2020最新初中数学知识点汇总
初中数学知识点汇总
初中数学知识点汇总一、数与代数1、有理数有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
有理数的运算有加、减、乘、除、乘方。
运算时要注意符号的变化,加法满足交换律和结合律,乘法满足交换律、结合律和分配律。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、√2 等。
实数的运算与有理数类似,但要注意无理数的运算。
平方根和立方根也是实数的重要概念,一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
正数的立方根是正数,负数的立方根是负数,0 的立方根是 0。
3、代数式代数式包括整式(单项式和多项式)、分式和二次根式。
整式的运算有加、减、乘、除,其中乘法包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式。
分式要注意分母不能为 0,分式的运算包括约分、通分和加减乘除。
二次根式要注意被开方数必须是非负数,二次根式的运算包括化简、加减和乘除。
4、方程与不等式方程包括一元一次方程、二元一次方程(组)、一元二次方程。
一元一次方程的解法是通过移项、合并同类项、系数化为 1 来求解。
二元一次方程组的解法有代入消元法和加减消元法。
一元二次方程的解法有直接开平方法、配方法、公式法和因式分解法。
不等式的性质包括对称性、传递性、加法和乘法法则。
解不等式的步骤与解方程类似,但要注意不等式两边乘以或除以负数时,不等号方向要改变。
5、函数函数是初中数学的重点内容,包括一次函数、反比例函数和二次函数。
一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0),其图像是一条直线。
反比例函数的表达式为 y = k/x(k 为常数,k ≠ 0),其图像是双曲线。
二次函数的表达式为 y = ax²+ bx + c(a、b、c 为常数,a ≠ 0),其图像是抛物线。
函数的性质包括定义域、值域、单调性、奇偶性等,要学会根据函数的表达式和图像来分析这些性质。
二、图形与几何1、线与角直线没有端点,可以向两端无限延伸;射线有一个端点,可以向一端无限延伸;线段有两个端点,不能延伸。
2020最新初中数学知识点汇总
整式的加减实际上就是合并同类项,在运算 时,如果遇到括号,先去括号,再合并同类项。
( 2)整式的乘除:
幂的运算法则:其中 m 、 n 都是正整数 同底数幂相乘: am an a m n ;同底数幂相除: a m a n a m n ;幂的乘方: ( am ) n amn 积的乘方: (ab) n a nb n 。
化简: a a b b a
分析:从数轴上 a、 b 两点的位置可以看到: a <0,b>0 且 a b
所以可得:
解: 原式 a a b b a a
例 2 、若 a
(
3 )
3,
b
( 3)3,
c
3 ()
3
,比较
a、
4
4
4
b 、 c 的大小。
分析: a ( 4 )3 1 ; b
3
3
3
1且b 0 ; c> 0 ;
( 2)运用公式法:
平方差公式: a 2 b 2 (a b)(a b) ;完全平方 公式: a 2 2ab b2 (a b) 2
( 3 )十字相乘法: x 2 (a b)x ab (x a)( x b)
(4 )分组分解法:将多项式的项适当分组 后能提公因式或运用公式分解。
(5 )运用求根公式法:若 的两个根是 x1、 x2 ,则有:
( 3)分式的变号法则:分式的分子,分母与 分式本身的符号,改变其中任何两个,分式的值 不变。
3 、分式的运算:
( 1)加、减:同分母的分式相加减,分母不 变,分子相加减;异分母的分式相加减,先把它 们通分成同分母的分式再相加减。
最完整初中数学知识点总结及公式大全
最完整初中数学知识点总结及公式大全1.整数和有理数-整数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
-有理数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
2.平面图形-平面图形的性质与计算:正方形的面积等于边长的平方;矩形的面积等于长乘以宽;三角形的面积等于底乘以高的一半;梯形的面积等于上底加下底乘以高的一半。
3.线的关系与方程-平行线和垂直线的特征:平行线具有相同的斜率,垂直线具有互为倒数的斜率。
-直线的方程:一般式方程、斜截式方程、截距式方程、点斜式方程。
4.相似与全等-相似的概念和判定条件:对应角相等,对应边成比例。
-全等三角形的判定条件:边-边-边、边-角-边、角-边-角、角-角-角。
5.几何作图-通过已知条件作出各种形状:平分线、垂直线、平行线、三等分线等。
6.算式计算-四则运算:加法、减法、乘法、除法。
-分数的加减乘除运算:通分、约分、分数的加减乘除运算规则。
7.比例与百分数-比例的概念和性质:比例的定义、比例的性质、比例的延长线、反比例。
-百分数的计算:百分数与小数的相互转换、百分数之间的比较、百分数与分数的相互转换。
