上海交通大学科技成果——异种材料搅拌摩擦焊技术

合集下载

搅拌摩擦加工(FSP)介绍

搅拌摩擦加工(FSP)介绍
图4 搅拌摩擦加工(FSP)与产品
1 搅拌摩擦加工(FSP)简介
Fig 5. Macrostructure of dissimilar joints: (a) 1000-40, (b) 1000120, (c) 1000-240 and the corresponding surfaces (d-f)
搅拌摩擦加工(FSP)是在搅拌摩擦焊 (FSW)的基础上发展而来的一种加工技术。
图4 航天特焊无倾角搅拌头
图3 搅拌摩擦加工(FSP) 主要工艺参数
1 搅拌摩擦加工(FSP)简介
Fห้องสมุดไป่ตู้P原理——利用搅拌头剧烈的搅拌作用,造成加工区材料发生剧烈塑性变形、混 合、破碎和热暴露,实现材料微观组织的细化、均匀化和致密化
2 搅拌摩擦加工(FSP)研究
2.1.2 细晶超塑性材料制备(Mishra等)
超塑性一般大于200% 480℃时,7075-T651铝合金
最大延伸率为1250%
图9 FSP加工后的7075-T651铝合金晶粒<3.8μm
2 搅拌摩擦加工(FSP)研究
2.1.2 细晶超塑性材料制备(张大童等)
搅拌摩擦加工
Friction Stir Processing
目录
Contents
搅拌摩擦加工(FSP)简介 搅拌摩擦加工(FSP)研究 搅拌摩擦加工(FSP)特点 搅拌摩擦加工(FSP)展望
1 搅拌摩擦加工(FSP)简介
1997年,搅拌摩擦 技术被日本公司广 泛的应用于铝合金 车体制造
2002年,搅拌摩擦 焊中心在中国成立, 并在中国大力推广
δ5 ↑ 151.4%
2.1 铸造金属微观组织细化(Yaobin Wang等) 晶粒细化、消除内部缺陷

搅拌摩擦点焊技术简介

搅拌摩擦点焊技术简介

综述航天期造技术搅拌摩擦点焊技术简介赵衍华张丽娜刘景铎杜岩锋王国庆(首都航天机械公司,北京100076)摘要搅拌摩擦点焊(FSSW)是在搅拌摩擦焊的基础上开发的一种新型固相修补焊接技术,具有接头质量高、缺陷少、变形小等优点。

详细阐述了搅拌摩擦点焊焊接原理和技术特点,介绍了国内外研究现状及其在汽车等制造业中的应用,指出搅拌摩擦点焊在运载工具铝合金结构件制造过程中具有重要意义,是未来铝合金连接技术的发展方向之一。

关键词搅拌摩擦点焊原理铝合金结构件IntroductionofFrictionStirSpotWeldingTechnologyZhaoYanhuaZhangLinaLiuJingduoDuYanfengWangGuoqing(CapitalAerospaceMachineryCorporation,Beijing100076)AbstractFrictionstirspotwelding(FSSW)isanewsolidstatejoiningmethod,whichisavariantoffrictionstirwelding.ThequalityoftheFSSWweldingjointsisperfect,duetoitshighmechanicalproperty,alittledefectsandsmalldistortion.TheprincipleandtechnicalcharacteristicsofFSSWareparticularlyintroduced.Theinvestigations觚sandapplicationofFSSWaroundthewoddhavebeenintroducedtOO.FSSWisapromisingtechnologyforaluminiumalloyconnection,andstudyingthenewweldingmethodwillbebeneficenttomanufacturingofdeliverytechnology.Keywordsfrictionstirspotweldingprinciplealuminiumalloyconnection1引言随着全球资源与环境保护问题的日趋严峻,运载工具的轻量化设计成为汽车、航空航天等制造领域的发展方向。

搅钛合金铝合金异种金属搅拌摩擦焊工艺研究

搅钛合金铝合金异种金属搅拌摩擦焊工艺研究

搅钛合金/铝合金异种金属搅拌摩擦焊工艺研究采用搅拌摩擦焊对TC1钛合金和LF6铝合金异种材料进行了连接,研究了工艺参数对焊缝表面成形、焊接接头横截面形貌和接头的抗拉强度的影响规律。

结果表明,钛合金/铝合金异种材料焊接难度较大,容易产生裂纹、沟槽等缺陷,当搅拌头旋转速度n为750r/min和950r/min,且焊接速度v为118mm/min和150mm/min时均能获得较好的焊缝表面成形,但n 为750r/min时焊接接头横截面钛/铝的界面结合不好,导致接头强度很低。

当n 为950r/min、v 为1118mm/min 时钛合金/铝合金异种材料搅拌摩擦焊接头的强度最高,为131.1MPa。

0 引言铝合金、钛合金是航空航天、能源等高新技术领域中广泛应用的金属材料,其中钛合金有许多独特的优点,如质轻、比强度高、抗冲击等,成为航空航天重点发展的新材料之一[1]。

减轻重量、提高推重比、增加有效载荷等一直是航空发动机和飞机结构设计追求的目标,国内外统计数据表明,二、三、四代军用战斗机各类金属结构材料的用量中钛合金用量大幅度上升至达到整机结构重量的38.8%[2]。

钛合金研究与推广应用的关键之一是钛与异种金属的焊接问题。

针对航空材料特殊性能的要求,将钛合金与铝合金连接形成复合结构可以发挥两种金属不同的性能优势,能大大提高航空航天领域对结构件性能的要求,具有重要的理论意义和实际应用价值,在未来航空结构等领域有广阔的应用前景。

