六年级奥数组合图形面积计算
小学六年级奥数--面积计算(二)
二、精讲精练
练习3: 3.如图所示,AB=BC=8厘米,求阴影部分的面积。
二、精讲精练
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。 【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还 原成长方形后(如图所示)。
I和II的面积相等。 因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的 两组三角形面积分别相等,所以
二、精讲精练
练习5: 4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
谢谢观看
二、精讲精练 练习1: 1.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习1: 2.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习3: 3.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练
【例题2】求图中阴影部分的面积(单位:厘米)。 【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形 (如图所示)。
二、精讲精练
练习2: 3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
二、精讲精练
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影 部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相 等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于 长方形面积的一半(如图19-10右图所示)。所以 3.14×12×1/4×2=1.57(平方厘米)
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积 的一半。
3.14×-4×4÷2÷2=8.56(平方厘米) 答:阴影部分的面积是8.56平方厘米。
二、精讲精练
奥数圆面积计算六年级上册培优
奥数组合图形面积计算1:求出阴影部分的面积(单位:厘米)6×6×3.14×41 =9×3.14=28.26(平方厘米)2、求下面图形的阴影部分面积单位:厘米(1)6×6÷2=18(平方厘米)( 2)6×6=36(平方厘米)3、求出阴影部分的面积(单位:厘米)4×4×3.14×41-4×4÷2+4×2÷2 =12.56-8+4=8.56(平方厘米)4、求下列图形的阴影部分的面积(单位厘米)(1) 4×2=8(平方厘米) (2) 4×4÷2=8(平方厘米)5、两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO 1O 的面积。
3.14×12×41×2=1.57(平方厘米) 6、圆的周长为12.56厘米,AC 两点把圆周分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD 的面积。
12.56÷3.14=4(厘米) 22×3.14=12.56(平方厘米)7、直径BC=8厘米,AB=AC ,D 为AC 的中点,求阴影部分的面积。
8×4÷2÷2=8(平方厘米)3.14×42×41-4×4÷2=12.56-8=4.56(平方厘米) 8+4.56=12.56(平方厘米)8、求阴影部分的面积。
(单位:厘米)。
CD:DF=FE:EBD F ×FE=CD ×EB=6×4=24(平方厘米)9、求四边形ABCD 的面积。
(单位:厘米)7×7÷2-3×3÷2=24.5-4.5=20(平方厘米)10、BE 长5厘米,长方形AEFD面积是38平方厘米。
小学六年级奥数- 面积计算(一)
小学奥数 举一反三
(六年级)
第18讲 面积计算(一) 一、知识要点 计算平面图形的面积时,有些问题乍一看,在已知条 件与所求问题之间找不到任何联系,会使你感到无从下手。 这时,如果我们能认真观察图形,分析、研究已知条件, 并加以深化,再运用我们已有的基本几何知识,适当添加 辅助线,搭一座连通已知条件与所求问题的小“桥”,就 会使你顺利达到目的。有些平面图形的面积计算必须借助 于图形本身的特征,添加一些辅助线,运用平移旋转、剪 拼组合等方法,对图形进行恰当合理的变形,再经过分析 推导,才能寻求出解题的途径。
因为S△ABD与S△ACD等底等高 因为S△BOC是S△DOC的2倍 所以S△ABO=6 所以△ABO是△AOD的2倍
所以△AOD=6÷2=3。
答:△AOD的面积是3。
二、精讲精练
练习2: 1.两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知 两个三角形的面积,求另两个三角形的面积是多少?
