19第六章 钢结构
第六章钢结构的正常使用极限状态
第6章钢结构的正常使用极限状态6.1常使用极限状态的特点正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值。
《建筑结构可靠度设计统一标准》 (GB50068-2001 )规定,当结构或构件出现下列状态之一时,即认为超过了正常使用极限状态:1) 影响正常使用或外观的变形;2) 影响正常使用或耐久性能的局部破坏(包括裂缝)3) 影响正常使用或耐久性能的振动4) 影响正常使用或耐久性能的其它特定状态。
正常使用极限状态可以理解为适用性极限状态,常见的适用性问题有以下七类:1) 由荷载、温度变化、潮湿、收缩和徐变引起的非结构构件的局部损坏(如顶棚、隔墙、墙、窗) ;2) 荷载产生的挠度防碍家具或设备(如电梯)的正常使用功能;3) 明显的挠度使居住者感到不安;4) 由剧烈的自然现象(如飓风、龙卷风)造成的非结构构件彻底损坏;5) 结构因时效和服役而退化(如地下停车场结构因防水层破坏而损坏) ;6) 建筑物因活荷载、风荷载、或地震荷载造成的运动,导致居住者身体或心理上不舒适感;7) 使用荷载下的连续变形(如高强螺栓滑移) 。
长期以来,正常使用极限状态不如承载极限状态那样受到重视,认为只不过是适当限制一下挠度和侧移。
随着结构材料强度的提高和构件的轻型化 (包括围护结构和非承重结构构件),情况已经有所改变,研究工作日趋活跃,包括分析正常使用极限状态的可靠指标取值问题。
不过我国的设计规范和规程中仍然只有变形和振动限制两个方面。
6.2 拉杆、压杆的刚度要求1. 轴心受力构件刚度验算按照结构的使用要求,钢结构的轴心拉杆、轴心压杆以及拉弯构件都不应过分柔弱而应该具有必要的刚度,保证构件不产生过度的变形。
这种变形可能因其自重而产生,也可能在运输或安装构件的过程中产生。
承受轴线拉力或压力的构件其刚度用长细比控制,即:入max= (L0/i) max < [入]式中入ma --杆件的最大长细比L0——杆件的计算长度I —截面的回转半径[入]—容许长细比2. 轴心受力构件长容许细比规定一般而言,压杆由于对几何缺陷的影响较为敏感,所以对它的长细比要求较拉杆严格得多。
钢结构第六章 钢桁架与门式刚架
第三节 桁架设计
一、桁架的内力计算 二、桁架的计算长度 三、桁架杆件的截面形式 四、杆件截面设计 五、桁架的节点设计 六、桁架的节点构造和计算 七、桁架的施工图
整理课件
一、桁架的内力计算
一般情况按铰接桁架进行计算。
承受节点荷载时,数解法(节点法或截面法)、图解法或 有限元法。
第六章 钢桁架与门式刚架
整理课件
目录
第一节 概述 第二节 支撑设计 第三节 桁架设计 第四节 门式刚架设计
整理课件
第一节 概述
一、桁架的特点和应用 二、平面钢桁架的外形和腹杆体系 三、门式刚架的特点和应用 四、门式刚架的结构形式 五、结构平面布置
整理课件
一、桁架的特点和应用
桁架是指由直杆在杆端相互连接而组成的以抗弯为主的格 构式结构。桁架中的杆件大多只承受轴向力,材料性能发 挥较好,特别适用于跨度或高度较大的结构。
杆件在桁架平面内和外的计算长度见表。 ➢ 交叉腹杆 >> ➢ 受压弦杆 >>
整理课件
➢ 压杆:与它相交的另一斜杆受拉且二杆皆不中断时,取为0.5l; 与它相交另一斜杆受拉,两杆中有一杆中断并以节点板相搭接 时取为0.7l; 其它情况,如两杆皆受压(此时不宜有杆件中断)时,取为l。
柱间支撑的计算简图可按支承于柱脚基础上的悬臂桁架计算。 支撑的交叉杆按拉杆设计。水平系杆按压杆设计。为了加强
房屋的纵向刚度,柱间交叉支撑有时也可按压杆设计。
整理课件
(3)隅撑
在框架梁中,隅撑设置在下翼缘受压的区段内,隅撑与框 架梁腹板的夹角不宜小于45°,一般在45°~60°之间。
在框架柱中,隅撑一端与框架柱的内翼缘或靠近内翼缘的 腹板用螺栓连接,另一端则与墙梁腹板相连,布置数量应 根据墙梁位置等具体情况而定,构造与框架梁中的隅撑相 同。
第六章。《钢结构工程》练习题
《钢结构工程》练习题1.下列哪一个不是钢结构的优点:(D )A.结构轻B.精度高C.施工周期短D.耐火性能好2.熔点较高的金属宜采用的切割方法是( D )A.机械切割法B.气割法C砂轮切割 D.等离子切割3.下列哪一个不属于机械加工的内容( D )A.火焰矫正B.手工矫正C.机械矫正D.冷脆矫正4.钢结构拼装前的主要准备工作是:( B )A.检查剖口截面B.测量放线C.卡具、角钢的数量D.施工流向5.较厚的钢结构构件通常要开坡口,其目的不是:( D )A.提高焊接质量B.使根部能够焊透C.易于清楚熔渣D.减小焊接热影响范围6.下列哪一个不是钢结构工艺参数:( C )A.焊接电流B.焊接层数C.焊条类型D.电弧电压7.关于普通螺栓级别的说法正确的是( A )A.A级螺栓是精致螺栓B.C级螺栓是精致螺栓C.A、B级均为精致螺栓D.B级螺栓为半粗质螺栓8.下列哪一个不是高强螺栓的连接形式( C )A.承压连接B.张拉连接C.紧固连接D.摩擦连接9.高强螺栓与普通螺栓之间的主要区别是:( A )A.是否抗剪B.抗腐蚀性好C.耐火性好D.是否铆接10. 螺栓紧固时必须从中心开始施拧,同时还要求:( B )A.不对称施拧B.对称施拧C.先松后紧施拧D.强力一次施拧11.检查核对钢结构材料,在材料上划出切割、铣、刨、制孔等加工位置,打冲孔,标出零件编号等的操作是( C )。
