上海市2015届高三模拟试题高三数学(理科)

合集下载

上海市杨浦区2015届高三一模数学文含答案

上海市杨浦区2015届高三一模数学文含答案

上海市杨浦区2015届高三一模数学文含答案XXX年度第一学期高三年级学业质量调研数学学科试卷(文科)考生注意:1.答卷前,务必在答题纸上写上姓名、考号,并将核对后的条形码贴在指定位置上。

2.本试卷共有23道题,满分150分,考试时间120分钟。

一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.已知sinα=1/2,α∈(0,π),则α=π/6.2.设A={x|1≤x≤3},B={xm+1≤x≤2m+4,m∈R},A⊆B,则m的取值范围是[-1,3)。

3.已知等差数列{an}中,a3=7,a7=3,则通项公式为an=-2n+11.4.已知直线l经过点A(1,-2)、B(-3,2),则直线l的方程是y=-x-1.5.函数f(x)=x^2-1(x<0)的反函数f^-1(x)=√(x+1)(x≥1)。

6.二项式(x-1/2)^4的展开式中的第4项是6x^2-12x+5/16.7.不等式log2(x-3)+x>2的解是(3,∞)。

8.已知条件p:x+1≤2;条件q:x≤a,若p是q的充分不必要条件,则a的取值范围是(-∞,1]。

9.向量a=(2,3),b=(-1,2),若ma+b与a-2b平行,则实数m=1/2.10.一家5口春节回老家探亲,买到了如下图的一排5张车票:6排A座 | 6排B座 | 6排C座 | 走廊 | 6排D座 | 6排E座| 窗口 | 窗口 |其中爷爷行动不便要坐靠近走廊的座位,小孙女喜欢看风景要坐靠窗的座位,则座位的安排方式一共有60种。

11.已知一个铁球的体积为36π,则该铁球的表面积为54π。

12.已知集合A={z|z=1+i+i^2+。

+in,n∈N*},则集合A的子集个数为2^n-1.13.设△ABC的内角A,B,C所对的边分别为a,b,c。

若(a+b-c)(a+b+c)=ab,则角C=π/3.14.如图所示,已知函数y=log2(4x)图像上的两点A,B和函数y=log2(x)上的点C,线段AC平行于y轴,三角形ABC 为正三角形时,点B的坐标为(-1,2),则实数p=-1/4.值为_______________。

2015届高三数学一诊模拟考试试卷 理

2015届高三数学一诊模拟考试试卷 理

2015届高三数学一诊模拟考试试卷 理1.集合{}01,1-=A ,则满足A B ⊆的集合B 的个数为( )A .4B .6C .7D . 82.复数i i z -=12(其中i 为虚数单位),则z 的共轭复数z 的虚部为( )A .1-B .1C .iD .i -3.设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且6,4575=︒=∠︒=∠b B A ,,, 则边c = ( )A .2B .3C .6D .32+4.如题(4)图所示程序框图,若输入3=N ,则输出的S = ( )A .45B .54C .43D .345.下列说法正确的是( )A .命题“若y x >,则22y x >的否命题为“若y x >,则22y x ≤”;B .命题p :“0>x ∀,x x <sin ”.则p ⌝:“0<x ∃,x x ≥sin ”;C .“0<x ”是“()01ln <+x ”的必要不充分条件;D .命题p :()x x x f sin =为奇函数,命题q :()1cos +=x x f 为偶函数,则“q p ∨”为假命题.6.已知双曲线14222=-b y x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .5B .24C .3D .57.如题(7)图所示为某空间几何体的三视图, 则该几何体的表面积为( )A.211πB .6211+πC .3325+πD .33211+π 8.若实数y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,则22-++=y x z 的取值范围为( ) A .[]42, B .[]64, C .[]62, D .[]60, 9.已知圆0114222=-+-+y x y x C :,在区间[]64,-上任取实数m ,则直线:l0=++m y x 与圆C 相交所得ABC ∆为钝角三角形(其中B A 、为交点,C 为圆心)的概率为( )A .52B .54C .118D .11910.已知实数d c b a ,,,满足122=+=d c ab ,则()()22d b c a -++的最小值为( )A .12-B .223-C .332-D .222-第Ⅱ卷(非选择题,共l00分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.不等式11+-x x >2的解集为 .12.已知幂函数()()m x m m x f 52-+=为定义域是R 的偶函数,则实数=m .13.已知(),,,,372331=-=-=b a b a 则向量a 与b 的夹角为 .14.已知正项等比数列{}n a 满足:2013201420152a a a =-,若存在两项nm a a ,使得14a a a n m =,则n m 41+的最小值为 . 15.若函数()1222---+=x a x x x f 恰有四个不同的零点,则实数a 的取值范围 为 .三.解答睡:本大题6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(13分)设()x a x x f ln 2+=,其中R a ∈.曲线()x f y =在点()()11f ,处的切线l 垂直于y 轴.(Ⅰ)确定a 的值并求切线l 的方程;(Ⅱ)求函数()x f 的单调区间与极值.17. (13分)进入秋冬季节以来,热饮受到大众喜爱.某中学校门口一奶茶店为了了解某品牌热饮的日销售量y (杯)与当日气温x (℃)之间的关系,随机统计了某5天该品牌热饮的日销量和当日气温的数据如下表:利用最小二乘法估计出该组数据满足的回归直线方程为:()R a a x y ∈+-=5.1 .(Ⅰ)试预测当气温为4℃时,该品牌热饮的日销量?(Ⅱ)在已有的五组数据中任取两组,求至少有一组数据其日销量y 的预测值和实际值之差的绝对值不超过2的概率.18.(13分)公差不为0的等差数列{}n a 满足:146216a a a a ,,,=分别为等比数列{}n b的第三、四、五项.(Ⅰ)求数列{}n a 、{}n b 的通项公式;(Ⅱ)记数列{}n a 的前n 项和为n S ,{}n b 的前n 项和为n T ,求使得2K K S T >的最小k 值.19.(12分)已知⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=x x b x x a cos 4cos cos 4sin ,,,ππ ,函数()b a x f ·= (Ⅰ)若⎪⎭⎫ ⎝⎛-∈88ππ,a 且()1023=a f ,求a 2cos 的值; (Ⅱ)将函数()x f y =的图像向左平移4π个单位,再将所得图像上所有点的横坐标缩短为原来的一半(纵坐标不变),得到函数()x g y =的图像,求函数()x g 在⎥⎦⎤⎢⎣⎡∈40π,x 上的值域.20.(12分)如题(20)图,在四棱锥ABCD P -中,⊥PA 底面ABCD ,︒=∠⊥⊥60,,ABC CD AC AD AB ,4===BC AB PA ,A E 、分别是PD PC 、的中点.(Ⅰ)证明:ABE PD 平面⊥;(Ⅱ)求三棱锥BEF P -的体积.21.(12分)已知B A 、分别为曲线()01222>:a y a x C =+与x 轴的左、右两个交点,直线l 过点B 且与x 轴垂直,P 为l 上异于点B 的点,连结AP 与曲线C 交于点M .(Ⅰ)若曲线C 为圆,且332=BP ,求弦AM 的长;(Ⅱ)设N 是以BP 为直径的圆与线段BM 的交点,若P N O 、、三点共线,求曲线C 的方程.。