二、精讲精练
练习5: 1.如图所示,长方形ABCD的面积是20平方厘米,三角形ADF的面积为5平方 厘米,三角形ABE的面积为7平方厘米,求三角形AEF的面积。
二、精讲精练
练习5: 2.如图所示,长方形ABCD的面积为20平方厘米,S△ABE=4平方厘米, S△AFD=6平方厘米,求三角形AEF的面积。
六年级奥数举一反三-组合图形面积计算小学
六年级奥数举⼀反三-组合图形⾯积计算⼩学组合图形⾯积计算(⼀)⼀、知识要点在进⾏组合图形的⾯积计算时,要仔细观察,认真思考,看清组合图形是由⼏个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
⼆、精讲精练【例题1】求图中阴影部分的⾯积(单位:厘⽶)。
圆的⾯积。
【思路导航】如图所⽰的特点,阴影部分的⾯积可以拼成14=28.26(平⽅厘⽶)62×3.14×14答:阴影部分的⾯积是28.26平⽅厘⽶。
练习1:1.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。
2.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。
3.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。
【例题2】求图中阴影部分的⾯积(单位:厘⽶)。
【思路导航】阴影部分通过翻折移动位置后,构成了⼀个新的图形(如图所⽰)。
从图中可以看出阴影部分的⾯积等于⼤扇形的⾯积减去⼤三⾓形⾯积的⼀半。
3.14×2144-4×4÷2÷2=8.56(平⽅厘⽶)答:阴影部分的⾯积是8.56平⽅厘⽶。
练习2:1.计算下⾯图形中阴影部分的⾯积(单位:厘⽶)。
2.计算下⾯图形中阴影部分的⾯积(单位:厘⽶,正⽅形边长4)。
3.计算下⾯图形中阴影部分的⾯积(单位:厘⽶,正⽅形边长4)。
【例题3】如图19-10所⽰,两圆半径都是1厘⽶,且图中两个阴影部分的⾯积相等。
求长⽅形ABO1O的⾯积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空⽩部分相等。
⼜因为图中两个阴影部分的⾯积相等,所以扇形的⾯积等于长⽅形⾯积的⼀半(如图19-10右图所⽰)。
所以3.14×12×1/4×2=1.57(平⽅厘⽶)答:长⽅形长⽅形ABO1O的⾯积是1.57平⽅厘⽶。
练习3:1.如图所⽰,圆的周长为12.56厘⽶,AC两点把圆分成相等的两段弧,阴影部分(1)的⾯积与阴影部分(2)的⾯积相等,求平⾏四边形ABCD的⾯积。
六年级奥数图形问题精选
圆和组合图形(1)一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是 平方厘米.120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB 长40厘米, BC 长 厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.45二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?(圆周率14.3=π)12.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?———————————————答 案——————————————————————1. 18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为1822136=⨯⨯⨯(平方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45的扇形面积减去直角三角形的面积.即14.12122236045214.32=⨯⨯-⨯⨯⨯(平方厘米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是60=∠=∠BCE EBC .BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方厘米,故半圆面积比三角形ABC 的面积小28平方厘米.半圆面积为6282124014.32=⨯⎪⎭⎫ ⎝⎛⨯(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为8.32402656=÷⨯(厘米).6. 13937平方厘米.将等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆的半径为2x 厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫⎝⎛⨯-x x ,解得1332002=x .故等腰直角三角形的面积为1393721133200=⨯(平方厘米).⌒⌒7. 72.扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为3262=÷=÷AO (厘米),故三角形ACO 的面积为93621=⨯⨯(平方厘米).而扇形面积为13.1436045614.32=⨯⨯(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为5420=÷(厘米).图形总面积为两个43圆面积加上正方形的面积,即75.1425243514.322=+⨯⨯⨯(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷(平方厘米).11. 如图作出辅助线,则阴影部分的面积为三角形AED 的面积减去正方形BEDO 的面积再加上圆面积的41. 三角形AED 的面积是21)210()21010(⨯÷⨯÷+;是2)210(÷,圆面积的41是2)210(14.341÷⨯⨯,故阴影部分面积为:22)210(14.341)210(21)210()21010(÷⨯⨯+÷-⨯÷⨯÷+125.32625.19255.37=+-=(平方厘米).12. 由已知半圆S 1的面积是14.13平方厘米得半径的平方为914.3213.14=÷⨯(平方厘米),故半径为3厘米,直径为6厘米. 又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为25.614.3625.19=÷(平方厘米),于是它的半径为2.5厘米,直径为5厘米. 