2020年杭州市中考数学试题卷(word版本)
浙江省杭州市中考数学真题试题(含解析)
浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
1.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-9【答案】 A【考点】有理数的加减乘除混合运算【解析】【解答】解:A.∵原式=0+1-9=-8,B.∵原式=2+0-9=-7,C.∵原式=2+0-9=-7,D.∵原式=2+1-9=-6,∵-8<-7<-6,∴值最小的是-8.故答案为:A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=-3,n=2 C. m=3,n=2 B.m=-2,n=3【答案】 B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵A(m,2)与B(3,n)关于y轴对称,∴m=-3,n=2.故答案为:B.【分析】关于y轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案.3.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 5【答案】 B【考点】切线长定理【解析】【解答】解:∵PA、PB分别为⊙O的切线,∴PA=PB,又∵PA=3,∴PB=3.故答案为:B.【分析】根据切线长定理可得PA=PB,结合题意可得答案.4.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72 D. 3x+2(30-x)=72【答案】 D【考点】一元一次方程的其他应用【解析】【解答】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差 D. 标准差【答案】 B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B、C重合),连接AM交DE于点N,则()A. B. C.D.【答案】 C【考点】平行线分线段成比例【解析】【解答】解:A.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,A不符合题意;B.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,B不符合题意;C.∵DE∥BC,∴,,∴= ,故正确,C符合题意;D.∵DE∥BC,∴,,∴= ,即= ,故错误,D不符合题意;故答案为:C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案.7.在△ABC中,若一个内角等于另两个内角的差,则()A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°【答案】 D【考点】三角形内角和定理【解析】【解答】解:设△ABC的三个内角分别为A、B、C,依题可得,A=B-C ①,又∵A+B+C=180°②,②-①得:2B=180°,∴B=90°,∴△ABC必有一个内角等于90°.故答案为:D.【分析】根据题意列出等式A=B-C①,再由三角形内角和定理得A+B+C=180°②,由②-①可得B=90°,由此即可得出答案.8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A B C D【答案】 A【考点】一次函数图象、性质与系数的关系【解析】【解答】解:A.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、三象限,∴b>0,a>0,故正确,A符合题意;B.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,B不符合题意;C.∵y1=ax+b图像过一、二、四象限,∴a<0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,C不符合题意;D.∵y1=ax+b图像过二、三、四象限,∴a<0,b<0,又∵y2=bx+a图像过一、三、四象限,∴b>0,a<0,故矛盾,D不符合题意;故答案为:A.【分析】根据一次函数图像与系数的关系:k>0,b>0时,图像经过一、二、三象限;k>0,b<0时,图像经过一、三、四象限;k<0,b<0时,图像经过二、三、四象限;k>0,b>0时,图像经过一、二、四象限;依此逐一分析即可得出答案.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsin x【答案】 D【考点】解直角三角形的应用【解析】【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,∵四边形ABCD为矩形,AD=b,∴∠ABH=90°,AD=BC=b,∵OB⊥OC,∴∠O=90°,又∵∠HCG+∠GHC=90°,∠AHB+∠BAH=90°,∠GHC=∠AHB,∠BC0=x,∴∠HCG=∠BAH=x,在Rt△ABH中,∵cos∠BAH=cosx= ,AB=a,∴AH= ,∵tan∠BAH=tanx= ,∴BH=a·tanx,∴CH=BC-BH=b-a·tanx,在Rt△CGH中,∵sin∠HCG=sinx= ,∴GH=(b-a·tanx)·sinx=bsinx-atanxsinx,∴AG=AH+HG= +bsinx-atanxsinx,= +bsinx- ,=bsinx+acosx.故答案为:D.【分析】作AG⊥OC交OC于点G,交BC于点H,由矩形性质得∠ABH=90°,AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt△ABH中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx= 得BH=a·tanx,从而可得CH长,在Rt△CGH中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx,由AG=AH+HG计算即可得出答案.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-1【答案】 C【考点】二次函数图象与坐标轴的交点问题【解析】【解答】解:∵y=(x+a)(x+b),∴函数图像与x轴交点坐标为:(-a,0),(-b,0),又∵y=(ax+1)(bx+1),∴函数图像与x轴交点坐标为:(- ,0),(- ,0),∵a≠b,∴M=N,或M=N+1.故答案为:C.【分析】根据函数解析式分别得出图像与x轴的交点坐标,根据题意a≠b分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案.二、填空题:本大题有6个小题,每小题4分,共24分,11.因式分解:1-x2=________.【答案】(1+x)(1-x)【考点】因式分解﹣运用公式法【解析】【解答】解:∵原式=(1+x)(1-x).故答案为:(1+x)(1-x).【分析】根据因式分解的方法——公式法因式分解即可得出答案.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。
2020年浙江省杭州市中考数学试卷解析版
2020年浙江省杭州市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.计算的结果是()A. B. C. D. 32.(1+y)(1-y)=()A. 1+y2B. -1-y2C. 1-y2D. -1+y23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A. 17元B. 19元C. 21元D. 23元4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A. c=b sin BB. b=c sin BC. a=b tan BD. b=c tan B5.若a>b,则()A. a-1≥bB. b+1≥aC. a+1>b-1D. a-1>b+16.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A. B.C. D.7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A. y>z>xB. x>z>yC. y>x>zD. z>y>x8.设函数y=a(x-h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A. 若h=4,则a<0B. 若h=5,则a>0C. 若h=6,则a<0D. 若h=7,则a>09.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°10.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A. 若M1=2,M2=2,则M3=0B. 若M1=1,M2=0,则M3=0C. 若M1=0,M2=2,则M3=0D. 若M1=0,M2=0,则M3=0二、填空题(本大题共6小题,共24.0分)11.若分式的值等于1,则x=______.12.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=______.13.设M=x+y,N=x-y,P=xy.若M=1,N=2,则P=______.14.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=______.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是______.16.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=______,BE=______.三、解答题(本大题共7小题,共66.0分)17.以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)-2(x-3)=1.去括号,得3x+1-2x+3=1.移项,合并同类项,得x=-3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.18.某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数最多?为什么?19.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.设函数y1=,y2=-(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a-4,求a和k的值.(2)设m≠0,且m≠-1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?21.如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.22.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.23.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.答案和解析1.【答案】B【解析】解:×=,故选:B.根据二次根式的乘法运算法则进行运算即可.本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2.【答案】C【解析】解:(1+y)(1-y)=1-y2.故选:C.直接利用平方差公式计算得出答案.此题主要考查了平方差公式,正确运用公式是解题关键.3.【答案】B【解析】解:根据题意得:13+(8-5)×2=13+6=19(元).则需要付费19元.故选:B.根据题意列出算式计算,即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.