上海市七一中学2015届高三上学期期中考试数学试题 Word版含答案

上海市七一中学2015届高三上学期期中考试数学试题 Word版含答案

上海市七一中学2014学年第一学期高三数学期中考试试卷考试时间120分钟,试卷满分150分一、填空题(4*14=56分)1.已知一圆锥底面半径是3cm ,体积是π12cm 3.则该圆锥的母线长为 ___________cm. 2.函数2sin sin2y x x =-的最小正周期为___________.3.5人排成一排,如果甲、乙两人不相邻,那么不同的排法共有___________种.4.不等式021<-+x x 的解集为___________. 5.函数11+=x y 的反函数为___________.6.若关于未知数x 的方程a x=+-13没有实数根,则a 的取值范围是___________.7.设()f x 是定义在R 上以2为周期的偶函数,已知(0,1)x ∈,()()12log 1f x x =-,则函数()f x 在(1,2)上的解析式是____________. 8.已知ABC ∆中,2=b ,3=c ,三角形面积23=S ,则_______A ∠=. 9.已知函数cos ,0()sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩,若1()2f x =,则x =____________.10.设正四棱柱的底面边长为a ,侧棱长为l ,且a l >.已知该正四棱柱的表面积是144cm 2,对角线长是9 cm ,则a = ___________cm.11.)()(5R x xa x ∈+展开式中3x 的系数为10,则实数a =__________. 12.已知函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x ,且函数()()F x f x x a =+-有且仅有两个零点,则实数a 的取值范围是 .13.设等差数列{}n a 的前n 项和为n S ,若211-=a ,且1497-=+a a ,则n S 的最小值等于___________.14. 定义运算:()()⎩⎨⎧>≤=.*时当时当b a a b a b b a ,对于函数()f x 和()g x ,函数()()f x g x -在闭区间[,]a b 上的最大值...称为()f x 与()g x 在闭区间[,]a b 上的“绝对差”,记为((),()).a x bf xg x ≤≤∆,则()1,cos *sin 20x x x π≤≤∆=___________.二、选择题(4*5=20分)15. 已知l ,m 是两条不同的直线,α是一个平面,以下命题正确的是( )()A 若α⊥l , m l ⊥, 则m α ()B 若α//l , m α, 则 m l //()C 若α⊥l , α//m , 则 m l ⊥ ()D 若α⊥l , m l ⊥, 则 α//m16.已知△ABC 两内角A 、B 的对边边长分别为a 、b ,则“B A =”是“cos cos a A b B = ” 的 ……………………………………………… ( )()A 充分非必要条件 ()B 必要非充分条件 ()C 充要条件 ()D 非充分非必要条件17.函数32()1312x f x b ax ⎛⎫=-++ ⎪+⎝⎭,若()f x 在(0,)+∞上有最大值10,则()f x 在(,0)-∞上有 ……………………………………………… ( )()A 最大值10 ()B 最小值-5 ()C 最小值-4 ()D 最大值1318.已知函数()cos(2)f x x ϕ=+满足()(1)f x f ≤对R x ∈恒成立,则 …( )()A 函数(1)f x +一定是偶函数 ()B 函数(1)f x -一定是偶函数; ()C 函数(1)f x +一定是奇函数 ()D 函数(1)f x -一定是奇函数.三、解答题(本部分共5题,满分74分)19.(本题满分14分)已知U R =,12log (3)2A x x ⎧⎫=-≥-⎨⎬⎩⎭,512B xx ⎧⎫=≥⎨⎬+⎩⎭,求U B C A .20.(本题满分14分)如图,在三棱锥ABC P -中,⊥PA 平面ABC ,AB AC ⊥,4==BC AP ,︒=∠30ABC , E D 、分别是AP BC 、的中点.(1)求三棱锥ABC P -的体积;(2)若异面直线AB 与ED 所成角的大小为θ,求θtan 的值.PABCDE21.(本题满分14分)已知函数x x x f 2cos 322sin )(+=. (1)求函数)(x f 的最小值; (2)求函数)(x f 的零点的集合.22.(本题满分16分)为了落实上海市教委推出的“阳光运动一小时”活动,计划在一块直角三角形ABC 的空地上修建一个占地面积为S 的矩形AMPN 健身场地,如图点M 在AC 上,点N 在AB 上,且P 点在斜边BC 上,已知 60=∠ACB 且30||=AC 米,=AM x ,]20,10[∈x .(1)试用x 表示S ,并求S 的取值范围; (2)设矩形AMPN 健身场地每平方米的造价为Sk37,再把矩形AMPN 以外(阴影部分)铺上草坪,每平方米的造价为Sk12(k 为正常数),求总造价T 关于S 的函数)(S f T =;试问如何选取||AM 的长使总造价T 最低(总造价等于矩形AMPN 健身场地造价与草坪造价之和,不要求求出最低造价).N23.(本题满分16分)已知函数)0(22)(2≠++-=a b ax ax x f ,在区间[]3,2上有最小值2,最大值5. (1)求a ,b 的值;(2)若[]42,)2()()(,1在x x f x g b m ⋅-=<上单调,求实数m 的取值范围.七一中学2014学年第一学期高三数学期中考试解答与评分标准1.5 2.π 3.72 4.)2,1(-5.11-=xy (0≠x ) 6.1≤a7.)2(log )(21x x f -=8.3π或23π9.3,65,6πππ- 10.4 11.2 12.(,1]-∞ 13.121- 14.2215.C16.A 17.C 18.A19解:A : 23031132x x x x -->⎧<⎧⎪⇒⎨⎨⎛⎫≥--≤⎩ ⎪⎪⎝⎭⎩, 故[1,3)A =- ,(5分) (,1)[3,)U C A =-∞-+∞ (7分) B :510232x x -≥⇒-<≤+,故(2,3]B =- (12分) (2,1){3}U B C A ∴=--(14分)20解:(1)由已知得,,32,2==AB AC (2分)所以 ,体积33831==∆--PA S V ABC ABC P (6分)(2)取AC 中点F ,连接EF DF ,,则DF AB //, 所以EDF ∠就是异面直线AB 与ED 所成的角θ. (9分) 由已知,52,32,2=====PC AB AD EA AC ,EF DF EF AB ⊥∴⊥, .在EFD Rt ∆中,5,3==EF DF ,(12分)所以,315tan =θ. (14分)21解:(1)因为3)32sin(2)2cos 1(32sin cos 322sin )(2++=++=+=πx x x x x x f ,所以当23232πππ+=+k x 时,函数)(x f 取得最小值23-.(6分) (2)由0)(=x f 得x x x 2cos 32cos sin 2-=,(8分) 于是0cos =x 或x x cos 3sin -=(10分) 故函数)(x f 的零点的集合为⎭⎬⎫⎩⎨⎧∈-=+=Z k k x k x x ,32ππππ或.(14分) 注:由03)32sin(2=++πx 求解也可.结果写成⎭⎬⎫⎩⎨⎧∈+=-=Z k k x k x x ,322ππππ或等相等集合也对.22解:(1)在PMC Rt ∆中,显然x MC -=30||,60=∠PCM ,∴)30(3tan ||||x PCM MC PM -=∠⋅=,(3分) 矩形AMPN 的面积)30(3||||x x MC PM S -=⋅=,[10,20]x ∈ (6分)于是32253200≤≤S 为所求.(8分)(2) 矩形AMPN 健身场地造价=1T S k 37 (10分)又ABC ∆的面积为3450,即草坪造价=2T )3450(12S Sk-,(12分)N由总造价21T T T +=,得)3216(25SS k T +=,32253200≤≤S . 36123216≥+SS , 当且仅当SS 3216=即3216=S 时等号成立, 此时3216)30(3=-x x ,解得12=x 或18=x ,所以选取||AM 的长为12米或18米时总造价T 最低. (16分)23解:(1)a b x a x f -++-=2)1()(2①当0>a 时,[]3,2)(在x f 上为增函数,故⎩⎨⎧==⇒⎩⎨⎧=++-=++-⇒⎩⎨⎧==01224452695)2(2)3(b a b a a b a a f f ,(3分) ②当[]3,2)(0在时,x f a <上为减函数 故⎩⎨⎧=-=⇒⎩⎨⎧=++-=++-⇒⎩⎨⎧==31524422692)2(2)3(b a b a a b a a f f (6分) (2)011==∴<b a b (7分)即22)(2+-=x x x f2)22()2(22)(22++-=-+-=x x xx x x g mm (10分)因为[]42,)2()()(在x x f x g m ⋅-=上单调,所以, 62 224222 2222≥≤∴≥+≤+m m m m 或或(12分) 即62log 1≥≤m m 或 。

上海市十二校2015届高三12月联考数学(理)试题 Word版含答案

上海市十二校2015届高三12月联考数学(理)试题 Word版含答案

上海市十二校2015届高三12月联考数学(理)试题学校:上海市朱家角中学学校:三林中学 南汇一中 2014年12月一、填空题 (本大题满分56分,每题4分)1.设集合21{|2},{1}2A x xB x x =-<<=≤,则A B =_______.2. 已知{}n a 为等差数列,1a +3a +5a =9,246a a a ++=15,则=+43a a .3.在行列式3541113a --中,元素a 的代数余子式值为 .4. 如果函数⎩⎨⎧<>-=)0( )()0( 32 x x f x x y 是奇函数,则=-)2(f5.设()f x 的反函数为1()f x -,若函数()f x 的图像过点(1,2),且1(21)1f x -+=,则x = .6.方程cos2x+sinx=1在),0(π上的解集是_______________.7. 若正三棱锥的底面边长为2,侧棱长为1,则此三棱锥的体积为 . 8. 函数()x x x f 2cos 222cos 3-⎪⎭⎫ ⎝⎛-=π在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围是 .9.已知2==b a ,a 与b 的夹角为3π,则b a +在a 上的投影为 .10. 在锐角ABC ∆中,角B 所对的边长10=b ,ABC ∆的面积为10,外接圆半径13=R ,则ABC ∆的周长为 .11. 已知等比数列{}n a 的首项11=a ,公比为)0(>q q ,前n 项和为n S ,若1lim1=+∞→nn n S S ,则公比q 的取值范围是 . 12.已知函数()23sin()(0)3f x x πωω=+>,若()(3)g x f x =在(0 )3π,上是增函数,则ω的最大值 .13. 记数列{}n a 是首项1a a =,公差为2的等差数列;数列{}n b 满足2(1)n n b n a =+,若对任意*n N ∈都有5n b b ≥成立,则实数a 的取值范围为 .14.若平面向量i a 满足)4,3,2,1(1==i a i 且)3,2,1(01==⋅+i a a i i ,则4321a a a a +++可能的值有 个.二、选择题(本大题满分20分,每题5分)15. 设,p q 是两个命题,1:0,:|21|1,x p q x p q x+≤+<则是 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16. 数列{a n }中,已知S 1 =1, S 2=2 ,且S n +1-3S n +2S n -1 =0(2≥n ,n ∈N*),则此数列为( ) A .等差数列 B .等比数列 C .从第二项起为等差数列 D .从第二项起为等比数列17.关于函数31)212()(x x f x x⋅-=和实数n m 、的下列结论中正确的是( )A .若n m <<-3,则)()(n f m f <B .若0<<n m ,则)()(n f m f <C .若)()(n f m f <,则22n m <D .若)()(n f m f <,则33n m < 18. 函数()⎩⎨⎧>≤+=0,ln 0,1x x x kx x f ,下列关于函数()[]1+=x f f y 的零点个数的判断正确的是( )A .无论k 为何值,均有2个零点B .无论k 为何值,均有4个零点C .当0k >时,有3个零点;当0k <时,有2个零点D .当0k >时,有4个零点;当0k <时,有1个零点三、简答题 (本大题满分74分)19.(本题满分12分) 本题共有2个小题,第1小题满分6分, 第2小题满分6分. 如图,四棱锥ABCD S -中,底面ABCD 为正方形,⊥SA 平面ABCD ,AB=3,SA=4 (1)求直线SC 与平面SAB 所成角;(2)求SAB ∆绕棱SB 旋转一圈形成几何体的体积。