阴影部分面积为55)56(=⨯-(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即150215180,151=⨯-=∠=∠=∠AOB OBA , 同理150=∠AOC ,于是602150360=⨯-=∠BOC . 扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为221221=⨯⨯⨯(平方厘米).正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米. 故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为 8)2(22412=-⨯-⨯⨯ππ(平方厘米).十二、圆和组合图形(2)一、填空题1.如图,阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .2 1 27.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)2二、解答题11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率22)取12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、CD 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?———————————————答 案——————————————————————1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位.2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米).3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米).4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++=5.204.1645=⨯=(厘米).6. 6548(平方厘米).如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米).又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为⌒61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米).7. 19.1416.花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米).8. 2.43平方厘米. 如图,将①移到②得:阴影部分面积等于梯形CEFB 的 面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即 43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米).9. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x ⨯⨯⨯=⨯⨯ππ,解得x=60.10. 0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米),甲乙两部分面积差为14.043.057.0=-(平方厘米11. 如图,小正方形的边长为2r,则①的面积为:72227224122r r r r =⨯-⎪⎭⎫ ⎝⎛⨯⨯,②的面积为222417272221r r r =-⎪⎭⎫ ⎝⎛⨯⨯,2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r .12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S (1)又9232=-x S ,于是有23184+-=S x ,解得S=6.14. 圆板的正面滚过的部分如右图阴影部分所求, 它的面积为:)420(4614)220(22122-+⨯⨯+⨯-+⨯⨯ππ07.228323204221)24(414)220(4222≈+=⨯⨯+⨯-⨯-⨯-+⨯πππ(平方厘米).D面积计算(三)专题简析:对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
小学奥数六年级举一反三--面积计算
小学奥数举一反三面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。
由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2/3BC,所以S△BDF=2S△DCF。
又因为AE=ED,所以S△ABF=S△BDF=2S△DCF。
因此,S△ABC=5 S△DCF。
由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。
举一反三--六年级奥数面积计算(1)
组合图形的面积(1)
13、图中BO=2DO,阴影部分 的面积是4平方厘米,求梯形 ABCD的面积是多少平方厘米?
14、如图,正方形ABCD的边长 是12厘米,CE=4厘米。求阴影 部分的面积。
组合图形的面积(1)
15、图中三角形ABC的面积是 36平方厘米,AC长8厘米,DE 长3厘米,求阴影部分的面积 (ADFC不是正方形)。 16、有两种自然的放法将正 方形内接于等腰直角三角形。 已知等腰直角三角形的面积 是36平方厘米,两个正方形 的面积分别是多少?
六年奥数——举一反三 面积计算(一)
组合图形的面积(1)
1、已知右面的两个正方形边长 分别为6分米和4分米,求图中阴 影部分的面积。
2、如图,这个长方形的长是9厘 米,宽是8厘米,A和B是宽的中 点,求长方形内阴影部分的面积。
组合图形的面积(1)
3、右图是两个相同的直角三 角形叠在一起,求阴影部分的 面积。(单位:厘米)
4、如图,长方形长18厘米, 宽12厘米,AE、AF两条线段 把长方形面积三等分,求三 角形AEF的面积。
组合图形的面积(1)
5、如图,三角形ABC的面积是 24平方厘米,且DC=2AD,E、 F分别是AF、BC的中点,那么 阴影部分的面积是多少?
6、如图,三角形ABC的面积是 90平方厘米,EF平行于BC, AB=3AE,那么三角形甲、乙、 丙的面积各是多少平方厘米?
组合图形的面积(1)
7、在等腰梯形ABCD中,AD=12 厘米,高DF=10厘米。三角形 CDE的面积是12平方厘米。求梯 形面积。
8、如图,三角形EDF的面积比三 角形ABE的面积大6平方厘米,已 知长方形ABDC的长和宽分别为6 厘米、4厘米,DF的长多少厘米?
