化切可求得所求代数式的值.【详解】(1)712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭, 由诱导公式可得123sin cos cos sin 2522ππαααα⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭, 0,4πα⎛⎫∈ ⎪⎝⎭,cos sin 0αα∴>>,由已知可得2212cos sin 25cos sin 1cos sin 0αααααα⎧=⎪⎪+=⎨⎪>>⎪⎩,解得4cos 53sin 5αα⎧=⎪⎪⎨⎪=⎪⎩, 因此,sin 3tan cos 4ααα==; (2)()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+()()332223sin tan 325sin sin tan 3tan 131cos cos cos ααααααααα===-⎛⎫-+⎛⎫-+ ⎪⎪⎝⎭⎝⎭. 【点睛】方法点睛:三角函数求值问题中已知tanα,求关于sinα、cosα的代数式的值时,一般利用弦化切公式后直接代入tanα的值,在关于sinα、cosα的齐次式中,常常利用弦化切的方程转化为含tanα的代数式.。
【人教版】高中数学必修四期末试卷(含答案)(1)

一、选择题1.已知函数44()cos sin f x x x =-在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t 则函数()()()g t M t N t =-的最小值为( )A 1-B .1C .2D .12-2.已知2π()2sin ()1(0)3f x x ωω=+->,给出下列判断: ①若函数()f x 的图象的两相邻对称轴间的距离为π2,则=2ω; ②若函数()f x 的图象关于点π(,0)12对称,则ω的最小值为5; ③若函数()f x 在ππ[,]63-上单调递增,则ω的取值范围为1(0,]2; ④若函数()f x 在[0,2π]上恰有7个零点,则ω的取值范围为4147[,)2424. 其中判断正确的个数为( ) A .1B .2C .3D .43.函数2()3sin cos f x x x x =+的最大值为( )A .2B .C .D .3+4.已知cos()6πα+=sin(2)6πα-的值为( )A B .13C .13-D . 5.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A 1B .221-C .1-D 16.ABC ∆中,AB AC ⊥,M 是BC 中点,O 是线段AM 上任意一点,且2AB AC ==,则OA OB OA OC +的最小值为( )A .-2B .2C .-1D .17.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .38.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( )A .6B .83C .127D .49.如图,一个质点在半径为1的圆O 上以点P 为起始点,沿逆时针方向旋转,每2s 转一圈,由该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .2sin()3y t ππ=+ B .2sin()3y t ππ=- C .2sin()3y t ππ=-D .2sin()3y t ππ=+10.对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈ ⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1B .2C .3D .411.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.在ABC 中,三个内角A 、B 、C 满足2A+C =B ,且4cos 5A =,则cos C ________.14.已知方程23310x ax a +++=,()2a >的两根为tan α,tan β,α,,22ππβ⎛⎫∈- ⎪⎝⎭,则αβ+=________.15.已知α,()0,βπ∈,且()23tan 3αβ-=,53tan 11β=-,2αβ-的值为_______.16.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______17.如图,边长为2的菱形ABCD 的对角线相交于点O ,点P 在线段BD 上运动,若1AB AO ⋅=,则AP PD ⋅的最大值为______.18.如图,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =,则AF ·BE =_____.19.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .20.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.三、解答题21.在①2sin 3sin 2αα=,②6cos 2α=③tan 22α=个,补充在下面问题中,并解决问题. 已知10,,0,,cos()224ππαβαβ⎛⎫⎛⎫∈∈+=- ⎪ ⎪⎝⎭⎝⎭,_______,求cos β. 注:如果选择多个条件分别解答,按第一个解答计分.22.在直角坐标系xOy中,已知锐角α和β的顶点都在坐标原点,始边都与x轴非负半轴重合,且终边与单位圆分别交于点5,13P m⎛⎫⎪⎝⎭和点3,5Q n⎛⎫⎪⎝⎭,求()sinαβ-的值. 23.对于任意实数a,b,c,d,表达式ad bc-称为二阶行列式(determinant),记作a bc d,(1)求下列行列式的值:①1001;②1326;③251025--;(2)求证:向量(),p a b=与向量(),q c d=共线的充要条件是0a bc d=;(3)讨论关于x,y的二元一次方程组111222a xb y ca xb y c+=⎧⎨+=⎩(12120a ab b≠)有唯一解的条件,并求出解.(结果用二阶行列式的记号表示).24.已知向量m,n不是共线向量,32a m n=+,64b m n=-,c m xn=+(1)判断,a b是否共线;(2)若//a c,求x的值25.如图,正方形ABCD边长为5,其中AEF是一个半径为4的扇形,在弧EF上有一个动点Q,过Q作正方形边长BC,CD的垂线分别交BC,CD于G,H,设EAQθ∠=,长方形QGCH的面积为S.(1)求S关于θ的函数解析式;(2)求S的最大值.26.函数()cos()0,02f x xπωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x的方程()()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用平方差公式、同角三角函数关系以及二倍角公式将函数变形为()cos 2f x x =,然后发现区间长度刚好是四分之一个周期,从而利用余弦函数的对称性,得到当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小,求出此时的最大值和最小值,即可得到答案. 【详解】 函数44222222()cos sin (cos sin )(cos sin )cos sin cos 2f x x x x x x x x x x =-=+-=-=,所以函数()f x 的周期为22T ππ==,区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦的区间长度刚好是函数()f x 的四分之一个周期, 因为()f x 在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t ,由函数cos 2y x =的对称性可知,当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于2y cos x =的对称轴对称时,此时最大值与最小值的差值最小,即函数()()()g t M t N t =-取最小值,区间,4t t π⎡⎤-⎢⎥⎣⎦,的中点为428t tt t ππ-+==-,此时()f t 取得最值±1, 不妨()f t 取得最大值()=1M t , 则有cos 2()18t π-=,解得224t k ππ-=,所以,,8t k k Z ππ=+∈所以()cos 2cos 2cos 44N t t k πππ⎛⎫==+==⎪⎝⎭故()()()g t M t N t =-取最小值为12-. 故选:D . 【点睛】关键点睛:本题考查了三角函数的最值,涉及了二倍角公式的应用、同角三角函数关系的应用、三角函数的周期性、对称性的应用,解题的关键是分析出当区间,4t t π⎡⎤-⎢⎥⎣⎦关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小.2.C解析:C 【分析】先将()f x 化简,对于①,由条件知,周期为π,然后求出ω;对于②,由条件可得2()612k k Z ωπππ+=∈,然后求出16()k k Z ω=-+∈,即可求解;对于③,由条件,得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩,然后求出ω的范围;对于④,由条件,得74221212πππππωωωω-<-,然后求出ω的范围;,再判断命题是否成立即可. 【详解】解:2π2ππ()2sin ()1=-cos(2)=sin(2)336f x x x x ωωω=+-++, ∴周期22T ππωω==. ①.由条件知,周期为π,1w ∴=,故①错误;②.函数()f x 的图象关于点π(,0)12对称,则2()612k k Z ωπππ+=∈, 16()k k Z ω∴=-+∈,(0)>ω∴ω的最小值为5, 故②正确;③.由条件,ππ[,]63x ∈-,ππ2π236636x πωπωω-+≤+≤+ 由函数()f x 在ππ[,]63-上单调递增得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩, 12ω∴≤, 又0>ω,102ω∴<, 故③正确.④.由()sin(2)06f x x πω=+=得2()6x k k Z πωπ+=∈,解得()212k x k Z ππωω=-∈ ()sin(2)6f x x πω=+且()f x 在[0,2]π上恰有7个零点,可得74221212πππππωωωω-<-, ∴41472424ω<, 故④正确; 故选:C 【点睛】本题考查了三角函数的图象与性质,考查了转化思想和推理能力,属中档题.关键点点睛:利用整体思想,结合正弦函数的图像和性质是根据周期,对称,单调性,零点个数求求解参数的关键.3.A解析:A 【分析】利用降次公式、二倍角公式和辅助角公式化简()f x ,由此求得()f x 的最大值. 【详解】 依题意()1cos 233sin 2sin 22222xf x x x x -=+=+12cos 2222262x x x π⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎭,所以()f x 22=. 故选:A 【点睛】本小题主要考查降次公式、二倍角公式和辅助角公式,考查三角函数的最值的求法,属于中档题.4.B解析:B 【解析】∵cos 6πα⎛⎫+= ⎪⎝⎭5sin 2sin 2sin 26662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦][221cos 2[2cos 11]6633ππαα⎛⎫⎛⎫=-+=-+-=--= ⎪ ⎪⎝⎭⎝⎭,故选B.5.C解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立.