然而,钛合金与铝合金都是活性、极易氧化的金属,两者熔点、热导率、热膨胀系数以及晶体结构等物理性能差异很大,采用常规的焊接方法难以获得满足使用性能要求的焊接接头。

目前,国内外采用电弧熔钎焊[3]、激光熔钎焊[4]、固态扩散焊[5]、液相扩散焊[6]等方法对钛和铝异种材料的焊接进行了研究。

搅拌摩擦焊是一种固态扩散焊接方法,基本不受材料的物理化学性能、机械性能、晶体结构等的影响,对克服不同材料性能差异带来的焊接困难具有极大的优势,比较适合于异种材料的连接。

轻量化-搅拌摩擦焊技术

轻量化-搅拌摩擦焊技术

四、搅拌摩擦焊在汽车上的应用
在汽车上的应用:汽车空调、轮毂、车门、电动汽车电池托盘、电机壳体等
14/15
本田2013款雅阁
电动汽车电池托盘
沃尔沃XC90 轮毂
BMW 5 门窗直立边柱 Mazda RX-8 后门
四、搅拌摩擦焊在汽车上的应用
15/15
供应商:北京赛福斯特 该公司2002年成立, 与TWI(英国焊接研究 所)合作开展全方面的 搅拌摩擦焊研究

二、搅拌摩擦焊的基本原理
FSW焊接工具
6/15

搅拌摩擦点焊(Friction Stir Spot Welding,FSSW)
搅拌摩擦点焊(Friction Stir Spot Welding,FSSW)技术是一种新兴的固相焊接技 术,它是由搅拌摩擦焊技术发展起来的。 它的连接机理是点焊工具周围高温摩擦热和材料塑性流动相互作用的结果。 冶金连接产生在点焊工具周围形成的一种圆环状搅拌区域与材料发生重结晶的区域中, 这一区域在点焊工具旋转、挤压、粉碎等机械力作用下,形成致密组织结构,赋予搅拌摩 擦点焊接头优异的力学性能。 一般分为以下几类: 基本型搅拌摩擦点焊技术(Basic FSSW) 填充式搅拌摩擦点焊技术(Refill FSSW) 摆动式搅拌摩擦点焊技术(Swing FSSW)
1/1
搅拌摩擦焊技术(FSW)
2019.07.06


2/15


3/15
一、搅拌摩擦焊技术背景
铝及铝合金的焊接中,存在许多问题: 膨胀系数大而在焊接时产生较大的变形。为了防止变形,在施工现场,必须采用胎卡具固定,和 由培训过的熟练工人操作。 铝及铝合金容易氧化,表面存在一层致密、坚固难熔的氧化膜,所以焊前要求对其表面进行去膜 处理,因此焊接时,要用氩等惰性气体进行保护。 铝及铝合金焊接时易产生气孔、热裂纹等缺陷。 对于热处理型铝合金来说,必须避免在焊接时热影响区产生软化,强度降低的问题。

fsw搅拌摩擦焊接的原理和应用

fsw搅拌摩擦焊接的原理和应用

FSW搅拌摩擦焊接的原理和应用1. 原理介绍搅拌摩擦焊接(Friction Stir Welding,简称FSW)是一种高效的固态焊接技术,它的原理是利用摩擦热产生塑性变形并将材料连接在一起。

相比传统的熔化焊接技术,FSW避免了熔化材料的过程,从而消除了熔渣、气孔和焊缝变质等焊接缺陷。

该技术适用于多种材料的焊接,包括铝合金、镁合金、钛合金和铜等。

FSW焊接过程中,焊接头部分被焊接工具(通常是一个非常坚硬的圆柱形肩部和一个细长的针尖部分组成)沿着焊接拼接线旋转前进。

焊接工具施加在焊接接头上的轴向压力使接头产生塑性变形。

焊接过程伴随着摩擦热的产生,使材料局部发生非等温塑性变形。

随着焊接工具的前进,焊接接头在塑性变形的影响下形成连续的焊缝。

2. 搅拌摩擦焊接的优势FSW具有以下几个优势,使其在各个工业领域中得到广泛应用:2.1 强度高由于焊接过程中没有液态的熔池,FSW焊接接头的晶粒不会因为快速冷却而变细,从而保持了较高的强度。

热影响区(Heat Affected Zone,HAZ)也较窄,减少了焊接接头的热损害。

2.2 减少焊接缺陷FSW既避免了熔化过程中可能产生的气孔、熔渣等缺陷,又减少了焊缝区的变质现象。

焊接接头的质量得到有效保证。

2.3 适用于不同材料的焊接FSW广泛适用于铝合金、镁合金、钛合金、铜等多种材料的焊接。

无论是相似材料的焊接,还是异种材料的焊接,FSW都能得到良好的焊接质量。

2.4 生产效率高FSW焊接速度相对较快,通常比传统熔化焊接技术要高,可以大大提高生产效率。

同时,焊接过程中无需使用惰性气体保护,避免了气体保护系统的成本和复杂性。

3. 搅拌摩擦焊接的应用领域FSW技术在众多领域中得到了应用,以下列举了几个典型的应用领域:3.1 航空航天工业在航空航天领域,铝合金被广泛应用于制造飞机结构。

如机翼、蒙皮和座椅等。

FSW技术可以实现这些结构件的焊接,提高了结构的强度和可靠性。

3.2 汽车制造FSW技术在汽车制造中的应用主要集中在车身板件焊接。

搅拌摩擦焊工艺及其应用

搅拌摩擦焊工艺及其应用

搅拌摩擦焊工艺及其应用1 搅拌摩擦焊的定义与原理搅拌摩擦焊是一种非常新颖的金属连接技术,其原理是将金属材料在高速旋转的条件下不断挤压与摩擦热而使金属材料发生塑性变形进而在次冷却时形成均匀的焊缝。