A.放样B.制孔C.号料D.边缘加工12.钢结构焊缝缺陷通常分为六类,弧坑缩孔属于(A )这一类缺陷。
A.孔穴B.固体夹渣C.未熔合、未焊透D.形状缺陷13.普通螺栓孔成孔的方法是(C )。
A.气割扩孔B.气割成型C.钻孔成型D.气焊成型14.钢结构安装采用普通螺栓连接时,对于精制螺栓(A 、B 级螺栓),螺栓孔必须是( A )。
A . 1 类孔B . II类孔 C.III类孔 D .IV类孔15.钢结构采用普通螺栓连接紧固时,紧固次序应(A )。
钢结构课件第六章-受弯构件
钢结构设计原理
Design Principles of Steel Stru内力较大时,需采用组合梁。常用的形式为由三块钢板焊成的 工字形截面。组合梁的截面选择设计包括:确定截面高度、腹板尺 寸和翼缘尺寸。
1)截面高度
最大高度hmax建筑高度; 最小高度hmin刚度要求,根据容许挠度查表;
双轴对称工字型截面简支梁的弯扭屈曲系数k
钢结构设计原理
Design Principles of Steel Structure
第六章 受弯构件 2、单轴对称工字型截面简支梁纯弯作用下的整体稳定
2 EI y
l
2
采用能量法可求出在不同荷载种类和作用位置情况下的梁的临界弯矩为:
M cr 1 I GIt l 2 ) 2a 3 By ( 2 a 3 By )2 (1 2 Iy EI
(6.24)
式中:β1、 β2和β3:和荷载类型有关的系数
a:荷载作用点至剪心s的距离,荷载在剪心以下时为正,反之为负; By:截面不对称修正系数
1 By 2I x
A
y( x 2 y 2 )dA y0
y0:剪力中心与截面形心的距离
钢结构设计原理
Design Principles of Steel Structure
Mxy Mx f x I x xWx
钢结构设计原理 Design Principles of Steel Structure
(6.1)
Mx——梁截面内绕x轴的最大弯矩设计值;Wnx——截面对x轴的净截面模量; x——截面对x轴的有限塑性发展系数;f ——钢材抗弯设计强度 ;
第六章 受弯构件
截面的强度 截面强度破坏
第六章--钢结构的正常使用极限状态
第六章 钢结构的正常使用极限状态
第三节 梁和桁架的变形限制
梁和承受横向荷载的桁架从总体受力上讲都属于受
弯构件,受弯构件的正常使用极限状态是指其出现过大
的弯曲变形。
为了满足正常使用的要求,设计时必须保证梁和桁
架的挠度不超规范所规定的容许挠度。
式中:
vmax≤[v]
vmax ――梁的最大挠度,计算时荷载取标准值, 计算公式见表6-3
-
表6-1受压构件的容许长细比
项次 1
构件名称 柱、桁架和天窗架中的杆件 柱的缀条、吊车梁或吊车桁架以下的柱间支撑
容许长细比 150
支撑(吊车梁或吊车桁架以下的柱间支撑除外)
2
200
用以减少受压构件长细比的杆件
第六章 钢结构的正常使用极限状态
说明:①在上式中压杆的计算长度按第5章所述的原则 和方法确定,拉杆的计算长度则一律取其几何长度,即 节点之间的距离。 ②容许长细比通常由有关规范给出。一般而言,压杆由 于对几何缺陷的影响较为敏感,所以对它的长细比要求 较拉杆严格的多。承受静力荷载的拉杆,可仅限制其在 竖向平面内的长细比,以防止在自重作用下显著下垂。 而承受直接动力荷载的拉杆因刚度过弱时会产生剧烈晃 动,故其容许长细比比承受静力荷载的拉杆要小,并且 两个方向同样对待。 ③对于张紧的圆钢拉杆,因变形极微,所以不再限制长 细比。
Hc/1250 Hc/2500
Hc/4000
Hc/2000 -
-
第六章 钢结构的正常使用极限状态
二、多层及高层框架
多层及高层框架结构的变形限制须考虑两方面的内容:
限制结构顶点位置的侧移量
限制层间侧移量
对于多层及高层框架结构在风荷载标准值作用下,
钢结构设计原理-第6章-拉弯和压弯构件概要
(6.2.2)
第6.3节 压弯构件的稳定
本目录
1. 弯矩作用平面内的稳定性 2. 弯矩作用平面外的稳定 3. 双向弯曲实腹式压弯构件的整体稳定 4. 压弯构件的局部稳定
基本要求
1. 理解实腹式压弯构件的整体稳定性的概念 2. 2. 了解在弯矩作用平面内与弯矩作用平面外失
稳破坏的情况与验算方法
6.3.1 弯矩作用平面内的稳定性
本章目录
6.1 概述 6.2 拉弯和压弯构件的强度 6.3 压弯构件的稳定 6.4 压弯构件(框架柱)的设计 6.5 框架柱的柱脚
基本要求
1.了解拉弯和压弯构件的构造特点和构造要求。 2.掌握拉弯和压弯构件的破坏形式和计算方法。
第6.1节 概述
本节目录
1. 拉弯构件 2. 压弯构件
基本要求
1 . 建立拉弯构件与压弯构件的概念 2 . 了解设计计算的内容
加挠度将使各截面的弯矩增大,如果假定构件的挠曲
线与正弦曲线的半个波段相一致,则中央截面的最大
弯矩为:
Mmax1NM/NE
(6.3.3)
在式中
NE,为2E 欧拉/Il2 临界力。