上海市闸北区2015届高三上学期期末练习(一模)数学(理)试题 扫描版含答案

上海市闸北区2015届高三上学期期末练习(一模)数学(理)试题 扫描版含答案

理科答案一.填空题:4.1; 2.2-; 3.2; 7.4; π4.5; 4.6; ),2()2,.(7+∞--∞ ; 8.(,5]-∞;9.②④ 二.选择题:10.11.12.A C D三.解答题: 13. 解:(1)原命题与原命题的逆否命题是等价命题.原命题的逆否命题:设+∈R b a ,,若1≤ab ,则:11()()()()f a f b f f a b+≤+ ……4分下面证明原命题的逆否命题为真命题: 因为+∈R b a ,,由1≤ab 得:10a b<≤, …………………………1分 又()f x 是定义在(0,)+∞上的单调递增函数所以1()()f a f b≤…………(1) …………………………1分同理有:1()()f b f a≤…………(2) …………………………1分 由(1)+(2)得:11()()()()f a f b f f a b +≤+ …………………………1分所以原命题的逆否命题为真命题所以原命题为真命题. …………………………1分(2)由(1)的结论有:121x x a -⋅>,即:(2)x a a > ………………………3分①当21a >时,即12a >时,不等式的解集为:2(log ,)a a +∞ ……………2分 ②当021a <<时,即102a <<时,不等式的解集为:2(,log )a a -∞ ………2分③当21a =时,即12a =时,不等式的解集为:R ……………2分14. 解:(1)由已知条件,得2,A = ……………………………1分又∵23,12,46T T ππωω===∴= ……………………………2分又∵当1x =-时,有22sin()263y ππφφ=-+=∴= ……2分∴ 曲线段FBC 的解析式为22sin(),[4,0]63y x x ππ=+∈-. ………1分 (2)由22sin()163y x ππ=+=得 6(1)4()kx k k Z =+--∈ …………2分又[4,0]0,3(3,1)x k x G ∈-∴==-∴-…2分OG = ……………………1分C1y 2EQ P xD G F (- 4,0)∴ 景观路GO……………1分(3)如图,1,2,6OC CD OD COD π==∴=∠=……………………………………1分作x PP ⊥1轴于1P 点,在1OPPRt ∆中, θθsin 2sin 1==OP PP ……………1分 在OMP ∆中,)60sin(120sin 00θ-=OMOP …………………1分 ∴θθθθsin 332cos 2)60sin(34120sin )60sin(00-=-⋅=-⋅=OP OM ……………1分 θθθsin 2)sin 332cos 2(1⋅-=⋅=PP OM S OMPQ 平行四边形 …………………1分 θθθ2sin 334cos sin 4-=3322cos 3322sin 2-+=θθ 332)62sin(334-+=πθ )3,0(πθ∈ …………………2分 当262ππθ=+时,即6πθ=时:平行四边形面积最大值为332 …………………1分15.解(1)由题意得 1(2,0)F - 2c = …………………2分又223114a a +=-, 得,428120a a -+=,解得26a =或22a =(舍去), …………………2分 则22b =, …………1分故椭圆方程为22162x y +=. …………………1分(2)直线l 的方程为(2)y k x =-. …………………1分联立方程组22(2),1.62y k x x y =-⎧⎪⎨+=⎪⎩消去y 并整理得2222(31)121260k x k x k +-+-=. …………………3分设11(,)A x y ,22(,)B x y .故21221231k x x k +=+,212212631k x x k -=+. …………………1分 则]4))[(1(1212212212x x x x k x x k AB -++=-+== …2分(3)设AB 的中点为00(,)M x y .可得202631k x k =+, …………………1分02231ky k =-+. …………………1分 直线MP 的斜率为1k-,又 3P x =,所以2023(1)(31)PkMP x xk+=-=+.…………………2分当△ABP为正三角形时,ABMP23=,22223(1)1)(31)231k kk k++=++,…………………1分解得1k=±.…………………1分即直线l的方程为20x y--=,或20x y+-=.…………………1分16. 解:(1)1,4,7.………………6分(2)由13nna m-=≤,得*31log()n m m N≤+∈∴当*12,m m N≤≤∈时,121b b==…………………………1分当*38,m m N≤≤∈时,3482b b b==⋅⋅⋅==…………………1分当*926,m m N≤≤∈时,910263b b b==⋅⋅⋅==…………………1分当*∈≤≤Nmm,8027时,4802827==⋅⋅⋅==bbb……………1分当*∈≤≤Nmm,10081时,51008281==⋅⋅⋅==bbb……………1分∴384205544183622110021=⨯+⨯+⨯+⨯+⨯=+⋅⋅⋅++bbb…………1分(3)∵1111a S c==+=∴0c=…………………1分当2n≥时,132n n na S S n-=-=-∴*32()na n n N=-∈…………………2分由32na n m=-≤得:*2()3mn m N+≤∈因为使得na m≤成立的n的最大值为mb,所以*123456323131,2,,()t t tb b b b b b b b b t t N--======⋅⋅⋅===∈……1分当*32()m t t N=-∈时:21(1)313(1)(1)(2)226mt t tT t t m m+--=⋅⋅-+==++…………………1分当*31()m t t N=-∈时:21(1)313(1)2(1)(2)226mt t tT t t m m+-+=⋅⋅-+==++…………………1分当*3()m t t N=∈时:213()13(3)226mt t tT t m m++=⋅⋅==+…………………1分所以**(1)(2)(3231,)6(3)(3,)6mm mm t m t t NTm mm t t N++⎧=-=-∈⎪⎪=⎨+⎪=∈⎪⎩或……………1分。