因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+.6.C解析:C 【分析】根据向量求和的平行四边形法则可以得出2OA OB OA OC OA OM ⋅+⋅=⋅,再利用向量的数量积的运算可以得到22OA OM OA OM ⋅=-⋅,因为2OA OM +=,代入计算可求出最小值. 【详解】解:在直角三角形ABC 中,2AB AC ==,则BC =M 为BC 的中点,所以AM =设OA x =,(0x ≤≤()2OA OB OA OC OA OB OC OA OM ⋅+⋅=⋅+=⋅ )()2222OA OM x x x =-⋅=-=2212x ⎛=-- ⎝⎭所以当2x =,即22OA =时,原式取得最小值为1-.故选:C. 【点睛】方法点睛:(1)向量求和经常利用平行四边形法则转化为中线的2倍; (2)利用向量三点共线,可以将向量的数量积转化为长度的乘积; (3)根据向量之间模的关系,二元换一元,转化为二次函数求最值即可.7.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,BD CD ==所以AD CD ==AC ==所以32cos63()342AC CD AC CDπ⋅=⋅=⨯⨯-=-.故选:C.【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.8.A解析:A【分析】作2OA OA'=,7OB OB'=,3OC OC'=,由已知可得O是'''A B C的重心,由重心性质可得所求面积比.【详解】作2OA OA'=,7OB OB'=,3OC OC'=,如图,∵2730OA OB OC++=,∴O是'''A B C的重心,则''''''OA B OB C OC AS S S==△△△,设''''''OA B OB C OC AS S S t===△△△,设,,OAB OAC y OBCS x S S z===△△△,∵2OA OA'=,7OB OB'=,3OC OC'=,∴''1''sin''2141sin2OA BOABOA OB A OBSS OA OB AOB⋅∠==⋅∠△△,即114x t=,同理16y t=,121z t=,11161462121ABCS x y z t t t t=++=++=△,∴6216121ABCOBCtSS t==△△.故选:A.【点睛】本题考查三角形面积的计算,考查向量的加法与数乘法则,体现了向量在解决平面图形问题中的优越性.9.A解析:A 【分析】首先根据图象理解t 秒后23POx t ππ∠=+,再根据三角函数的定义求点P 的纵坐标和该质点到x 轴的距离y 关于时间t 的函数解析式. 【详解】由题意可知点P 运动的角速度是22ππ=(弧度/秒) 那么点P 运动t 秒后23POx t ππ∠=+, 又三角函数的定义可知,点P 的纵坐标是2sin 3t ππ⎛⎫+⎪⎝⎭, 因此该质点到x 轴的距离y 关于时间t 的函数解析式是2sin 3y t ππ⎛⎫=+ ⎪⎝⎭. 故选:A 【点睛】关键点点睛:本题的关键是理解三角函数的定义,并正确表示点23POx t ππ∠=+,即可表示函数的解析式.10.B解析:B 【分析】求出函数的最值,对称中心坐标,对称轴方程,以及函数的单调区间,即可判断正误. 【详解】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确; 当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即252,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④正确. 故选:B 【点睛】关键点点睛:函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭的递增区间转化为sin 34y x π⎛⎫=+ ⎪⎝⎭的递减区间.11.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯=⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t 的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.【分析】利用及易得由同角三角函数的关系易得的值然后由代值计算即可得解【详解】因为又所以因为所以故答案为:【点睛】关键点睛:本题的解题关键是利用公式并结合两角和的余弦公式展开进行计算解析:410【分析】利用2A+C =B 及A B C π++=易得3B π=,由同角三角函数的关系易得sinA 的值,然后由()cos cos cos cos sin sin C A B A B A B =-+=-+代值计算即可得解. 【详解】因为2A+C =B ,又A B C π++=, 所以3B π=,因为4cos 5A =,所以3sin 5A ===,()413cos cos cos cos sin sin 525C A B A B A B =-+=-+=-⨯+=.. 【点睛】关键点睛:本题的解题关键是利用公式()cos cos C A B =-+并结合两角和的余弦公式展开进行计算.14.【分析】根据方程的两根为得到由两角和的正切公式得到再确定的范围求解【详解】因为方程的两根为所以则因为所以所以所以故答案为:【点睛】本题主要考查两角和与差的正切公式的应用还考查了运算求解的能力属于中档题 解析:34π-【分析】根据方程23310x ax a +++=,()2a >的两根为tan α,tan β,得到tan tan 3,tan tan 31a a αβαβ+=-⋅=+,由两角和的正切公式得到()tan αβ+,再确定αβ+的范围求解. 【详解】因为方程23310x ax a +++=,()2a >的两根为tan α,tan β, 所以tan tan 3,tan tan 31a a αβαβ+=-⋅=+, 则()tan tan tan 11tan tan αβαβαβ++==-⋅,因为2a >,所以tan tan 30,tan tan 310a a αβαβ+=-<⋅=+>, 所以tan 0,tan 0αβ<<,α,,02πβ⎛⎫∈-⎪⎝⎭, (),0αβπ+∈-,所以34παβ+=-. 故答案为:34π- 【点睛】本题主要考查两角和与差的正切公式的应用,还考查了运算求解的能力,属于中档题.15.【分析】根据正切差角公式代入可求得将角配凑后可求得根据及可得的范围即可求得的范围进而求得的值【详解】因为由正切差角公式展开可得代入化简可求得则因为所以即所以则所以故答案为:【点睛】本题考查了正切差角 解析:23π-【分析】根据正切差角公式,代入tan 11β=-可求得tan 9α=.将角配凑后可求得()tan 2αβ-=根据tan 19α=<及tan 011β=-<可得,αβ的范围,即可求得2αβ-的范围,进而求得2αβ-的值.【详解】因为()tan 3αβ-=,tan 11β=-由正切差角公式展开可得()tan tan tan 1tan tan αβαβαβ--==+⋅代入tan 11β=-tan α=⎝⎭化简可求得tan 9α=则()()tan 2tan αβααβ-=+-⎡⎤⎣⎦()()tan tan 1tan tan ααβααβ+-=-⋅-+==因为tan 19α=< 所以04πα<<,即022πα<<tan 0β=< 所以2πβπ<<则20παβ-<-<所以223παβ-=- 故答案为: 23π- 【点睛】本题考查了正切差角与和角公式的应用,配凑角的形式求正切值,根据三角函数值判断角的取值范围,属于中档题.16.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.17.【分析】以为原点和分别为和轴建立的平面直角坐标系求得设得到即可求解【详解】以为原点和分别为和轴建立如图所示的平面直角坐标系设则因为可得联立方程组解答所以设则当时取得最大值最大值为故答案为:【点睛】本解析:34【分析】以O 为原点,OC 和OD 分别为x 和y 轴建立的平面直角坐标系,求得(1,0),A D -,设(0,),[P t t ∈,得到23(4AP PD t ⋅=--+,即可求解. 【详解】以O 为原点,OC 和OD 分别为x 和y 轴建立如图所示的平面直角坐标系, 设(,0),(0,),0,0A a B b a b -->>,则224a b +=, 因为1AB AO ⋅=,可得2(,)(,0)1a b a a -⋅==,联立方程组,解答1,3a b ==,所以(1,0),(0,3)A D -,设(0,),[3,3]P t t ∈-,则22333(1,)(0,3)3()244AP PD t t t t t ⋅=⋅-=-+=--+≤, 当3t =时,AP PD ⋅取得最大值,最大值为34.故答案为:34.【点睛】本题主要考查了平面向量的数量积的运算及应用,此类问题通常采取建立直角坐标系,利用平面向量的坐标运算求解,着重考查转化思想,以及运算与求解能力,属于基础题.18.【分析】通过建立直角坐标系利用向量的坐标运算转化求解即可【详解】以为坐标原点建立直角坐标系如图:因为直角梯形ABCD 中AB ∥CDAB ⊥ADAB=AD=4CD=8若所以所以则故答案为:【点睛】本题考查 解析:11-【分析】通过建立直角坐标系,利用向量的坐标运算转化求解即可. 【详解】以A 为坐标原点,建立直角坐标系如图:因为直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =所以(0,0)A ,(4,0)B ,(1,4)E ,(5,1)F , 所以(5,1)AF =,(3,4)BE =-, 则15411AF BE ⋅=-+=-. 故答案为:11-【点睛】本题考查向量的坐标运算,向量的数量积的应用,是基本知识的考查.19.【分析】取中点连结交于点交于点连结设推导出和从而得出文化景观区域面积利用三角函数的性质解出面积最大值【详解】取中点连结交于点交于点连结设则文化景观区域面积:当即时文化景观区域面积取得最大值为故答案为 解析:()40023-【分析】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,推导出DC 和CF ,从而得出文化景观区域面积,利用三角函数的性质,解出面积最大值. 【详解】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,则20sin DN CN ϕ==,40sin DC ϕ∴=,20cos 20cos 203tan 30PFCF DE PN ON OP ϕϕϕ===-=-=-︒,∴文化景观区域面积:()4020203EFCD S sin cos sin ϕϕϕ=-矩形 400sin 24003(1cos 2)ϕϕ=--800sin(2)40033πϕ=+-∴当232ππϕ+=,即12πϕ=时,文化景观区域面积取得最大值为2400(23)()m -.故答案为:400(23)-.【点睛】本题考查文化景观区域面积的最大值的求法,考查扇形、三角函数恒等变换等基础知识,考查运算求解能力,是中档题.20.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应 解析:21 【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q 作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ == 6xRQ RQD π∠=∠=3tan3363DR DQ π∴=⋅=⨯= 223,23,12921PR DP PQ PD PQ ∴===+=+=由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则33sin 212sin 1421PR PRQPQR PQ⋅⋅∠∠===故答案为:14【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.