称为1弯矩放大系数。 1 N / NE
2.允许截面发展一定的塑性
如前所述,以点A'(图6.3.2)作为承载力极限状态 时,该点对应的极限弯矩为:
压弯构件整体破坏的形式有以下三种:(1)因端部弯矩很 大或有较大削弱而发生强度破坏,(2)在弯矩作用平面内发 生弯曲屈曲,(3)在弯矩作用平面外发生弯扭屈曲。
组成截面的板件在压应力作用下也可能发生局部屈曲。
第6.2节 拉弯和压弯构件的强度
本节目录
1.拉弯和压弯构件的强度和刚度计算
基本要求
钢结构基础第六章 轴心受力构件-稳定
第六章 轴心受力构件
局部失稳产生的背景:
1.3 1.2 1.1 Isolated Local Mode
kL
PL ( EI )
PE PL
Brown Dede Tomblin Trovillion Zureick Euler Local Column Eq. 1
2 z 2 0
第六章 轴心受力构件
2. 弯扭屈曲
单轴对称截面
第六章 轴心受力构件
开口截面的弯扭屈曲临界力Nxz ,可由下式计算:
i0 N Ex N xz N z N xz N xz e0 0
2 2 2
NEx为关于对称轴x的欧拉临界力。 引进弯扭屈曲换算长细比xz:
2 xz
1 2
2 x
2 z
1 22 x2 2 z
2 e0 41 2 i0
2 2 x z
第六章 轴心受力构件
6.5 杆端约束对轴心受压构件整体稳定性的影响
实际压杆并非全部铰接,对于任意支承情况的压杆,其临 界力为:
N cr
EI
2
1. 轴心受压柱的实际承载力
压杆的压力挠度曲线
第六章 轴心受力构件
轴心受压柱按下式计算整体稳定:
N f
A
cr
fy
式中 N 轴心受压构件的压力设计值; A 构件的毛截面面积;
f 轴心受压构件的稳定系数 ; N
cr
fy
f 钢材的抗压强度设计值 。
钢结构基础课程教案
钢结构基础课程教案第一章:钢结构的概述1.1 钢结构的基本概念钢结构的定义钢结构的特点钢结构的分类1.2 钢结构的材料钢材的组成和分类钢材的性能钢材的选择和使用1.3 钢结构的应用范围钢结构的常见应用领域钢结构的优势和限制钢结构的未来发展趋势第二章:钢结构的连接2.1 钢结构连接的基本要求连接的目的和重要性连接的类型和特点连接的设计和计算2.2 焊接连接焊接连接的原理和工艺焊接连接的优缺点焊接连接的应用和实例2.3 螺栓连接螺栓连接的原理和类型螺栓连接的设计和计算螺栓连接的应用和实例第三章:钢结构的受力分析3.1 钢结构的基本受力元件杆件的受力特性梁的受力特性柱的受力特性3.2 钢结构的受力分析方法静力平衡法动力平衡法受力图的绘制和分析3.3 钢结构的受力极限状态弹性极限状态塑性极限状态疲劳极限状态第四章:钢结构的设计计算4.1 钢结构设计的基本原则安全性的要求可靠性的要求经济性的要求4.2 钢结构的设计计算方法弹性设计计算方法塑性设计计算方法极限状态设计计算方法4.3 钢结构的设计计算实例杆件的设计计算实例梁的设计计算实例柱的设计计算实例第五章:钢结构施工与验收5.1 钢结构施工的基本要求施工准备和施工方案钢材的加工和制作钢结构的组装和焊接5.2 钢结构施工的注意事项施工安全和管理施工质量控制和验收施工过程中的问题处理5.3 钢结构验收的标准和程序验收标准和规范验收程序和机构验收结果的判定和处理第六章:钢结构的稳定性与变形6.1 钢结构稳定性的概念稳定性的定义和重要性失稳的现象和原因稳定性的分类6.2 钢结构稳定性的计算临界力的计算临界应力的计算稳定性校核的方法6.3 钢结构变形的控制变形的定义和原因变形限值的要求控制变形的方法和措施第七章:钢结构的抗震设计7.1 抗震设计的基本原则抗震安全性的要求抗震可靠性的要求抗震经济性的要求7.2 钢结构抗震设计的计算方法弹性抗震设计计算方法塑性抗震设计计算方法极限状态抗震设计计算方法7.3 钢结构抗震设计的实例杆件的抗震设计实例梁的抗震设计实例柱的抗震设计实例第八章:钢结构的保护与防腐8.1 钢结构腐蚀的原因和类型腐蚀的定义和现象腐蚀的原因和类型腐蚀的影响和危害8.2 钢结构防腐的方法防腐材料的选用防腐涂层的施工防腐措施的维护和管理8.3 钢结构保护的实例防腐涂层的实例防腐涂料的实例防腐措施的实施和检查第九章:钢结构的安全评估与检测9.1 钢结构安全评估的概念和重要性安全评估的定义和目的钢结构安全评估的必要性安全评估的方法和程序9.2 钢结构检测的方法和设备检测方法的分类和原理检测设备的选用和使用检测数据的分析和处理9.3 钢结构安全评估的实例结构检测的实例安全评估报告的编制安全评估结果的处理和改进第十章:钢结构案例分析与实践10.1 钢结构案例分析的目的和方法案例分析的定义和意义案例分析的目的和原则案例分析的方法和步骤10.2 钢结构案例分析的实例案例选取和背景介绍结构分析和设计计算施工和验收过程的解析10.3 钢结构实践活动的建议实践活动的类型和内容实践活动的组织和实施实践活动成果的总结和评价重点和难点解析重点环节1:钢结构的定义和特点钢结构是由钢材构成的结构体系,具有高强度、重载、施工速度快等特点。
(完整版)钢结构基础第六章答案
钢结构基础第六章答案6.1 工字形焊接组合截面简支梁,其上密铺刚性板可以阻止弯曲平面外变形。