【答案】B【解析】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴sin B=,即b=c sin B,故A选项不成立,B选项成立;tan B=,即b=a tan B,故C选项不成立,D选项不成立.故选:B.根据三角函数的定义进行判断,就可以解决问题.本题主要考查了锐角三角函数的定义,根据锐角三角函数的定义求出对应三角函数值即可.5.【答案】C【解析】解:A、a=0.5,b=0.4,a>b,但是a-1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴a+1>b+1,∵b+1>b-1,∴a+1>b-1,符合题意;D、a=0.5,b=0.4,a>b,但是a-1<b+1,不符合题意.故选:C.举出反例即可判断A、B、D,根据不等式的传递性即可判断C.考查了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.不等式的传递性:若a>b,b>c,则a>c.6.【答案】A【解析】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y轴的正半轴,且过点(1,2),故选:A.求得解析式即可判断.本题考查了一次函数图象上点的坐标特征,图象上点的坐标适合解析式.7.【答案】A【解析】解:由题意可得,y>z>x,故选:A.根据题意,可以判断x、y、z的大小关系,从而可以解答本题.本题考查算术平均数,解答本题的关键是明确算术平均数的含义.8.【答案】C【解析】解:当x=1时,y=1;当x=8时,y=8;代入函数式得:,∴a(8-h)2-a(1-h)2=7,整理得:a(9-2h)=1,若h=4,则a=1,故A错误;若h=5,则a=-1,故B错误;若h=6,则a=-,故C正确;若h=7,则a=-,故D错误;故选:C.当x=1时,y=1;当x=8时,y=8;代入函数式整理得a(9-2h)=1,将h的值分别代入即可得出结果.本题考查了待定系数法、二次函数的性质等知识;熟练掌握待定系数法是解题的关键.9.【答案】D【解析】解:∵OA⊥BC,∴∠AOB=∠AOC=90°,∴∠DBC=90°-∠BEO=90°-∠AED=90°-α,∴∠COD=2∠DBC=180°-2α,∵∠AOD+∠COD=90°,∴β+180°-2α=90°,∴2α-β=90°,故选:D.根据直角三角形两锐角互余性质,用α表示∠CBD,进而由圆心角与圆周角关系,用α表示∠COD,最后由角的和差关系得结果.本题主要考查了圆的基本性质,直角三角形的性质,关键是用α表示∠COD.10.【答案】B【解析】解:选项B正确.理由:∵M1=1,M2=0,∴a2-4=0,b2-8<0,∵a,b,c是正实数,∴a=2,∵b2=ac,∴c=b2,对于y3=x2+cx+4,则有△=c2-16=b2-16=(b2-64)<0,∴M3=0,∴选项B正确,故选:B.选项B正确,利用判别式的性质证明即可.本题考查抛物线与x轴的交点,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.【答案】0【解析】解:由分式的值等于1,得=1,解得x=0,经检验x=0是分式方程的解.故答案为:0.根据分式的值,可得分式方程,根据解分式方程,可得答案.本题考查了分式的值,解分式方程要检验方程的根.12.【答案】20°【解析】解:∵AB∥CD,∴∠ABF+∠EFC=180°,∵∠EFC=130°,∴∠ABF=50°,∵∠A+∠E=∠ABF=50°,∠E=30°,∴∠A=20°.故答案为:20°.直接利用平行线的性质得出∠ABF=50°,进而利用三角形外角的性质得出答案.此题主要考查了平行线的性质以及三角形的外角性质,正确得出∠ABF=50°是解题关键.13.【答案】-【解析】解:(x+y)2=x2+2xy+y2=1,(x-y)2=x2-2xy+y2=4,两式相减得4xy=-3,解得xy=-,则P=-.故答案为:-.根据完全平方公式得到(x+y)2=x2+2xy+y2=1,(x-y)2=x2-2xy+y2=4,两式相减即可求解.本题考查了完全平方公式,完全平方公式:(a±b)2=a2±2ab+b2.14.【答案】【解析】解:∵AB是⊙O的直径,BC与⊙O相切于点B,∴AB⊥BC,∴∠ABC=90°,∵sin∠BAC==,∴设BC=x,AC=3x,∴AB===2x,∴OB=AB=x,∴tan∠BOC==,故答案为:.根据切线的性质得到AB⊥BC,设BC=x,AC=3x,根据勾股定理得到AB===2x,于是得到结论.本题考查了切线的性质,解直角三角形,熟练掌握三角函数的定义是解题的关键.15.【答案】【解析】【分析】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是=.故答案为:.16.【答案】2 -1【解析】解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴=,∴EF=-1(负值舍去),∴BE=EF=-1,故答案为:2,-1.根据矩形的性质得到AD=BC,∠ADC=∠B=∠DAE=90°,根据折叠的性质得到CF=BC,∠CFE=∠B=90°,EF=BE,根据全等三角形的性质得到DF=AE=2;根据相似三角形的性质即可得到结论.本题考查了翻折变换(折叠问题),全等三角形的判定和性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.17.【答案】解:圆圆的解答过程有错误,正确的解答过程如下:3(x+1)-2(x-3)=6.去括号,得3x+3-2x+6=6.移项,合并同类项,得x=-3.【解析】直接利用一元一次方程的解法进而分析得出答案.此题主要考查了解一元一次方程,正确掌握解方程的步骤是解题关键.18.【答案】解:(1)(132+160+200)÷(8+132+160+200)×100%=98.4%,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为5000×2%=100,4月份生产的产品中,不合格的件数为10000×(1-98.4%)=160,∵100<160,∴估计4月份生产的产品中,不合格的件数多.【解析】(1)根据题意列式计算即可;(2)分别求得3月份生产的产品中,不合格的件数和4月份生产的产品中,不合格的件数比较即可得到结论.本题考查了频数分布直方图,扇形统计图,正确的理解题意是解题的关键.19.【答案】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC-BE=12-BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.【解析】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出==,即可得出结果;②先求出=,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.本题考查了相似三角形的判定与性质、平行线的性质等知识;熟练掌握相似三角形的判定与性质是解题的关键.20.【答案】解:(1)∵k>0,2≤x≤3,∴y1随x的增大而减小,y2随x的增大而增大,∴当x=2时,y1最大值为,①;当x=2时,y2最小值为-=a-4,②;由①,②得:a=2,k=4;(2)圆圆的说法不正确,理由如下:设m=m0,且-1<m0<0,则m0<0,m0+1>0,∴当x=m0时,p=y1=,当x=m0+1时,q=y1=>0,∴p<0<q,∴圆圆的说法不正确.【解析】(1)由反比例函数的性质可得,①;-=a-4,②;可求a的值和k的值;(2)设m=m0,且-1<m0<0,将x=m0,x=m0+1,代入解析式,可求p和q,即可判断.本题考查了反比例函数的性质,掌握反比例函数的性质是本题的关键.21.【答案】解:(1)∵在正方形ABCD中,AD∥BC,∴∠DAG=∠F,又∵AG平分∠DAE,∴∠DAG=∠EAG,∴∠EAG=∠F,∴EA=EF,∵AB=2,∠B=90°,点E为BC的中点,∴BE=EC=1,∴AE==,∴EF=,∴CF=EF-EC=-1;(2)①证明:∵EA=EF,EG⊥AF,∴AG=FG,在△ADG和△FCG中,∴△ADG≌△FCG(AAS),∴DG=CG,即点G为CD的中点;②设CD=2a,则CG=a,由①知,CF=DA=2a,∵EG⊥AF,∠GDF=90°,∴∠EGC+∠CGF=90°,∠F+∠CGF=90°,∠ECG=∠GCF=90°,∴∠EGC=∠F,∴△EGC∽△GFC,∴,∵GC=a,FC=2a,∴,∴,∴EC=a,BE=BC-EC=2a-a=a,∴λ=.【解析】(1)根据AB=2,λ=1,可以得到BE、CE的长,然后根据正方形的性质,可以得到AE的长,再根据平行线的性质和角平分线的性质,可以得到EF的长,从而可以得到线段CF的长;(2)①要证明点G为CD边的中点,只要证明△ADG≌△FGC即可,然后根据题目中的条件,可以得到△ADG≌△FGC的条件,从而可以证明结论成立;②根据题意和三角形相似,可以得到CE和EB的比值,从而可以得到λ的值.本题考查正方形的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)由题意,得到-=3,解得b=-6,∵函数y1的图象经过(a,-6),∴a2-6a+a=-6,解得a=2或3,∴函数y1=x2-6x+2或y1=x2-6x+3.(2)∵函数y1的图象经过点(r,0),其中r≠0,∴r2+br+a=0,∴1++=0,即a()2+b•+1=0,∴是方程ax2+bx+1的根,即函数y2的图象经过点(,0).(3)由题意a>0,∴m=,n=,∵m+n=0,∴+=0,∴(4a-b2)(a+1)=0,∵a+1>0,∴4a-b2=0,∴m=n=0.【解析】(1)利用待定系数法解决问题即可.(2)函数y1的图象经过点(r,0),其中r≠0,可得r2+br+a=0,推出1++=0,即a ()2+b•+1=0,推出是方程ax2+bx+1的根,可得结论.(3)由题意a>0,∴m=,n=,根据m+n=0,构建方程可得结论.本题考查二次函数的图象与系数的关系,二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会利用参数解决问题,属于中考常考题型.23.【答案】(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.【解析】(1)解直角三角形求出AB,再证明∠AFB=90°,利用直角三角形斜边中线的性质即可解决问题.(2)①过点F作FG⊥AB于G,交OB于H,连接EH.想办法证明四边形OEHF是平行四边形可得结论.②想办法证明FD=FB,推出FO⊥BD,推出△AOB是等腰直角三角形即可解决问题.本题属于圆综合题,考查了等边三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考压轴题.。
2022年浙江省杭州市中考数学真题(附答案)
一、选择题:本大题有10个小题,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()
A.-8℃B.-4℃C.4℃D.8℃
【答案】D
【解析】
【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.
解得b=-3,
故抛物线 解析式为 ,
令y=0,得 ,
解得 ,
故抛物线与x轴的交点为(-1,0)和(3,0),
函数的图像与x轴的交点位于y轴的两侧;
故命题②,③,④都是正确,命题①错误,
故选A.
【点睛】本题考查了待定系数法确定解析式,抛物线与x轴的交点,对称轴,熟练掌握待定系数法,抛物线与x轴的交点问题是解题的关键.
A. 命题①B. 命题②C. 命题③D. 命题④
【答案】A
【解析】
【分析】根据对称轴为直线 ,确定a的值,根据图像经过点(3,0),判断方程的另一个根为x=-1,位于y轴的两侧,从而作出判断即可.
【详解】假设抛物线的对称轴为直线 ,
则 ,
解得a= -2,
∵函数的图像经过点(3,0),
∴3a+b+9=0,
【答案】B
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.
【详解】解:1412600000= .
故选:B.