三、解答题21.112【分析】①②③任选一个条件,均可求出sin ,cos αα,求出sin()αβ+,利用()βαβα=+-,结合两角差的余弦公式,即可求解.【详解】 若选条件①因为2sin 3sin 2αα=,所以2sin 32sin cos ααα=⨯,即1cos 3α=. 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 3α== 因为1cos()4αβ+=-,由平方关系22sin ()cos ()1αβαβ+++=, 解得215sin ()16αβ+=. 因为0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以0αβ<+<π,所以sin()4αβ+=, 所以cos cos[()]βαβα=+-cos()cos sin()sin αβααβα=+++114343=-⨯+=若选条件②因为cos2α=21cos 2cos 123αα=-=.由平方关系22sin cos 1αα+=,得28sin 9α=. 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 3α=以下同①的解法. 若选条件③因为tan α=sin cos αα= 由平方关系22sin cos 1αα+=,解得sin 1cos 3αα⎧=⎪⎪⎨⎪=⎪⎩ 或sin 1cos 3αα⎧=⎪⎪⎨⎪=-⎪⎩ 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 31cos 3αα⎧=⎪⎪⎨⎪=⎪⎩. 以下同①的解法. 【点睛】关键点点睛:本题根据不同的条件,利用三角恒等变换、同角三角函数的基本关系求出sin α,cos α,再利用1cos()4αβ+=-求出sin()αβ+,根据角的变换()βαβα=+-求解是关键,属于中档题.22.3365-【分析】 利用已知求出1213m =和45n =,再利用差角的正弦公式求解.【详解】锐角α和β的顶点都在坐标原点始边都与x 轴非负半轴重合, 且终边与单位圆交于点5,13P m ⎛⎫ ⎪⎝⎭和点3,5Q n ⎛⎫ ⎪⎝⎭, cos 0m α∴=>,5sin 13α=,2251169m +=,3cos 5β=,sin 0n β=>,29125n +=, 求得1213m =,45n =,5312433sin()sin cos cos sin 13513565αβαβαβ∴-=-=⨯-⨯=-. 【点睛】结论点睛:三角函数的坐标定义:点(,)P x y 是角α终边上的任意的一点(原点除外),r代表点到原点的距离,r =sin α=y r , cos α=x r ,tan α=y x. 23.(1)1,0,0;(2)证明见解析;(3)当11220a b a b ≠时,有唯一解,11221122c b c b x a b a b =,11221122a c a c y ab a b =. 【分析】(1)利用行列式的定义可以直接求出行列式的值.(2)若向量(),p a b =与向量(),q c d =共线,由0q ≠和0q =时,分别推导出0a b c d=;反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,不妨设0c ≠,则ad b c =,,ab p a c ⎛⎫= ⎪⎝⎭,推导出a p q c =⋅,//p q ,当0c 且0d =时,0q =,(),p a b =与0q =共线,由此能证明向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)求出()12211221a b a b x c b c b -=-,()12211221a b a b x a c a c -=-,由此能求出当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解,并能求出解. 【详解】 解:(1)解:①10101=②131623026=⨯-⨯=; ③()()2522551001025-=-⨯--⨯=-.(2)证明:若向量(),p a b =与向量(),q c d =共线,则: 当0q ≠时,有0ad bc -=,即0a b c d=,当0q =时,有0c d ==,即0a b ad bc c d=-=,∴必要性得证. 反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,即0q ≠时, 不妨设0c ≠,则ad b c =,∴,ab p a c ⎛⎫= ⎪⎝⎭,∵(),q c d =,∴ap q c=⋅,∴//p q ,∴(),p a b =与(),q c d =共线, 当0c且0d =时,0q =,∴(),p a b =与0q =共线,充分性得证.综上,向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)用2b 和1b 分别乘上面两个方程的两端,然后两个方程相减,消去y 得:()12211221a b a b x c b c b -=-,①同理,消去x ,得:()12211221a b a b x a c a c -=-,②∴当12210a b a b -≠时,即11220a b a b ≠时,由①②得: 1122121*********c b c b x a b a b a b c b c b a b -==-,1122122111122122a c a c a c a cy a b a b a b a b -==-, ∴当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解,且11221122c b c b x a b a b =,11221122a c a c y ab a b =. 【点睛】此题考查行列式求值,考查向量共线的充要条件的证明,考查二元一次方程有解的条件及解的求法,考查运算求解能力,属于中档题24.(1),a b 不共线;(2)23x = 【分析】(1)根据平面向量共线定理判断. (2)由平面向量共线定理计算. 【详解】解:(1)若a 与b 共线,由题知a 为非零向量, 则有b a λ=,即64(32)m n m n λ-=+,6342λλ=⎧∴⎨-=⎩得到2λ=且2λ=-, λ∴不存在,即a 与b 不平行.(2) ∵//a c ,∴存在实数r ,使得c ra =, 即32m xn rm rn +=+,即132r x r=⎧⎨=⎩,解得23x =.【点睛】本题考查平面向量共线定理,掌握平面向量共线定理是解题基础. 25.(1)2520(cos sin )16sin cos S θθθθ=-++,0,2π⎡⎤θ∈⎢⎥⎣⎦;(2)5.【分析】(1)先根据题意计算AQ 在竖直方向上和水平方向上的投影的长度,即可计算,HQ QG 的长度,计算长方形QGCH 的面积再化简即得结果;(2)先换元sin cos t θθ+=,确定新元的范围和函数,再根据二次函数求最值即得结果. 【详解】解:⑴EAQ θ∠=,则AQ 在竖直方向上的投影的长度为4cos θ,在水平方向上的投影长度为4sin θ,故54cos ,54sin HQ QG θθ=-=-,θ0,2π⎡⎤∈⎢⎥⎣⎦,(54cos )(54sin )S θθ=--,θ0,2π⎡⎤∈⎢⎥⎣⎦,整理得:2520(cos sin )16sin cos S θθθθ=-++,θ0,2π⎡⎤∈⎢⎥⎣⎦;(2)2520(cos sin )16sin cos S θθθθ=-++,θ0,2π⎡⎤∈⎢⎥⎣⎦,令sin cos t θθ+=)4t πθ+=,平方可得22sin cos 1t θθ=-,当θ0,2π⎡⎤∈⎢⎥⎣⎦时,可求得t ⎡∈⎣. 222525208(1)820178492S t t t t t ⎛⎫∴=-+-=-+=-⎪⎭+ ⎝,t ⎡∈⎣, 根据二次函数对称性可知,当1t =时,max 820175S =-+=. 【点睛】 方法点睛:求含有正余弦函数的和(或差)及乘积的函数求最值(范围)时,常进行三角换元,令和(或差)为新变量,形成二次函数,求二次函数最值(范围)即可. 26.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,又26312f ππ⎛⎫+ ⎪=- ⎪ ⎪⎝⎭,故5cos 2+112πϕ⎛⎫⨯=- ⎪⎝⎭,所以526k πϕππ+=+即2,6k k Z πϕπ=+∈, 因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x x π=+. (2)()cos(2)cos 266g x x x ππ=-+=,故()()cos(2)26f xg x m x x m π-=+-cos 2cossin 2sin3cos 2cos 2666x x x m m x πππ⎛⎫=---=--- ⎪⎝⎭ 故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭图象交点的个数,cos 26y x π⎛⎫=- ⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得: 当1m -=-31m <-<即1m =或31m -<<时,方程有2个不同的解; 当31m -<-≤31m ≤<时,方程有4个不同的解; 当3322m -<-≤即3322m -≤<时,方程有3个不同的解; 【点睛】 方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x 做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.。
2020新人教版高二数学必修4期末测试题【附答案】