梁上均布荷载(包括梁自重),跨中已有一集中荷载,现需在距右端4处4/q kN m =090F kN =m 设一集中荷载。
问根据边缘屈服准则,最大可达多少。
设各集中荷载的作用位置距梁1F 1F 顶面为120mm ,分布长度为120mm 。
钢材的设计强度取为。
另在所有的已知2300/N mm 图6-34 题6.1解:(1)计算截面特性2250122800812400A mm =⨯⨯+⨯= 339411250824(2508)800 1.33101212x I mm =⨯⨯-⨯-⨯=⨯633.229102x x IW mm h ==⨯ 32501240640082001858000m S mm =⨯⨯+⨯⨯=31250124061218000S mm =⨯⨯=(2)计算、两集中力对应截面弯矩0F 1F ()210111412901263422843F M F kN m =⨯⨯+⨯⨯+⨯=+⋅()1118128248489012824424333F M F kN m =⨯-⨯⨯+⨯⨯⨯+⨯=+⋅令,则当,使弯矩最大值出现在作用截面。
10M M >1147F kN >1F (3)梁截面能承受的最大弯矩63.22910300968.7x M W f kN m==⨯⨯=⋅令得:;令得:0M M =1313.35F kN =1M M =1271.76F kN =故可假定在作用截面处达到最大弯矩。
1F (4)a .弯曲正应力①61max68(244)1033003.22910x x F M W σ+⨯==≤⨯b.剪应力作用截面处的剪力1F 1111122412449053()2233V F F kN ⎛⎫=⨯⨯-⨯+⨯+=+ ⎪⎝⎭ ②311max925310185800031.33108m x F V S I t τ⎛⎫+⨯⨯ ⎪⎝⎭==≤⨯⨯c.局部承压应力在右侧支座处: ③()312244510330081205122120c F σ⎛⎫++⨯⎪⎝⎭=≤⨯+⨯+⨯集中力作用处: ④1F ()311030081205122120c F σ⨯=≤⨯+⨯+⨯d.折算应力作用截面右侧处存在很大的弯矩,剪力和局部承压应力,计算腹板与翼缘交界处的分享1F 应力与折算应力。
钢结构第6章课后问答-
钢结构第6章课后问答1、钢结构第6章课后问答6.1轴心受力构件的强度的计算公式怎么确定的?答:P191是按净截面的平均应力o不超过材料的屈服强度fy来确定的。
6.2轴心受压构件整体失稳有几种形式?双轴对称界面的屈曲形式是怎么样的?答:P193有弯曲屈曲、扭转屈曲、弯扭屈曲三种形式。
一般的双轴对称截面的轴心压杆,屈曲形式为弯曲屈曲、薄壁十字形截妞在确定的状况下发生扭转屈曲、单对称轴截面如角钢、槽钢和T形钢或双板T形,由于其截面只有一个对称轴,截面形心和剪心不重合,会产生弯扭屈曲。
6.3轴心受力构件整体稳定承载力与哪些因素有关?哪些因素被称为初始缺陷。
答:P196剩余应力初弯曲初偏心〔为初始缺陷〕、长细比X;p264小结〔4〕。
6.4提高轴心压杆钢材的抗压强度能否提高其稳定承载力?答:pl95?196不能2、,在弹性阶段稳定承载力和抗压强度无关〔欧拉公式〕;在弹塑性阶段,ocr不仅是X的函数,还是Et的函数,而Et与材料的抗压强度有关。
6.5轴心屈曲为什么要分为弹性屈曲和弹塑性屈曲?划分依据?答:同6.4;划分依裾:P195,对于瘦长杆,钢材长细比大于截面应力为比例极限时构件的长细比,即满足欧拉公式的适用条件;对于中长干,截面应力在屈曲前已经超过比例极限进入弹塑性阶段。
6.6怎样区分压杆稳定的第一类稳定问题和其次类稳定问题?答:抱负轴心受力构件/偏心受力构件6.7剩余应力、初弯曲、初偏心对轴心压杆承载力的主要影响有哪些?为什么剩余应力在截面的两个主轴方向对承载力的影响不同?答:6.8轴心受力构件的稳定系数I为什么要按截面分成4类?答:p203由于轴心受压构件稳定承载力和多种因素有关3、,依据常用的截妞形式,不同加工所产生的剩余应力,经过数理统计和牢靠度分析,依据截面形式、板厚、屈曲方向、和加工条件归纳为4种。
6.9局部稳定承载力计算屮,为什么要取较大的长细比?答:p208考虑板的局部失稳不先于杆件的整体失稳的原则oocr,杆件整体失稳计算中ocr=iDf,巾对应的是较大的长细比。
钢结构基本原理课件第六章受弯构件
腹板错位焊接 按锯齿形切开
(a)
蜂窝梁(a)切割线; (b)蜂窝梁
(b)
6.1.3 空腹式受弯构件
另一类型的空腹式受弯构件,工程上称之为桁架,与梁相 比,其特点是以弦杆代替翼缘、以腹杆代替腹板,而在各 节点将腹杆与弦杆连接。这样,桁架整体受弯时,弯矩表 现为上、下弦杆的轴心压力和拉力,剪力则表现为各腹杆
的轴心压力或拉力。
(a)
梁式桁架形式
(d)
(b)
(e)
6.1.3 空腹式受弯构件
(a)
(d)
(b)
梁式桁架形式
(e)
(c)
(f)
钢桁架可以根据不同使用要求制成所需的外形,对跨度和 高度较大的构件,其钢材用量比实腹梁有所减少,而刚度
却有所增加。只是桁架的杆件和节点较多,构造较复杂,
制造较为费工。
6.2 受弯构件的设计
本节目录