搅拌摩擦焊是一种采用振荡摩擦进行的钎焊技术。

摩擦过程中,金属材料被强制变形,形成皱纹和复杂的微细组织结构,这就是焊接区域。

这一过程不需要额外的附加材料,因此也被称为固态钎焊。

搅拌摩擦焊的原理是通过搅拌和摩擦的相互作用,为金属轴套表面提供局部加热来处理金属本身。

在摩擦过程中,摩擦产生的热量会使金属材料温度升高,而旋转工具逐渐伸进焊缝,在相对运动的作用下,产生了强烈的塑性变形以及显著的变形应变。

在形成初期焊缝时,相对运动引起的压力会把材料从环形清隙中抽出,形成时生成混味均匀的焊接界面。

这些过程中摩擦加热导致局部熔化,接长和冷却会使金属变形,并形成一个均匀的、与母材相似的焊缝。

2 搅拌摩擦焊的工艺流程及其特点2.1 搅拌摩擦焊的工艺流程(1)工件准备:首先需要准备待焊接的工件。

工件通常是板材、管材、棒材等形状,可以是相同材质,也可以是不同材质。

(2)夹紧工件:将工件夹紧在专用的工件夹具中,以保证工件在搅拌摩擦焊过程中不会移动或震动。

(3)起始摩擦:在工件接头处的摩擦面上施加旋转摩擦力,使工件表面熔融并形成可焊接的状态。

(4)搅拌摩擦:在不断施加旋转摩擦力的情况下,摩擦头沿着工件的接合面移动,搅拌工件的金属组织,从而形成焊接。

(5)升温保压:在搅拌摩擦焊完成后,保持摩擦头的位置不动,使焊缝部位升温到一定程度,再施加一定的保压力,使焊缝固化。

(6)退火处理:对焊接完成后的工件进行退火处理,可以进一步提高焊接质量和性能。

2.2 搅拌摩擦焊的特点(1)搅拌摩擦焊是一种无焊接接头凸出、无端部凸出的焊接方法,焊缝起伏很小,对焊接部件外观和尺寸精度要求较高的场合比较适用。

(2)搅拌摩擦焊过程中没有明显的电弧和喷溅现象,不需要额外的保护气体,易于操作。

焊接工艺中的摩擦搅拌焊技术

焊接工艺中的摩擦搅拌焊技术

焊接工艺中的摩擦搅拌焊技术摩擦搅拌焊技术在焊接工艺中的应用摩擦搅拌焊(Friction Stir Welding,FSW)技术,作为一种新兴的焊接工艺,正在逐渐得到人们的关注和认可。

它的出现不仅改变了传统焊接方法,还带来了许多优势和创新。

本文将从摩擦搅拌焊技术的原理、应用范围和未来发展等方面,探讨其在焊接工艺中的重要性和价值。

一、摩擦搅拌焊技术的原理摩擦搅拌焊技术是一种无熔区焊接方法,它利用回转的焊接工具,通过摩擦加热和搅拌的作用,将金属板材相互连接。

其原理主要包括以下几个方面:1. 摩擦加热:焊接工具通过与工件的摩擦产生热量,将工件表面加热至可塑性温度,但不达到熔点。

这种无熔区的加热方式是摩擦搅拌焊的特点之一。

2. 塑性流动:在摩擦作用下,金属材料开始发生塑性变形,产生较强的流动性,但保持了原有的晶体结构。

通过搅拌工具的旋转和推进,工件的材料被搅拌成连续的焊接接头。

3. 冷却固化:在搅拌过程中,焊接接头由于摩擦加热而达到可塑性状态,但在离开焊接工具后,温度迅速下降,接头被固化为连续的金属接合部分。

二、摩擦搅拌焊技术的应用范围摩擦搅拌焊技术以其独特的焊接原理和优异的性能,广泛应用于不同材料的焊接领域。

其主要应用范围包括以下几个方面:1. 航空航天领域:摩擦搅拌焊技术可以用于航空航天器件的连接,例如飞机翼板、舱壁、涡轮发动机叶片等。

这种焊接方法能够减少热输入,提高焊接质量和强度,减小了焊接变形和应力集中的问题。

2. 轨道交通领域:摩擦搅拌焊技术可以应用于轨道交通车辆的制造和维修。

例如,高铁列车的车体焊接、地铁车辆的连接等。

由于摩擦搅拌焊能够避免焊接变形和减小焊接缺陷,因此能够提高车辆的运行平稳性和安全性。

3. 汽车制造领域:摩擦搅拌焊技术可以应用于汽车车身的焊接。

与传统的焊接方法相比,摩擦搅拌焊能够提供更强的接头强度和密封性,同时还能够降低噪音和振动,提高车身的刚性和安全性。

4. 电子设备领域:摩擦搅拌焊技术可以用于电子设备的组装和连接。

异种铝合金搅拌摩擦焊搭接工艺试验研究

异种铝合金搅拌摩擦焊搭接工艺试验研究

异种铝合金搅拌摩擦焊搭接工艺试验研究
尹启朋;高嵩;安少杰;吴程浩;刘涛;王志森;景元坤
【期刊名称】《金属加工(热加工)》
【年(卷),期】2024()1
【摘要】对尺寸分别为200mm×90mm×2.5mm和200mm×90mm×2.8mm 的6061-T6和2024-T4铝合金板材进行搅拌摩擦搭接焊,固定焊接速度为
100mm/min,调节搅拌头转速分别为400r/min、600r/min和800r/min。