高中数学必修4期末测试题【附答案】一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ).A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2范围内,与角-34π终边相同的角是( ).A .6πB .3πC .32πD .34π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ).A .41 B .23 C .21D .436.如图,在平行四边形ABCD 中,下列结论中正确的是( ).A .=B .-=C .+=D .+=7.下列函数中,最小正周期为 的是( ).A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos 4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).A .10B .5C .-25D .-109.若tan =3,tan =34,则tan(-)等于( ).A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥BC ,那么c 的值是( ).A .-1B .1C .-3D .312.下列函数中,在区间[0,2π]上为减函数的是( ).A .y =cos xB .y =sin xC .y =tan xD .y =sin(x -3π)13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ).C (第6题)A .254 B .257 C .2512 D .2524 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 的终边经过点P (3,4),则cos 的值为 . 16.已知tan =-1,且 ∈[0,),那么 的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 . 18.某地一天中6时至14时的温度变化曲线近似满足函数T =A sin(t +)+b (其中2π<<时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.(第18题)三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)已知0<<2π,sin =54.(1)求tan 的值; (2)求cos 2+sin ⎪⎭⎫ ⎝⎛2π + α的值.20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |; (2)当a ·b =21时,求向量a 与b 的夹角 的值.21.(本小题满分10分)已知函数f (x )=sin x (>0).(1)当 =时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式;(2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos >0知,为第一、四象限或 x 轴正方向上的角;由sin <0知,为第三、四象限或y 轴负方向上的角,所以 的终边在第四象限.5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知AD +AB =. 7.B 解析:由T =ωπ2=,得 =2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(-)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D 解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).二、填空题:15.53.解析:因为r =5,所以cos =53. 16.43π. 解析:在[0,)上,满足tan =-1的角只有43π,故 =43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5).18.20;y =10sin(8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(x +)+b 的半个周期的图象,所以A =21(-)=10,b =21(30+10)=20.因为21·ωπ2=14-6,所以 =8π,y =10sin ⎪⎭⎫ ⎝⎛ϕ + 8πx +20. 将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<<,可得 =43π. 综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<<2π,sin =54, 故cos =53,所以tan =34.(2)cos 2+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin2+=-2532+53=258. 20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos =ba ba ·=22,故=°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫ ⎝⎛0 , 32π点,得sin32π=0,所以32π=k ,k ∈.即 =23k ,k ∈.又>0,所以k ∈N*. 当k =1时,=23,f (x )=sin 23x ,其周期为34π,此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数;当k ≥2时,3,f (x )=sin x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,=23.。
【人教版】高中数学必修四期末试题(附答案)

一、选择题1.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么sin 2θ的值为( )A .12B 3C .1225D .24252.化简22221sin sin cos cos cos 2cos 22αβαβαβ+-=( ) A .12B 21C .14D .221 3.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,BC 边上的高为h ,且33ah =,则2c a b c c b b ++的最大值是( ) A .2B .3C .4D .64.已知3sin 85πα⎛⎫+= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos2α=( )A .31250B .17250C .225D .2255.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( ) A .312B .312C 3D .16.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-17.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .68.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .39.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 10.设函数()cos 23f x x π⎛⎫=+⎪⎝⎭,则下列结论错误的是( ) A .()f x 的一个对称中心为5,012π⎛⎫-⎪⎝⎭B .()f x 的图象关于直线116x π=对称 C .()f x π+的一个零点为12x π=D .()f x 在5,36ππ⎛⎫⎪⎝⎭单调递减 11.对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1B .2C .3D .412.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.已知tan 2α=,则2sin 2cos αα+=________. 14.在ABC 中,已知tansin 2A BC +=,给出以下四个论断: ①tan tan A B =,②1sin sin 2A B <+≤,③22sin cos 1A B +=,④222cos cos sin A B C +=,其中正确的是__________.15.化简4cos803tan10︒︒+=________.16.如图所示,已知AOB ,点C 是点B 关于点A 的对称点,2OD DB =,DC 和OA 交于点E ,若OE OA λ=,则实数λ的值为_______.17.已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t的值为_____________.18.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.19.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .20.实数x ,y 满足121log sin 303yx ⎛⎫+-= ⎪⎝⎭,则cos 24x y +的值为________.三、解答题21.已知函数2()23cos 2sin cos 3f x x x x =--. (1)求函数()f x 的最小正周期; (2)当,04x π⎡⎤∈-⎢⎥⎣⎦时,不等式()3f x m <+恒成立,求实数m 的取值范围. 22.如图,设A 是一块麦田,射线,AB AC 夹角为60°,若将水管P 设在BAC ∠围成的区域内(不含边界)(1)若P 到,AB AC 的距离之和为定值20,设PAB θ∠=,试将PA 的长用含θ的式子表示,并求出水管想要浇灌到麦田的最小射程;(2)若P 在以A 为圆心,10为半径的圆弧上运动,过P 作AP 的垂线分别交,AB AC 于,Q R 两点,求AQ AR +的最小值.23.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,左顶点为A ,若122F F =,椭圆的离心率为12e =. (1)求椭圆的标准方程.(2)若P 是椭圆上的任意一点,求1PF PA⋅的取值范围. 24.如图,在正ABC ∆中,2AB =,P ,E 分别是BC 、CA 边上一点,并且3CA EA =,设BP tBC =,AP 与BE 相交于F .(1)试用AB ,AC 表示AP ; (2)求·AP BE 的取值范围. 25.已知函数()2cos ,(0)6f x x πωω⎛⎫=-> ⎪⎝⎭,若()4f x f π⎛≤⎫⎪⎝⎭对任意的实数x 都成立.(1)求ω的最小值;(2)在(1)中ω值的条件下,若函数()()1(0)g x f kx k =+>的最小正周期为π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,方程()g x m =恰有两个不同的解,求实数m 的取值范围. 26.已知sin(2)cos 2()cos tan()2f ππαααπαπα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)化简()f α,并求3f π⎛⎫⎪⎝⎭; (2)若tan 2α=,求224sin 3sin cos 5cos αααα--的值;(3)求函数2()2()12g x f x f x π⎛⎫=-++⎪⎝⎭的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由图形可知三角形的直角边长度差为1,设直角边分别为a ,根据大正方形的边长是直角三角形的斜边长列方程组求出直角边,然后得出sin θ,代入二倍角公式即可得出答案. 【详解】由题意可知小正方形的边长为1,直角边长度差为1,大正方形的面积为25, 边长为5,大正方形的边长是直角三角形的斜边长,设直角三角形的直角边分别为a ,b 且a b <,则1b a =+,所以()2222125a b a a +=++=,得2120a a +-=,所以3a =或4a =-舍去, 所以4b =,∴3sin 5θ=,4cos 5θ=,24sin 22sin cos 25θθθ==. 故选:D . 【点睛】关键点点睛:本题考查了三角函数值、二倍角公式的计算,解答本题的关键是根据直角三角形的斜边长等于大正方形的边长求出直角三角形的一个直角边,考查了学生的运算求解能力.2.A解析:A 【分析】由原式利用二倍角公式,和同角三角函数基本关系进行化简,即可得到结果. 【详解】()()2222cos 2cos 2cos sin cos sin αβααββ=--22222222cos cos cos sin sin cos sin sin αβαβαβαβ=--+,所以22221sin sin cos cos cos 2cos 22αβαβαβ+-()2222222222221sin sin cos cos cos cos cos sin sin cos sin sin 2αβαβαβαβαβαβ=+---+()222222221sin sin cos cos +cos sin +sin cos 2αβαβαβαβ=+ ()()()2222221sin sin +cos cos cos +sin 2αββαββ=+()2211sin cos 22αα=+=. 