6.2.1 概述 6.2.2 梁的强度 6.2.3 梁的刚度 6.2.4 梁的整体稳定性 6.2.5 梁的局部稳定性 6.2.6 型钢梁的截面设计
6.2.1 概述
梁设计中应满足的两种极限状态
内容 极限状态 需要满足 需要满足 抗弯强度 强度承载力 抗剪强度 局部承压强度 复杂应力状态下强度 稳定承载力 正常使用极限状态 梁的变形极限状态 整体稳定
3m 3 m
3m 3m
3m 3 m
3m 3m
q
6m
解:①荷载及内力计算
梁上的荷载标准值为: qk 3 4.5 7.5kN / m 2 荷载设计值为: qd 1.2 3 1.3 4.5 9.45kN / m 2
钢结构设计原理第六章拉弯和压弯构件
钢结构设计原理第六章拉弯和压弯构件首先介绍拉弯构件。
拉弯构件主要受到正弯矩和拉力的作用。
在设计拉弯构件时,需要考虑结构的受力特点,根据结构所受到的相应受力,选择合适的杆件截面形状。
在选择截面形状时,需要综合考虑截面的承载能力、弹性变形能力和抗扭刚度等因素。
根据拉弯构件的受力特点,可以选择T形截面、双角截面、工字型截面等形式,以提高结构的强度和刚度。
接下来是压弯构件的设计原理。
压弯构件主要受到负弯矩和压力的作用。
在设计压弯构件时,同样需要综合考虑结构的受力特点,并选择合适的杆件截面形状。
在选择截面形状时,需要考虑截面的承载能力、塑性变形能力和抗扭刚度等因素。
压弯构件的常用截面形状包括工字型截面、双角截面、矩形截面等形式。
除了截面形状的选择原则外,还需要对拉弯和压弯构件进行强度计算。
计算时需要考虑截面的承载能力和结构所受到的荷载。
拉弯构件的强度计算一般通过确定杆件的等效长度来进行,根据拉弯构件的长度和截面形状,选择合适的等效长度,然后根据相应的拉弯构件等效长度和所受到的荷载,计算出截面的承载能力。
压弯构件的强度计算一般需要采用压杆稳定性原理进行,根据杆件的截面形状、弹性模量和地面特性等因素,计算出截面的临界压力。
若所受压力小于临界压力,则认为结构是稳定的。
总结来说,设计拉弯和压弯构件时,需要综合考虑结构的受力特点,并选择合适的杆件截面形状。
在选择截面形状时,需要综合考虑截面的承载能力、弹性变形能力和抗扭刚度等因素。
此外,还需要进行强度计算,以确保构件的稳定性和安全性。
第六章正常使用极限状态
梁的刚度属于正常使用极限状态, 梁的刚度属于正常使用极限状态,故计算时应采用 正常使用荷载,即取荷载标准值,不乘荷载分项系数, 正常使用荷载,即取荷载标准值,不乘荷载分项系数, 且可不考虑螺栓孔引起的截面削弱。 且可不考虑螺栓孔引起的截面削弱。对动力荷载标准值 不乘动力系数。 不乘动力系数。
对于多层及高层框架结构在风荷载标准值作用下, 对于多层及高层框架结构在风荷载标准值作用下, 当不考虑地震作用时, 当不考虑地震作用时,顶点质心的侧移要求不超过建 筑总高的1/500,质心层间位移要求不超过楼层高度的 筑总高的 , 1/400。对于考虑地震作用的,在第一阶段抗震设计时, 。对于考虑地震作用的,在第一阶段抗震设计时, 其层间侧移标准值要求不超过楼层高度的1/250。在第 。 其层间侧移标准值要求不超过楼层高度的 二阶段抗震设计时, 二阶段抗震设计时,其层间侧移标准值要求不超过楼 层高度的1/70。此值允许塑性在结构中有一定程度的发 。 层高度的
四、钢框架的变形限制
单层厂房的横向框架其柱脚可与基础刚接或铰接, 单层厂房的横向框架其柱脚可与基础刚接或铰接, 而柱顶与屋架的连接一般都用刚接。 而柱顶与屋架的连接一般都用刚接。钢框架的变形限 制主要是柱顶侧移。 制主要是柱顶侧移。 多层及高层框架结构的变形须考虑两方面的内容, 多层及高层框架结构的变形须考虑两方面的内容, 一是限制结构顶点位移的侧移量, 一是限制结构顶点位移的侧移量,二是限制层间侧移 量。
在计算构件长细比时, 在计算构件长细比时,
λmax = (l0 / i)max ≤ [λ]
三、梁和桁架的变形限制 梁必须具有一定的刚度才能有效地工作, 梁必须具有一定的刚度才能有效地工作,若刚度不 足时将出现挠度过大,给人感觉不舒适和不安全; 足时将出现挠度过大,给人感觉不舒适和不安全;同时 还可能引起过大的振动,使某些附着物如顶棚抹灰脱落。 还可能引起过大的振动,使某些附着物如顶棚抹灰脱落。 吊车梁若挠度过大,轴道将随之变形, 吊车梁若挠度过大,轴道将随之变形,可能影响吊车的 正常运行。因此对梁的最大挠度v 正常运行。因此对梁的最大挠度 max或最大相对挠度 vmax/ l, 应加以限制,即应符合下式要求: 应加以限制,即应符合下式要求:
第六章正常使用极限状态
五、振动的限制
《高层民用建筑钢结构技术规程》(JGJ99-98) 对压型钢板组合楼板的振动采用限制其自振频率的 方法。自振频率可按下式计算:
f 1/(0.18 w) 15Hz
W——永久荷பைடு நூலகம்产生的挠度,cm。
vmax [v] vmax [v]
ll
梁的刚度属于正常使用极限状态,故计算时应采用 正常使用荷载,即取荷载标准值,不乘荷载分项系数, 且可不考虑螺栓孔引起的截面削弱。对动力荷载标准值 不乘动力系数。
四、钢框架的变形限制
单层厂房的横向框架其柱脚可与基础刚接或铰接, 而柱顶与屋架的连接一般都用刚接。钢框架的变形限 制主要是柱顶侧移。