8.数据与概率-数据整理与分析:表格、条形图、折线图、饼图等。
-概率的计算:事件的概率等于事件发生次数除以总次数。
9.代数基础知识-代数式的加减乘除:同类项的加减法、乘法运算法则、除法运算法则。
-代数式的值:给定变量值计算代数式的值。
10.一元一次方程与一元一次不等式-一元一次方程的解:解方程的基本步骤、等式的等价性质。
-一元一次不等式的解:解不等式的基本步骤、不等式的性质。
11.二次根式与二次方程-二次根式的化简:完全平方、配方法。
-二次方程的解:因式分解法、配方法、求根公式。
12.几何证明-各种定理的证明:三角形的中位线定理、三角形的角平分线定理、圆的性质等。
初中数学知识点总结最全版
初中数学知识点总结最全版一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念和性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用题5. 二元一次方程组- 代入法和消元法- 方程组的解的概念- 解二元一次方程组的应用题6. 不等式- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式- 线性函数和二次函数的图像及性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆 - 周长的计算:三角形、四边形、圆- 体积的计算:长方体、正方体、圆柱、圆锥3. 几何变换- 平移、旋转、对称(轴对称和中心对称)- 几何变换的性质和应用4. 解析几何- 坐标系的基本概念- 点的坐标和几何图形的坐标表示- 直线和曲线的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制:条形图、折线图、饼图 - 算术平均数、中位数和众数2. 概率- 概率的基本概念- 等可能事件的概率- 概率的加法和乘法法则- 简单事件和复合事件的概率计算四、综合应用题1. 数列- 等差数列的概念和性质- 等比数列的概念和性质- 数列的求和2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 统计与概率在实际问题中的应用3. 综合题- 结合数与代数、几何、统计与概率的知识点 - 解决综合性问题的能力培养以上总结了初中数学的主要知识点,学生在学习过程中应注重理解和应用,通过大量的练习来巩固所学知识,提高解题能力和数学思维。
2020年七年级所有知识点
2020年七年级所有知识点随着时代不断的发展,我们的知识也需要不断的更新和补充。
作为学习生涯的起点,七年级是一个关键的阶段,这个时期我们更应该将学习的重心放在基础知识的掌握上。
下面,我们来一起回顾一下2020年七年级学生所需要掌握的所有知识点。
数学知识点:数学是一门非常基础和重要的学科,对于数学知识点的掌握不仅影响到高中数学甚至是后续的科学研究。
以下是七年级需要掌握的数学知识点:1. 整数运算2. 分数运算3. 数的倍数和因数4. 数的质数和合数5. 平面直角坐标系及其运用6. 数学中的一般式及其应用7. 常见几何图形的基本性质8. 三角形的基本性质及分类9. 平行四边形的性质及其应用10. 三视图的绘制物理知识点:物理是一门在生产生活和科学研究中起着至关重要的作用的学科,它帮助我们认识自然现象,并且能够创造出许多我们熟知的实用物品。
以下是七年级需要掌握的物理知识点:1. 物质的内部结构2. 机械学之力和力的作用3. 重力和万有引力4. 动能,势能和机械能5. 显微镜和望远镜6. 各种不同的能量类型7. 电流的产生及其应用8. 电学和磁学9. 声波和光波的传播及其应用10. 能量转换及其应用化学知识点:化学作为一门研究物质变化的学科,是其他学科的基础,其中许多学科都离不开化学的成分和应用。
以下是七年级需要掌握的化学知识点:1. 化学符号和化学方程式2. 物理变化和化学变化3. 化学元素的认识4. 化合物的认识5. 饱和溶液、比溶液及其应用6. 酸、碱、中和反应及其应用7. 气体的性质和特性8. 化学反应式及其应用9. 元素周期表及其应用10. 金属和非金属的特性以及区别英语知识点:英语是目前世界上最受欢迎的语言之一,它是一门必修的学科,也是我们在未来社会中通向世界的关键能力之一。
以下是七年级需要掌握的英语知识点:1. 英语日常用语与单语句2. 动词时态, 主动语态和被动语态3. 名词、形容词和副词的基本语法4. 代词,冠词和介词的基本语法5. 简单的比较和形容词的比较6. 情态动词和语气的使用7. 常用谚语和俚语的使用8. 英语世界文化和文学的基本知识9. 常见单词词根、字典记单词记法和学习策略10. 阅读和写作技巧语文知识点:语文是传统乃至现代社会中必须掌握的学科之一,它是我们学习和提高综合素质的必修科目。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。
2.整数:正整数、负整数和0的集合。
3.分数:约分、通分、四则运算、化为整数、化为带分数。
4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。