故选:A 【点睛】本题主要考查三角函数的化简求值,涉及到同角三角函数基本关系和三角恒等变换,属于中档题.3.C解析:C 【分析】由余弦定理化简可得2222cos c b a a A b c bc bc ++=+,利用三角形面积公式可得2sin a A =,解得22cos 4sin(6c b a A A A b c bc π++=+=+),利用正弦函数的图象和性质即可得解其最大值. 【详解】由余弦定理可得:2222cos b c a bc A +=+,故:22222222cos 22cos c b a a b c a bc A a A b c bc bc bc bc +++++===+, 而2111sin 222ABC S bc A ah a ∆===,故2sin a A =,所以:2222cos 2cos 4sin()46c b a a A A A A b c bc bc π++=+=+=+. 故选C . 【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.4.A解析:A 【分析】由平方关系得cos 8πα⎛⎫+ ⎪⎝⎭,然后由二倍角得出sin 24απ⎛⎫+ ⎪⎝⎭,cos 24πα⎛⎫+ ⎪⎝⎭,再由两角差的余弦公式求得cos2α. 【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴5,888πππα⎛⎫+∈ ⎪⎝⎭,若,828πππα5⎛⎫+∈ ⎪⎝⎭,则23sin sin 8325ππα⎛⎫+>=> ⎪⎝⎭,∴,882πππα⎛⎫+∈ ⎪⎝⎭,∴4cos 85πα⎛⎫+= ⎪⎝⎭,24sin 22sin cos 48825πππααα⎛⎫⎛⎫⎛⎫+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,237cos 2124525πα⎛⎫⎛⎫+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴cos 2cos 2cos 2cos sin 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦7242525==. 故选:A . 【点睛】本题考查两角差的余弦公式,考查平方关系同、二倍角公式,解题时需要确定角的范围,才能在由平方关系求函数值时确定是否是唯一解.5.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为31,22⎛⎫ ⎪ ⎪⎝⎭,3,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y ,由已知可得22314x y ⎛⎫-+= ⎪ ⎪⎝⎭,表示以3,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为31,2⎛⎫ ⎪ ⎪⎝⎭,3,21⎛⎫-⎪ ⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以3131,,022x y x y ⎛⎫⎛⎫--⋅---= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得223124x y ⎛⎫-+= ⎪ ⎪⎝⎭, 表示以3,02⎛⎫ ⎪⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值, 因为圆到原点的距离为3,所以圆上的点到原点的距离的最小值为3122-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题6.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
【人教版】高中数学必修四期末试题(含答案)(1)

一、选择题1.已知函数44()cos sin f x x x =-在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t 则函数()()()g t M t N t =-的最小值为( )A 1-B .1C .2D .12-2.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( )A .6B C .16 D .16- 3.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,BC 边上的高为h ,且3h =,则2c a b c c b b ++的最大值是( )A .B .C .4D .64.若sin 2α=()sin βα-=,且,4απ⎡⎤∈π⎢⎥⎣⎦,3,2βπ⎡⎤∈π⎢⎥⎣⎦,则αβ+的值是( ) A .74π B .94πC .54π或74πD .54π或94π 5.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒6.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .37.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .CD 8.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( ) A .8B .4C .6D .39.已知函数()sin()(f x A x A ωϕ=+,ω,ϕ是常数,0A >,0>ω,0)2πϕ<<的部分图象如图所示.为了得到函数()f x 的图象,可以将函数2sin y x =的图象( )A .先向右平移6π个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变 B .先向左平移6π个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变 C .先向左平移3π个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变 D .先向左平移3π个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变10.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+ ⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 11.675︒用弧度制表示为( )A .114π B .134π C .154π D .174π 12.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数; (3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+. 同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭二、填空题13.化简tan 20tan 25tan 20?tan 25︒+︒+︒︒=_____. 14.下列判断正确的有___________. ①如果θ是第一象限角,那么恒有sin02θ>;②sin 200a ︒=,则tan 200︒=③若()f x 的定义域为R ,周期为4,且满足()()f x f x -=-,则()f x 在[4,8]x ∈-至少有7个零点; ④若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且cos tan x y x ⋅=,则x y <. 15.已知3tan 4α=-,()1tan 4αβ+=,则tan β=______. 16.已知平面向量a ,b 的夹角为120︒,且1a b ⋅=-,则a b -的最小值为________. 17.O 为坐标原点,已知向量()1,5OA =,()4,2OB =,()6,8OC =,,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+,则OD 的最小值为_______________ 18.设1e ,2e 是单位向量,且1e ,2e 的夹角为23π,若12a e e =+,122b e e =-,则a 在b 方向上的投影为___________.19.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<)的部分图象如图所示.则函数()y f x =的解析式为________.20.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__.三、解答题21.已知函数()32cos 2f x x x =-,[,]34x ππ∈-. (1)求函数()f x 的周期和值域; (2)设()3a g x x x =+,若对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,求实数a 的取值范围.22.已知函数()cos23f x x =-,()2cos 4g x a x a =-. (1)求函数()()3sin 2h x x f x =+的最大值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,求a 的取值范围. 23.已知在等边三角形ABC 中,点P 为线段AB 上一点,且()01AP AB λλ=≤≤. (1)若等边三角形ABC 的边长为6,且13λ=,求CP ; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围.24.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由. 25.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围. 26.已知函数21()3cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用平方差公式、同角三角函数关系以及二倍角公式将函数变形为()cos 2f x x =,然后发现区间长度刚好是四分之一个周期,从而利用余弦函数的对称性,得到当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小,求出此时的最大值和最小值,即可得到答案. 【详解】 函数44222222()cos sin (cos sin )(cos sin )cos sin cos 2f x x x x x x x x x x =-=+-=-=,所以函数()f x 的周期为22T ππ==,区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦的区间长度刚好是函数()f x 的四分之一个周期,因为()f x 在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t ,由函数cos 2y x =的对称性可知,当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于2y cos x =的对称轴对称时,此时最大值与最小值的差值最小,即函数()()()g t M t N t =-取最小值,区间,4t t π⎡⎤-⎢⎥⎣⎦,的中点为428t tt t ππ-+==-,此时()f t 取得最值±1, 不妨()f t 取得最大值()=1M t , 则有cos 2()18t π-=,解得224t k ππ-=,所以,,8t k k Z ππ=+∈所以()cos 2cos 2cos 442N t t k πππ⎛⎫==+==⎪⎝⎭, 故()()()g t M t N t =-取最小值为1. 