C. 线段AD是 ABC的BC边上的高线D. 线段AD是 ABC的AC边上的高线
2020年浙江省杭州市中考数学卷(含答案)
浙江省2020年初中学业水平(杭州市)数学卷试题卷一.选择题:1.2×3=()A .5B .6C .32D .232.(1+y )(1-y )=()A .1+y ²B .﹣1-y ²C .1-y ²D .-1+y ²3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元,圆圆在该快递公司寄一件8千克的物品,需要付费()A .17元B .19元C .21元D .23元4.如图,在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则()A .c=bsinB B .b=csinBC .a=btanBD .b=ctanB5.若a >b ,则()A .a -1≥bB .b +1≥aC .a +1>b -1D .A -1>b +16.在平面直角坐标系中,已知函数y=ax+a (a ≠0)的图象经过点P (1,2),则该函数的图象可能是()A .B .C .D .7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数,若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则()A .y >z >xB .x >z >yC .y >x >zD .z >y >x8.设函数y =a (x-h )2+k (a ,h ,k 是实数,a ≠0),当x =1时,y =1;当x =8时,y =8,()A .若h =4,则a <0B .若h =5,则a >0C .若h =6,则a <0D .若h =7,则a >09.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设∠AED =α,∠AOD =β,则()A .3α+β=180°B .2α+β=180°C .3α-β=90°D .2α-β=90°10.在平面直角坐标系中,已知函数y 1=x ²+ax +1,y 2=x ²+bx +2,y 3=x ²+cx +4,其中a ,b ,c 是正实数,且满足b ²=ac .设函数y 1,y 2,y 3的图象与x 轴的交点个数分别为M 1,M 2,M 3,()A .若M 1=2,M 2=2,则M 3=0B .若M 1=1,M 2=0,则M 3=0C .若M 1=0,M 2=2,则M 3=0D .若M 1=0,M 2=0,则M 3=0二、填空题:本大题有6个小题,每小題4分,共24分.11.若分式x11的值等于1,则x =.12.如图,AB ∥CD ,EF 分别与AB ,CD 交于点B ,F ,若∠E =30°,∠EFC =130°,则∠A =.13.设M=x+y ,N=x ﹣y ,P=xy ,若M =1,N =2,则P =.14.如图,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC 若sin ∠BAC =31,则tan ∠BOC =.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.16.如图是一张矩形纸片,点E 在AB 边上,把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =,BE =.三、解答题:17.(本题满分6分)以下是圆圆解方程13321=--+x x 的解答过程。
2022年浙江省杭州市中考数学试卷-含答案详解
2022年浙江省杭州市中考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为−6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为( )A. −8℃B. −4℃C. 4℃D. 8℃2. 国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为( )A. 14.126×108B. 1.4126×109C. 1.4126×108D. 0.14126×10103. 如图,已知AB//CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC= 50°,则∠A=( )A. 10°B. 20°C. 30°D. 40°4. 已知a,b,c,d是实数,若a>b,c=d,则( )A. a+c>b+dB. a+b>c+dC. a+c>b−dD. a+b>c−d5. 如图,CD⊥AB于点D,已知∠ABC是钝角,则( )A. 线段CD是△ABC的AC边上的高线B. 线段CD是△ABC的AB边上的高线C. 线段AD是△ABC的BC边上的高线D. 线段AD是△ABC的AC边上的高线6. 照相机成像应用了一个重要原理,用公式1f =1u+1v(v≠f)表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u=( )A. fvf−vB. f−vfvC. fvv−fD. v−ffv7. 某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则( )A. |10x19y|=320B. |10y19x|=320C. |10x−19y|=320D. |19x−10y|=3208. 如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(−√33,0),M2(−√3,−1),M3(1,4),M4(2,112)四个点中,直线PB经过的点是( )A. M1B. M2C. M3D. M49. 已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x =1.如果这四个命题中只有一个命题是假命题,则这个假命题是( )A. 命题①B. 命题②C. 命题③D. 命题④10. 如图,已知△ABC 内接于半径为1的⊙O ,∠BAC =θ(θ是锐角),则△ABC 的面积的最大值为( )A. cosθ(1+cosθ)B. cosθ(1+sinθ)C. sinθ(1+sinθ)D. sinθ(1+cosθ)二、填空题(本大题共6小题,共24.0分)11. 计算:√4=______;(−2)2=______.12. 有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于______.13. 已知一次函数y =3x −1与y =kx(k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组{3x −y =1kx −y =0的解是______.14. 某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m.已知B ,C ,E ,F 在同一直线上,AB ⊥BC ,DE ⊥EF ,DE =2.47m ,则AB =______m.15. 某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x >0),则x =______(用百分数表示).16. 如图是以点O 为圆心,AB 为直径的圆形纸片,点C 在⊙O 上,将该圆形纸片沿直线CO 对折,点B 落在⊙O 上的点D 处(不与点A 重合),连接CB ,CD ,AD.设CD 与直径AB 交于点E.若AD =ED ,则∠B =______度;BCAD的值等于______.三、解答题(本大题共7小题,共66.0分。
2021年浙江省杭州市中考数学试题(word版,含答案解析)
2021年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
1.(3分)(2021)(--= ) A .2021-B .2021C .12021-D .120212.(3分)“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜记录.数据10909用科学记数法可表示为( ) A .50.1090910⨯B .41.090910⨯C .310.90910⨯D .2109.0910⨯3.(3分)因式分解:214(y -= ) A .(12)(12)y y -+B .(2)(2)y y -+C .(12)(2)y y -+D .(2)(12)y y -+4.(3分)如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连结PT ,则( )A .2PT PQB .2PT PQC .PT PQD .PT PQ5.(3分)下列计算正确的是( ) A 222B 2(2)2-=-C 222=±D 2(2)2-±6.(3分)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为(0)x x >,则( ) A .60.5(1)25x -=B .25(1)60.5x -=C .60.5(1)25x +=D .25(1)60.5x +=7.(3分)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A .15B .14 C .13D .128.(3分)在“探索函数2y ax bx c =++的系数a ,b ,c 与图象的关系”活动中,老师给出了直角坐标系中的四个点:(0,2)A ,(1,0)B ,(3,1)C ,(2,3)D .同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a 的值最大为( )A .52B .32C .56D .129.(3分)已知线段AB ,按如下步骤作图:①作射线AC ,使AC AB ⊥;②作BAC ∠的平分线AD ;③以点A 为圆心,AB 长为半径作弧,交AD 于点E ;④过点E 作EP AB ⊥于点P ,则:(AP AB = )A .5B .1:2C .3D .210.(3分)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别是1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =--D .11y x=-和21y x =-+二、填空题:本大题有6个小题,每小题4分,共24分。
2020年浙江省杭州市中考数学试题及参考答案(word解析版)
2020年浙江省杭州市中考数学试题及参考答案与解析(考试时间100分钟,满分100分)一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
1.×=()A.B.C.D.32.(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin BC.a=b tan B D.b=c tan B5.若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+16.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0 B.若h=5,则a>0C.若h=6,则a<0 D.若h=7,则a>09.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°10.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0 B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0 D.若M1=0,M2=0,则M3=0二、认真填一填(本题有6个小题,每小題4分,共24分)11.若分式的值等于1,则x=.12.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=.13.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.14.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.16.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.23.(12分)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.答案与解析一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
浙江省杭州市萧山区2020年中考数学模拟试卷(含答案解析)
2020年浙江省杭州市萧山区中学中考数学模拟试卷选择题(共10小题,满分30分,每小题3分)一.1.函数y=(x+1)°-2的最小值是()A.1B.-1C.2D.-22.从1978年12月18日党的^一届三中全会决定改革开放到如今已经40周年了,我国GDP(国内生产总值)从1978年的1495亿美元到2017年已经达到了122400亿美元,全球排名第二,将122400用科学记数法表示为(A.12.24X104B. 1.224X105C.0.1224X106D. 1.224X1063.若2'〃=5,4"=3,则4in m的值是()A•会C.2D.44.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表7K了寓言中的龟、兔的路程S和时间,的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟5.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、-1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2006.如图,己知直线AB、CD被直线AC所截,AB//CD,E是平面内任意一点(点E不在直线AB、CD、AC_b),设/BAE=a,ZDCE=^.下列各式:①a+8,②a",③&-a,④360。