5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。
6.乘方与开方:幂的概念与运算,方根的概念与运算。
7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。
二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。
2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。
3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。
4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。
5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。
三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。
2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。
3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。
4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。
5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。
四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。
2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。
3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。
4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。
初中数学知识点全面总结(完整版)
初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。
)。
2020初中数学知识点总结
精选教育类文档,如果您需要使用本文档,请点击下载,祝您生活愉快,工作顺利,万事如意!马上就要中考了,祝大家中考都考上一个理想的高中!欢迎同学们下载,希望能帮助到你们!*2020最新初中数学知识点总结【第一章:实数重要复习的知识点:》一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
{(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00,a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
—4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a 的平方根,a叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
初中数学知识点总结完整版
初中数学知识点总结完整版一、数与代数1、有理数有理数包括整数和分数。
整数又包括正整数、零和负整数;分数包括正分数和负分数。
有理数的运算包括加、减、乘、除、乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得 0。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。
除法法则:除以一个数等于乘以这个数的倒数;0 除以任何一个不等于 0 的数都得 0。
乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,常见的无理数有π、\(\sqrt{2}\)等。
实数的运算性质和有理数的运算性质相同。
平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
正数的立方根是正数,负数的立方根是负数,0 的立方根是 0。
3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
代数式的求值:把代数式中的字母用给定的值代入计算,求出代数式的值。
4、整式单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数,单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
整式的加减:整式加减的实质是合并同类项。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
2020中考数学知识点大全(2020年整理).pdf
(4)十字相乘法: a2 + ( p + q)a + pq = (a + p)(a + q)