故选:D . 【点睛】关键点睛:本题考查了三角函数的最值,涉及了二倍角公式的应用、同角三角函数关系的应用、三角函数的周期性、对称性的应用,解题的关键是分析出当区间,4t t π⎡⎤-⎢⎥⎣⎦关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小.2.C解析:C 【分析】 求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+==⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11132326-=⨯-⨯=. 故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.3.C解析:C 【分析】由余弦定理化简可得2222cos c b a a A b c bc bc++=+,利用三角形面积公式可得2sin a A =,解得22cos 4sin(6c b a A A A b c bc π++=+=+),利用正弦函数的图象和性质即可得解其最大值. 【详解】由余弦定理可得:2222cos b c a bc A +=+,故:22222222cos 22cos c b a a b c a bc A a A b c bc bc bc bc +++++===+, 而2111sin 222ABC S bc A ah a ∆===,故2sin a A =,所以:2222cos 2cos 4sin()46c b a a A A A A b c bc bc π++=+=+=+. 故选C . 【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.4.A解析:A 【分析】先计算2α和βα-的取值范围,根据取值范围解出cos2α和()cos βα-的值,再利用()()()()cos cos 2cos 2cos sin 2sin αβαβααβααβα+=+-=---⎡⎤⎣⎦求解()cos αβ+的值.【详解】∵,4απ⎡⎤∈π⎢⎥⎣⎦,∴2,22απ⎡⎤∈π⎢⎥⎣⎦.∵sin 25α=,∴2,2απ⎡⎤∈π⎢⎥⎣⎦,∴,42ππα⎡⎤∈⎢⎥⎣⎦,cos 25α=-. ∵3,2βπ⎡⎤∈π⎢⎥⎣⎦,∴5,24βαππ⎡⎤-∈⎢⎥⎣⎦,∴()cos βα-=, ∴()()()()cos cos 2cos 2cos sin 2sin αβαβααβααβα+=+-=---⎡⎤⎣⎦2⎛⎛=⨯= ⎝⎭⎝⎭. 又∵5,24αβπ⎡⎤+∈π⎢⎥⎣⎦, ∴74αβπ+=. 故选:A. 【点睛】本题考查三角恒等变换中和差角公式的运用,难度一般.解答时,要注意三角函数值的正负问题,注意目标式与条件式角度之间的关系,然后通过和差角公式求解.5.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +,|122e e -+, 设向量1212,2a e e b e e =+=-+的夹角为α,则31cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则2221cos x y x θ=+⋅.6.B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.7.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263ab a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.8.D解析:D 【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF . 【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D. 【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.9.D解析:D 【分析】先根据函数图象求出函数()f x 的解析式,由三角函数图象的变换即可求解. 【详解】 由图可知,1741234A T πππ==-=,, 所以T π=,即2ππω=,解得2ω=.当712x π=时,73π22π,122k k Z πϕ⨯+=+∈, 所以 2,3k k Z πϕπ=+∈又2πϕ<,所以3πϕ=.所以()23f x x π⎛⎫=+ ⎪⎝⎭.将y x =的图象先向左平移3π个单位长度,得到)3y x π=+,.再将所得图象的横坐标缩短为原来的12,纵坐标不变,得到())3f x x π=+. 故选:D 【点睛】易错点点睛:图象变换的两种方法的区别,由sin y x =的图象,利用图象变换作函数()()()sin 0,0y A x A x R ωϕω=+>>∈的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x 轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是|φ|个单位,而先周期变换(伸缩变换)再平移变换,平移的量是ϕω个单位. 10.B解析:B 【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B 的纵坐标满足的关系式,则吊舱到底面的距离为点B 的纵坐标减2. 【详解】如图所示,以点M 为坐标原点,以水平方向为x 轴,以OM 所在直线为y 轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.11.C解析:C 【分析】根据弧度制与角度制的关系求解即可. 【详解】因为180π︒=弧度, 所以156********4ππ︒=⨯=, 故选:C12.B解析:B 【分析】根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭, 故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D . 因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦,故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数,当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合;当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数, 故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.二、填空题13.1【详解】分析:首先从式子中分析得出角的大小借助于两角和的正切公式得到与之间的关系借助于角的正切值求得结果详解:因为所以所以有故答案为:1点睛:该题考查的是有关三角函数化简求值问题在解题的过程中涉及解析:1 【详解】分析:首先从式子中分析得出2025︒︒+角的大小,借助于两角和的正切公式,得到tan 20tan 25︒︒+与tan 20tan 25︒︒⋅之间的关系,借助于45︒角的正切值,求得结果. 详解:因为tan 20tan 25tan(2025)1tan 20tan 25︒︒︒︒︒︒++=-, 所以1tan 20tan 25tan 20tan 25︒︒︒︒-=+, 所以有tan 20tan 25tan 20tan 251︒︒︒︒++=, 故答案为:1.点睛:该题考查的是有关三角函数化简求值问题,在解题的过程中,涉及到的知识点有两角和的正切公式的逆用,注意45︒角的正切值的大小.14.③【分析】①利用来判断;②利用来判断;③通过来判断;④通过当时有恒成立来判断【详解】解:①由已知则此时在第一或第三象限有可能小于零错误;②是第三象限角所以则与矛盾错误;③由已知为奇函数故则又所以则有解析:③ 【分析】 ①利用24k k θπππ来判断;②利用sin 2000a ︒=<来判断; ③通过(0)0f =,(2)0f =来判断; ④通过当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立来判断. 【详解】 解:①由已知22,2k k k Z ππθπ,则,24k k kZ θπππ,此时2θ在第一或第三象限,sin2θ有可能小于零,错误;②200︒是第三象限角,所以sin 2000a ︒=<, 则tan 2000︒=<,与tan 2000︒>矛盾,错误;③由已知()f x 为奇函数,故(0)0f =,则(4)(4)(8)(0)0f f f f -====, 又(2)(24)(2)(2)f f f f =-=-=-,所以(2)0f =,则有(2)(2)(6)0f f f =-==, 则()f x 在[4,8]x ∈-至少有7个零点,正确; ④当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立,证明:单位圆中当0,2πα⎛⎫∈ ⎪⎝⎭时,如图点P 为角α的终边与单位圆的交点,由图可知OPA 的面积小<扇形OPA 的面积小<OTA 的面积 则211111sin 111tan 222ααα⋅⋅⋅<⋅⋅<⋅⋅⋅,整理得tan sin ααα>>. 若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,tan cos tan tan x x x y y >=⋅>,所以x y >,故错误. 故答案为:③ 【点睛】本题考查函数周期性的应用,考查当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立这个性质的灵活应用,考查角所在象限和三角函数值符号的关系,是中档题.15.【分析】根据以及两角差正切公式求解【详解】故答案为:【点睛】本题考查两角差正切公式考查基本分析求解能力属基础题解析:1613【分析】根据()βαβα=+-以及两角差正切公式求解. 【详解】13tan()tan 1644tan tan[()]31tan()tan 13116αβαβαβααβα++-=+-===++- 故答案为:1613【点睛】本题考查两角差正切公式,考查基本分析求解能力,属基础题.16.【分析】先利用平面向量的夹角为且解出然后求解的最值即可得到的最值【详解】因为所以而当且仅当时等号成立所以故答案为:【点睛】本题考查平面向量数量积的运用考查模长最值的求解难度一般 6【分析】先利用平面向量a ,b 的夹角为120︒,且1a b ⋅=-解出2a b ⋅=,然后求解2a b -的最值即可得到a b -的最值. 【详解】因为1·cos 12a b a a b b θ⋅=⋅=-⋅=-,所以2a b ⋅=, 而2222222226a b a a b b a b a b -=-⋅+=++≥⋅+=,当且仅当2a b ==时等号成立,所以6a b -≥. 【点睛】本题考查平面向量数量积的运用,考查模长最值的求解,难度一般.17.【分析】根据题意得表示的区域为及内部的点进而得当时取得最小值再计算即可得答案【详解】又为非负实数且所以表示的区域为及内部的点当时取得最小值因为所在的直线方程为即则取得最小值为故答案为:【点睛】本题考解析:【分析】根据题意得D 表示的区域为ABC 及内部的点,进而得当⊥OD AB 时,OD 取得最小值,再计算即可得答案. 【详解】()1,5OA =,()4,2OB =,()6,8OC =,又,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+, 所以D 表示的区域为ABC 及内部的点, 当⊥OD AB 时,OD 取得最小值, 因为AB 所在的直线方程为()()5251114y x x --=-=---,即60x y +-=,则OD 取得最小值为=故答案为:【点睛】本题考查向量的模的求解与线性规划,解题的关键是根据题意明确D 表示的区域,是中档题.18.