六年级奥数题:圆与组合圆面积
圆的面积与扇形面积
例1 求图中阴影部分的面积(单位:厘米)
拓展练习求下面各个图形中阴影部分的面积(单位:厘米)。
例2 求阴影部分的面积(单位:厘米)
拓展练习计算下面图形中阴影部分的面积(单位:厘米)
例3 如图所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长的面积。
方形O
ABO
1
拓展练习1、如图所示,圆的周长为厘米,AC两点把圆周分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
2、如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。
3、如图所示,AB=BC=8厘米,求阴影部分的面积。
例4 如图所示,求阴影部分的面积(单位:厘米)
拓展练习1、如图所示,求四边形ABCD的面积。
2、如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。
求CD的长度。
3、如图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)
例5 图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=0
30,求阴影部分的面积(得数保留两位小数)。
拓展练习1、如图∠1=
15,圆的周长为厘米,平行四边形的面积为100平方厘米。
求阴影部分的面积(得数保留两位小数)
2、如图,三角形ABC的面积是平方厘米,圆的直径AC=6厘米,B D:DC=3:1。
求阴影部分的面积。
3、如图,求阴影部分的面积(单位:厘米。
得数保留两位小数)。
六年级组合图形面积
∴S△BCE=2/3S△ABC=60cm²
S△AEC=1/33S△ABC=30cm²
∵EF平行于BC
答:甲的面积10cm², ∴AF:AC=AE:AB=1:3
乙的面积20cm²,丙 的面积60cm²。
∴S△AEF=1/3S△AEC=10cm²
∴S△EFC=30-10=20cm²
7、在等腰梯形ABCD中,AD=12 厘米,高DF=10厘米。三角形CDE 的面积是12平方厘米。求梯形面 积。
“EF平行于BC,AB=3AE”可得:AE:AB=1:3,AF:AC=1:3,
再据“等高不等底的三角形的面积比就等于其对应底的比”, 所 又 据以因此S甲解△答=A13S即E△C可=A13ES.△C,解A乙B:C=于∵S,是32A△B就=A3E可ACE,以丙求=出S三△32 角AB形C,甲、乙、丙的面积,
8、如图,三角形EDF的面积比三 角形ABE的面积大6平方厘米,已 知长方形ABDC的长和宽分别为6厘 米、4厘米,DF的长多少厘米?
解:S正=6*4=24cm²
S(ACDE)=S(ABCD)-S(ABE)=S(ACF)-S(EDF) S(ACF)=S(ABCD)+[S(EDF)-S(ACF)] =24+6 =30 CF=30×2÷4=15cm DF=CF-CD=15-6=9cm
六年奥数——举一反三 组合图形的面积
组合图形的面积(1)
1、已知右面的两个正方形边长 分别为6分米和4分米,求图中阴 影部分的面积。
阴影面积=两个正方形面积-△ACB-△BGF
6²+4²-6×6÷2-4×10÷2=22dm²
2、如图,这个长方形的长是9厘 米,宽是8厘米,A和B是宽的中 点,求长方形内阴影部分的面积。
六年级奥数周周练 第20周 面积计算(三) (教师版)
第20周面积计算(三)一、知识要点对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
有些图形可以根据“容斥问题“的原理来解答。
在圆的半径r 用小学知识无法求出时,可以把“r 2”整体地代入面积公式求面积。
二、精讲精练【例题1】如图所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,为10÷2=5厘米。
[3.14×102×14-10×(10÷2)×12]×2=107(平方厘米) 答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。
把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
3.14×102×12-102×12=107(平方厘米) 答:阴影部分的面积是107平方厘米。
练习1:1.如图所示,求阴影部分的面积(单位:厘米)因为三角形BCD 中BC 边上高等于BC 的一半,所以阴影部分的面积是:3.14×62×45360-6×(6÷2)×12=5.13(平方厘米) 答:阴影部分的面积是5.13平方厘米。