上海市闸北区2015届高三上学期期末(一模)练习数学【理】试题

上海市闸北区2015届高三上学期期末(一模)练习数学【理】试题

上海市闸北区2015届高三(上)期末数学试卷(理科)参考答案与试题解析一、填空题(54分)本大题共有9题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1.复数(i是虚数单位)是纯虚数,则实数a的值为4.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:化简复数为a+bi(a,b∈R),然后由复数的实部等于零且虚部不等于0求出实数a的值.解答:解:=.∵复数是纯虚数∴,解得:a=4.故答案为:4.点评:本题考查了复数的除法运算,考查了复数的基本概念,是基础题.2.若f(x)为R上的奇函数,当x<0时,f(x)=log2(2﹣x),则f(0)+f(2)=﹣2.考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:运用奇函数的定义,已知解析式,可得f(0)=0,f(2)=﹣2,即可得到结论.解答:解:f(x)为R上的奇函数,则f(﹣x)=﹣f(x),即有f(0)=0,f(﹣2)=﹣f(2),当x<0时,f(x)=log2(2﹣x),f(﹣2)=log2(2+2)=2,则f(0)+f(2)=0﹣2=﹣2.故答案为:﹣2.点评:本题考查函数的奇偶性的运用:求函数值,考查运算能力,属于基础题.3.设定点A(0,1),若动点P在函数y=(x>0)图象上,则|PA|的最小值为2.考点:两点间距离公式的应用;函数的图象.专题:直线与圆.分析:设P(x,1+),|PA|=≥=2.由此能求出|PA|的最小值.解答:解:设P(x,1+),∴|PA|=≥=2.当且仅当,即x=时,取“=”号,∴|PA|的最小值为2.故答案为:2.点评:本题考查线段长的最小值的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.4.用数字“1,2”组成一个四位数,则数字“1,2”都出现的四位数有14个.考点:计数原理的应用.专题:排列组合.分析:本题需要分三类第一类,3个1,1个2,第二类,3个2,1个1,第三类,2个1,2个2,根据分类计数原理可得,或者利用列举法.解答:解:方法一:1,2”组成一个四位数,数字“1,2”都出现的共3类,第一类,3个1,1个2,有3个1的排列顺序只有1种,把2插入到3个1所形成的4个间隔中,故有=4种,第二类,3个2,1个1,有3个2的排列顺序只有1种,把1插入到3个2所形成的4个间隔中,故有=4种,第三类,2个1,2个2,先排2个1只有一种,再把其中一个2插入到2个1只形成的3个间隔中,再把另一个2插入所形成的四个间隔中,2个2一样,故=6,根据分类计数原理,数字“1,2”都出现的四位数有4+4+6=14个方法二,列举即可,1112,1121,1211,2111,1122,1212,1221,2121,2112,2211,2221,2212,2122,1222,共14种故答案为14点评:本题主要考查了分类计数原理,如何分类是关键,属于基础题5.设n∈N*,圆的面积为S n,则=4π.考点:极限及其运算;圆的标准方程.专题:函数的性质及应用.分析:利用圆的面积计算公式可得S n=.再利用数列极限运算性质即可得出.解答:解:∵圆的面积为S n,∴S n=.∴==4π.故答案为:4π.点评:本题考查了圆的面积计算公式、数列极限运算性质,考查了计算能力,属于基础题.6.在Rt△ABC中,AB=AC=3,M,N是斜边BC上的两个三等分点,则的值为4.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量垂直的条件,可得=0,由M,N是斜边BC上的两个三等分点,得=(+)•(+),再由向量的数量积的性质,即可得到所求值.解答:解:在Rt△ABC中,BC为斜边,则=0,则=()•(+)=(+)•(+)=(+)•()=++=×9+=4.故答案为:4.点评:本题考查平面向量的数量积的定义和性质,考查运算能力,属于中档题.7.设函数f(x)=sin(πx),若存在x0∈(﹣1,1)同时满足以下条件:①对任意的x∈R,都有f(x)≤f(x0)成立;②x02+[f(x0)]2<m2,则m的取值范围是.考点:正弦函数的图象.专题:函数的性质及应用;三角函数的求值;三角函数的图像与性质.分析:直接利用题中的已知条件建立关系式先求出,对f(x)≤f(x0)成立,只需满f(x)≤f (x0)min即可.由于f(x)=sin(πx),所以:先求出f(x)的最小值,进一步求出:当x0最小,f(x0)最小时,函数x02+[f(x0)]2<m2,解得:,最后求出结果.解答:解:根据题意:①对任意的x∈R,都有f(x)≤f(x0)成立由于:x0∈(﹣1,1)所以:对f(x)≤f(x0)成立,只需满足f(x)≤f(x0)min即可.由于f(x)=sin(πx),所以:由于②x02+[f(x0)]2<m所以当x0最小,且求出:进一步求出:故答案为:点评:本题考查的知识要点:三角函数的值域,函数的恒成立问题和存在性问题,属于基础题型.8.如果不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围是(﹣∞,5].考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:将不等式转化为函数,利用函数根与不等式解之间的关系即可得到结论.解答:解:不等式x2<|x﹣1|+a等价为x2﹣|x﹣1|﹣a<0,设f(x)=x2﹣|x﹣1|﹣a,若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则,即,则,解得a≤5,故答案为:(﹣∞,5]点评:本题主要考查不等式的应用,利用不等式和函数之间的关系,转化为函数是解决本题的关键.9.(6分)关于曲线C:x4﹣y3=1,给出下列四个结论:①曲线C是双曲线;②关于y轴对称;③关于坐标原点中心对称;④与x轴所围成封闭图形面积小于2.则其中正确结论的序号是②.(注:把你认为正确结论的序号都填上)考点:曲线与方程.分析:根据题意,依次分析4个命题:对于①:将曲线C的方程与双曲线的标准方程比较,可得①错误;对于②:分析关于y轴对称的两个点(x,y)点(﹣x,y),是否都在曲线上,即可得②正确;对于③:分析关于原点对称的两个点(x,y)点(﹣x,﹣y),是否都在曲线上,即可得③错误,对于④:将曲线方程变形为y=,分析其与x轴所围成的面积,即可得答案.解答:解:根据题意,依次分析4个命题:对于①:曲线C:x4﹣y3=1,不符合双曲线的标准方程,故不是双曲线;①错误;对于②:若点(x,y)在曲线上,则有x4﹣y3=1,那么对于与点(x,y)关于y轴对称的点(﹣x,y),也有(﹣x)4﹣y3=1成立,则点(﹣x,y)也在曲线上,故曲线关于y轴对称,②正确;对于③:若点(x,y)在曲线上,则有x4﹣y3=1,那么对于与点(x,y)关于原点对称的点(﹣x,﹣y),(﹣x)4﹣(﹣y)3=1不成立,则点(﹣x,﹣y)不在曲线上,故曲线不关于原点对称,③错误;对于④:曲线C:x4﹣y3=1,变形可得y=,分析可得其是开放性曲线,与x轴所围成的面积无最大值,故④错误;故答案为②.点评:本题考查曲线与方程,解题的关键是根据曲线的方程,分析曲线的几何形状与具有的几何性质.二、选择题(18分)本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得6分,否则一律得零分.10.(6分)“a≠2”是“关于x,y的二元一次方程组有唯一解”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:由方程组得y=,得到a≠2且a≠﹣1,从而求出a的范围.解答:解:由有唯一解得:y=,∴a≠2且a≠﹣1,∴a≠2”是“关于x,y的二元一次方程组有唯一解”的必要不充分条件,故选:A.点评:本题考查了充分必要条件,考查了二元一次方程组的解法,是一道基础题.11.已知等比数列{a n}前n项和为S n,则下列一定成立的是()A.若a3>0,则a2013<0 B.若a4>0,则a2014<0C.若a3>0,则S2013>0 D.若a4>0,则S2014>0考点:等比数列的性质.专题:等差数列与等比数列.分析:对于选项A,B,D可通过q=﹣1的等比数列排除,对于选项C,可分公比q>0,q<0来证明即可得答案.解答:解:对于选项A,可列举公比q=﹣1的等比数列1,﹣1,1,﹣1,…,显然满足a3>0,但a2013=1>0,故错误;对于选项B,可列举公比q=﹣1的等比数列﹣1,1,﹣1,1…,显然满足a4>0,但a2014=0,故错误;对于选项D,可列举公比q=﹣1的等比数列﹣1,1,﹣1,1…,显然满足a2>0,但S2014=0,故错误;对于选项C,因为a3=a1•q2>0,所以a1>0.当公比q>0时,任意a n>0,故有S2013>0;当公比q<0时,q2013<0,故1﹣q>0,1﹣q2013>0,仍然有S2013 =>0,故C正确,故选C.