【分析】根据平面向量数量积的定义求出与并计算出平面向量的模再利用公式即可求解【详解】由平面向量的数量积的定义可得即所以在方向上的投影为故答案为:【点睛】本题主要考查了平面向量的数量积的定义以及向量的 7 【分析】根据平面向量数量积的定义求出12e e ⋅与a b ⋅,并计算出平面向量b 的模b ,再利用公式,即可求解. 【详解】由平面向量的数量积的定义,可得1221211cos11()322e e e e π⋅=⋅=⨯⨯-=-, 222222111111()(2)22122a b e e e e e e e e ⋅=+-=+⋅-=--=,22221112221(2)4444()172e e e e e e b =-=-⋅+=-⨯-+=,即7b =,所以a 在b 方向上的投影为1727a b b⋅==故答案为:714. 【点睛】本题主要考查了平面向量的数量积的定义,以及向量的投影的应用,其中解答中熟记平面向量的数量积的计算公式,以及向量的投影的计算是解答本题的关键,着重考查了推理与运算能力,属于中档试题.19.【分析】由最值求得由周期求得由最高点的坐标求得【详解】由题意所以又所以所以故答案为:【点睛】方法点睛:由函数图象确定三角函数的解析式主要参考正弦函数图象中五点法由最大值和最小值确定由周期确定利用点的解析:2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. 【分析】由最值求得A ,由周期求得ω,由最高点的坐标求得ϕ. 【详解】由题意2A =,4312T πππ⎛⎫=⨯-=⎪⎝⎭,所以22πωπ==, 2sin 2212πϕ⎛⎫⨯+= ⎪⎝⎭,2,62k k Z ππϕπ+=+∈,又2πϕ<,所以3πϕ=.所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭. 故答案为:2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. 【点睛】方法点睛:由函数图象确定三角函数的解析式,主要参考正弦函数图象中“五点法”,由最大值和最小值确定A ,由周期确定ω,利用点的坐标确定ϕ,这样可得出表达式()sin()f x A x ωϕ=+.20.【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数的奇偶性【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】因为函数()()()2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈. 又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 三、解答题21.(1)T π=,[-;(2)14a ≥. 【分析】(1)利用辅助角公式化简可得()2sin(2)6f x x π=-,代入周期公式,可求得周期T ,根据x 的范围,求得26x π-的范围,根据正弦型函数的性质,即可求得答案.(2)根据题意可得min max ()()g x f x ≥,由(1)可得max ()f x =0a <,0a =,0a >三种,()3ag x x x=+的最小值,结合对勾函数的性质,即可求得答案.【详解】(1)1()2cos 2)2sin(2)26f x x x x π=-=-, 周期22T ππ== 由[,]34x ππ∈-,则52[,]663x πππ-∈-, 所以当262x ππ-=-,即6x π=-时,()2sin(2)6f x x π=-有最小值-1当263x ππ-=,即4x π=时,()2sin(2)6f x x π=-所以1sin(2)62x π-≤-≤,所以22sin(2)6x π-≤-≤即()f x 的值域为[-(2)对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,只需当min max ()()g x f x ≥由(1)知,max ()f x =当0a <,()3ag x x x=+为(0,)+∞上增函数,值域为R ,不满足题意; 当0a =,()3g x x =为(0,)+∞上增函数,值域为(0,)+∞,不满足题意;当0a >,()3ag x x x=+为对勾函数,所以()3a g x x x =+≥=min ()g x =,当且仅当3ax x=,即x =.由题意,即可,所以14a ≥. 【点睛】解题的关键是将题干条件等价为min max ()()g x f x ≥,分别根据12,x x 的范围,求得两函数的最值,再进行求解,考查分析计算的能力,属中档题.22.(1)-1;(2)()4-+∞ 【分析】(1)易得()2sin 233h x x π⎛⎫=+- ⎪⎝⎭,再利用正弦函数的性质求解. (2)将0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,转化为0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立,令[]cos 0,1t x =∈,利用二次函数的性质求()22244r t t at a =-+-的最小值即可.【详解】(1)因为函数()cos23f x x =-,所以()2cos 232sin 233h x x x x π⎛⎫=+-=+- ⎪⎝⎭,当22,32x k k Z πππ+=+∈,即 ,12x k k Z ππ=+∈时, sin 213x π⎛⎫+= ⎪⎝⎭,所以()h x 的最大值是-1;(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,cos232cos 4x a x a >--恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立, 令[]cos 0,1t x =∈ ()22244r t t at a =-+- 当02a≤,即 0a ≤时, ()()min 0440r t r a ==->,解得 1a >,此时无解; 当012a <<,即 02a <<时, ()2min 44022a a r t r a ⎛⎫==-+-> ⎪⎝⎭,解得44-<+,此时42a -<;当12a≥,即 2a ≥时, ()()min 1220r t r a ==->,解得 1a >,此时2a ≥;综上:a 的取值范围是()4-+∞ 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.23.(1)2)22⎡⎤⎢⎥⎣⎦. 【分析】 (1)当13λ=时,可得出13CP AB AC =-,利用平面向量数量积的运算性质可计算得出CP ;(2)设等边三角形ABC 的边长为a ,由平面向量数量积的运算性质可将CP AB PA PB ⋅≥⋅表示为含λ的不等式,结合01λ≤≤可求得实数λ的取值范围.【详解】 (1)由13λ=,得13AP AB =,13CP AP AC AB AC =-=-, 22222211212666cos60393369CP AB AC AB A C B AC A ∴=-+=⋅=⨯⨯⨯-⨯+-4361228=+-=, 因此,27CP =(2)设等边三角形ABC 的边长为a ,则()()222cos60CP AB CA AP AB AB AC AB AB AB AC a a λλλ⋅=+⋅=-⋅=-⋅=-2212a a λ=-, ()()222PA PB PA AB AP AB AB AB a a λλλλ⋅=⋅-=-⋅-=-,即2222212a a a a λλλ-+≥-,整理得22410λλ-+≤,解得2222λ+≤≤.01λλ≤≤∴⎪≤≤⎩1λ≤≤, 因此,实数λ的取值范围为⎤⎥⎣⎦. 【点睛】方法点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 24.(1)3BC =;72BE =2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒= ∴3BC =又()12BE BO BC =+∴()2221137213213444BE BO BC BO BC ⎛⎫=++⋅=++⨯⨯⨯= ⎪⎝⎭ ∴7BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题. 25.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞.【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论; (2)由,04x π⎛⎫∈- ⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围. 【详解】(1)对于函数()1tan ln 1tan x f x x -=+,有1tan 01tan x x->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数;(2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x e x x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x x a x x x +-===-<+++, 所以,实数a 的取值范围是(),0-∞.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.26.(1)2π;(2)2,5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【分析】 (1)先利用二倍角公式化简,再用辅助角公式化为()f x sin 16x π⎛⎫=++ ⎪⎝⎭,即可求出()f x 的最小正周期; (2)利用图像变换得到()y g x =的解析式,利用换元法就可以得到()y g x =的最大值及取得最大值时 x 的取值【详解】(1)∵函数1cos 1()222x f x x +=++ sin 16x π⎛⎫=++ ⎪⎝⎭ ∴函数的周期为2π(2)依题意:函数()f x sin 16x π⎛⎫=++ ⎪⎝⎭的图象上的各点向左平移32π个单位,得到y 3sin +1= -cos 1626x x πππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭;再保持纵坐标不变,横坐标缩短到原来的一半,得到y = -cos 216x π⎛⎫++ ⎪⎝⎭; 所以()cos 216g x x π⎛⎫=-++ ⎪⎝⎭ 令226t x k πππ=+=+,即5()12x k k Z ππ=+∈ 使函数()g x 取得最大值2,即max ()2g x =使函数()g x 取得最大值的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【注意】 取得最大值的集合为7,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭也可以. 【点睛】:(1)关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a ;(2)求y =Asin (ωx +φ)+B 的值域通常用换元法;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4期末测试题【附答案】
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.