结果表明:当转速为600r/min时,焊缝表面最为光滑;随着搅拌头转速的增加,可以看到界面处6061和2024铝合金的混合程度明显增大;与母材相比,焊核区晶粒细小且分布均匀,焊核区下部比上部晶粒更加细小,推测与焊核区下部材料受到搅拌作用更为强烈有关;随着搅拌头转速的增大,接头失效载荷先增大后减小,当转速为600r/min 时,失效载荷达到最大值;搅拌头扭矩及轴向力随着转速的增大而减小。

【总页数】4页(P8-11)
【作者】尹启朋;高嵩;安少杰;吴程浩;刘涛;王志森;景元坤
【作者单位】齐鲁工业大学(山东省科学院)机械工程学院;中研智连工业科技(济南)有限公司;山东省机械设计研究院
【正文语种】中文
【中图分类】TG1
【相关文献】
1.铜/钢异种金属搅拌摩擦焊搭接工艺
2.铝钛异种金属搅拌摩擦搭接焊的数值模拟研究
3.异种铝合金单层板与双层板对搭接搅拌摩擦焊
4.5083铝合金与304不锈钢异种材料涡流搅拌摩擦搭接焊工艺研究
5.搅拌针长度对搅拌摩擦搭接焊铝合金/钢异种材料接头组织性能的影响
因版权原因,仅展示原文概要,查看原文内容请购买。

搅拌摩擦焊技术研究与应用

搅拌摩擦焊技术研究与应用

搅拌摩擦焊技术研究与应用作者:陈湘陵谢振中来源:《职业·中旬》2012年第09期搅拌摩擦焊技术,即Friction Stir Welding,简称FSW。

其作为固态连接技术范畴内的新型焊接技术,自CJ• Dawes等科学家正式宣布发明之后,以其较好的使用性能很快被推广开,并应用于各个方面,特别是在一些重工业,例如核电核能、航空航天、车辆船舶等。

由于搅拌摩擦焊接技术本身的发展需要,加之其独特性与不可替代性,都将会是未来焊接技术发展必然方向之一。

本文概述搅拌摩擦焊技术相关概念,同时介绍焊接技术在国内外的发展趋势,还较为详细地分析了该技术在航天、船舶、道路交通之中的应用,为提高并强化搅拌摩擦焊技术的理论基础尽一份小小的薄力,促进搅拌摩擦焊技术的发展。

一、搅拌摩擦焊技术概述1.搅拌摩擦焊技术简介及原理作为新技术的搅拌摩擦焊(该项专利技术由The Welding Institute,即英国焊接研究所开发,开发时间1991年),与常规摩擦焊相比,虽然焊接热源同是利用摩擦热产生,但是其最大的不同之处就在于利用高速旋转搅拌头缓慢插入到被焊工件的待焊部位,利用搅拌头和被焊材料之间的摩擦阻力而产生的摩擦热,高温软化连接部位材料,并在搅拌头轴肩的压力作用下,达到工件间永久性连接的目的。

该技术是以固相连接工艺实现的焊接技术。

2.搅拌摩擦焊技术优点与传统焊接方法相比,搅拌摩擦焊技术具有以下几个优点。

一是焊前不需进行复杂的准备,被焊材料不熔化,焊接接头性能优良,固相连接接头强度高,可实现全方位焊接;二是焊接过程可靠性高,尺寸精度高,生产率高,成本低且节能;三是具有广泛的工艺适应性,能有效减小或消除冶金化学反应问题,能焊接性能差异很大的异种金属材料,亦可焊接同一台设备的金属和非金属材料;四是安全环保,焊接过程整洁,不会产生飞溅、辐射的情况,或产生有害物质。

二、搅拌摩擦焊技术研究现状1.国外研究现状在国外,搅拌摩擦焊接技术的发展已是十分成熟,理论体系也较为系统。

《2024年高强铝合金搅拌摩擦焊接机理及接头性能调控》范文

《2024年高强铝合金搅拌摩擦焊接机理及接头性能调控》范文

《高强铝合金搅拌摩擦焊接机理及接头性能调控》篇一一、引言随着现代工业的快速发展,高强铝合金因其优异的力学性能、良好的耐腐蚀性以及轻量化特点,在航空、汽车、轨道交通等领域得到了广泛应用。