在计算构件长细比时, max (l0 / i)max []
三、梁和桁架的变形限制
梁必须具有一定的刚度才能有效地工作,若刚度不 足时将出现挠度过大,给人感觉不舒适和不安全;同时 还可能引起过大的振动,使某些附着物如顶棚抹灰脱落。 吊车梁若挠度过大,轴道将随之变形,可能影响吊车的 正常运行。因此对梁的最大挠度vmax或最大相对挠度 vmax/ l, 应加以限制,即应符合下式要求:
第六章 钢结构的正常使用极限状态
一、正常使用极限状态 结构或构件虽然能够保持一定的承载能力,但在正
常荷载作用下长生的变形使结构或构件已不能满足正常使 用的要求(静力作用产生的过大变形和动力作用产生的剧 烈振动等)。不发生过大变形、振动、裂缝。
结构出现下列情况之一即认为超过了正常使用极限状态: 1、过大的变形、侧移(影响非结构构件、不安全感、
不能正常使用(吊车)等); 2、过大的振动(不舒适); 3、其他正常使用要求。(侵蚀介质造成的耐久性破坏)
通常是按承载能力极限状态设计结构构件,再按正常 使用极限状态进行校核。
钢结构设计原理 第六章拉弯和压弯构件
N Np
1 .0
(7.4)
N M 1 Np M p
(7.3)
对一般拉、压弯构件,为计算方便,并 保证安全受力,进行强度计算时,《规范》 以相关直线代替相关曲线,其相关方程:
1 2 1
将 N p f y An
N Mx 1 Np M p
代入,且考虑 R 后得:
M p W px f y
三、拉、压弯构件的截面形式 拉、压弯构件截面通常采用双轴对称或 单轴对称截面,可为实腹式或格构 式。 • 双轴对称:常用于弯矩较小以及构 造或使用上宜于对称截面的构件或柱; • 单轴对称: 常用于弯矩较大的构件或柱。
a)
b)
§6. 2拉、压弯构件的强度和刚度计算
一、强度 拉、压弯构件的截面强度,应根据不同的强度准则分别进行计算。
N
x
e
l
e
对于此类压弯构件,其弯扭屈曲平衡方程比受弯构件多考虑一项即可, 由平衡微分方程可得 M
( N e)2 ( N Ey N )(Nz N ) 2 0 i0
P204式(6-16)
M
NEy 构件绕y轴弯曲屈曲临界力 N Ey
( N e) ( N Ey N )(Nz N ) 2 0 i0 2EI y
第六章拉弯和压弯构件 主要内容
• • • • • • • 6.1 6.2 6.3 6.4 6.5 6.6 6.7 拉、压弯构件的应用和破坏形式 拉弯、压弯构件的强度和刚度 压弯构件在弯矩作用平面内的稳定计算 压弯构件在弯矩作用平面外的稳定计算 压弯构件的局部稳定计算 实腹式压弯构件的截面设计 格构式压弯构件
N cr
2、《规范》实用计算公式
在上述公式的基础上,可得到
第6章-钢结构建筑抗震与设防1
1985年墨西哥城地震中钢结构和钢筋混凝土结构的破坏情况
钢结构 建造年份 倒塌 1957年以前 1957一1976年 7 3 严重破坏 1 1
钢筋混凝土结构 倒塌 27 51 严重破坏 16 23
1976年以后
0
0
4
6
6.1.1
节点连接破坏
主要有两种节点连接破坏,一种是支撑连接破坏,另一种 是梁柱连接破坏,从1978年日本宫城县远海地震(里氏7.4级) 所造成的钢结构建筑破坏情况看(表6-2),支撑连接更易遭受 地震破坏。
(5)巨型框架体系 巨型框架体系是由柱距较大的立体桁架梁柱及立体桁架梁 构成。
( a )桁架型;
( b )斜格型;
( c )框筒型
钢结构房屋适用的最大高度(m)
结构体系 框架 框架一支撑(剪力墙板) 筒体(框筒、筒中筒、 束筒)和巨型框架 设防烈度 6、7 110 220 8 90 200 9 50 140
300
260
180
钢结构房屋适用的最大高宽比
烈度 最大高宽比 6、7 7.5 8 7.0 9 5.5
6.2.2 结构平面布置 多高层钢结构的平面布置应尽量满足下列要求:
1)建筑平面宜简单规则,并使结构各层的抗侧力
刚度中心与质量中心接近或重合,同时各层刚心与质
心接近在同一竖直线上。 2)建筑的开间、进深宜统一,其常用平面的尺寸 关系应符合表6-6和图6-12的要求。当钢框筒结构采用 矩形平面时,其长宽比不应大于1.5:1;不能满足此项 要求时,宜采用多束筒结构。
梁柱焊接连接处的失效模式
“人工”裂缝
梁柱刚性连接裂缝或断裂破坏的原因有: 1)焊缝缺陷,如裂纹、欠焊、夹渣和气孔等。 2)三轴应力影响。分析表明,梁柱连接的焊缝变形由于受到 梁和柱约束,施焊后焊缝残存三轴拉应力,使材料变脆。 3)构造缺陷。出于焊接工艺的要求,梁翼缘与柱连接处设有 垫板,实际工程中垫板在焊接后就留在结构上,这样垫板与柱 翼缘之间就形成一条“人工”裂缝,成为连接裂缝发展的起源。
钢结构第六章小结练习
第六章 轴心受力构件
所以,计算时可偏安全地假定柱端与底板 间的焊缝不受力,靴梁、隔板、肋板与底
板的角焊缝则可按柱的轴心压力N计算;
柱与靴梁间的角焊缝也按受力N计算。注
意每条焊缝的计算长度不应大于60hf 。
钢结构设计原理 Design Principles of Steel Structure
钢结构设计原理 Design Principles of Steel Structure