-a-p, ZAEC 的度数可能是( )A.①②③B.①②④C.①③④D.①②③④7.把抛物线y= - 2x 向上平移1个单位,再向右平移1个单位,得到的抛物线是()A. y= - 2 (x+1) ?+1B. y= -2 (x- 1) 2+1C. y= - 2 (x- 1) 2 - 1D. y= - 2 (x+1) 2 - 18.现在把一张正方形纸片按如图方式剪去一个半径为40柄厘米的圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米.(不计损耗、重叠,结果精确到1厘米,插F.41,寸*1.73)A. 6470 D. 739.如图,^ABCD 的对角线AC 、BD 交于点O, DE 平分ZAD C 交AB 于点E, ZBCD=60° , AD =*43,连接 OE.下列结论:①S°abcd =AD・BD ;②DB 平分ZCDE ; @AO=DE ; @S a ADE =5S m )fe ,其中正确的个数有()A. 9AB. 10 人C. 3个D. 4个如果一共碰杯55次,则参加酒会的人数为(c. II A D. 12 A二.填空题(共6小题,满分24分,每小题4分)11.若二次函数y=2 (x+1) 2+3的图象上有三个不同的点A (xi ,4)、B (羽+电,n )、C (电,4),则〃的值为.12,某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是13.如图,已知函数y=x+2的图象与函数尸直•(切0)的图象交于A、B两点,连接80并延长交X函数y=—Ck^O)的图象于点C,连接AC,若△ABC的面积为8.则k的值为.x14.如图1为两个边长为1的正方形组成的2X1格点图,点A,B,C,£>都在格点上,AB,CD交于点P,则tanZBPD=,如果是"个边长为1的正方形组成的“X1格点图,如图2,那15.如图,动点。
浙江省杭州市2020年中考数学试题(含答案)
2020年浙江省杭州市初中学业考试(中考)试卷数学试题一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.=⨯32( )A . 5B .6C .32D .232.(1+y )(1-y )=( )A .1+y 2B .-1-y 2C .1-y 2D .-1+y 23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )A .17元B .19元C .21元D .23元4.如图,在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则( )A .c =bsinBB .b =csinBC .a =btanBD .b =ctanB5.若a >b ,则( )A .a -1≥bB .b +1≥aC .a +1>b -1D .a -1>b +16.在平面直角坐标系中,已知函数y =ax +a (a ≠0)的图象经过点P (1,2),则该函数的图象可能是( )7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x8.设函数y =a (x -h )2+k (a ,h ,k 是实数,a =0),当x =1时,y =1;当x =8时,y =8,( )A .若h =4,则a <0B .若h =5,则a >0C .若h =6,则a <0D .若h =7,则a >09.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设∠AED =α,∠AOD =β,则( )A .3α+β=180°B .2α+β=180°C .3α-β=90°D .2α-β=90°10.在平面直角坐标系中,已知函数y 1=x 2+ax +1,y 2=x 2+bx +2,y 3=x 2+cx +4,其中a ,b ,c 是正实数,且满足b 2=ac .设函数y 1;y 2,y 3的图象与x 轴的交盛个数分别为M 1,M 2,M 3,( )A .若M 1=2,M 2=2,则M 3=0B .若M 1=1,M 2=0,则M 3=0C .若M 1=0,M 2=2,则M 3=0D .若M 1=0,M 2=0,则M 3=0A B C D二、填空题:本大题有6个小题,每小题4分,共24分.11.若分式11+x 的值等于1,则x =__________. 12.如图,AB ∥CD ,EF 分别与AB ,CD 交于点B ,F .若∠E =30,∠EFC =130,则∠A =________.13.设M =x +y ,N =x -y ,P =xy .若M =1,N =2,则P =________.14.如图,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC .若sin ∠BAC =31,则tan ∠BOC =________.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是__________.16.如图是一张矩形纸片,点E 在AB 边上,把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =__________.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤。
(精品中考卷)浙江省杭州市中考数学真题及答案
数 学 试题卷一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A .-8℃B .-4℃C .4℃D .8℃2.国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为( )A .814.12610⨯B .91.412610⨯C .81.412610⨯D .100.1412610⨯3.如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =()A .10°B .20°C .30°D .40° 4.已知a ,b ,c ,d 是实数,若a b >,c d =,则( )A .a c b d +>+B .a b c d +>+C .a c b d +>-D .a b c d +>-5.如图,CD ⊥AB 于点D ,已知∠ABC 是钝角,则()A .线段CD 是△ABC 的AC 边上的高线B .线段CD 是△ABC 的AB 边上的高线 C .线段AD 是△ABC 的BC 边上的高线D .线段AD 是△ABC 的AC 边上的高线6.照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,u ,则u =( )A .fvf v -B .f vfv- C .fvv f- D .v ffv-7.某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .1032019xy= B .1032019yx =C .1019320x y -=D .1910320x y -=8.如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M9.已知二次函数2y x ax b =++(a ,b 为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x 轴的交点位于y 轴的两侧;命题④:该函数的图象的对称轴为直线1x =.如果这四个命题中只有一个命题是假命题,则这个假命题是( )A .命题①B .命题②C .命题③D .命题④10.如图,已知△ABC 内接于半径为1的O ,BAC θ∠=(θ是锐角),则ABC △的面积的最大值为()A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+二.填空题:本大题有6个小题,每小题4分,共24分,11=_________;()22-=_________.12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于_________.13.已知一次函数31y x =-与y kx =(k 是常数,0k ≠)的图象的交点坐标是(1,2),则方程组31x y kx y -=⎧⎨-=⎩的解是_________.14.某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m .EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ⊥BC ,DE ⊥EF ,DE =2.47m .则AB =_________m .15.某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示). 16.如图是以点O 为圆心,AB 为直径的圆形纸片.点C 在O 上,将该圆形纸片沿直线CO 对折,点B 落在O 上的点D 处(不与点A 重合),连接CB ,CD ,AD .设CD 与直径AB 交于点E .若AD =ED ,则∠B =_________度;BCAD的值等于_________.三.解答题:本大题有7个小题,共66分。
2020年中考数学试卷(word版,含答案)
2020年初中学业水平考试数学答题注意事项1、本试卷共6页,满分150分,考试试卷150分钟。
2、答案全部写在答题卡上,写在本试卷上无效。
3、答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其它答案,答非选择题必须用0.5毫米黑色墨水签字笔,在答题卡上对应题号的答题区域书写答案,注意不要答错位置,也不要超界。
4、作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2019的相反数是11A. B.-2019 C.- D.-2019201920192.下列运算正确的是A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b63.一组数据:2、4、4、3、7、7,则这组数据的中位数是A.3B. 3.5C.4D.74.一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等A.105°B.100°C.75°D.60°5.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是A.20πB.15πC.12πD.9π6.不等式x一1≤2的非负整数解有A.1个B.2个C.3个D.4个7.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是A.63—πB.63-2πC.63+πD.3+2π( 计算:( )-1 -(π-1)0 + 1 - 3 )÷8. 如图在平面直角坐标系 xoy 中,菱形 ABCD 的顶点 A 与原点 o 重合,顶点 B 落在 x 轴的k正半轴上,对角线 AC 、BD 交于点 M ,点 D 、M 恰好都在反比例函数 y= (x>0)的图像上xAC,则 的值为BDA.2B. 3C. 2D. 5二、填空题, 本大题共 10 小题,每小题 3 分,共 30 分,不需写出解答过程,请把答案直 接填写在答题卡相应位置上)9. 实数 4 的算术平方根为▲ 10. 分解因式 a 2-2a=▲ 11. 宿迁近年来经济快速发展,2018 年 GDP 约达到 275 000 000 000 元。
2020年浙江省杭州市上城区中考数学模拟试卷
中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.某种鲸鱼的体重约为1.36×105千克,关于这个近似数,下列说法正确的是()A. 精确到百分位B. 精确到十分位C. 精确到个位D. 精确到千位2.下列语句写成数学式子正确的是()A. 9是81的算术平方根:±=9B. 5是(-5)2的算术平方根:±=5C. ±6是36的平方根:=±6D. -2是4的负的平方根:-=-23.下列定理中,逆命题是假命题的是()A. 在一个三角形中,等角对等边B. 全等三角形对应角相等C. 有一个角是60度的等腰三角形是等边三角形D. 等腰三角形两个底角相等4.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A. x<yB. x>yC. x≤yD. x≥y5.已知一个函数图象经过(1,-4),(2,-2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数6.在平面直角坐标系中,过点(-2,3)的直线l经过一、二、三象限,若点(0,a),(-1,b),(c,-1)都在直线l上,则下列判断正确的是()A. a<bB. a<3C. b<3D. c<-27.在同一直角坐标系中,函数y=kx+1与y=(k≠0)的图象大致是()A. B.C. D.8.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=12,则下列关于S1、S2、S3的说法正确的是()A. S1=2B. S2=3C. S3=6D. S1+S3=89.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A. ①正确,②错误B. ①错误,②正确C. ①,②都错误D. ①,②都正确10.已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A. ①②③B. ①③④C. ①②④D. ①②③④二、填空题(本大题共6小题,共30.0分)11.分解因式:m4-81m2=______.12.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是______.13.设直线y=-x+2k+7与直线y=x+4k-3的交点为M,若点M在第一象限或第二象限,则k的取值范围是______ .14.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.15.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是______(用a、b的代数式表示).16.如图,在△ABC中,∠C=90°,点D、E、F分别在边BC、AB、AC上,且四边形CDEF为正方形,若AE=3,BE=5,则S△AEF+S△EDB=______.三、解答题(本大题共3小题,共30.0分)17.(1)先化简÷(1+),再从0,-1,1这三个数中选一个你喜欢的数代入求值.(2)解不等式组18.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B-A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.19.已知函数y=-x2+bx+c(其中b,c是常数)(1)四位同学在研究此函数时,甲发现当x=0时,y=5;乙发现函数的最大值为9;丙发现函数图象的对称轴是直线x=2;丁发现4是方程-x2+bx+c=0的一个根.已知这四位同学中只有一位发现的结论是错误的,请直接写出错误的那个人是谁,并求出此函数表达式;(2)在(1)的条件下,函数y=-x2+bx+c的图象顶点为A,与x轴正半轴交点为B,与y轴的交点为C,若将该图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若c=b2,当-2≤x≤0时,函数y=-x2+bx+c的最大值为5,求b的值.答案和解析1.【答案】D【解析】解:近似数1.36×105精确到千位.