1.sin 150°的值等于( ).
A .
2
1 B .-
1 C .
2
3 D .-
2
3 2.已知=(3,0)( ). A .2
B .3
C .4
D .5
3.在0到2范围内,与角-3
4π
终边相同的角是( ).
A .6π
B .3π
C .32π
D .3
4π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限 C .第三象限
D .第四象限
5.sin 20°cos 40°+cos 20°s in 40°的值等于( ). A .
41 B .23 C .2
1
D .43
6.如图,在平行四边形ABCD 中,下列结论中正确的是( ).
A .=
B .-=
C .+=
D .+=
7.下列函数中,最小正周期为 的是( ).
A .y =cos 4x
B .y =sin 2x
C .y =sin
2
x
D .y =
cos
4
x
8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).
A .10
B .5
C .-2
5
D .-10
9.若tan =3,tan =3
4
,则tan(-)等于( ).
A .-3
B .3
C .-31
D .3
1
10.函数y =2cos x -1的最大值、最小值分别是( ).
A .2,-2
B .1,-3
C .1,-1
D .2,-1 11.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥,那么c 的值是( ).
A .-1
B .1
C .-3
D .3
12.下列函数中,在区间[0,2
π
]上为减函数的是( ).
A .y =cos x
B .y =sin x
C .y =tan x
D .y =sin(x -3
π
)
13.已知0<A <2
π,且cos A =53
,那么sin 2A 等于( ).
C (第6题)
A .
254 B .257 C .2512 D .25
24 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).
A .(-3,-2)
B .(3,-2)
C .(-2,-3)
D .(-3,2) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角
的终边经过点P (3,4),则
cos 的值为 . 16.已知tan =-1,且 ∈[0,),那么
的值等于 . 17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 . 18.某地一天中6时至14时的温度变化曲线近似
满足函数T =A sin(t +)+b (其中2π
<<)
时至14时期间的温度变化曲线如图所示,它是上
述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的函数解析式是________________.
(第18题)
三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.
19.(本小题满分8分)
已知0<<2
π,sin =54
.
(1)求tan 的值;
(2)求cos 2+sin ⎪⎭⎫ ⎝
⎛
2π + α的值.
20.(本小题满分10分)
已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=2
1
.
(1)求|b |;
(2)当a ·b =2
1
时,求向量a 与b 的夹角 的值.
21.(本小题满分10分)
已知函数f (x )=sin x (>0).
(1)当 =时,写出由y =f (x )的图象向右平移6
π
个单位长度后得到的图象所对应
的函数解析式;
(2)若y =f (x )图象过点(3
π2,0),且在区间(0,3π
)上是增函数,求 的值.
期末测试题
参考答案
一、选择题: 1.A
解析:sin 150°=sin 30°=2
1. 2.B
=0+9=3. 3.C
解析:在直角坐标系中作出-
34π
由其终边即知. 4.D
解析:由cos >0知,为第一、四象限或 x 轴正方向上的角;由sin <0
知,为第三、四象限或y 轴负方向上的角,所以 的终边在第四象限.
5.B
解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=2
3
. 6.C
解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知AD +AB =. 7.B
解析:由T =ω
π
2=,得 =2.
8.D
解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D
解析:tan(-)=βαβαtan tan +1tan -tan =4+134-
3=3
1. 10.B
解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.
11.D 解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.
12.A
解析:画出函数的图象即知A 正确. 13.D
解析:因为0<A <2π
,所以sin A =5
4=cos -12A ,sin 2A =2sin A cos A =2524.
14.A
解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).
二、填空题:
15.5
3.
解析:因为r =5,所以cos =5
3
.
16.
4
3π. 解析:在[0,)上,满足tan =-1的角
只有
43π,故 =4
3π. 17.(-3,-5).
解析:3b -a =(0,-3)-(3,2)=(-3,-5).
18.20;y =10sin(8πx +4
3π
)+20,x ∈[6,14].
解析:由图可知,这段时间的最大温差是20°C .
因为从6~14时的图象是函数y =A sin(x +)+b 的半个周期的图象,
所以A =21(-)=10,b =21
(30+10)=20.
因为21·ωπ2=14-6,所以 =8π,y =10sin ⎪⎭⎫
⎝⎛ϕ + 8πx +20.
将x =6,y =10代入上式,
得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭
⎫
⎝⎛ϕ + 43π=-1,
由于2π
<<,可得 =4
3π.
综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8
π
x +20,x ∈[6,14].
三、解答题:
19.解:(1)因为0<<2
π,sin =54
, 故cos =53,所以tan =34.
(2)cos 2+sin ⎪⎭
⎫ ⎝⎛α + 2π=1-2sin 2
+=-2532+53=258.
20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2
=2
1,
所以|b |2=|a |2
-21=1-21=21,故|b |=22.
(2)因为cos =
b
a b
a ·=22,故
=°.
21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝
⎛
6π - x .
(2)由y =f (x )的图象过⎪⎭
⎫ ⎝⎛0 , 32π点,得sin
32π
=0,所以
3
2π
=k ,k ∈Z .
即 =
2
3
k ,k ∈Z .又>0,所以k ∈N*. 当k =1时,=23,f (x )=sin 23x ,其周期为34π
,
此时f (x )在⎪⎭
⎫ ⎝
⎛3π , 0上是增函数; 当k ≥2时,
3,f (x )=sin x 的周期为
ω
π2≤32π<34π,
此时f (x )在⎪⎭
⎫ ⎝
⎛
3π , 0上不是增函数.
所以,=2
3
.。