第六章 轴心受力构件
四边支承板 三边支承板及两相邻边支承板 一边支承(悬臂)板 式中: ――作用在底板单位面积上的压力;
a ――四边支承板中短边的长度;
钢结构设计原理 Design Principles of Steel Structure
2E 2
Ie I
钢结构设计原理 Design Principles of Steel Structure
第六章 轴心受力构件
构件几何缺陷对轴心受压构件弯曲屈曲影响
1、构件初弯曲(初挠度)的影响
cr
N
对x轴
NE 1.0
v0=0
fy
对y轴
B B’ v0=3mm
y
A 0.5
xx
欧拉临界曲线
A’ 0
Ym/0 0
钢结构设计原理 Design Principles of Steel Structure
第六章 轴心受力构件
底板的厚度由底板在基础的反力作用下 产生的弯矩计算决定。靴梁、肋板、隔 板和柱的端面等均可作为底板的支承边, 将底板分成几块各种支承形式的区格, 其中有四边支承、三边支承、两相邻边 支承和一边支承(见图b、d)。在均匀 分布的基础反力作用下,各区格单位宽 度上最大弯矩为
钢结构设计原理-第六章
第六章 轴心受力构件
轴心受压构件的三种整体失稳状态
无缺陷的轴心受压构件(双轴对称的工型截面)通常发生弯曲失稳, 构件的变形发生了性质上的变化,即构件由直线形式改变为弯曲形式 且这种变化带有突然性。
实腹式构件和格构式构件 实腹式构件具有整体连通的截面。 格构式构件一般由两个或多个分肢 用缀件联系组成。采用较多的是两 分肢格构式构件。
钢结构设计原理
图6.1.2 柱的形式
Design P r i n c i p l e s of Steel Structure
第六章 轴心受力构件
格构式构件 实轴和虚轴
钢结构设计原理 Design P r i n c i p l e s of Steel Structure
第六章 轴心受力构件
§ 6 . 2 轴心受力构件的强度和刚度
6.2.1 轴心受力构件的强度计算
轴心受力构件以截面上的平均应力达到钢材的屈服强度作为强 度计算准则。 1. 截面无削弱
构件以全截面平均应力达到屈服强度为强度极限状态。 设计时,作用在轴心受力构件中的外力N应满足:
钢结构设计原理 Design P r i n c i p l e s of Steel Structure
第六章 轴心受力构件
6.3.2 无缺陷轴心受压构件的屈曲
理想轴心受压构件 1 杆件为等截面理想直杆; 2 压力作用线与杆件形心轴重合; 3 材料为匀质,各项同性且无限弹性,符合虎克定律; 4 构件无初应力,节点铰支。
1、弹性弯曲屈曲
欧拉(Euler)早在1744年通过对理想轴心压杆的整体稳定问题进 行的研究,当轴心力达到临界值时,压杆处于屈曲的微弯状态。 在弹性微弯状态下,根据外力矩平衡条件,可建立平衡微分方程, 求解后得到了著名的欧拉临界力和欧拉临界应力。
钢结构第六章
钢结构
(三) 复合防火保护
采用复合防火保护时应符合下列要求:
必须根据构件形状和所处部位进行包裹构造设计,在满足耐火要求的条 件下充分考虑安装的牢固稳定; 在包裹构造设计时,应充分考虑外层包裹施工不应对内层防火层在成结 构破坏或损伤。
采用柔性毡状隔热材料进行防火保护时应符合下
列要求:
仅适用于平时不宜受损且不受水湿的部位; 包裹构造的外层应设金属保护壳。金属保护壳应固定在支承构件上,支 承构件应固定在钢构件上。支承构件应为不燃材料; 在材料自重作用下,毡状材料不应发生体积压缩不均的现象。
a) 刷涂法 应用较广泛,适宜于油性基料刷涂。因为油性基料虽 干燥得慢,但渗透性大,流平性好,不论面积大小,刷起来都会 平滑流畅。一些形状复杂的构件,使用刷涂法也比较方便。
b) 喷涂法 施工工效高,适合于大面积施工,对于快干和挥发性 强的涂料尤为适合。喷涂的漆膜较薄,为了达到设计要求的厚度 ,有时需要增加喷涂的次数。喷涂施工比刷涂施工涂料损耗大, 一般要增加20%左右。
钢结构
钢结构防火涂料品种的选用,应符合下列规定:
高层建筑结构和单、多层钢结构的室内隐蔽构件,当规定其耐火极限在 1.5h以上时,应选用非膨胀型钢结构防火涂料 ; 室内裸露钢结构、轻型屋盖钢结构及有装饰要求的钢结构,当规定其耐 火极限在1.5h及以下时,可选用膨胀型钢结构防火涂料; 耐火极限要求不低于1.5h的钢结构和室外的钢结构工程,不宜选用膨胀型 防火涂料。 露天钢结构应选用适合外用的钢结构防火涂料,且至少应经过一年以上 室外钢结构工程的应用验证,涂层性能无明显变化; 复层涂料应相互配套,底层涂料应能同普通的防锈漆配合使用,或者底 层涂料自身具有防锈功能; 膨胀型防火涂料的保护层厚度应通过实际的耐火试验确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 钢结构