故选D.根据近似数的精确度求解.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.2.【答案】D【解析】解:A、9是81的算术平方根记作=9,故本选项错误;B、5是(-5)2的算术平方根记作=5,故本选项错误;C、±6是36的平方根:±=±6,故本选项错误;D、-2是4的负平方根记作:-=-2,故本选项正确.故选D.根据算术平方根和平方根的定义确定正确的答案即可.本题考查了算术平方根及平方根的定义,解题的关键是正确的了解其性质.3.【答案】B【解析】解:A、逆命题为:在一个三角形中等角对等边,正确,是真命题;逆命题为两直线平行,同位角相等,正确,为真命题;B、全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C、逆命题为:三条边对应相等的三角形全等,正确,是真命题;D、逆命题为:两个角相等的三角形是等腰三角形,正确,是真命题;故选:B.分别写出原命题的逆命题,然后判断真假即可.本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题,难度不大.4.【答案】B【解析】解:根据题意得,他买黄瓜每斤平均价是以每斤元的价格卖完后,结果发现自己赔了钱则>解之得,x>y.所以赔钱的原因是x>y.故选:B.题目中的不等关系是:买黄瓜每斤平均价>卖黄瓜每斤平均价.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.5.【答案】D【解析】解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=-4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.求出一次函数和反比例函数的解析式,根据其性质进行判断.本题考查的是正比例函数、一次函数、反比例函数和二次函数的性质,掌握各个函数的增减性是解题的关键.6.【答案】D【解析】解:设一次函数的解析式为y=kx+t(k≠0),∵直线l过点(-2,3).点(0,a),(-1,b),(c,-1),∴斜率k===,即k==b-3=,∵直线l经过一、二、三象限,∴k>0,∴a>3,b>3,c<-2.故选D.设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(-2,3).点(0,a),(-1,b),(c,-1)得出斜率k的表达式,再根据经过一、二、三象限判断出k的符号,由此即可得出结论.本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.7.【答案】A【解析】解:k>0时,一次函数y=kx+1的图象经过第一、二、三象限,反比例函数的两个分支分别位于第二、四象限,无符合选项;k<0时,一次函数y=kx+1的图象经过第一、二、四象限,反比例函数的两个分支分别位于第一、三象限,A选项符合.故选:A.比例系数相同,两个函数必有交点,然后根据比例系数的符号确定正确选项即可.本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8.【答案】D【解析】解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2,=CG2+DG2+2CG•DG,=GF2+2CG•DG,S2=GF2,S3=(NG-NF)2=NG2+NF2-2NG•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+NG2+NF2-2NG•NF=3GF2=12,∴GF2=4,∴S2=4,∵S1+S2+S3=12,∴S1+S3=8,故选:D.根据八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,得出CG=NG,CF=DG=NF,再根据三个正方形面积公式列式相加:S1+S2+S3=12,求出GF2的值,从而可以计算结论即可.此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质,根据已知得出3GF2=12是解决问题的关键.9.【答案】D【解析】解:∵△A1B1C1,△A2B2C2的周长相等,A1B1=A2B2,A1C1=A2C2,∴B1C1=B2C2,∴△A1B1C1≌△A2B2C2(SSS),∴①正确;∵∠A1=∠A2,∠B1=∠B2,∴△A1B1C1∽△A2B2C2∵△A1B1C1,△A2B2C2的周长相等,∴△A1B1C1≌△A2B2C2∴②正确;故选:D.根据SSS即可推出△A1B1C1≌△A2B2C2,判断①正确;根据“两角法”推知两个三角形相似,然后结合两个三角形的周长相等推出两三角形全等,即可判断②.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.10.【答案】D【解析】【分析】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE,即③正确,根据③可求得④正确.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF.…④正确.故选D.11.【答案】m2(m-9)(m+9)【解析】解:原式=m2(m2-81),=m2(m-9)(m+9).故答案为:m2(m-9)(m+9).首先提公因式m2,再利用平方差进行二次分解即可.此题主要考查了提公因式法与公式法分解因式,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.【答案】62°或118°【解析】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°-28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故答案为:62°或118°.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出62°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.13.【答案】k>-且k≠5【解析】解:联立,解得,∵交点M在第一象限或第二象限,∴3k+2>0且5-k≠0,解得k>-且k≠5.故答案为:k>-且k≠5.把k看作常数,联立两函数解析式求出交点坐标,再根据交点在第一象限或第二象限,横坐标不等于0,纵坐标大于0列出不等式组求解即可.本题考查了两直线相交的问题,联立两函数解析式求交点坐标的方法是常用的方法,要注意象限内的交点的横坐标不能为零.14.【答案】5【解析】解:如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值.∵AD是∠BAC的平分线,∴M′H=MN,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=5,∠BAC=45°,∴BH=AB•sin45°=5×=5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为:5.作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由锐角三角函数的定义即可得出结论.本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.15.【答案】ab【解析】【分析】本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2-4×()2=ab.故答案为:ab.16.【答案】【解析】解:设正方形CDEF的边长为x,则RF=DE=x,∵EF∥BC,∴∠AEF=∠B,∵∠AFE=∠EDB=90°,∴△AEF∽△EBD,∴==,即==,∴AF=x,BD=x,在Rt△BDE中,x2+(x)2=52,∴x2=,∴S△AEF+S△EDB=•x•x+•x•x=x2=×=.故答案为.设正方形CDEF的边长为x,则RF=DE=x,证明△AEF∽△EBD,利用相似比得到AF=x,BD=x,在Rt△BDE中利用勾股定理得到x2+(x)2=52,则x2=,然后根据三角形面积公式计算S△AEF+S△EDB.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了正方形的性质.17.【答案】解:(1)原式=÷,=•,=,∵a-1≠0,a+1≠0,∴a≠±1,∴a取0,当a=0时,原式=-1;(2),由①得:m≥3,由②得:m<6,∴不等式组的解集为3≤m<6.【解析】(1)首先计算括号里面的加法,然后再算括号外的除法,化简后,根据分式有意义的条件确定a的取值,再代入a的值即可;(2)首先分别计算出两个不等式的解集,再根据解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到确定不等式组的解集.此题主要考查了分式的化简求值以及一元一次不等式组的解法,关键是掌握计算顺序,正确把分式进行化简.18.【答案】解:在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4-2t,在Rt△PCB中,PC2+CB2=PB2,即:(4-2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7-2t,PE=PC=2t-4,BE=5-4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t-4)2+12=(7-2t)2,解得:t=,∴当时,P在△ABC的角平分线上;(3)根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4-2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t-3-4=,解得:t=,②PB=BC,即2t-3-4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.【解析】(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4-2t,根据勾股定理列方程即可得到结论;(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7-2t,PE=PC=2t-4,BE=5-4=1,根据勾股定理列方程即可得到结论;(3)在Rt△ABC中,根据勾股定理得到AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,得到PC=BC,即4-2t=3,求得t=,当P在AB上时,△BCP 为等腰三角形,若CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,求得t=,若PB=BC,即2t-3-4=3,解得t=5,③PC=BC,如图3,过C作CF⊥AB于F,由射影定理得;BC2=BF•AB,列方程32=×5,即可得到结论.本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.19.【答案】解:(1)甲发现当x=0时,y=5,则c=5;乙发现函数的最大值为9,即c+=9;丙发现函数图象的对称轴是直线x=2,则-=4,即b=4;丁发现4是方程-x2+bx+c=0的一个根,则c+4b=16,假设甲和丙正确,即c=5,b=4,则即c+=9,故乙正确,而丁错误,故错误的是丁,函数的表达式为:y=-x2+4x+5;(2)y=-x2+4x+5,则点A(2,9),平移后顶点坐标为:(2,9-m),y=-x2+4x+5,令y=0,则x=5或-1,故点B(5,0),而点C(0,5),过点A作y轴的平行线交BC于点H,由点B、C的坐标得,直线BC的表达式为:y=-x+5,当x=2时,y=3,故点H(2,3),函数图象的顶点落在△ABC的内部,则3<9-m<9,解得:0<m<6;(3)c=b2,则抛物线的表达式为:y=x2+bx+b2,函数的对称轴为:x=b,①当b≥0时,即b≥0,则x=0时,y取得最大值,即b2=5,解得:b=(舍去负值);②当-2<b<0时,即-4<b<0,当x=b时,y取得最大值,即-(b)2+b2+b2=5,解得:b=±2(舍去2);③当b≤-4时,同理可得:b=1-(舍去);综上,b=或-2.【解析】(1)假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论;(2)y=-x2+4x+5,则点A(2,9),平移后顶点坐标为:(2,9-m),按照平移后的图象顶点在点A、H之间求解即可;(3)分b≥0、-2<b<0、b≤-4三种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、函数的最值、图形的平移等,综合性强,难度适中.。
2020年浙江省杭州市中考数学试卷 解析版
