基于Landsat-TM影像的专题信息提取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Landsat-TM影像的专题信息提取摘要:本文以沈阳地区为研究区,利用光谱信息提取水体、植被,采用基于灰度共生矩阵的纹理量的分类法,通过TM5波段提取灰度共生矩阵和灰度联合矩阵,计算并提取最能反映类别差异的纹理量值将光谱信息混淆的水田、旱田、居民地用分离,得到最终的分类结果。结果表明:将纹理特征应用于图像分类中可区分光谱混淆的地类,光谱与纹理特征结合得到的分类精度要高于单纯光谱的分类精度。
关键词:遥感影像;光谱特征;纹理特征;灰度共生矩阵;分层提取;土地利用
Abstract:Based on the study of shenyang area for using spectral information extraction,water,vegetation,based on gray symbiotic matrix of the texture classification,through the TM5 band extraction graylevel co-occurrence matrix and gray,and joint matrix extraction can reflect the differences between vector-valued texture category will confuse the paddy fields,spectral information structure,separation,with residents of the final results of the classification.Results show that: the texture characteristics will be applied to image classification can distinguish the confusion of spectral spectrum and texture feature combination,the classification accuracy than pure spectral classification accuracy.
Key words:remote sensing image;spectrum feature;texture feature;text gray-level co-occurrence matrix;layered extraction;land-use
引言
遥感图像信息专题特征的提取,需要对TM图像的光谱信息和纹理信息进行综合分析,以达到提高影像分类精度的目的[1]。在自然资源调查中,遥感图像已成为重要的空间数据源,其中TM图像信息是进行土地利用/覆盖变化动态监测的重要依据。常规提取TM图像信息主要是利用影像的光谱分辨率进行的,难以正确区分光谱易混淆的地物,例如菜地与其他耕地类型。
提取TM图像中易混淆地物信息,可以充分利用影像的空间分辨率及影像上丰富的纹理信为了息来完成信息提取。纹理分析方法在许多领域都有重要的应用,吴高洪等[2]为了提高纹理图像分割的边缘准确性和区域一致性以及降低分割错误
率,提出了一种基于小波变换进行纹理分割的方法。因此,研究地物在影像上的纹理特征,建立和充分应用基于纹理特征的地物分类及信息提取方法,将是今后研究高分辨率遥感影像信息提取的方向之一[3]。图像分析需要用到影像的灰度和纹理信息,灰度即波谱信息,是最基本的信息,纹理反映了灰度的空间变化情况,它由纹理基元按某种确定的规律或者某种统计规律排列组成。为了能用计算机进行纹理分析和形成统一的尺度,需将纹理量化,以定量反映纹理信息,形成纹理变量和纹理图像以便分析[4]。
1 研究区概况
苏家屯是沈阳市的九个市辖区之一,位于沈阳南部,距沈阳市中心15公里,与抚顺、本溪、辽阳三市毗邻。这里气候适宜,雨量适中,年均气温8度,年均降水量700毫米。物产丰富,蕴藏着丰富的煤石油天然气铁矿石和优质矿泉水等自然资源。苏家屯农业发达,盛产水稻、玉米,是国家确定的现代化农业示范区。本文选择数据源所选取的数据是沈阳地区2001年8月11日TM影像区的子区域。根据沈阳地区的农事历,选择10月上旬的遥感资料为宜。
2 光谱信息
地物的光谱一般是指像素的亮度值,地表的各种地物由于物质组成和结构不同而具有独特的波谱反射和辐射特性,在图像上反映为各类地物在各波段上灰度值的差异。地物光谱响应特征是多光谱遥感影像地物识别最直接,也是最重要的解译元素。
3 纹理特征
纹理也是遥感影像的重要信息,它通过色调或颜色的变化表现细纹或细小的纹案,这种细纹或细小的纹案在某一确定的图像区域中以一定的规律重复出现。
目标地物的纹理特征与航空相片的比例尺和太阳高度角有关。另外,它反映了影像的灰度统计信息、地物本身的结构特征和地物空间排列的关系,是进行目视判读和计算机自动解译的重要基础[5]。许多研究表明,除了原始影像光谱信息以外,加上纹理信息就可以使分析准确性和精度提高[6]。遥感图像中多为无规则纹理,一般采用统计方法进行纹理分析,目前用得较多的统计方法有共生矩阵法、分形维法和马尔可夫随机场法。
所谓灰度共生矩阵是由影像灰度级之间二阶联合条件概率密度所构成的矩
阵,反映了影像中任意两点间灰度的空间相关性。其方法是先依据影像的灰度级数和灰度变化情况计算出4个方向(右、下、右上和左下)任意两个灰度级相邻出现的概率矩阵,它能提供多个纹理量,可以从多个侧面描述影像的纹理特征,因而在纹理分类中得到广泛的应用[7]。
4 提取方法
4.1 数据预处理
本文对沈阳地区遥感影像进行光学增强处理,并采用高通滤波来进行滤波处理对影像进行融合将融合后的影像进行几何校正。本文以1∶5万比例尺地形图为底图,选取均匀地分别在整幅图像内的60个控制点,采用二次多项式纠正模型建立两幅影像的对应关系。配准精度在0.3个像元以内,
4.2 土地利用分类体系的确定
参考国家土地利用分类体系,结合研究区土地资源的实际情况,TM影像波谱特征及其分辨率等,把研究区土地利用现状分类系统按二级进行分类,一级类型5个,分别为水体、水田、旱地、居民地、植被。
4.3 遥感信息提取
遥感图像的某些波段往往存在异物同谱和同物异谱现象,如果把多种地物放到一起考虑,由于这些波段的加入,会使信息提取变得非常复杂,这也正是传统上基于统计特征的监督和非监督分类遇到的难题。而对地物进行分层处理,就可以充分利用各类地物在不同波段的特征,收到较好效果[8,9]。对某一地物进行提取,获得该信息层,与原图像进行逻辑与运算,做掩膜处理,从而将该地物像元从原始图像中去除,以避免它对其他地物提取的影响,从而为以后的信息提取创造了纯净的环境。
4.3.1基于地物光谱模型的遥感影像分类
为获得光谱知识,在原始图像上进行采样。在采样过程中考虑到同类地物颜色的差异,如水域的深浅等,每一地类进行了多个样本值的合并,得到地物的综合光谱特征值(如图1)。