2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。
求红蓝两张三角形纸片面积之和是多少?如图所示,将红色直角三角形纸片旋转90°,红色和蓝色的两个直角三角形就拼成了一个直角边分别是49厘米和29厘米的直角三角形,因此,所求的面积为:49×29×12=710.5(平方厘米) 答:红蓝两张三角形纸片面积之和是710.5平方厘米。
六年级上册奥数试题:第20讲 组合图形的计算 全国通用(含答案)
第20讲组合图形的计算知识网络组合图形是由一些基本图形如长方形、正方形、三角形、平行四边形、梯形、圆和扇形等组合而成的图形。
在本讲中,主要介绍长方形、正方形、三角形、平行四边形和梯形组合而成的图形。
组合图形的计算,指的是与组合图形的面积、周长等有关的问题的计算。
对五种基本图形,首先要熟记它们面积的基本公式:。
重点·难点组合图形的计算是以上述几种基本图形为基础的。
这几种基本图形的一些酝酿性质的恰当运用是本讲的重点。
这些基本性质包括:等底等高的两个三角形面积相等;等底的两个三角形面积比等于高之比;等高的两个三角形面积比等于底之比。
这三条性质都是三角形的性质,它们同样适用于平行四边形和长方形。
学法指导在求组合图形的面积时,可用一些比较常用的方法,如:直接法、相加法和相减法、翻转法、等积移位法、重叠法。
最终的目的是将这些图形转化成我们熟悉的简单规则图形的和或差。
同时,也可以构造图形,利用面积的关系来解一些代数题,如关于线段成比例等问题。
经典例题[例1]有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米,那么小正方形的面积是多少平方厘米?思路剖析先求出边长再求面积是一般解法,我们可以利用割补拼凑的方法利用图像来比较直观地求解本题。
解答如图1所示,将两个正方形的一个顶点对齐,将大正方形在小正方形外的部分分割成两个直角梯形,再拼成一个长方形。
由于两个正方形的周长相差20厘米,从而它们的每边相差,即图2中长方形的宽是5厘米。
又因为长方形的面积是两个正方形的面积之差,即为55平方厘米,从而长方形的长为55÷5=11厘米。
由图中可知,长方形的长是直角梯形的上底和下底的和;长方形的宽是直角梯形的上底和下底的差,从而小正方形的长为(11-5)÷2=3(厘米)。
所以小正方形的面积为3×3=9(平方厘米)。
[例2]如图3所示,将△ABC的各边都延长1倍到,得到一个新的,如果△ABC的面积为10,求△的面积。
六年级奥数-面积计算
面积计算(一)专题简析:计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
例题1。
已知图18-1中,三角形ABC 的面积为8平方厘米,AE =ED ,BD=23 BC ,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF 的面积无法直接计算。
由于AE=ED,连接DF ,可知S △AEF =S △EDF (等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF 的面积。
因为BD=23 BC ,所以S △BDF =2S △DCF 。
又因为AE =ED ,所以S △ABF =S △BDF =2S △DCF 。
因此,S △ABC =5 S △DCF 。
由于S △ABC =8平方厘米,所以S △DCF =8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习11、 如图18-2所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。
求阴影部分的面积。
2、 如图18-3所示,AE=ED ,DC =13 BD ,S △ABC =21平方厘米。
求阴影部分的面积。
3、 如图18-4所示,DE =12AE ,BD =2DC ,S △EBD =5平方厘米。
求三角形ABC 的面积。
AB CFD E18-2ABCFE D18-1 ABCFED 18-3CB D EF 18-4例题2。
两条对角线把梯形ABCD 分割成四个三角形,如图18-5所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S △BOC 是S △DOC 的2倍,且高相等,可知:BO =2DO ;从S △ABD 与S △ACD相等(等底等高)可知:S △ABO 等于6,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。
六年级上册奥数(课件)第11讲:组合图形的面积
正方形面积:
S a2
四分之一圆面积:
Sr2 4
三角形面积:
Sah 2
阴影部分的面积:
(19.625-12.5)×2=14.25(平方厘米)
答:阴影部分的面积是14.25平方厘米。
2 2
练习三
已知下面图形的两条线段长2厘米,并互相 垂直,求阴影部分的面积。
正方形的面积: 2×2=4(平方厘米) 四分之一圆面积: 3.14×22÷4=3.14(平方厘米) 阴影部分的面积: 4-3.14=0.86(平方厘米) 答:阴影部分的面积是0.86平方厘米。
扇形面积:
S 圆心角 r2
360
总结
先把组合图形分成几个简单的图形,再 把每个简单图形的面积相加或相减,就是所 求的组合图形的面积;或将组合图形添补成 基本图形再进行求解。
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may圆面积:
Sr2 2
例题二
求下面图形阴影部分的面积。(单位:厘米)
4
梯形面积: (8+4)×4÷2=24(平方厘米) 四分之一圆面积: 3.14×42÷4=12.56(平方厘米)
梯形面积:
S ( a b ) h 2
四分之一圆面积:
Sr2 4
阴影部分的面积: 24-12.56=11.44(平方厘米)
子天
是开
梅放
花;
,有
选的
择孩
六年级奥数第18. 面积计算(一)
第18讲面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2BC,3求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。
由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2BC,所以S△BDF=2S△DCF。
又因为AE=ED,3所以S△ABF=S△BDF=2S△DCF。
因此,S△ABC=5 S△DCF。
由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2.如图所示,AE=ED,DC=1BD,S△ABC=21平方厘米。
求阴影部分的3面积。
3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。
所以△AOD的面积为6÷2=3。
六年级上册秋季奥数培优讲义——6-02-组合图形(一)3-讲义-学生
第2讲组合图形求面积(一)【学习目标】1、复习圆的面积计算;2、熟练掌握组合图形的面积计算。
【知识梳理】1、拼接法:把不规则的图形拼接成规则的可以直接计算的图形;2、大减小:用大图的面积减去其他部分的面积;3、整体法:在计算过程中把某一个中间数(如半径的平方)当做一个整体来求解。
【典例精析】【例1】如图,正方形的面积是12平方厘米,求图中阴影部分的面积。
【趁热打铁-1】下图中圆的面积是125.6cm²,正方形的面积是多少平方厘米?【例2】如图,阴影部分的面积是25m²。
圆环的面积是多少?【趁热打铁-2】图中阴影部分的面积是50平方厘米,求环形的面积。
【例3】如图4个大小相同的圆的直径都是10厘米,求阴影部分的面积和周长。
【趁热打铁-3】如图个圆半径都是2厘米,求阴影部分的面积。
(图中三角形是直角三角形)【例4】如果,图中三个圆的周长都是25.12厘米圆心恰在直角梯形的三个顶点处,则圆与梯形重叠部分的面积是平方厘米。
(π取3.14)【趁热打铁-4】图中三个圆的周长都是25.12厘米,圆心恰好在直角梯形的三个顶点处,则圆与梯形重叠部分的面积是平方厘米。
(π取3.14)【例5】下图是由一个平行四边形和个半圆组成的图形,已知半圆的半径是10厘米,计算图中阴影部分的面积。
【趁热打铁-5】下图由半圆和等腰直角三角形重叠而成。
已知等腰直角三角形的直角边长为4厘米,求图中阴影部分的面积。
【例6】下图中长方形的宽是4厘米,图中阴影部分的面积是平方厘米。
【趁热打铁-6】如图,正方形的边长是4厘米,则阴影部分的面积为________平方厘米。
【例7】下图中阴影部分的面积为________平方厘米。
(单位:厘米)【趁热打铁-7】下图中阴影部分的面积为________平方厘米。
(单位:厘米)【例8】在长方形ABCD中,AB长8厘米,BC长6厘米,AC长10厘米.如果把这个长方形绕顶点C旋转90°(如图),那么AD边所扫过部分(阴影部分)的面积是多少平方厘米?【趁热打铁-8】如图,圆0的直径AB与CD互相垂直,AB=20厘米,以C为圆心,CA为半径画弧AB,则阴影部分面积是____平方厘米.【例9】如图所示,求图中阴影部分的面积。
六年级奥数第18讲 面积计算(一)
六年级奥数第18讲面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。
由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2/3BC,所以S△BDF=2S△DCF。