3、因式分解的一般步骤:
(1)如果多项式的各项有公因式,那么先提取公因式。
(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2 项式可以尝试运用公式法分
解因式;3 项式可以尝试运用公式法、十字相乘法分解因式;4 项式及 4 项式以上的可以尝试分组分解法分解因式
整式的除法: a m a n = a m−n (m, n都是正整数, a 0)
注意:(1)单项式乘单项式的结果仍然是单项式。 (2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。 (3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。 (4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。 (5)公式中的字母可以表示数,也可以表示单项式或多项式。
叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 考点三、一元二次方程的解法 (10 分)
1、直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如
(x + a)2 = b 的一元二次方程。根据平方根的定义可知, x + a 是 b 的平方根,当 b 0 时, x + a = b ,
(1) ( a )2 = a(a 0)
a(a 0)
(2) a2 = a =
− a(a 0)
(3) ab = a • b(a 0,b 0)
(4) a = a (a 0,b 0) bb
5、二次根式混合运算 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先 去括号)。
2020中考数学知识点总结及考点分值(完整版)
中考数学知识点总结第一章:实数本节知识点试题特点:中考所占分数不多,一般为2-6分,占全卷3%左右。
考点一:实数的概念及分类考点二:实数的倒数、相反数和绝对值考点三:平方根、算术平方根和立方根考点四:科学计数法和近似数考点五:实数大小的比较考点六:实数的运算基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
2020初中数学知识点总结
精选教育类文档,如果您需要使用本文档,请点击下载,祝您生活愉快,工作顺利,万事如意!马上就要中考了,祝大家中考都考上一个理想的高中!欢迎同学们下载,希望能帮助到你们!【—2020最新初中数学知识点总结$第一章:实数重要复习的知识点::一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
>二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 …3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
)4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a 的平方根,a叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
"三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
2020最新初中数学知识点汇总
a, a Байду номын сангаас a 0, a 0
a, a 0
( 2)实数的绝对值是一个非负数,从数轴上看, 一个实数的绝对值,就是数轴上表示这个数的点 到原点的距离。
( 3)去掉绝对值符号(化简)必须要对绝对值 符号里面的实数进行数性(正、负)确认,再去 掉绝对值符号。
4、 n 次方根
( 3)分式的约分:把一个分式的分子与分母 的公因式约去叫做分式的约分。方法是把分子、 分母因式分解,再约去公因式。
( 4)最简分式:一个分式的分子与分母没有 公因式时,叫做最简分式。分式运算的最终结果 若是分式,一定要化为最简分式。
------ 《吾爱网络项目》精选教育类应用文档,如需本文,请下载
-----
第一章:实数 重要复习的知识点:
一、实数的分类:
------ 《吾爱网络项目》精选教育类应用文档,如需本文,请下载
-----
正整数
整数 零
有理数
负整数 有限小数或无限循环小 数
实数
正分数 分数
负分数
正无理数
无理数
无限不循环小数
负无理数
1 、有理数:任何一个有理数总可以写成
p 的形
q
式,其中 p 、 q 是互质的整数,这是有理数的重
1
1
e
e
( 2 )原式 = e e
2
2
1
1
e e e e =e 1 1
2
2
e
------ 《吾爱网络项目》精选教育类应用文档,如需本文,请下载
-----
第二章:代数式
基础知识点:
一、代数式
1 、代数式:用运算符号把数或表示数的字 母连结而成的式子,叫代数式。单独一个数或者 一个字母也是代数式。
全面总结初中数学知识点
全面总结初中数学知识点初中数学是一个承前启后的阶段,它在小学数学的基础上拓展了更多的概念、理论和应用,同时也为高中数学打下坚实的基础。