搅拌摩擦焊接(Friction Stir Welding, FSW)作为一种固相连接技术,因其能实现高强铝合金的高效、高质量连接而备受关注。

本文旨在探讨高强铝合金搅拌摩擦焊接的机理及接头性能的调控方法。

二、搅拌摩擦焊接的机理搅拌摩擦焊接是一种通过摩擦热和塑性流动实现固态金属连接的工艺。

其基本原理是利用高速旋转的搅拌头与工件接触并摩擦产生热量,使工件局部达到塑性状态,然后通过搅拌头的挤压和摩擦热的作用,使工件在固态下实现连接。

在高强铝合金的搅拌摩擦焊接过程中,焊接接头的形成主要分为三个阶段:预热阶段、塑性流动阶段和冷却凝固阶段。

在预热阶段,搅拌头与工件接触并摩擦产生热量,使工件局部温度升高并达到塑性状态。

在塑性流动阶段,搅拌头的旋转和移动使工件金属发生塑性流动并混合在一起。

在冷却凝固阶段,焊接接头在固态下完成连接。

三、接头性能的调控接头性能的调控是搅拌摩擦焊接过程中的关键环节,主要包括焊接参数的选择和工艺控制。

1. 焊接参数的选择焊接参数的选择对焊接接头的性能具有重要影响。

主要参数包括搅拌头的转速、焊接速度、下压量等。

适当的转速和焊接速度可以保证焊接接头的热输入和塑性流动状态达到最佳状态,从而获得良好的接头性能。

下压量的选择应保证搅拌头能够顺利地进入工件并产生足够的摩擦热。

2. 工艺控制(1)搅拌头的形状和材质:搅拌头的形状和材质对焊接接头的质量有很大影响。

合适的搅拌头形状可以更好地将工件金属混合在一起,提高接头的力学性能。

同时,搅拌头的材质应具有良好的耐磨性和耐热性,以保证其在使用过程中不会发生磨损或变形。

(2)预热处理:在搅拌摩擦焊接前,对工件进行适当的预热处理可以提高其塑性和降低其硬度,从而有利于提高焊接接头的质量。

搅拌摩擦焊技术

搅拌摩擦焊技术

搅拌摩擦焊技术鲍雷(黄山学院机电学院,安徽,黄山,245000)摘要:搅拌摩擦焊(Friction Stir Welding,简称FSW)是英国焊接研究所(The Welding Institute)于1991年发明的专利焊接技术。

搅拌摩擦焊除了具有普通摩擦技术的优点外,还可以进行多种接头形式和不同焊接位置的连接。

本文论述了搅拌摩擦焊的基本原理、特点和发展现状。

关键词:搅拌摩擦焊;基本原理;特点;发展现状Friction Stir WeldingBaoLei(School of mechanical engineering of Huangshan University,Anhui,Huangshan 245000,China) Abstract:Friction Stir Welding(Friction Stir Welding, referred to as FSW) is the Welding Research Institute of England (The Welding Institute) in 1991 invention patent welding technology. Friction stir welding besides the advantages of conventional friction technology, can also be used for a variety of different position of welding joints and connections. This paper discusses the basic principle, characteristics and development status of friction stir welding.Key words:Friction Stir Welding;fundamental;characteristic;development situation摩擦焊是利用工件端面相互运动、相互摩擦所产生的热,使端部达到热塑性状态,然后迅速顶锻,完成焊接的一种方法。

搅拌摩擦焊的原理及其特点

搅拌摩擦焊的原理及其特点

搅拌摩擦焊的原理及其特点搅拌摩擦焊(Friction Stir Welding,简称FSW)是一种固态焊接技术,其原理是通过在焊接接头处施加搅拌力和摩擦热来实现焊接。

它的特点是焊接过程中无熔化,无焊接热源,不需要填充材料,能够实现高强度、高质量的焊接。

搅拌摩擦焊的原理是利用焊接工具的自旋和推进运动,在焊接接头上施加搅拌力,使接头处的金属材料发生塑性变形,并通过摩擦热使金属材料的温度升高到可塑性范围内。

在高温和高压的作用下,金属材料发生塑性流动,形成焊接接头。

搅拌摩擦焊的特点主要体现在以下几个方面:1. 无熔化:搅拌摩擦焊是一种固态焊接技术,焊接过程中不产生熔化现象。

相比传统的熔化焊接方法,它避免了焊接接头处的液态金属流动和凝固过程中的缺陷产生,能够得到更好的焊接质量。

2. 无焊接热源:搅拌摩擦焊的焊接热源是通过焊接工具的自旋和推进运动产生的摩擦热。

相比传统的焊接方法,它不需要额外的焊接热源,能够节约能源。

3. 无需填充材料:搅拌摩擦焊的焊接接头是通过金属材料的塑性流动形成的,不需要使用填充材料。

这样可以避免填充材料与基材之间的界面问题,提高了焊接接头的强度和密封性。

4. 高强度焊接:搅拌摩擦焊由于焊接过程中金属材料的塑性流动和细化效应,能够得到高强度的焊接接头。

与传统的焊接方法相比,搅拌摩擦焊能够实现更高的焊接接头强度。

5. 适用范围广:搅拌摩擦焊适用于多种金属材料的焊接,包括铝合金、镁合金、铜合金等。

与传统的焊接方法相比,它能够实现不同种类和不同厚度金属材料的焊接。

6. 焊接过程稳定:搅拌摩擦焊的焊接过程中,焊接工具的自旋和推进运动能够使焊接接头处的金属材料均匀受热和塑性变形,使得焊接过程更加稳定。

同时,焊接工具的设计和控制技术的发展,使得搅拌摩擦焊的焊接过程能够实现自动化和精确控制。

搅拌摩擦焊是一种无熔化、无焊接热源、无需填充材料的固态焊接技术。

它具有高强度焊接、适用范围广和焊接过程稳定等特点。

搅拌摩擦焊工作原理

搅拌摩擦焊工作原理

搅拌摩擦焊(Friction Stir Welding,FSW)作为一种固相连接技术,在1991年由英国焊接研究所(The Welding Institute, TWI)发明。

与传统熔化焊相比,FSW 无需添加焊丝、不需要保护气体,焊接过程无污染、无烟尘、无辐射,焊接接头残余应力低,因此具有焊接效率高、焊接变形小、能耗低、设备简单、焊接过程安全等一系列优点。