点评:本题主要考查等比数列的定义和性质,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于中档题.12.对于集合A,定义了一种运算“⊕”,使得集合A中的元素间满足条件:如果存在元素e∈A,使得对任意a∈A,都有e⊕a=a⊕e=a,则称元素e是集合A对运算“⊕”的单位元素.例如:A=R,运算“⊕”为普通乘法;存在1∈R,使得对任意a∈R,都有1×a=a×1=a,所以元素1是集合R对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”:①A=R,运算“⊕”为普通减法;②A={A m×n|A m×n表示m×n阶矩阵,m∈N*,n∈N*},运算“⊕”为矩阵加法;③A={X|X⊆M}(其中M是任意非空集合),运算“⊕”为求两个集合的交集.其中对运算“⊕”有单位元素的集合序号为()A.①②B.①③C.①②③D.②③考点:进行简单的合情推理.专题:计算题;推理和证明.分析:根据单位元素的定义,对三个集合及相应的运算“⊕”进行检验即可.解答:解:①若A=R,运算“⊕”为普通减法,而普通减法不满足交换律,故没有单位元素;②A={A m×n|A m×n表示m×n阶矩阵,m∈N*,n∈N*},运算“⊕”为矩阵加法,其单位元素为全为0的矩阵;③A={X|X⊆M}(其中M是任意非空集合),运算“⊕”为求两个集合的交集,其单位元素为集合M.故选D.点评:本题考查了学生对新定义的接受与应用能力,属于基础题.三、解答题(本题满分78分)本大题共有4题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.13.(18分)请仔细阅读以下材料:已知f(x)是定义在(0,+∞)上的单调递增函数.求证:命题“设a,b∈R+,若ab>1,则”是真命题.证明因为a,b∈R+,由ab>1得a>>0.又因为f(x)是定义在(0,+∞)上的单调递增函数,于是有.①同理有.②由①+②得.故,命题“设a,b∈R+,若ab>1,则”是真命题.请针对以上阅读材料中的f(x),解答以下问题:(1)试用命题的等价性证明:“设a,b∈R+,若,则:ab>1”是真命题;(2)解关于x的不等式f(a x﹣1)+f(2x)>f(a1﹣x)+f(2﹣x)(其中a>0).考点:抽象函数及其应用;四种命题;其他不等式的解法.专题:函数的性质及应用.分析:(1)先写出原命题的逆否命题:设a,b∈R+,若ab≤1,则:,由于原命题与原命题的逆否命题是等价命题,证明原命题的逆否命题为真命题;(2)利用(1)的结论有:a x﹣1•2x>1,即:(2a)x>a,再分①当2a>1时、②当0<2a<1时、③当2a=1时三种情况,写出不等式的解集.解答:解:(1)原命题与原命题的逆否命题是等价命题.原命题的逆否命题:设a,b∈R+,若ab≤1,则:,下面证明原命题的逆否命题为真命题:因为a,b∈R+,由ab≤1,得:,又f(x)是定义在(0,+∞)上的单调递增函数所以 (1)同理有: (2)由(1)+(2)得:所以原命题的逆否命题为真命题所以原命题为真命题.(2)由(1)的结论有:a x﹣1•2x>1,即:(2a)x>a①当2a>1时,即时,不等式的解集为:(log2a a,+∞)②当0<2a<1时,即时,不等式的解集为:(﹣∞,log2a a)③当2a=1时,即时,不等式的解集为:R.点评:本题主要考查抽象函数的综合应用,并同时考查证明真命题的方法,其中,原命题与原命题的逆否命题是等价命题是解决本题的关键.14.(20分)如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+ϕ)(A>0,ω>0,ϕ∈(0,π)),x∈[﹣4,0]的图象,图象的最高点为B(﹣1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧.(1)求曲线段FGBC的函数表达式;(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.考点:在实际问题中建立三角函数模型.专题:计算题;应用题;作图题;函数的性质及应用.分析:(1)由题意可得A=2,T=12,代入点求ϕ,从而求解析式;(2)令求解x,从而求景观路GO的长;(3)作图求平行四边形的面积S OMPQ=OM•PP1=(2cosθ﹣sinθ)2sinθ=sin(2θ+)﹣,θ∈(0,);从而求最值.解答:解:(1)由已知条件,得A=2,又∵,又∵当x=﹣1时,有,∴曲线段FBC的解析式为.(2)由得,x=6k+(﹣1)k﹣4(k∈Z),又∵x∈[﹣4,0],∴k=0,x=﹣3,∴G(﹣3,1),;∴景观路GO长为千米.(3)如图,,作PP1⊥x轴于P1点,在Rt△OPP1中,PP1=OPsinθ=2sinθ,在△OMP中,=,∴OM==2cosθ﹣sinθ,S OMPQ=OM•PP1=(2cosθ﹣sinθ)2sinθ=sin(2θ+)﹣,θ∈(0,);当2θ+=时,即θ=时,平行四边形面积有最大值为(平方千米).点评:本题考查了三角函数在实际问题中的应用,同时考查了学生的作图能力,属于中档题.15.(20分)已知F1,F2分别是椭圆C:=1(a>0,b>0)的左、右焦点,椭圆C过点且与抛物线y2=﹣8x有一个公共的焦点.(1)求椭圆C方程;(2)斜率为k的直线l过右焦点F2,且与椭圆交于A,B两点,求弦AB的长;(3)P为直线x=3上的一点,在第(2)题的条件下,若△ABP为等边三角形,求直线l的方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由题意得c=2,,由此能求出椭圆方程.(2)直线l的方程为y=k(x﹣2).联立方程组,得(3k2+1)x2﹣12k2x+12k2﹣6=0,由此利用韦达定理和弦长公式能求出|AB|.(3)设AB的中点为M(x0,y0).由中点坐标公式得,.直线MP的斜率为,又x P=3,由此利用弦长公式能求出k=±1,从而求出直线l的方程.解答:解:(1)由题意得F1(﹣2,0),c=2…(2分)又,得a4﹣8a2+12=0,解得a2=6或a2=2(舍去),…(2分)则b2=2,…(1分)故椭圆方程为.…(1分)(2)直线l的方程为y=k(x﹣2).…(1分)联立方程组,消去y并整理得(3k2+1)x2﹣12k2x+12k2﹣6=0.…(3分)设A(x1,y1),B(x2,y2).故,.…(1分)则|AB|=|x1﹣x2|==.…(2分)(3)设AB的中点为M(x0,y0).∵=2x0,∴,…(1分)∵y0=k(x0﹣2),∴.…(1分)直线MP的斜率为,又x P=3,所以.…(2分)当△ABP为正三角形时,|MP|=,可得,…(1分)解得k=±1.…(1分)即直线l的方程为x﹣y﹣2=0,或x+y﹣2=0.…(1分)点评:本题考查椭圆C方程的求法,考查弦AB的长的求法,考查直线l的方程的求法,解题时要认真审题,注意函数与方程思想的合理运用.16.(20分)设数列{a n}满足:①a1=1;②所有项a n∈N*;③1=a1<a2<…<a n<a n+1<…设集合A m={n|a n≤m,m∈N*},将集合A m中的元素的最大值记为b m.换句话说,b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值.我们称数列{b n}为数列{a n}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)若数列{a n}的伴随数列为1,1,1,2,2,2,3,请写出数列{a n};(2)设a n=3n﹣1,求数列{a n}的伴随数列{b n}的前100之和;(3)若数列{a n}的前n项和S n=n+c(其中c常数),试求数列{a n}的伴随数列{b n}前m项和T m.考点:数列的求和;数列的应用.专题:点列、递归数列与数学归纳法.分析:(1)根据伴随数列的定义求出数列{a n};(2)根据伴随数列的定义得:,由对数的运算对m分类讨论求出伴随数列{b n}的前100项以及它们的和;(3)由题意和a n与S n的关系式求出a n,代入a n≤m得,并求出伴随数列{b m}的各项,再对m分类讨论,分别求出伴随数列{b m}的前m项和T m.解答:解:(1)1,4,7.…(6分)(2)由,得∴当1≤m≤2,m∈N*时,b1=b2=1…(1分)当3≤m≤8,m∈N*时,b3=b4=…=b8=2…(1分)当9≤m≤26,m∈N*时,b9=b10=…=b26=3…(1分)当27≤m≤80,m∈N*时,b27=b28=…=b80=4…(1分)当81≤m≤100,m∈N*时,b81=b82=…=b100=5…(1分)∴b1+b2+…+b100=1×2+2×6+3×18+4×54+5×20=384…(1分)(3)∵a1=S1=1+c=1∴c=0…(1分)当n≥2时,a n=S n﹣S n﹣1=3n﹣2∴…(2分)由a n=3n﹣2≤m得:因为使得a n≤m成立的n的最大值为b m,所以…(1分)当m=3t﹣2(t∈N*)时:…(1分)当m=3t﹣1(t∈N*)时:…(1分)当m=3t(t∈N*)时:…(1分)所以(其中t∈N*)…(1分)点评:本题考查数列的应用,着重考查对抽象概念的理解与综合应用的能力,观察、分析寻找规律是难点,是难题.。