以下是初中数学的主要知识点的全面总结:# 1. 数与代数- 有理数:包括整数、分数、小数,以及它们的四则运算规则和性质。
- 整式与分式:涉及单项式、多项式的概念,以及它们的加减乘除运算;分式的化简、通分和约分。
- 方程与不等式:一元一次方程、二元一次方程组的解法;一元一次不等式及其解集。
- 函数:函数的概念、性质、图象(如直线、抛物线);函数的基本运算,包括加法、减法、乘法和除法。
# 2. 几何- 平面几何:点、线、面的基本性质;角的概念和分类;三角形、四边形的性质和计算,包括面积和周长。
- 圆的性质:圆的基本性质,圆周角、圆心角、弦、切线等的概念和定理。
- 相似与全等:全等三角形的判定和性质;相似三角形的判定、性质和比例线段。
- 几何变换:平移、旋转、轴对称等几何变换的性质和影响。
# 3. 统计与概率- 统计:数据的收集、整理和描述;平均数、中位数、众数、方差等统计量的计算和意义。
- 概率:概率的基本概念,如随机事件、概率的计算和表示方法。
# 4. 应用题- 数学建模:将实际问题抽象成数学问题进行解决的过程,包括列方程、解方程等。
- 综合应用:涉及多个知识点的综合性问题,要求学生能够灵活运用所学知识解决实际问题。
# 5. 数学思维与方法- 逻辑推理:培养学生的逻辑思维能力,通过证明和推理来理解和掌握数学概念。
- 数学语言:理解和使用数学符号、图形和文字表达数学思想和过程。
- 解题策略:包括分类讨论、归纳总结、转化化归等解题方法和技巧。
# 6. 数学实践活动- 测量与设计:通过实际测量和设计活动,让学生体验数学在实际生活中的应用。
- 探索与发现:鼓励学生通过实验、探索来发现数学规律和定理。
# 7. 数学文化- 数学史:了解数学的发展历程和重要数学家的成就,增加学生对数学的兴趣和认识。
初三数学常考知识点
初三数学常考知识点一、实数与代数1.有理数:整数、分数、相反数、绝对值、有理数的乘方、平方根、算术平方根等。
2.实数:实数的定义、实数的分类、实数的性质、实数的运算等。
3.代数式:代数式的定义、代数式的分类、代数式的运算等。
4.一元一次方程:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
5.不等式:不等式的定义、不等式的性质、不等式的解法、不等式的应用等。
6.二元一次方程组:二元一次方程组的定义、二元一次方程组的解法、二元一次方程组的应用等。
7.点、线、面:点的定义、线的定义、面的定义、点、线、面的关系等。
8.平面几何基本概念:邻补角、对顶角、同位角、内错角、同旁内角、平行线、相交线、垂直、平行的性质等。
9.三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的计算等。
10.四边形:四边形的定义、四边形的分类、四边形的性质、四边形的判定、四边形的计算等。
11.圆:圆的定义、圆的性质、圆的方程、圆的计算、扇形、弧、弦等。
12.空间几何:长方体、正方体、球、棱柱、棱锥等空间几何图形的性质、计算和应用。
13.一次函数:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用等。
14.二次函数:二次函数的定义、二次函数的图像、二次函数的性质、二次函数的应用等。
15.反比例函数:反比例函数的定义、反比例函数的图像、反比例函数的性质、反比例函数的应用等。
16.函数图像:函数图像的性质、函数图像的变换、函数图像的分析等。
四、统计与概率1.统计:统计的基本概念、统计的运算、数据的收集与处理、图表的制作等。
2.概率:概率的基本概念、概率的计算、概率的应用等。
五、解决问题的方法1.方程思想:列方程、求解方程、检验解等。
2.函数思想:建立函数关系、求解函数问题等。
3.几何思想:利用几何性质、定理解决问题等。
4.数形结合思想:利用数形结合的方法解决问题等。
以上是初三数学常考的知识点,希望对你有所帮助。
初中数学知识点汇总
初中数学知识点汇总1. 数与式- 整数、分数、小数的基本概念与运算- 有理数、无理数的定义和性质- 绝对值、相反数、倒数的概念和计算方法- 代数式的加减乘除运算规则- 幂的运算法则,包括乘方、开方、指数法则- 分式的加减乘除运算以及化简方法- 二次根式的化简和运算2. 方程与不等式- 一元一次方程的解法和应用- 二元一次方程组的解法,包括代入法和消元法- 不等式的基本性质和解法- 一元二次方程的解法,包括因式分解法、配方法、公式法、图形法- 一元二次方程的根与系数的关系3. 函数- 函数的定义和表示方法- 一次函数、二次函数、反比例函数的图像和性质- 函数的单调性、奇偶性- 函数的值域和定义域- 函数的交点问题4. 几何- 点、线、面、体的基本概念- 平面几何图形的性质,包括三角形、四边形、圆等- 相似图形和全等图形的概念与判定- 圆的性质,包括圆心角、圆周角、切线等- 空间几何体的体积和表面积计算- 坐标系中点的坐标表示和图形的坐标变换5. 统计与概率- 数据的收集、整理和描述- 统计图表的绘制,包括条形图、折线图、饼图等- 平均数、中位数、众数、方差的计算和意义- 概率的基本概念和计算方法- 简单事件的概率和组合概率的计算6. 解题技巧- 代数问题的解题策略,如代入法、消元法- 几何问题的解题技巧,如辅助线法、坐标法- 函数问题的解题方法,如图像分析法、变换法- 不等式问题的解题策略,如图解法、参数法- 综合应用题的解题思路和方法7. 数学思维- 逻辑推理能力的训练- 数学建模和问题解决- 数学语言的表达和理解- 数学思想方法的培养,如归纳法、演绎法、反证法等8. 数学应用- 数学在日常生活中的应用- 数学在科学、工程、经济等领域的应用案例- 数学问题的现实背景和实际意义- 数学与其他学科的交叉和融合以上是初中数学的主要知识点汇总,涵盖了初中数学的核心内容和基本框架。