6.普通螺栓受剪连接的破坏形式: (1)当螺栓直径较细而被连接钢材较厚时,可能发生螺栓 杆剪切破坏。 (2)当螺栓直径较粗而被连接钢材较薄时,孔壁可能在螺 栓杆局部承压或挤压下产生较大挤压应力和塑性变形,最终导 致螺栓孔拉长,称为挤压破坏。 (3)当螺栓孔距板端距离较小时,导致板端沿最大剪应力 方向剪断,称为冲剪破坏。 (4)当构件开孔较多使截面削弱较大时,可能发 普通螺栓一般为六角头螺栓,产品等级分为 A 、 B、C 三 级。对C级螺栓,规范选用了其中性能等级为4.6级和4.8级两 种。4.6级表示螺栓材料的抗拉强度不小于400N/mm2,其屈 服点与抗拉强度之比为0.6,即屈服点不小于240N/mm2,产 品等级为 A 级和 B 级的普通螺栓为精制螺栓,为普通螺栓连 接中的高强度螺栓。 高强度螺栓连接分为摩擦型和承压型两种。
第四节 钢结构
二、钢结构基本构件 1.轴心受力构件的截面有实腹式和格构式两种形式。 实腹式构件比格构式构件构造简单,制造方便,整体受力 和抗剪性能好,但截面尺寸较大时钢材用量较多;格构式构件 容易使轴心受压构件实现两主轴方向的等稳定性,并且刚度大、 抗扭性能好,用料较省。
第四节 钢结构
2.轴心受压构件的三种整体失稳状态: (1)弯曲失稳:无缺陷的轴心受压构件(双轴对称的工型 截面)通常发生弯曲失稳,构件的变形发生了性质上的变化, 即构件由直线形式改变为弯曲形式,且这种变化带有突然性。 (2)扭转失稳:对某些抗扭刚度较差的轴心受压构件(十 字形截面),当轴心压力达到临界值时,稳定平衡状态不再保 持而发生微扭转。当轴心力在稍微增加,则扭转变形迅速增大 而使构件丧失承载能力,这种现象称为扭转失稳。
第四节 钢结构
【单选】下列不属于钢结构的连接方式是( )。 A.焊接连接 B.螺栓连接 C.铆钉连接 D.绑扎连接 网校答案:D
第四节 钢结构
【单选】普通螺栓用于需要拆装的连接时,宜选用( )。 A.A级螺栓 B.B级螺栓 C.C级螺栓 D.D级螺栓 网校答案:C
第四节 钢结构
【单选】钢结构轴心受压构件的承载能力一般由哪项条件决定( )。 A.强度 B.刚度 C.截面形状 D.稳定性 网校答案:D
第四节 钢结构
【多选】对于焊缝质量检查,下列哪些说法是正确的( )。 A.焊缝质量检查标准分为三级 B.一、二级要求在外观检查的基础上通过无损检查 C.三级只要求通过外观检查 D.二级要求用超声波检查每条焊缝的50%长度 网校答案:ABC
本章小结
本章为《专业知识》课程中考试分数比重最多的一章, 内容也是最多的一章之一。其中混凝土结构是重点。重要的 考点有:混凝土的变形、混凝土的选用原则、受弯构件正、 斜截面破坏形态、第一、二类T形截面判别、受弯构件构造 要求、大小偏心受压构件判别、受压构件的构造要求、单、 双向板判别、梁板配筋构造要求、承重体的布置、静力计算 方案、高厚比验算、砌体结构的构造要求、防止墙体开裂的 措施、焊缝质量检验,焊缝连接、螺栓连接的构造要求等。
第四节 钢结构
3.焊接连接的缺点主要有: ①在焊缝附近的热影响区内,钢材组织发生改变,导致局 部材质变脆; ②焊接残余应力和残余变形使受压构件承载力降低; ③焊接结构对裂纹很敏感,局部裂纹一旦发生, 就容易扩 展到整体; ④低温冷脆。 焊缝常见的缺陷有裂纹、焊瘤、烧穿、弧坑、气孔、夹渣、 咬边、未熔合、未焊透。
第四节 钢结构
4.焊缝质量检验 焊缝质量检验一般可用外观检查及无损检验,前者检查外 观缺陷和几何尺寸,后者检查内部缺陷。 三级焊缝只要求对全部焊缝作外观检查且符合三级质量标 准;要求全焊透的一级、二级焊缝则除外观检查外,还要求用 超声波探伤进行内部缺陷的检验,超声波探伤不能对缺陷作出 判断时,应采用射线探伤检验。
第四节 钢结构
5.压弯构件整体失稳分为弯矩作用平面内和弯矩作用平面 外两种情况。弯矩作用平面内失稳为弯曲屈曲,弯矩作用平面 外失稳为弯扭屈曲。
第四节 钢结构
6.钢框架柱的柱脚构造 柱脚的功能是将柱子的内力可靠地传递给基础,并和基础 有牢固的连接。柱与基础的连接方式有刚接和铰接两种形式。 刚接柱脚与混凝土基础的连接方式有支承式(也称外露式)、 埋人式(也称插入式)、外包式三种。
第四节 钢结构
一、钢结构的连接 1.钢结构连接方法分为焊接连接、铆钉连接、螺栓连接等。
第四节 钢结构
2.焊缝连接形式及焊缝形式 (1)焊缝连接形式 焊缝连接形式分为对接、搭接、T型连接和角接连接。 (2)焊缝形式 ①对接焊缝:正对接焊缝、斜对接焊缝。 ②角焊缝: 正面角焊缝、侧面角焊缝、斜焊缝。 (3)焊缝代号 焊缝代号由引出线、图形符号和辅助符号三部分组成。
第四节 钢结构
(3)弯扭失稳:截面为单轴对称(T形截面)的轴心受压构 件绕对称轴失稳时,由于截面形心和剪切中心不重合,在发生 弯曲变形的同时必然伴随有扭转变形,这种现象称为弯扭失稳。
第四节 钢结构
3.钢梁的拼接依施工条件的不同分为工厂拼接和工地拼接。 4.钢梁的连接 (1)梁与梁的连接 就主次梁相对位置的不同,连接构造可以区分为叠接和侧 面连接。 (2)梁与柱的连接 梁柱连接按转动刚度的不同可分为柔性连接(铰接)、刚 接、半刚接三类。
第四节 钢结构
7.普通螺栓连接的排列构造要求:: 螺栓在构件上的排列应满足受力、构造和施工要求:
(a)并列布置
(b)错列布置
第四节 钢结构
8.普通螺栓紧固的顺序应从中间开始,对称向两边进行。 9.高强度螺栓紧固方法:扭矩法和转角法。 紧固顺序:从刚度较大的部位向不受约束的自由端进行, 从螺栓群中部开始向四周进行