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

某某省某某高中2015届高三上学期周测数学试卷(理科)(1.22)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的.1.设复数z1=1﹣i,z2=+i,其中i为虚数单位,则的虚部为( )A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意结合复数代数形式的乘除运算化简得答案.解答:解:∵z1=1﹣i,z2=+i,∴=.∴的虚部为.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知数列{a n}的前n项和为S n,且S n=2a n﹣2,则a2等于( )A.﹣2 B.2 C.1 D.4考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用S n=2a n﹣2,n分别取1,2,则可求a2的值.解答:解:n=1时,S1=2a1﹣2,∴a1=2,n=2时,S2=2a2﹣2,∴a2=a1+2=4.故选D.点评:本题考查数列递推式,考查学生的计算能力,属于基础题.3.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义集合对数函数的性质分别判断其充分性和必要性,从而得到答案.解答:解:若“m>0”,则函数f(x)=m+log2x>0,(x≥1),故函数f(x)不存在零点,是充分条件,若函数f(x)=m+log2x(x≥1)不存在零点,则m>0,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣13=0的最小值为( )A.B.2 C.D.1考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P到直线3x﹣4y﹣13=0的最小值.解答:解:由约束条件作出可行域如图,由图可知,当P与A(1,0)重合时,P到直线3x﹣4y﹣13=0的距离最小为d=.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,则双曲线的离心率是( )A.B.C.4D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件求出双曲线方程中k的值,然后求解离心率即可.解答:解:双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,可得双曲线的渐近线的斜率为:,即,解得k=,双曲线kx2﹣y2=1为:y2=1,得a=2,b=1,c=,∴双曲线的离心率为:.故选:A.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A.B.C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,即可得出.解答:解:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,∴V==.点评:本题考查了三棱锥与四棱锥的三视图、体积计算公式,属于基础题.7.已知函数f(x)=sin(x+),其中x∈,若f(x)的值域是,则实数a的取值X围是( ) A.(0,] B.C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:先求得x+的取值X围,由x+∈时f(x)的值域是,可知≤a+≤,可解得实数a的取值X围.解答:解:∵x∈,∴x+∈,∵x+∈时f(x)的值域是,∴由函数的图象和性质可知≤a+≤,可解得a∈.故选:D.点评:本题主要考察了正弦函数的图象和性质,由函数的图象和性质得到不等式≤a+≤是解题的关键,属于基本知识的考查.8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为( ) A.B.C.1 D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先画出图象、做出辅助线,设|AF|=a、|BF|=b,由抛物线定义得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2﹣ab,再根据基本不等式,求得|AB|2的取值X围,代入化简即可得到答案.解答:解:如右图:过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,因为ab≤,则(a+b)2﹣ab≥(a+b)2﹣=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,则,即所求的最小值是,故选:D.点评:本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题.9.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f (x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值X围为( )A.(2﹣2,2﹣4)B.(+2,+)C.(2+2,2+4)D.(4,8)考点:函数奇偶性的性质;抽象函数及其应用.专题:函数的性质及应用.分析:本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值X围.解答:解:∵当0≤x≤1时,f(x)=x2,∴f(1)=1.∵当x>0时,f(x+1)=f(x)+f(1),∴f(x+1)=f(x)+1,∴当x∈,n∈N*时,f(x+1)=f(x﹣1)+2=f(x﹣2)+3=…=f(x﹣n)+n+1=(x﹣n)2+n+1,∵函数f(x)是定义在R上的奇函数,∴函数图象经过原点,且关于原点对称.∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,∴由x>0时f(x)的图象可知:直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.∵当x∈时,由得:x2﹣(k+2)x+2=0,令△=0,得:k=.由得:x2﹣(k+4)x+6=0,令△=0,得:k=2.∴k的取值X围为().点评:本题考查了函数的奇偶性、周期性、函数图象与性质及其应用,本题有一定的综合性,属于中档题.10.设函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,若实数a,b分别是f(x),g(x)的零点,则( )A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数的解析式判断单调性,运用f(1)=e﹣2>0,g(1)=0+2﹣5<0,得出a<1,b>1,再运用单调性得出g(a)<g(1)<0,f(b)>f(1)>0,即可选择答案.解答:解:∵函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,∴f(x)与g(x)在各自的定义域上为增函数,∵f(1)=e﹣2>0,g(1)=0+2﹣5<0,∴若实数a,b分别是f(x),g(x)的零点,∴a<1,b>1,∵g(a)<g(1)<0,f(b)>f(1)>0,故选:A点评:本题考查了函数的性质,运用单调性判断函数的零点的位置,再结合单调性求解即可.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X 围为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出X围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值X围为故选:D点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.12.设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,3,…,2015),记I k=|f k(a2)﹣f k(a1)|+|f k(a3)﹣f k(a2)|+…+|f k(a2015)﹣f k(a2014)|,k=1,2,则( ) A.I1<I2B.I1=I2C.I2<I1D.无法确定考点:对数的运算性质.专题:函数的性质及应用.分析:由于f1(a i+1)﹣f1(a i)==.可得I1=×2014.由于f i+1(a i+1)﹣f i(a i)==.即可得出I2==log20152015.解答:解:∵f1(a i+1)﹣f1(a i)==.∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|+…+|f1(a2015)﹣f1(a2014)|=×2014=.∵f2(a i+1)﹣f2(a i)==.∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|+…+|f2(a2015)﹣f2(a2014)|==log20152015=1,∴I1<I2.故选:A.点评:本题考查了对数的运算法则、含绝对值符号式的运算,属于基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.已知等比数列{a n},前n项和为S n,,则S6=.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:设等比数列{a n}的公比为q,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.解答:解:设等比数列{a n}的公比为q,由于,即a1+a1q=,a1q3+a1q4=6,两式相除,可得,q=2,a1=.则S6==.故答案为:点评:本题考查等比数列的通项公式和求和公式,考查运算能力,属于基础题.14.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f (x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 (82)考点:函数的值.专题:函数的性质及应用.分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论解答:解:∵f(x)=x3+sinx+2,∴f'(x)=3x2+cosx,f''(x)=6x﹣sinx,∴f''(0)=0,而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,∴…=20×4+f(0)=82.故答案为:82.点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.15.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答:解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.16.有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.若d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=1.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可.解答:解:由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=﹣=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n ﹣d n﹣1).又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.故答案为:1.点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.三.解答题:本大题共5小题,共70分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.解答:解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.已知四棱锥P﹣ABCD中,底面ABCD为菱形,且PD⊥底面ABCD,∠DAB=60°,E为AB的中点.(1)证明:DC⊥平面PDE;(2)若PD=AD,求面DEP与面BCP所成二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间角.分析:(1)根据底面为含有60度的菱形,得△DAB为正三角形,从而得到AB⊥DE,结合PD⊥AB 利用线面垂直判定定理,即可证出DC⊥平面PDE;(2)分别以DE,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,求出面DEP与面BCP 的法向量,代入向量夹角公式,可得答案.解答:证明:(1)∵PD⊥底面ABCD,AB⊂底面ABCD,∴PD⊥AB连接DB,在菱形ABCD中,∠DAB=60°∴△DAB为等边三角形…又∵E为AB的中点∴AB⊥DE又∵PD∩DE=D∴AB⊥底面PDE…∵AB∥CD∴CD⊥底面PDE…解:(2)如图,分别以DE,DC,DP所在直线为x,y,z轴,如图建立空间直角坐标系∴….∴∴…∴∴…点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,熟练掌握线面垂直的判定定理是解答(1)的关键,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.解答:解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=(x2﹣2x)lnx+ax2+2.(Ⅰ)当a=﹣1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,设函数g(x)=f(x)﹣x﹣2,且函数g(x)有且仅有一个零点,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f (1))处的切线方程;(Ⅱ)由g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e﹣2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞),∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0;(Ⅱ)g(x)=f(x)﹣x﹣2=0,则(x2﹣2x)•lnx+ax2+2=x+2,即a=,令h(x)=,则h′(x)=,令t(x)=1﹣x﹣2lnx,则t′(x)=,∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e, g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0,得x=1或x=e﹣,又∵e﹣2<x<e,∴函数g(x)在(e﹣2,e﹣)上单调递增,在(e﹣,1)上单调递减,在(1,e)上单调递增,又g(e﹣)=﹣e﹣3+2e﹣,g(e)=2e2﹣3e,∵g(e﹣)=﹣e﹣3+2e﹣<2e﹣<2e<2e(e﹣)=g(e),∴g(e﹣)<g(e),∴m≥2e2﹣3e.点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.请考生在第(22)、(23)二题中任选一题作答.如果多做,则按所做的第一题记分,答题时,用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|.(1)若对任意a、b、c∈R(a≠c),都有f(x)≤恒成立,求x的取值X围;(2)解不等式f(x)≤3x.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)根据|a﹣b|+|b﹣c|≥|a﹣c|,可得≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,由此求得x的X围.(2)不等式即|2x﹣1|≤3x,可得,由此求得不等式的解集.解答:解:(1)∵|a﹣b|+|b﹣c|≥|a﹣b+(b﹣c)|=|a﹣c|,故有≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,∴﹣1≤2x﹣1≤1,求得0≤x≤1.(2)不等式f(x)≤3x,即|2x﹣1|≤3x,∴,求得x≥,即不等式的解集为{x|x≥}.点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.。

2015届(高三)理科第十四次大考成绩册

2015届(高三)理科第十四次大考成绩册

信阳高中分校2014-2015学年度2015届(高三)第十四次大考(1)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(2)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(3)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(6)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(7)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(8)班成绩表
编制时间:2015年5月30日
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(11)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(12)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(13)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(14)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(15)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(16)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(17)班成绩表
信阳高中分校2014-2015学年度2015届(高三)第十四次大考(18)班成绩表。

上海市静安区2015届高三一模数学(理)试卷含答案

上海市静安区2015届高三一模数学(理)试卷含答案

静安区2015届高三第一学期期末教学质量检测数学(理)试卷(试卷满分150分 考试时间120分钟) 2014.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知集合{}0,2>==x x y y M ,{})2lg(2x x y x N -==,则=N M . 答案:)2,0(考点:集合的描述法备考建议:强调,对集合描述法要区分集合的代表元。

2.设8877108)1(x a x a x a a x ++++=- ,则=++++8710a a a a . 答案:25628=考点:二项式定理解法:将1x =-代入式子中备考建议:让学生理解,二项式题型中的赋值法,并补充一些通过某一项系数判断二项式次数的题型。

3.不等式01271<--x 的解集是 . 答案:)4,21(考点:分式不等式的解法备考建议:分式不等式建议通分后再解不等式,易错点是:不等式性质中,若要两边同乘除,要注意所乘所除数的正负性。

4.如图,在四棱锥ABCD P -中,已知⊥PA 底面ABCD ,1=PA ,底面ABCD 是正方形,PC 与底面ABCD 所成角的大小为6π,则该四棱锥的体积是 . 答案:12考点:锥体体积的求法备考建议:让学生熟练掌握各简单几何体面积与体积的公式。

5.已知数列{}n a 的通项公式1222+-+=n nn a (其中*N n ∈),则该数列的前n 项和=n S .答案:)212(4n n -考点:数列分组求和,等比数列求和。

A BCDP备考建议:此类题型要让学生观察数列通项公式的结构,从而选择正确的求和方法。

同时,也可带领回忆一下倒序相加、错位相减、裂项相消的常用求和方法及其适用情况。

6.已知两个向量,的夹角为303=,b 为单位向量,b t a t c )1(-+=, 若c b ⋅=0,则t = . 答案:-2考点:向量的数量积:解法:由于b 与c 、a 、b 的数量积都有联系,故等式两边同乘上一个b 。