通过系统学习和练习,可以为进一步的数学学习打下坚实的基础。
2020最新初中数学知识点归纳
精选教育类文档,如果您需要使用本文档,请点击下载,祝您生活愉快,工作顺利,万事如意!马上就要中考了,祝大家中考都考上一个理想的高中!欢迎同学们下载,希望能帮助到你们!2020最新初中数学知识点归纳第一章:实数重要复习的知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数p的形1、有理数:任何一个有理数总可以写成q式,其中p、q是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin°等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a的相反数是 -a;(2)a和b互为相反数⇔a+b=02、倒数:1;(2)a和b (1)实数a(a≠0)的倒数是a互为倒数⇔1=ab;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
初中数学必考知识点大全
初中数学必考知识点大全1.数的分类及数的性质:-自然数、整数、有理数、无理数、实数的概念及性质;-数的比较、绝对值、相反数、倒数等性质。
2.基本运算:-加减乘除运算的概念及性质;-整数、分数、小数之间的运算;-混合运算;-运算法则和运算顺序。
3.代数式和方程式:-代数式的概念、结果与计算;-等式、不等式的概念和性质;-简单的一元一次方程求解方法;-数据的整理和解决问题。
4.几何基本概念:-点、线、面、角的概念;-平行线、垂直线、相交线等基本性质;-三角形、四边形、圆的构成和性质。
5.几何图形的计算:-平面图形的周长和面积;-三角形、四边形的面积计算方法;-圆的周长和面积计算方法。
6.相似和全等:-相似的概念和判定;-全等的概念和判定;-利用相似和全等的性质解决问题。
7.几何变换:-平移、旋转、翻转的概念和性质;-利用几何变换解决问题。
8.三角函数:-根据角度的大小关系确定三角函数的正负性;-正弦、余弦、正切等三角函数的定义及性质;-利用三角函数计算角度和边长。
9.根式及其运算:-根式和含有根式的四则运算;-根式的化简和合并。
10.数列与函数:-等差数列和等比数列的概念和性质;-数列的通项和求和;-函数的概念和性质。
11.统计与概率:-数据的收集和整理;-统计图形的制作和解读;-概率的概念和计算。
以上是初中数学必考知识点的一个概述,详细的知识点包括各个知识点的定义、性质、计算方法以及解决问题的应用能力。
了解并掌握这些知识点对于初中数学的学习和备考非常重要。
2024初中数学核心知识点
2024初中数学核心知识点2024初中数学核心知识点包括:一、整数与有理数1.整数的概念及性质2.整数的加法、减法、乘法及除法运算3.有理数的概念及性质4.有理数的加法、减法、乘法及除法运算5.整数和有理数的绝对值6.整数和有理数的大小比较7.整数和有理数的混合运算二、代数式与方程1.代数式的定义及性质2.代数式的加法、减法、乘法及除法运算3.多项式的定义及性质4.多项式的加法、减法及乘法运算5.一元一次方程的定义、解法及应用6.一元一次方程的实际问题应用7.简单的二元一次方程组的定义及解法三、图形的性质与计算1.直角三角形的性质及判定2.一般三角形的性质及判定3.平行四边形的性质及判定4.矩形、正方形和菱形的性质及判定5.圆的概念及性质6.圆的直径、半径、弧、弦、切线的性质7.正多边形的性质及判定8.图形的相似性及判定四、数与式的变化1.数与式的换算2.比例与比例式3.百分数及百分数的运算4.动态平均数的概念与计算5.平方根与立方根的概念与计算五、数据的搜集、整理与统计1.数据的搜集及整理2.数据的图表及图形表示3.数据的中心值(平均数、中位数、众数)及计算4.数据的离散程度(极差、方差、标准差)及计算5.数据的分布规律及拟合直线的绘制六、函数与解析几何1.函数的概念及函数的定义域、值域2.一元一次函数的图象及性质3.一元一次函数的解法及应用4.直线与线段的方程5.平面直角坐标系及其性质6.平面图形的坐标表示及性质七、平面几何与三角计算1.平行线与直角线的性质及判定2.三角形的性质及判定3.三角形的周长与面积的计算4.相似三角形的性质及判定5.定比分点及直角坐标系上的距离计算以上是2024初中数学核心知识点的大致范围,具体内容还需要根据不同学校的具体教学大纲和课程要求进行进一步了解和学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选教育类文档,如果您需要使用本文档,请点击下载,祝您生活愉快,工作顺利,万事如意!马上就要中考了,祝大家中考都考上一个理想的高中!欢迎同学们下载,希望能帮助到你们!2020最新初中数学知识点汇总第一章:实数重要复习的知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