经过20多年的发展,FSW已经在航空航天、轨道交通、舰船等领域得到了广泛应用。

搅拌摩擦焊的原理:高速旋转的搅拌头扎入被焊工件内,旋转的搅拌针与被焊材料发生摩擦并使其发生塑化,轴肩与工件表面摩擦生热并用于防止塑性状态的材料溢出。

在焊接过程中,工件要刚性固定在背部垫板上,搅拌头边高速旋转边沿工件的接缝与工件相对移动,在搅拌头锻压力的作用下形成焊缝,最终实现被焊工件的冶金结合。

搅拌摩擦焊广泛适用于各类材料,目前已成功实现了铝、镁等低熔点金属及合金、铜合金、钛合金、钢铁材料、金属基复合材料以及异种金属(铝/铜、铝/镁、铝/钢等)的焊接。

在传统技术的基础上,搅拌摩擦焊有了五大创新发展:双轴肩搅拌摩擦焊、静轴肩搅拌摩擦焊、搅拌摩擦点焊、复合能场搅拌摩擦焊、搅拌摩擦增材制造。

双轴肩搅拌摩擦焊(Bobbin Tool Friction Stir Welding,BT-FSW)与传统FSW 相比,其搅拌头为上、下轴肩结构,两个轴肩通过搅拌针连接,下轴肩取代了传统FSW的背部刚性支撑垫板,对工件进行自支撑,实现中空部件的焊接。

上、下双轴肩的结构在焊接过程中降低了接头厚度方向的温度梯度,减小了接头组织不均匀性,可实现根部全焊透的焊接。

静轴肩搅拌摩擦焊(Stational Shoulder Friction Stir Welding,SS-FSW)采用轴肩与搅拌针分体式设计,在焊接过程中内部搅拌针处于旋转状态,而外部轴肩不转动,仅沿焊接方向行进。

在常规FSW中,轴肩与被焊接材料之间的摩擦是主要的产热方式。

搅拌摩擦焊技术

搅拌摩擦焊技术

搅拌摩擦焊技术作者:桑洋涛姜贤峰来源:《科学与财富》2018年第02期摘要:搅拌摩擦焊(FSW)是近年来由英国焊接研究所(TWI)发明的一种新型固相连接技术。

同传统的熔化焊相比,其接头不会产生与熔化有关的一些如裂纹、气孔及合金元素烧损等焊接缺陷;焊接过程中无须填充材料、保护气体;焊接前无须进行复杂的处理工作;焊接时能量消耗比传统焊接方法低。

此外,焊接过程中无弧光辐射、烟尘和飞溅,噪音低,因而搅拌摩擦焊是一种高质量、高效率、低成本的"绿色焊接方法",具有广阔的应用前景。

本文对搅拌摩擦焊技术进行了概述,旨在为搅拌摩擦焊技术推广应用提供参考。

关键词:搅拌摩擦焊;固相连接技术;推广应用1引言摩擦焊是一种压焊方法,它是在外力作用下,利用焊件接触面之间的相对摩擦运动和塑性变形所产生的热量,使接触面及附近区域的材料达到热塑性状态,并产生适当的宏观塑性变形,通过两侧材料间的相互扩散和动态再结晶而完成焊接。

由于摩擦焊技术具有优质、高效、节能、无污染等优点使其在航空航天、核能、海洋开发等高技术领域及传统制造业中得到广泛应用。

然而传统摩擦焊焊接过程中必须有一个工件是回转体,主要用于圆形截面盘轴类零件的焊接,因而其应用受到了一定的限制。

虽然搅拌摩擦焊技术开发时间还不长,但已受到工业发达国家的高度重视。

美国几家著名的航空公司争相获取了使用搅拌摩擦焊的专利许可证,并投入大量资金用于开发、应用搅拌摩擦焊技术。

美国波音公司己将该种新工艺用来生产航空航天各种铝合金容器。

如火箭运载工具、液氧箱、燃料箱等。

空中客车公司应用搅拌摩擦焊技术成功地焊接了机翼结构。

瑞典ESAB公司按许可证制造了专用焊接设备——Super-stir搅拌摩擦焊机,并己获得实际应用。

目前,搅拌摩擦焊技术已能够用来焊接铝及铝合金、铜及铜合金、镁合金、钦合金、铅、锌等有色金属材料,甚至能够用于焊接黑色金属。

可以相信,随着对搅拌摩擦焊技术研究工作的深入,其应用范围会越来越广。

钢铝异种金属搅拌摩擦焊背景及问题

钢铝异种金属搅拌摩擦焊背景及问题

钢与铝焊接存在的主要问题
1.钢的熔点比铝的高,焊接过程中,铝完全熔化为液态时,钢仍处于固 态,且两者密度相差很大,液态铝浮在钢表面上,冷却结晶后焊缝成分 不均匀; 2.焊接过程中,铝母材表面形成难熔的Al2O3氧化膜,阻碍液态金属 的结合,并且容易产生夹渣; 3.热导率、线膨胀系数相差很大,焊后接头变形严重,并且存在有很 大的残余应力,易产生裂纹; 4.铁在铝中固溶度几乎为零,且铁与铝可以产生多种硬而脆的金 属间化合物,如FeAl,FeAl2,FeAl3,Fe2Al5,Fe2Al7及Fe4Al3等, 增加了焊接接头的脆性,降低了其塑性和韧性。
但是陶瓷材料价格昂贵,且供应源不足,故采用焊接前预热钢板的方法,
以降低钢板的硬度,提高搅拌头的使用寿命,节约成本。
搅拌摩擦焊的优点
1.搅拌摩擦焊是一种固相连接技术,焊前不需要开坡口,节省工时; 2.焊接过程中不需要保护气,也不需要填充材料 3.焊接热输入小,从而导致焊接变形小、接头残余应力水平低,是一种 低应力、小变形焊接技术
4.焊接过程中无飞溅、无弧光、无辐射,是一种绿色焊接技术
5.焊接效率高、能耗低,是一种高效焊接技术
焊接速度
下压力
搅拌头的类型
搅拌针的发展过程:光面圆柱体 大沟槽螺纹 普通圆柱螺纹 其他更复杂的形状 锥形螺纹
圆锥螺纹型搅拌头
带螺旋槽的搅拌头
钢/铝搅拌摩擦焊的背景
基于搅拌摩擦焊的优点 1.焊接接头力学性能好、焊后变形小、残余应力小、焊接成本低、效 率高及适用范围广等特点。
基于钢/铝焊接件的使用需求 2.铝合金密度低、耐蚀性好、可焊接加工;钢铁材料资源丰富,稳 定性好;钢/铝焊接件可使交通运输工具轻量化,具有很好的经济效 益。
搅拌摩擦焊的应用领域