上海市各区县2015届高三上学期期末考试数学理试题分类汇编:立体几何

上海市各区县2015届高三上学期期末考试数学理试题分类汇编:立体几何

上海市各区县2015届高三上学期期末考试数学理试题分类汇编立体几何一、填空题 1、(宝山区2015届高三上期末)正四棱锥ABCD P -的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于ECDPAB2、(崇明县2015届高三上期末)圆锥的底面半径为3,高为1,则圆锥的侧面积为3、(奉贤区2015届高三上期末)如图,在矩形ABCD 中,E 为边AD 的中点,1AB =,2BC =,分别以A 、D 为圆心,1为半径作圆弧EB 、EC (E 在线段AD 上).由两圆弧EB 、EC 及边BC 所围成的平面图形绕直线AD 旋转一周,则所形成的几何体的体积为4、(虹口区2015届高三上期末)右图是正四面体的平面展开图,M N G 、、分别为DE BE FE 、、的中点,则在这个正四面体中,MN 与CG 所成角的大小为 .5、(黄浦区2015届高三上期末)已知某圆锥体的底面学科网半径3r =,沿圆锥体的母线把侧面展开后得到一个圆心角为23π的扇形,则该圆锥体的表面积是6、(嘉定区2015届高三上期末)若圆锥的侧面积是底面积的4倍,则其母线与轴所成角的大小是____________(结果用反三角函数值表示).7、(金山区2015届高三上期末)如图所示,在长方体ABCD –EFGH 中,AD =2,AB=AE=1,ME为矩形AEHD 内的一点,如果∠MGF =∠MGH ,MG 和平面EFG 所成角的正切值为12,那么点M 到平面EFGH 的距离是 ▲8、(静安区2015届高三上期末)如图,在四棱锥ABCD P -中,已知⊥PA 底面ABCD ,1=PA ,底面ABCD 是正方形,PC 与底面ABCD 所成角的大小为6π,则该四棱锥的体积是 .9、(浦东区2015届高三上期末)如图,已知⊥PA 平面ABC ,AB AC ⊥,BC AP =,︒=∠30CBA ,D 、E 分别是BC 、AP 的中点. 学科网则异面直线AC 与DE 所成角的大小为 .10、(普陀区2015届高三上期末)如图,正三棱柱的底面边长为2,体积为3,则直线C B 1与底面ABC 所成的角的大小为 (结果用反三角函数值表示).11、(松江区2015届高三上期末)在正四棱柱1111ABCD A BC D -中,1BC 与平面ABCD 所成的角为60︒,则1BC 与AC 所成的角为 ▲ (结果用反三角函数表示).PABCDEA BCDP12、(徐汇区2015届高三上期末)若正四棱柱1111ABCD A BC D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________.(结果用反三角函数值表示) 13、(长宁区2015届高三上期末)如图,圆学科网锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小是二、选择题 1、(奉贤区2015届高三上期末)在空间中,设m 、n 是不同的直线,α、β是不同的平面,且m α⊂≠,n β⊂≠,则下列命题正确的是( )A .若n m //,则βα//B .若m 、n 异面,则α、β平行C .若m 、n 相交,则α、β相交D .若n m ⊥,则βα⊥2、(青浦区2015届高三上期末)设a b 、是两条不同的直线,αβ、是两个不同的平面,则下面四个命题中错误..的是………………………………………………………( ). (A )若,,a b a b αα⊥⊥⊄ ,则b //α (B )若,,a b a b αβ⊥⊥⊥ ,则αβ⊥ (C )若,a βαβ⊥⊥ ,则a //α或 a α≠⊂ (D )若 a //,ααβ⊥ ,则a β⊥3、(徐汇区2015届高三上期末)已知m 和n 是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中一定能推出m β⊥的是 ( )(A )αβ⊥且m α⊂≠(B )αβ⊥且α//m(C )n m //且n β⊥ (D )m n ⊥且//n β三、解答题1、(宝山区2015届高三上期末)如图,正四棱柱1111D C B A ABCD -的底面边长2=AB , 若异面直线A A 1与C B 1所成角的大小为21arctan ,求正四棱 柱1111D C B A ABCD -的体积.2、(崇明县2015届高三上期末)如图,在四棱锥P ABCD -的底面梯形ABCD 中,AD BC ∥,AB BC ⊥,1AB =,3AD =,45ADC ∠=︒.又已知PA ⊥平面ABCD ,1PA =.求:(1)异面直线PB 与CD 所成角的大小. (2)四棱锥P ABCD -的体积.3、(奉贤区2015届高三上期末)如图,四棱锥P ABCD -的侧棱都相等,底面ABCD 是正方形,O 为对角线AC 、BD 的交点,PO OA =,求直线PA 与面ABCD 所成的角的大PDCA 第26题小.4、(虹口区2015届高三上期末)一个透明的球形装饰品内放置了两个公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的316,设球的半径为R ,圆锥底面半径为r . (1)试确定R 与r(2)求出两个圆锥的体积之和与球的体积之比.5、(黄浦区2015届高三上期末)在长方体1111ABCD A B C D -中,14,3AB AA BC ===,E F 、分别是所在棱AB BC 、的中点,点P 是棱11A B 上的动点,联结1,EF AC .如图所示.(1)求异面直线1EF AC 、所成角的大小(用反三角函数值表示); (2)(理科)求以E F A P 、、、为顶点的三棱锥的体积.6、(嘉定区2015届高三上期末)如图,在直三棱柱111C B A ABC -中,︒=∠90BAC ,PABD O21===AA AC AB ,点E 、F 分别为棱AC 与11B A 的中点.(1)求三棱锥11EFC A -的体积;(2)求异面直线C A 1与EF 所成角的大小.7、(金山区2015届高三上期末)如图,在四棱锥P –ABCD 的底面梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB =2,AD=3,∠ADC =45︒.已知PA ⊥平面ABCD ,PA =1. 求:(1)异面直线PD 与AC 所成角的大小 (结果用反三角函数值表示);(2)三棱锥C –APD 的体积.8、(静安区2015届高三上期末)如图,长方体1111D C B A ABCD -中,2==AD AB ,41=AA ,点P 为面11A ADD 的对角线1AD 上的动点(不包括端点).⊥PM 平面ABCD 交AD 于点M ,BD MN ⊥于点N .(1)设x AP =,将PN 长表示为x 的函数;(2)当PN 最小时,求异面直线PN 与11C A 所成角的大小. (结果用反三角函数值表示)P DA 第20题图BB 1D 1A B 19、(浦东区2015届高三上期末)如图所示,圆锥SO 的底面圆半径1||=OA ,其侧面展开图是一个圆心角为32π的扇形,求此圆锥的体积. 10、(普陀区2015届高三上期末)如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等,铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm ).(加工中不计损失). (1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;(2)若每块钢板的厚度为12mm ,求钉身的长度(结果精确到1mm ).11、(青浦区2015届高三上期末)如图所示,在长方体1111ABCD A B C D -中,2AB =,2BC =, 14CC =,M 为棱1CC 上一点.图2(1)若11C M =,求异面直线1A M 和11C D 所成角的正切值; (2)若12C M =,求证BM ⊥平面11A B M .12、(松江区2015届高三上期末)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。