无论何种运算,都要注意先定符号后运算。
六、有效数字和科学记数法1、科学记数法:设N>0,则N= a×n10(其中1≤a<10,n为整数)。
2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。
精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。
例题:例1、已知实数a 、b 在数轴上的对应点的位置如图所示,且b a 。
化简:a b b a a --+-分析:从数轴上a 、b 两点的位置可以看到:a <0,b >0且b a所以可得:解:a a b b a a =+-++-=原式例2、若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、c 的大小。
分析:1)34(3--= a ;01433b b 且-⎪⎭⎫ ⎝⎛-=;c >0;所以容易得出:a <b <c 。
解:略例3、若22+-b a 与互为相反数,求a+b 的值 分析:由绝对值非负特性,可知02,02≥+≥-b a ,又由题意可知:022=++-b a 所以只能是:a –2=0,b+2=0,即a=2,b= –2 ,所以a+b=0解:略例4、已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,求2m cd mb a +-+的值。
解:原式=0110=+-例5、计算:(1)199********.08⨯ (2)222121⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛+e e e e解:(1)原式=11)125.08(19941994==⨯(2)原式=⎪⎪⎪⎪⎭⎫ ⎝⎛--+⋅⎪⎪⎪⎪⎭⎫ ⎝⎛-++21212121e e e e e e e e =11=⋅e e第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。
单独一个数或者一个字母也是代数式。
2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。
3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x、7、y x22,这种数与字母的积叫做单项式。
单独一个数或字母也是单项式。
单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。
单项式的系数:单项式中的数字因数叫单项式的系数。
(2)多项式:几个单项式的和叫做多项式。
多项式的项:多项式中每一个单项式都叫多项式的项。
一个多项式含有几项,就叫几项式。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
不含字母的项叫常数项。
升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。
添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。
单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。
多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。
乘法公式:平方差公式:22ba-a-+;=))((bab完全平方公式:2222a+b+,=+a)(bab2222-=-a+)(babab三、因式分解1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。
2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
四、分式A的式子叫分式,其中A、 1、分式定义:形如BB是整式,且B中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质:(1))0(的整式是≠⋅⋅=M MB M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
五、二次根式1、二次根式的概念:式子)0a叫做二次根(≥a式。
(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。
(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。
(3)分母有理化:把分母中的根号化去叫做分母有理化。