搅拌摩擦焊介绍

搅拌摩擦焊介绍

7
喷气客机的搅拌摩擦焊
LEE MAN (SCETC)
镁合金的搅拌摩擦焊
搅拌摩擦焊 (三)搅拌摩擦焊的特点
8
优点:
焊缝是在塑性状态下受挤压完成的,属于固相焊接,因而其接头 不会产生与冶金凝固有关的一些如裂纹、夹杂、气孔以及合金元 素的烧损等熔焊缺陷和脆化现象,焊缝性能接近母材,力学性能 优异。适于焊接铝、铜、铅、钛、锌、镁等非铁金属及其合金以 及钢铁材料、复合材料等,也可用于异种材料的连接。 不受轴类零件的限制,可进行平板的对接和搭接,可焊接 直焊缝、角焊缝及环焊缝,可进行大型框架结构及大型筒 体制造、大型平板对接等,扩大了应用范围。 搅拌摩擦焊利用自动化的机械设备进行焊接,避免了对 操作工人技术熟练程度的依赖,质量稳定,重复性高。 焊接时无需填充材料、保护气体,焊前无需对焊件表面预处 理,焊接过程中无需施加保护措施,厚大焊件边缘不用加工 坡口,简化了焊接工序。· 焊接铝合金材料不用去氧化膜,只 需去除油污即可。
LEE MAN (SCETC)
搅拌摩擦焊 2.接头力学性能
焊态下,FSW焊缝焊核的强度要大于热影响区的强度。
5
对于退火状态的铝合金,拉伸实验时首先发生破坏的部位通常在远离 焊缝和热影响区的母材上。对于形变强化和热处理强化的铝合金,FSW 接头的不同区域发生了软化,但可以通过控制热循环,尤其是通过降低 焊缝热机影响区的退火效应和过时效的影响来改善接头的性能,也可以 通过焊后热处理的方式提高热处理强化铝合金FSW接头的性能。
• 它可以焊接所有牌号的铝合金以及用熔焊方法难以焊接的材料,并 突破了普通摩擦焊对轴类零件的限制,可进行板材的对接、搭接、角 接及全位置焊接。由于搅拌摩擦焊是固态焊接,所以没有熔化焊时的 气孔、裂纹及合金元素烧损等缺陷。搅拌摩擦焊的接头性能普遍

异种材料搅拌摩擦焊接头特点与脆性本征研究

异种材料搅拌摩擦焊接头特点与脆性本征研究
和 铝 合 金 的 片 层 结 构 由 于 材 料 的 挤 压 而 发 生 明 显 的 变 形 ,在
试 验 选 用 的 MB 镁 合 金 与 16 铝 合 金 板 ,厚 度 均 为 3m 3 00 m。 圆 柱 形 搅 拌 头 材 质 为 1 r8 9 i 焊 针 高 度 为 28mm, 直 C l NiT , . 径 为 3m m,轴 肩 直 径 为 1 2mm。 试 验 所 用 设 备 是 改 装 的J S C一
的拉 伸 断 口 一侧 出现 少量 韧 窝 带和 大量 的 变形 带断 裂 特 征 。 关 键 词 : 搅 拌 摩 擦 焊 ;镁 合 金 ;铝 合 金 ;金 属 间化 合 物 ;脆 性
中 图分 类 号 :T 4 3 G5. 9 文 献 标识 码 :A
搅 拌 摩 擦 焊 作 为 一 种 新 型 连 接 技 术 ,适 于 连 接 常 规 焊 接 工 艺 难 以 焊 接 的 高 强 铝 合 金 、镁 合金 。搅 拌 摩 擦 焊 具 有 细 化 的 锻 造 组 织 ,无 气 孔 、裂 纹 和元 素 烧 损 等 熔 焊 缺 陷 。 目前 关
2 合 金 搅 拌 摩 擦 焊 接 头 特 点 .
搅 拌 摩 擦 焊 接 头 的低 倍 放 大 图如 图 1 示 。 所
从 图 1 可 以看 出 , 由 于 镁 合 金 塑 性 流 动 的 驱 动 能 相 对 较 a
1 试 验 材 料 及 方 法
维普资讯
2 ・ 验与研究 ・ 2 试
文章 编 号 :0 2 0 5 20 )3 0 2 - 3 10 — 2 X(0 6 0 — 0 2 0
焊 接 技 术
第3 5卷第 3 20 期 0 6年 6月
异 种 材 料 搅 拌 摩 擦 焊 接 头 特 点 与 脆 性 本 征 研 究