2020年浙江省杭州市中考数学试卷一.选择题(共10小题)1.×=()A.B.C.D.32.(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B5.若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1D.a﹣1>b+16.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>09.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°10.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0二.填空题(共6小题)11.若分式的值等于1,则x=.12.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=.13.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.14.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.16.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三.解答题(共7小题)17.以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.18.某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数最多?为什么?19.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?21.如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.22.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.23.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.2020年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题(共10小题)1.×=()A.B.C.D.3【分析】根据二次根式的乘法运算法则进行运算即可.【解答】解:×=,故选:B.2.(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y2【分析】直接利用平方差公式计算得出答案.【解答】解:(1+y)(1﹣y)=1﹣y2.故选:C.3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元【分析】根据题意列出算式计算,即可得到结果.【解答】解:根据题意得:13+(8﹣5)×2=13+6=19(元).则需要付费19元.故选:B.4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B【分析】根据三角函数的定义进行判断,就可以解决问题.【解答】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴sin B=,即b=c sin B,故A选项不成立,B选项成立;tan B=,即b=a tan B,故C选项不成立,D选项不成立.故选:B.5.若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1D.a﹣1>b+1【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.【解答】解:A、a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴a+1>b+1,∵b+1>b﹣1,∴a+1>b﹣1,符合题意;D、a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.6.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【分析】求得解析式即可判断.【解答】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y轴的正半轴,且过点(1,2),故选:A.7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【解答】解:由题意可得,y>z>x,故选:A.8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>0【分析】当x=1时,y=1;当x=8时,y=8;代入函数式整理得a(9﹣2h)=1,将h 的值分别代入即可得出结果.【解答】解:当x=1时,y=1;当x=8时,y=8;代入函数式得:,∴a(8﹣h)2﹣a(1﹣h)2=7,整理得:a(9﹣2h)=1,若h=4,则a=1,故A错误;若h=5,则a=﹣1,故B错误;若h=6,则a=﹣,故C正确;若h=7,则a=﹣,故D错误;故选:C.9.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°【分析】根据直角三角形两锐角互余性质,用α表示∠CBD,进而由圆心角与圆周角关系,用α表示∠COD,最后由角的和差关系得结果.【解答】解:∵OA⊥BC,∴∠AOB=∠AOC=90°,∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,∴∠COD=2∠DBC=180°﹣2α,∵∠AOD+∠COD=90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D.10.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0【分析】选项B正确,利用判别式的性质证明即可.【解答】解:选项B正确.理由:∵M1=1,M2=0,∴a2﹣4=0,b2﹣8<0,∵a,b,c是正实数,∴a=2,∵b2=ac,∴c=b2,对于y3=x2+cx+4,则有△=c2﹣16=b2﹣16=(b2﹣64)<0,∴M3=0,∴选项B正确,故选:B.二.填空题(共6小题)11.若分式的值等于1,则x=0.【分析】根据分式的值,可得分式方程,根据解分式方程,可得答案.【解答】解:由分式的值等于1,得=1,解得x=0,经检验x=0是分式方程的解.故答案为:0.12.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=20°.【分析】直接利用平行线的性质得出∠ABF=50°,进而利用三角形外角的性质得出答案.【解答】解:∵AB∥CD,∴∠ABF+∠EFC=180°,∵∠EFC=130°,∴∠ABF=50°,∵∠A+∠E=∠ABF=50°,∠E=30°,∴∠A=20°.故答案为:20°.13.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=﹣.【分析】根据完全平方公式得到(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减即可求解.【解答】解:(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减得4xy=﹣3,解得xy=﹣,则P=﹣.故答案为:﹣.14.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.【分析】根据切线的性质得到AB⊥BC,设BC=x,AC=3x,根据勾股定理得到AB===2x,于是得到结论.【解答】解:∵AB是⊙O的直径,BC与⊙O相切于点B,∴AB⊥BC,∴∠ABC=90°,∵sin∠BAC==,∴设BC=x,AC=3x,∴AB===2x,∴OB=AB=x,∴tan∠BOC==,故答案为:.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是=.故答案为:.16.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=2,BE =﹣1.【分析】根据矩形的性质得到AD=BC,∠ADC=∠B=∠DAE=90°,根据折叠的性质得到CF=BC,∠CFE=∠B=90°,EF=BE,根据全等三角形的性质得到DF=AE=2;根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴=,∴EF=﹣1(负值舍去),∴BE=EF=﹣1,故答案为:2,﹣1.三.解答题(共7小题)17.以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.【分析】直接利用一元一次方程的解法进而分析得出答案.【解答】解:圆圆的解答过程有错误,正确的解答过程如下:3(x+1)﹣2(x﹣3)=6.去括号,得3x+3﹣2x+6=6.移项,合并同类项,得x=﹣3.18.某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数最多?为什么?【分析】(1)根据题意列式计算即可;(2)分别求得3月份生产的产品中,不合格的件数和4月份生产的产品中,不合格的件数比较即可得到结论.【解答】解:(1)(132+160+200)÷(8+132+160+200)×100%=98.4%,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为5000×2%=100,4月份生产的产品中,不合格的件数为10000×(1﹣98.4%)=160,∵100<160,∴估计4月份生产的产品中,不合格的件数多.19.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.【分析】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出==,即可得出结果;②先求出=,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.【解答】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.20.设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?【分析】(1)由反比例函数的性质可得,①;﹣=a﹣4,②;可求a的值和k的值;(2)设m=m0,且﹣1<m0<0,将x=m0,x=m0+1,代入解析式,可求p和q,即可判断.【解答】解:(1)∵k>0,2≤x≤3,∴y1随x的增大而减小,y2随x的增大而增大,∴当x=2时,y1最大值为,①;当x=2时,y2最小值为﹣=a﹣4,②;由①,②得:a=2,k=4;(2)圆圆的说法不正确,理由如下:设m=m0,且﹣1<m0<0,则m0<0,m0+1>0,∴当x=m0时,p=y1=,当x=m0+1时,q=y1=>0,∴p<0<q,∴圆圆的说法不正确.21.如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.【分析】(1)根据AB=2,λ=1,可以得到BE、CE的长,然后根据正方形的性质,可以得到AE的长,再根据平行线的性质和角平分线的性质,可以得到EF的长,从而可以得到线段CF的长;(2)①要证明点G为CD边的中点,只要证明△ADG≌△FGC即可,然后根据题目中的条件,可以得到△ADG≌△FGC的条件,从而可以证明结论成立;②根据题意和三角形相似,可以得到CE和EB的比值,从而可以得到λ的值.【解答】解:(1)∵在正方形ABCD中,AD∥BC,∴∠DAG=∠F,又∵AG平分∠DAE,∴∠DAG=∠EAG,∴∠EAG=∠F,∴EA=EF,∵AB=2,∠B=90°,点E为BC的中点,∴BE=EC=1,∴AE==,∴EF=,∴CF=EF﹣EC=﹣1;(2)①证明:∵EA=EF,EG⊥AF,∴AG=FG,在△ADG和△FCG中,∴△ADG≌△FCG(AAS),∴DG=CG,即点G为CD的中点;②设CD=2a,则CG=a,由①知,CF=DA=2a,∵EG⊥AF,∠GDF=90°,∴∠EGC+∠CGF=90°,∠F+∠CGF=90°,∠ECG=∠GCF=90°,∴∠EGC=∠F,∴△EGC∽△GFC,∴,∵GC=a,FC=2a,∴,∴,∴EC=a,BE=BC﹣EC=2a﹣a=a,∴λ=.22.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.【分析】(1)利用待定系数法解决问题即可.(2)函数y1的图象经过点(r,0),其中r≠0,可得r2+br+a=0,推出1++=0,即a()2+b•+1=0,推出是方程ax2+bx+1的根,可得结论.(3)由题意a>0,∴m=,n=,根据m+n=0,构建方程可得结论.【解答】解:(1)由题意,得到﹣=3,解得b=﹣6,∵函数y1的图象经过(a,﹣6),∴a2﹣6a+a=﹣6,解得a=2或3,∴函数y1=x2﹣6x+2或y1=x2﹣6x+3.(2)∵函数y1的图象经过点(r,0),其中r≠0,∴r2+br+a=0,∴1++=0,即a()2+b•+1=0,∴是方程ax2+bx+1的根,即函数y2的图象经过点(,0).(3)由题意a>0,∴m=,n=,∵m+n=0,∴+=0,∴(4a﹣b2)(a+1)=0,∵a+1>0,∴4a﹣b2=0,∴m=n=0.23.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.【分析】(1)解直角三角形求出AB,再证明∠AFB=90°,利用直角三角形斜边中线的性质即可解决问题.(2)①过点F作FG⊥AB于G,交OB于H,连接EH.想办法证明四边形OEHF是平行四边形可得结论.②想办法证明FD=FB,推出FO⊥BD,推出△AOB是等腰直角三角形即可解决问题.【解答】(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.。
2020年浙江省杭州市中考数学试题及参考答案(word解析版)
2020年浙江省杭州市中考数学试题及参考答案与解析(考试时间100分钟,满分100分)一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
1.×=()A.B.C.D.32.(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin BC.a=b tan B D.b=c tan B5.若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+16.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0 B.若h=5,则a>0C.若h=6,则a<0 D.若h=7,则a>09.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°1 10.在平面直角坐标系中,已知函数y 1=x 2+ax +1,y 2=x 2+bx +2,y 3=x 2+cx +4,其中a ,b ,c 是正实数,且满足b 2=ac .设函数y 1,y 2,y 3的图象与x 轴的交点个数分别为M 1,M 2,M 3,( ) A .若M 1=2,M 2=2,则M 3=0 B .若M 1=1,M 2=0,则M 3=0 C .若M 1=0,M 2=2,则M 3=0 D .若M 1=0,M 2=0,则M 3=0 二、认真填一填(本题有6个小题,每小題4分,共24分) 11.若分式的值等于1,则x = .12.如图,AB ∥CD ,EF 分别与AB ,CD 交于点B ,F .若∠E =30°,°,∠EFC =130°,则∠A = .13.设M =x +y ,N =x ﹣y ,P =xy .若M =1,N =2,则P = .14.如图,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC .若sin ∠BAC =,则tan ∠BOC = .15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 .16.如图是一张矩形纸片,点E 在AB 边上,把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF = ,BE = .三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.的解答过程.解:去分母,得3(x +1)﹣2(x ﹣3)=1. 去括号,得3x +1﹣2x +3=1. 移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?月份生产的产品中,估计哪个月的不合格件数多?为什么?19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,的长;①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.的面积.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.的值. (2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?认为圆圆的说法正确吗?为什么?21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).的长.(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,边的中点.①求证:点G为CD边的中点.的值.②求λ的值.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.的值.23.(12分)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC 的中点,连接EF.的长.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.的度数.②若DF=EF,求∠BAC的度数.答案与解析一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
