六年级数学易错题难题题含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学易错题难题题含详细答案
一、培优题易错题
1.列方程解应用题:
(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?
(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.
【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有
18x+16×2x=400,
解得x=8,
2x=2×8=16.
答:装橙子的箱子8个,则装梨的箱子16个
(2)解:设有x个小孩,
依题意得:3x+7=4x﹣3,
解得x=10,
则3x+7=37.
答:有10个小孩,37个苹果
(3)解:设无风时飞机的航速为x千米/小时.
根据题意,列出方程得:
(x+24)× =(x﹣24)×3,
解这个方程,得x=840.
航程为(x﹣24)×3=2448(千米).
答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米
【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。
(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。
2.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):
城市悉尼纽约
时差/时+2-12
(1)当上海是10月1日上午10时,悉尼时间是________.
(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).
(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.
【答案】(1)12
(2)-2,-14
(3)解:10时45分+14时55分+12时=37时40分.
故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40
【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.
( 2 )12-10=2;
-12-2=-14;
故上海、纽约与悉尼的时差分别为-2,-14.
【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.
3.某手机经销商购进甲,乙两种品牌手机共 100 部.
(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?
(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.
从 A,B 两种中任选一题作答:
A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.
B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在
这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.
【答案】(1)解:设购进甲种手机部,乙种手机部,
根据题意,得
解得:
元.
答:销商共获利元.
(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,
根据题意,得
解得:
答:求甲,乙两种手机每部的进价分别为:3000元,2000元.
B:乙种手机:部,甲种手机部,
设每部甲种手机的进价为元,每部乙种手机的进价元,
根据题意,得
解得:
答:求甲,乙两种手机每部的进价分别为:2000元,3000元.
【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。(2)A 根据进价加利润等于甲和乙的售价,列出方程B 先求出甲乙的部数,表示出甲乙的标价,列出关系式,50部甲×甲的标价+10部甲×甲标价的八折+40部乙×乙的标价=利润率乘以成本,即可解出结果。
4.有,两个桶,分别盛着水和某含量的酒精溶液.先把桶液体倒入桶,使桶中的液体翻番;再将桶液体倒入桶,使桶中的液体翻番.此时,,两桶的液体体积相等,并且桶的酒精含量比桶的酒精含量高.问:最后桶中的酒精含量是多少?
【答案】解:因为最后桶的酒精含量高于桶,所以一开始桶盛的是酒精溶液.设一开始桶中有液体,桶中有.第一次从桶倒入桶后,桶有,桶剩;第二次从桶倒入桶,桶有,桶剩.由,得.
再设开始桶中有纯酒精,则有水.将酒精稀释过程列成表(如图):由题意知,,解得.所以最后桶中的酒精含量是
.
桶桶
纯酒精:水纯酒精:水
初始状态
第一次桶倒入桶
第二次桶倒入桶
【解析】【分析】因为最后A桶的酒精含量高于B桶,所以一开始A桶盛的是酒精溶液,B桶中是水。设一开始A桶中有液体x,B桶中有y,然后分别表示出两次操作后溶液的量,并根据两种液体体积相等得到一个等式,再求出两桶溶液的容量比。然后运用列表的方法确定A桶中酒精的含量即可。
5.已知三种混合物由三种成分、、组成,第一种仅含成分和,重量比为;第二种只含成分和,重量比为;第三种只含成分和,重量之比为 .以什么比例取这些混合物,才能使所得的混合物中、和,这三种成分的重量比为?【答案】解:D:C=(3+5):2=4:1;
第二种混合物不含,的含量为,第三种混合物不含,的含量为,所以倍第三种混合物含为,倍第二种混合物含为,
即第二种、第三种混合物的重量比为;于是此时含有,,
即,而最终混合物中,所以第一种混合物的质量与后两种混合质量和之比为,所以三种混合物的重量比为。
答:三种混合物的比为20:6:3。
【解析】【分析】第一种混合物中、重量比与最终混合物的、重量比相同,均为.所以,先将第二种、第三种混合物的、重量比调整到,再将第二种、第三种混合物中、与第一种混合物中、视为单一物质,然后求出新配成的物质中D:C的比。最终确定三种混合物的重量比。