搅拌摩擦焊剖析

搅拌摩擦焊剖析

6.35 6.3 7.6 6.35 4.0 4.0 6.0 6.0 6.0 3.0 1.6 4.0 6.0 6.35 10 6.35
— Cylindrical — Threaded,cylindrical — — Cylindrical — — Threaded, cylindrical — — — — Threaded, cylindrical —
1. 搅拌摩擦焊焊接过程
首先将焊件牢牢地固定在工作 平台上; 搅拌焊头高速旋转并将搅拌焊 针插入焊件的接缝处,直至搅拌 焊头的肩部与焊件表面紧密接触; 搅拌焊针高速旋转与其周围母 材摩擦产生的热量和搅拌焊头的
肩部与焊件表面摩擦产生的热量
共同作用,使接缝处材料温度升 高而软化。 搅拌摩擦焊接过程示意图
与传统的熔化焊方法相比,搅拌摩擦焊接头不会产生与熔化有关的如 裂纹、气孔及合金元素的烧损等焊接缺陷; 焊接过程中不需要填充材料和保护气体,使得以往通过传统熔焊方法
无法实现焊接的材料通过搅拌摩擦焊技术得以实现连接;
焊接前无须进行复杂的预处理,焊接后残余应力和变形小;
焊接时无弧光辐射、烟尘和飞溅,噪音低。
— 300-1000 — 350, 400 360 1400 400 — — 1250 1000 850 — 350 350 —
127 90-150 — 102, 152 800-2450 400-500 60 — — 60 75 75 80 15 102 —
2-4 10 9 3.8, 7.5 5.9-17.8 10-15 4 6 4 9-10 1.6 5 2-3 1-4 1.5 2.2
出现焊接缺陷时,需要固相焊接方法进行补焊。
4. 搅拌摩擦焊焊缝组织:
(1)基材区(BM):组织既无机械变形也未经受热作用; (2)热影响区(heat affected zone,HAZ):受热循环的影响,微观 组织和力学性能发生了变化,但没有发生塑性变形; (3)热机影响区(thermo-mechanically affected zone,简称TMAZ):经 受了机械变形和热循环的双重作用,微观结构发生了较大的变化;

焊接工艺中的摩擦搅拌焊技术在航空制造中的应用

焊接工艺中的摩擦搅拌焊技术在航空制造中的应用

焊接工艺中的摩擦搅拌焊技术在航空制造中的应用摩擦搅拌焊技术(friction stir welding,FSW)是一种先进的无损焊接方法,它通过摩擦和搅拌作用将金属材料粘接在一起。

由于其独特的优势,摩擦搅拌焊技术在航空制造领域得到了广泛的应用。

1. 简介摩擦搅拌焊技术最早由英国剑桥大学的Thomas W. Eash博士于1991年发明。

它采用一种圆柱形工具,将两个相接的金属板材在高速旋转和沿着焊缝方向移动的作用下,搅拌并混合两个金属板材的母材,实现焊接。

相较于传统的焊接方法,摩擦搅拌焊不需要熔化金属,因此能够避免气孔和裂纹的产生,焊接接头具有更好的力学性能和可靠性。

2. 应用领域摩擦搅拌焊技术在航空制造中的应用非常广泛。

首先,它被广泛应用于航空器的主要结构件焊接,如飞机外壳、机翼、舵面等。

摩擦搅拌焊能够在保持母材的晶粒结构和机械性能的同时实现高强度焊接,可以减轻飞机结构的重量并提高飞行性能。

3. 优势摩擦搅拌焊技术的优势主要表现在以下几个方面:(1)无熔化:相比传统熔化焊接方法,摩擦搅拌焊不需要加热金属至熔点,避免了熔化过程中的气孔和裂纹等缺陷的产生。

(2)母材保留性能:摩擦搅拌焊接过程中,母材的晶粒结构得以保留,焊缝区域具有与母材相似的性能,提高了焊接接头的可靠性。

(3)高效性:摩擦搅拌焊接速度快,能够实现大尺寸工件的连续焊接,提高了生产效率。

(4)适应性强:不同种类和厚度的金属材料都可以通过摩擦搅拌焊接技术进行连接,具有较强的适应性。

4. 挑战与改进尽管摩擦搅拌焊技术在航空制造中得到了广泛应用,但仍存在一些挑战。

首先,焊接工具的设计和制造需要精密的工艺和高级的合金材料,以满足高温和高速旋转的工作环境。

其次,焊缝的检测和评估方法需要进一步研究和完善,以确保焊接接头的质量和可靠性。

此外,控制焊接过程中温度、力和速度等参数的优化也是摩擦搅拌焊技术的一个重要研究方向。

5. 结论综上所述,摩擦搅拌焊技术在航空制造中的应用前景广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海交通大学科技成果——异种材料搅拌摩擦焊技术
技术背景
利用搅拌摩擦焊焊接温度低、焊件变形小等特点,自主研发待焊材料表面、对接面几何形貌、焊接热力条件等影响接头性能关键因素的调控手段及方法,形成异质异形件间搅拌摩擦焊接技术,不仅可应用于异种金属异形件间的连接,也适用于金属与高分子间的高性能连接。

技术水平
面向生物医用的TC4钛合金/超高分子量聚乙烯间接头,强度达到国际标准两倍以上;
异质异形薄壁铝/铜管间,实现高接头强度(8000N)、耐高内压(12MPa);
实现铝/镁接头高强度(75%强度系数)、高塑性(6%);
四项专利,两项国家自然科学基金项目资助。

应用领域生物医用假体、空调散热管
铝/铜管连接(焊接前后)
颞下颌关节假体(不同骨骼轮廓)。

相关文档
最新文档