2020年中考数学试卷(word版,含答案) (11)
(第9题图) 2020学年初中毕业生学业考试数 学 试 题学校:________考生姓名:________ 准考证号:注意事项: 1.本试题卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分) 1. -2019的绝对值是( )A. 2019B.-2019C.12019D.12019-2. 下列运算正确的是( )A. a 3·a 2 = a 6B. a 7÷a 3 = a 4C. (-3a )2 = -6a 2D. (a -1)2= a 2-13. 据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为( )A. 0.1031×106B. 1.031×107C. 1.031×108D. 10.31×1094. 如图是由7个小正方体组合成的几何体,则其左视图为( )5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35o,则∠1的度数为( )A. 45oB. 55oC. 65oD. 75o6. 已知一组数据为7,2,5,x ,8,它们的平均数是5,则这组数据的方差为( ) A. 3 B. 4.5 C. 5.2 D. 67. 关于x 的一元二次方程x 2-4x +m =0的两实数根分别为x 1、x 2,且x 1+3x 2=5,则m 的值为( ) A.74B.75C.76D. 08. 在同一平面直角坐标系中,函数y x k =-+与ky x=(k 为常数,且k ≠ 0)的图象大致是( )A. B. C. D.9. 二次函数2y ax bx c =++的图象如图所示,对称轴是直线x =1.下列结论:①abc ﹤0 ②3a +c ﹥0 ③(a +c )2-b 2﹤0 ④a +b ≤m (am +b )(m 为实数).其中结论正确的个数为( )A. 1个B. 2个C. 3个D. 4个(第5题图) (第4题图)10. 如图,在平面直角坐标系中,点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n 在直线 y上,若A 1(1,0),且△A 1B 1A 2、△A 2B 2A 3 … △A nB n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1、S 2、S 3…S n .则S n 可表示为( ) A. B. C. D.二.填空题(每小题3分,共18分)11. 因式分解:4ax 2-4ax +a =_______.12. 若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩ 的解满足x +y ≤0,则m 的取值范围是_________. 13. 一个圆锥的底面半径r =5,高h =10,则这个圆锥的侧面积是________. 14. 在平面直角坐标系中,点P (x 0,y 0)到直线 Ax +By +C =0的距离公式为: d =,则点P (3,-3)到直线2533y x =-+的距离为_____.15. 如图,已知线段AB =4,O 是AB 的中点,直线l 经过点O ,∠1=60°,P 点是直线l 上一点,当△APB 为直角三角形时,则BP =____________.16. 如图,在平面直角坐标系中,已知C (3,4),以点C 为圆心的圆与y 轴相切.点A 、B 在x 轴上,且OA =OB .点P 为⊙C 上的动点,∠APB =90°,则AB 长度的最大值为 _______.三.解答题(17~21题每题8分,22、23题每题10分,24题12分,共72分)17. (本题满分8分)先化简,再从-1、2、3、4中选一个合适的数作为x 的值代入求值.222244()4424x x x x x x x ---÷-+--18. (本题满分8分)如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB 、CD 边于点E 、F .(1)求证:四边形DEBF 是平行四边形; (2)当DE =DF 时,求EF 的长.(第10题图) (第15题图) (第16题图) (第18题图)(第22题图)19. (本题满分8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统请你根据以上信息,回答下列问题:(1)统计表中m 的值为____,统计图中n 的值为____,A类对应扇形的圆心角为____度; (2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生. 从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.20. (本题满分8分)已知关于x 的方程x 2-2x +2k -1=0有实数根.(1)求k 的取值范围;(2)设方程的两根分别是x 1、x 2,且211212x xx x x x +=⋅,试求k 的值.21. (本题满分8分)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB ,他站在距离教学楼底部E 处6米远的地面C 处,测得宣传牌的底部B 的仰角为60°,同时测得教学楼窗户D 处的仰角为30°(A 、B 、D 、E 在同一直线上).然后,小明沿坡度i =1:1.5的斜坡从C 走到F 处,此时DF 正好与地面CE 平行. (1)求点F 到直线CE 的距离(结果保留根号);(2)若小明在F 处又测得宣传牌顶部A 的仰角为45°,求宣传牌的高度AB (结果精确到0.1米, ≈1.41, ≈1.73).22.(本题满分10分)如图,PA 是⊙O 的切线,切点为A , AC 是⊙O 的直径,连接OP 交⊙O 于E .过A 点作AB ⊥PO 于点D ,交⊙O 于B ,连接BC ,PB . (1)求证:PB 是⊙O 的切线; (2)求证:E 为△PAB 的内心;(3)若cos ∠PAB , BC =1,求PO 的长.(第21题图) (第19题图)23. (本题满分10分)“互联网+”时代,网上购物备受消费者青睐. 某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施. 据市场调查反映:销售单价每降1元,则每月可多销售5条. 设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生. 为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?24. (本题满分12分)如图,已知抛物线y =-x 2+b x +c 与x 轴交于A 、B 两点,AB =4,交y 轴于点C ,对称轴是直线x =1.(1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线x =1的对称点F 正好落在BC 上,求点F 的坐标;(3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为t(t>0)秒. ①若△AOC 与△BMN 相似,请直接写出t 的值;②△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.初中毕业生学业考试(第24题图) (第24题备用图1)(第24题备用图2)数学试题参考答案及评分标准一、选择题(每小题3分,共30分)1~5 A B B A B 6~10 C A C C D二、填空题(每小题3分,共18分)11. a(2x-1)2. 12. m≤-2. 13. π.14. 15.或或(说明:3解中每对一个得1分,若有错误答案得0分)16.16三、解答题17.(8分)解:原式=x+2 ………… 4′∵ x-2≠0,x-4≠0 ∴ x≠2且x≠4 ………… 7′∴当x=-1时,原式=-1+2=1 ………… 8′①(或当x=3时,原式=3+2=5 ………… 8′)②注:①或②任做对一个都可以18.(1)证明:∵四边形ABCD是矩形∴ AB∥CD∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB∴△DOF ≌△BOE ∴DF=BE又因为DF∥BE,∴四边形BEDF是平行四边形. ………… 4′(2)解:∵DE=DF,四边形BEDF是平行四边形∴是菱形∴ DE=BE,EF⊥BD,OE=OF设AE=x,则DE=BE=8-x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴ x2+62= (8-x)2解之得:x =∴ DE=8 - = ………… 6′在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=∴ OD = BD = 5,在Rt△DOE中,根据勾股定理,有DE2 - OD2=OE2,∴ OE =∴ EF = 2OE=………… 8′(此题有多种解法,方法正确即可分)19. (1)25 25 39.6 ………… 3′(2)1500× = 300(人)答:该校最喜爱体育节目的人数约有300人. ………… 5′(3)P=(说明:直接写出答案的只给1分,画树状图或列表的按步骤给分)………… 8′20. (1)解:∵原方程有实数根,∴b2-4ac≥0 ∴(-2)2-4(2k-1) ≥0∴k≤1 ………… 3′(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1 + x2 = 2,x1 ·x2 =2k-1又∵∴∴(x1 + x2)2-2x1 x2 = (x1 ·x2)2 ………… 5′∴ 22-2(2k-1)= (2k-1)2解之,得:=经检验,都符合原分式方程的根 (6)∵ k≤1 ………… 7′∴………… 8′21.解:(1)过点F作FG⊥EC于G,依题意知FG∥DE,DF∥GE,∠FGE=90o∴四边形DEFG是矩形∴FG=DE在Rt△CDE中,DE=CE·tan∠DCE= 6×tan30 o =2(米)∴点F到地面的距离为2米. …………3′(2) ∵斜坡CF i=1:1.5∴Rt△CFG中,CG=1.5FG=2×1.5=3∴FD=EG=3+6 ………… 5′在Rt△BCE中,BE=CE·tan∠BCE = 6×tan60 o =6………… 6′∴AB=AD+DE-BE=3+6+2-6=6-≈4.3 (米)答:宣传牌的高度约为4.3米. ………… 8′22.(1)证明:连结OB∵AC为⊙O的直径∴∠ABC=90o又∵AB⊥PO∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC而OB=OC ∴∠OBC=∠C ∴∠AOP=∠POB在△AOP和△BOP中=∠=∠=∴△AOP≌△BOP ∴∠OBP=∠OAP∵PA为⊙O的切线∴∠OAP=90o ∴∠OBP=90o∴PB是⊙O的切线…………3′(2)证明:连结AE∵PA为⊙O的切线∴∠PAE+∠OAE=90o∵AD⊥ED ∴∠EAD+∠AED=90o∵OE=OA ∴∠OAE=∠AED∴∠PAE=∠DAE 即EA平分∠PAD∵PA、PD为⊙O的切线∴PD平分∠APB∴E为△PAB的内心…………6′(3)∵∠PAB+∠BAC=90o∠C+∠BAC=90o∴∠PAB=∠C ∴cos∠C = cos∠PAB=在Rt△ABC中,cos∠C===∴AC=,AO=…………8′由△PAO∽△ABC ∴=∴PO===5 …………10′(此题有多种解法,解法正确即可)23.解:(1)y=100+5(80-x)或y=-5x+500 …………2′(2)由题意,得:W=(x-40)( -5x+500)=-5x2+700x-20000=-5(x-70)2+4500 …………4′∵a=-5<0 ∴w有最大值即当x=70时,w最大值=4500∴应降价80-70=10(元)答:当降价10元时,每月获得最大利润为4500元…………6′(3)由题意,得:-5(x-70)2+4500=4220+200解之,得:x1=66 x2 =74 …………8′∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠. …………10′24.解:(1))∵点A、B关于直线x=1对称,AB=4∴A(-1,0),B(3,0)…………1′代入y=-x2+bx+c中,得:解得∴抛物线的解析式为y=-x2+2x+3 …………2′∴C点坐标为(0,3)…………3′(2)设直线BC的解析式为y=mx+n,则有:解得∴直线BC的解析式为y=-x+3 …………4′∵点E、F关于直线x=1对称,又E到对称轴的距离为1,∴ EF=2∴F点的横坐标为2,将x=2代入y=-x+3中,得:y=-2+3=1∴F(2,1)…………6′(3)○1t=1 (若有t =,则扣1分) …………9′○2∵M(2t,0),MN⊥x轴∴Q(2t,3-2t)∵△BOQ为等腰三角形,∴分三种情况讨论第一种,当OQ=BQ时,∵QM⊥OB∴OM=MB∴2t=3-2t∴t= …………10′第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ =45O∴ BQ=∴BO=即3=∴t=…………11′第三种,当OQ=OB时,则点Q、C重合,此时t=0而t>0,故不符合题意综上述,当t=秒或秒时,△BOQ为等腰三角形. …………12′(解法正确即可)。