又因为AE=ED,所以S△ABF=S△BDF=2S△DCF。
因此,S△ABC=5 S△DCF。
由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。
新人教版六年级组合面积、立体图形较难题、奥数
一、组合图形面积的计算1、计算下列图形的阴影面积(单位:cm)2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、如图,两个大小不等的正方形拼成一个图形,已知小正方形的边长是4厘米,阴影部分的面积是30平方厘米,求空白部分的面积是多少?5、下列两个图形中,正方形的边长都为4,求阴影面积。
二、立体图形1、下图是一个正方体木块,棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大小不等的长方体60块。
那么,这60块长方体的表面积的和是平方米。
2、下图是由19个边长都是2厘米的正方体重叠而成的。
求这个立体图形的外表面积。
3、如图,一个正方体的纸盒中恰好能放入一个体积为628立方厘米的圆柱体,纸盒的容积有多大?(π取3.14)4、一个长、宽、高分别是21厘米、15厘米、12厘米的长方体,从它的上面尽可能大地切下一个正方体,然后从剩余部分中再尽可能大地切下一个正方体,最后再从第二次剩余部分尽可能大地切下一个正方体,剩下的体积是多少立方厘米?5、下图是一个边长为2厘米的正方体.在正方体的上面的正中向下挖一个边长为1厘米的正方体小间;接着在小洞的底面正中再向下挖一个边长为21厘米的小洞;第三个小洞的挖法与前两个相同,边长为41厘米.那么最后得到的立体图形的表面积是多少平方厘米?6、有五颗相同的骰子放成一排(如下图),五颗骰子底面的点数之和是多少?7、将左下图沿虚线折成一个立方体,它的相交于一个顶点处的三个面上的数字之和的最大值是多少?最小值是多少?8、右图中第1格内放着一个立方体木块,木块六个面上分别写着A,B,C,D,E,F六个字母,其中A与D,B与E,C与F相对。
如果将木块沿着图中方格滚动,那么当木块滚动到第21个格时,木块向上的面写的是哪个字母?9、某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如想图所示在三个方向上加固.所用尼龙编织条的长分别为365厘米、405厘米、485厘米.若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?三、利用分率解应用题1、一列火车从北京开往上海,已经行了全程的2/3,恰好是806公理,求这条路长多少公理?2、红星小学图书馆有文艺书640本,科技书是文艺书的7/8,科技书有多少本?3、利民厂一车间有工人400人,二车间比一车间少20%,二车间有多少人?4、某班有42人,男生是女生的1/5,男、女生各多少人?5、一段绳子的3/4比它的2/5长12米,求绳子的全长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面积计算(一)
一, 求阴影部分的面积
1.如下图,已知6=AB 厘米,10=AD 厘米,三角形ABE 和三角形ADF 的面积各占长方形ABCD 的3
1
,三角形AEF 的面积是多少平方厘米
2.如下图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是多少平方厘米
3.在四边形ABCD 中,BD AC 和互相垂直并相交于O 点,四个小三角形的面积如下图所示,求阴影部分三角形BCO 的面积。
4.三角形E D ABC ,.中(如下图),是中点,S 甲比S 乙多5平方厘米,三
角形ABC 的面积是多少平方厘米
5.图中扇形的半径6==OB OA 厘米,AOB ∠等于︒45,AC 垂直于点C ,那么图中阴影部分的面积是多少平方厘米()
取(14.3π
6.下图的正方形是由大家熟悉的七巧板拼成的,边长是10厘米,那么阴影部分的面积是多少平方厘米
7.如下图,斜边长为30厘米的等腰直角三角形内有一个内接的正方形,那么阴影部分的面积是多少平方厘米
二,解答题。
1.由三角形面积分别为2,3,5,7的四个三角形拼成一个大三角形,
如下图所示。
即已知:S
AED
∆=2, S
AEC
∆
=5, S
BDF
∆
=7, S
BCF
∆
=3,那么S
BEF
∆
是多少
2.如下图,BD=4厘米,DE=8厘米,EC=4厘米,F是AE的中点,ABC
∆在BC边上的高为8厘米,DFE
∆的面积是多少平方厘米
3运动会入场式要求运动员排成一个9行9列的正方形方阵,如果去掉3行3列,要减少多少名运动员
3.如图所示是由正方形和半圆组成的图形,其中P点为半圆的中点,
Q点为正方形一边的中点,那么阴影部分的面积是多少。