2020年中考数学试题(及答案)
2020年中考数学试题(及答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣ B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 2.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .19B .16C .13D .235.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙C .丙D .一样9.下列计算错误的是( )A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.510.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 11.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy ++=在同一坐标系内的图象大致为( )A .B .C .D .12.an30°的值为( ) A .B .C .D .二、填空题13.已知关于x 的方程3x n22x 1+=+的解是负数,则n 的取值范围为 . 14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.16.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .18.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .19.3x +在实数范围内有意义,则x 的取值范围是_____. 32x-2三、解答题21.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)22.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.23.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.24.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:个数x150≤x<170170≤x<185185≤x<190x≥190男生5852女生38a3两组数据的极差、平均数、中位数、众数如表所示:(1)请将上面两个表格补充完整:a =____,b =_____,c =_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【详解】460 000 000=4.6×108. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.4.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.5.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】6.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.7.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.8.C解析:C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.考点:列代数式.9.D解析:D 【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a 2÷a 0•a 2=a 4, ∴选项A 不符合题意; ∵a 2÷(a 0•a 2)=1, ∴选项B 不符合题意; ∵(-1.5)8÷(-1.5)7=-1.5, ∴选项C 不符合题意; ∵-1.58÷(-1.5)7=1.5, ∴选项D 符合题意. 故选D .点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.10.D解析:D 【解析】 【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确. 故选D .11.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.12.D解析:D 【解析】 【分析】直接利用特殊角的三角函数值求解即可. 【详解】 tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.二、填空题13.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠- 【解析】 分析:解方程3x n22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6 【解析】设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得:()OABC 122122kS x x=⨯-⨯=菱形,解得 6.k =-15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<. 【解析】 【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解; 【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5 【解析】 【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案. 【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M , ∴M 是AC 、A 1C 1的中点,AC=A 1C 1, ∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°, ∴∠CMC 1=60°, ∴△CMC 1为等边三角形,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.17.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.18.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换19.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x ≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围.【详解】.在实数范围内有意义,则x +3≥0,解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3.故答案为:x ≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.20.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.三、解答题21.123米.【解析】【分析】在Rt △ABC 中,利用tan BC CAB AB∠=即可求解. 【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.22.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.23.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键. 24.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.25.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年杭州市中考数学试题卷
一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的.
1.32⨯=( ) A.5 B.6 C.32 D.23
2.(1+y )(1-y )=( ) A .1+ y 2 B .-1- y 2 C .1- y 2 D .-1+ y 2
3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元. 圆圆在该快递公司寄一件8千克的物品,需要付费( )
A .17元
B .19元
C .21元
D .23元
4.如图,在△ABC 中,∠C=90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则( )
A .c =b sin
B B .b =c sinB
C .a =b tanB
D .b =c tanB
5.若a >b ,则( )
A .a -1≥b
B .b +1≥a
C .a +1>b -1
D .a -1>b +1
6.在平面直角坐标系中,已知函数y =ax +a (a ≠0)的图象经过点P (1,2),则该函数的图象可能是( )
7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )
A .y >z >x
B .x >z >y
C .y >x >z
D .z >y >x
8.设函数y =a (x-h )2+k (a ,h ,k 是实数,a ≠0),当x =1时,y =1;当x =8时,y =8,( )
A .若h =4,则a <0
B .若h =5,则a >0
C .若h =6,则a <0
D .若h =7,则a >0
9.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设∠AED=α,∠AOD=β,则( )
A .3α+β=180°
B .2α+β=180°
C .3α-β=90°
D .2α-β=90°
10.在平面直角坐标系中,已知函数y 1=x 2+a x+1,y 2=x 2+bx+2,y 3=x 2+cx+4,其中a ,b ,c 是正实数,且满足b 2=ac .设函数的图象y 1,y 2,y 3与x 轴的交点个数分别为M 1,M 2,M 3( )
A .若M 1=2,M 2=2,则M 3=0
B .若M 1=1,M 2=0,则M 3=0
C .若M 1=0,M 2=2,则M 3=0
D .若M 1=0,M 2=0,则M 3=0
二.填空题:本大题有6个小题,每小题4分,共24分.
11.若分式1
1+x 的值等于1,则x = .
12.如图,AB//CD ,EF 分别与AB ,CD 交于点B ,F .若∠E=30°,∠EFC=130°,则∠A= .
13.设M=x+y ,N=x-y ,P=xy .若M=1,N=2,则P= .
14.如图,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC .若sin ∠BAC=3
1,则tan ∠BOC= . 15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5. 从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 .
16.如图是一张矩形纸片,点E 在AB 边上,把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE=2,则DF= ,BE= .
三.解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.
17.(本题满分6分)
以下是圆圆解方程
13
321=--+x x 的解答过程. 解:去分母,得3(x+1)- 2(x-3)=1.
去括号,得3x+1-2x+3=1.
移项,合并同类项,得x=-3.
圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.
18.(本题满分8分)
某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.
(1)求4月份生产的该产品抽样检测的合格率.
(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?
如图,在△ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,DE//AC ,EF//AB .
(1)求证:△BDE ∽△EFC .
(2)设21=FC AF , ①若BC=12,求线段BE 的长.
②若△EFC 的面积是20,求△ABC 的面积.
20.(本题满分10分)
设函数y 1x k =,y 2x
k -=(k >0).
(1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a -4,求a 和k 的值.
(2)设m ≠0,且m ≠-1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆园的说法正确吗?为什么?
21.(本题满分10分)
如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,∠DAE 的平分线AG
与CD 边交于点G ,与BC 的延长线交于点F .设λ=EB
CE (λ>0). (1)若AB=2,λ=1,求线段CF 的长.
(2)连接EG ,若EG ⊥AF ,
①求证:点G 为CD 边的中点.
②求λ的值.
在平面直角坐标系中,设二次函数y 1=x 2+bx +a ,y 2=ax 2+bx +1(a ,b 是实数,a ≠0).
(1)若函数y 1的对称轴为直线x=3,且函数y 1的图象经过点(a ,b ),求函数y 1的表达式.
(2)若函数y 1的图象经过点(r ,0),其中r≠0,求证:函数y 2的图象经过点(r
1,0). (3)设函数y 1和函数y 2的最小值分别为m 和n ,若m+n=0,求m ,n 的值.
23.(本题满分12分)
如图,已知AC ,BD 为⊙O 的两条直径.连接AB ,BC ,OE ⊥AB 于点E ,点F 是半径OC 的中点,连接EF .
(1)设⊙O 的半径为1,若∠BAC=30°,求线段EF 的长
(2)连接BF ,DF ,设OB 与EF 交于点P .
①求证:PE=PF .
②若DF=EF ,求∠BAC 的度数.。