上海市各区县2015届高三上学期期末考试数学理试题分类汇编:圆锥曲线

上海市各区县2015届高三上学期期末考试数学理试题分类汇编:圆锥曲线

上海市各区县2015届高三上学期期末考试数学理试题分类汇编圆锥曲线一、填空题1、(宝山区2015届高三上期末)直线20x y +=被曲线2262x y x y+--150-=所截得的弦长等于2、(崇明县2015届高三上期末)已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AFK ∆的面积为3、(奉贤区2015届高三上期末)若双曲线122=-ky x 的一个焦点是(3,0),则实数k = .4、(奉贤区2015届高三上期末)已知圆222:C x y r +=与直线34100x y -+=相切, 则圆C 的半径r =5、(虹口区2015届高三上期末)椭圆2214x y +=的焦距为6、(虹口区2015届高三上期末)若抛物线24y x =上的两点A 、B 到焦点的距离之和为6,则线段AB 的中点到y 轴的距离为7、(黄浦区2015届高三上期末)已知抛物线C 的顶点在坐标原点,焦点与双曲线:22172x y -=的右焦点重合,则抛物线C 的方程是8、(嘉定区2015届高三上期末)若椭圆122=+y mx 的一个焦点与抛物线x y 42=的焦点重合,则=m _________ 9、(金山区2015届高三上期末)已知点A (–3,–2)和圆C :(x –4)2+(y –8)2=9,一束光线从点A 发出,射到直线l :y=x –1后反射(入射点为B ),反射光线经过圆周C 上一点P ,则折线ABP 的最短长度是 ▲ 10、(静安区2015届高三上期末)直线经过点)1,2(-P 且点)1,2(--A 到直线的距离等于1,则直线的方程是 11、(浦东区2015届高三上期末)关于,x y 的方程22240x y x y m ++-+=表示圆,则实数m 的取值范围是12、(浦东区2015届高三上期末)双曲线1322=-y x 的两条渐近线的夹角为 13、(普陀区2015届高三上期末)若方程132||22=-+-ky k x 表示双曲线,则实数k 的取值范围是 14、(普陀区2015届高三上期末)若抛物线mx y 42=(0>m )的焦点在圆122=+y x 内,则实数m 的取值范围是15、(青浦区2015届高三上期末)抛物线28y x =的动弦AB 的长为6,则弦AB 中点M 到y 轴的最短距离是16、(松江区2015届高三上期末)已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离为 ▲17、(徐汇区2015届高三上期末)若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则该抛物线的准线方程为18、(杨浦区2015届高三上期末)已知直线经过点()()1,2,3,2A B --,则直线的方程是_________________二、选择题1、(宝山区2015届高三上期末)双曲线24x -212y =1的焦点到渐近线的距离为( )(A ) (B )2 (C (D )12、(宝山区2015届高三上期末)圆0422=-+x y x 在点)3,1(P 处的切线方程为 ( ) (A )023=-+y x (B )043=-+y x (C )043=+-y x (D )023=+-y x3、(奉贤区2015届高三上期末)设椭圆)0(12222>>=+b a by a x 的左、右焦点分别为1F 、2F ,上顶点为B ,若2122BF F F ==,则该椭圆的方程为 ( )A .13422=+y xB .1322=+y xC .1222=+y x D .1422=+y x 4、(嘉定区2015届高三上期末)设a 、b 是关于的方程0sin cos 2=-θθt t 的两个不相等实根,则过),(2a a A 、),(2b b B 两点的直线与双曲线1sin cos 2222=-θθy x 的公共点个数是…………………( ) A .3 B .2 C . D .05、(浦东区2015届高三上期末)设椭圆的一个焦点为)0,3(,且b a 2=,则椭圆的标准方程为 ( )()A 1422=+y x ()B 1222=+y x ()C 1422=+x y ()D 1222=+x y6、(杨浦区2015届高三上期末)圆心在抛物线x y 22=上,且与x 轴和抛物线的准线都相切的一个 圆的方程是( )A .01222=+--+y x y xB .041222=---+y x y xC .01222=+-++y x y xD . 041222=+--+y x y x三、解答题1、(宝山区27)已知点F 为抛物线2:4C y x =的焦点,点PC 于,A B 两点,若点P 的纵坐标为(0)mm ≠, 点D 为准线与x 轴的交点. (1)求直线PF 的方程;(2)求DAB ∆面积S 的取值范围.2、(宝山区31)在平面直角坐标系xoy 中,点P 到两点(0,、(的距离之和等于4.设点P 的轨迹为C .(1)写出轨迹C 的方程;(2)设直线1y kx =+与C 交于A 、B 两点,问k 为何值时?⊥此时|AB |的值是多少?3、(崇明县22)已知椭圆C 的中心在原点O ,焦点在x 轴上,椭圆的两焦点与椭圆短轴的一个端点构成等边三角形,右焦点到右顶点的距离为1. (1)求椭圆C 的标准方程;(2)是否存在与椭圆C 交于,A B 两点的直线():l y kx m k R =+∈,使得22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.4、(奉贤区29)曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2(0)k k >的点的轨迹,设曲线C 的轨迹方程(,)0f x y =. (1)求曲线C 的方程(,)0f x y =;(2)定义:若存在圆M 使得曲线(,)0f x y =上的每一点都落在圆M 外或圆M 上,则称圆M 为曲线(,)0f x y =的收敛圆.判断曲线(,)0f x y =是否存在收敛圆?若存在,求出收敛圆方程;若不存在,请说明理由.5、(虹口区23)已知12F F 、为为双曲线22221x y C a b -=:的两个焦点,焦距12=6F F ,过左焦点1F 垂直于x 轴的直线,与双曲线C 相交于,A B 两点,且2ABF ∆为等边三角形.(1)求双曲线C 的方程;(2)设T 为直线1x =上任意一点,过右焦点2F 作2TF 的垂线交双曲线C 与,P Q 两点,求证:直线OT 平分线段PQ (其中O 为坐标原点);(3)是否存在过右焦点2F 的直线,它与双曲线C 的两条渐近线分别相交于,R S 两点,且使得1F RS ∆的面积为.6、(黄浦区23)在平面直角坐标系中,已知动点(,)M x y ,点(0,1),(0,1),(1,0),A B D -点N 与点M 关于直线y x =对称,且212AN BN x ⋅=.直线是过点D 的任意一条直线.(1)求动点M 所在曲线C 的轨迹方程;(2)设直线与曲线C 交于G H 、两点,且||GH =(3)(理科)若直线与曲线C 交于G H 、两点,与线段AB 交于点P (点P 不同于点O A B 、、),直线GB 与直线HA 交于点Q ,求证:OP OQ ⋅是定值.7、(嘉定区21)已知点)2,0(-A ,椭圆E :12222=+by a x (0>>b a )的长轴长为4,F 是椭圆的右焦点,直线AF 的一个方向向量为)2,3(=d,O 为坐标原点.(1)求椭圆E 的方程;(2)设过点A 的动直线与椭圆E 相交于P 、Q 两点,当△OPQ 的面积S 最大时,求的方程.8、(金山区22)动点P 与点(0,1)F 的距离和它到直线:l 1y =-的距离相等,记点P 的轨迹为曲线C . (1) 求曲线C 的方程;(2) 设点()0,(A a a >2,动点T 在曲线C 上运动时,AT 的最短距离为1-a ,求a 的值以及取到最小值时点T 的坐标;(3) 设21,P P 为曲线C 的任意两点,满足21OP OP ⊥(O 为原点),试问直线21P P 是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由.9、(浦东27)已知直线12y x =与抛物线22(0)y px p =>交于O 、A 两点(F 为抛物线的焦点,O 为坐标原点),若17AF =,求OA 的垂直平分线的方程.10、(浦东32)已知三角形ABC △的三个顶点分别为)0,1(-A ,)0,1(B ,(0,1)C .(1)动点P 在三角形ABC △的内部或边界上,且点P 到三边,,AC AB BC 的距离依次成等差数列,求点P 的轨迹方程; (2)若0a b <≤,直线:y ax b =+将ABC △分割为面积相等的两部分,求实数b 的取值范围.11、(普陀区19)已知P 是椭圆12422=+y x 上的一点,求P 到)0,(m M (0>m )的距离的最小值.12、(青浦区21)如图所示的“8”字形曲线是由两个关于x 轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是22440x y y +--=,双曲线的左、右顶点A 、B 是该圆与x 轴的交点,双曲线与半圆相交于与x 轴平行的直径的两端点.(1)试求双曲线的标准方程;(2)记双曲线的左、右焦点为1F 、2F ,试在“8”字形曲线上求点P ,使得12F PF ∠是直角.O13、(松江区23)(理)对于曲线:(,)0C f x y =,若存在最小的非负实数m 和n ,使得曲线C 上任意一点(,)P x y ,||,||x m y n ≤≤恒成立,则称曲线C 为有界曲线,且称点集{(,),}x y x m y n ≤≤为曲线C 的界域.(1)写出曲线22(1)4x y -+=的界域;(2)已知曲线M 上任意一点P 到坐标原点O 与直线1x =的距离之和等于3,曲线M 是否为有界曲线,若是,求出其界域,若不是,请说明理由;(3)已知曲线C 上任意一点(,)P x y 到定点12(1,0),(1,0)F F -的距离之积为常数(0)a a >,求曲线的界域.14、(徐汇区22)已知椭圆222:1x y aγ+=(常数1a >)的左顶点为R ,点(,1),(,1)A a B a -,O 为坐标原点.(1)若P 是椭圆γ上任意一点,OP mOA nOB =+,求22m n +的值; (2)设Q 是椭圆γ上任意一点,()3,0S a ,求QS QR ⋅的取值范围;(3)设1122(,),(,)M x y N x y 是椭圆γ上的两个动点,满足OM ON OA OB k k k k ⋅=⋅,试探究OMN ∆的面积是否为定值,说明理由.15、(杨浦区22)如图,曲线Γ由曲线()22122:10,0x y C a b y a b +=>>≤和曲线()22222:10x y C y a b -=>组成,其中点12,F F 为曲线1C 所在圆锥曲线的焦点,点34,F F 为曲线2C 所在圆锥曲线的焦点,(1)若()()232,0,6,0F F -,求曲线Γ的方程;(2)如图,作直线平行于曲线2C 的渐近线,交曲线1C 于点A 、B ,求证:弦AB 的中点M 必在曲线2C 的另一条渐近线上;(3)对于(1)中的曲线Γ,若直线1l过点4F 交曲线1C 于点C 、D ,求1CDF ∆面积的最大值。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

2015届高三数学一诊模拟考试试卷 文

2015届高三数学一诊模拟考试试卷 文

2015届高三数学一诊模拟考试试卷 文1.集合⎭⎬⎫⎩⎨⎧∈≥+-=Z x x x x A ,211的子集个数为( ) A .2 B .3 C .4 D .52.已知R m ∈,复数i im ++1的实部和虚部相等,则m 的值为( )A .21B .0C .1D .1-3.下列命题的否定为假命题的是( )A .0222≤+-∈∃x x R x , B .任意一个平面四边形的四个顶点共圆C .样本的中位数一定在样本中D .线性回归直线一定经过样本中心点()y x ,4.某工厂从2015件产品中选取l00件抽样检查,若采用下面的方法选取:先用简单随机抽样从2015件产品中剔除15件,剩下的2000件再按系统抽样的方法进行抽取.则每件产品被抽中的概率( )A .均不相等B .都相等,且为40320C .不全相等D .都相等,且为2015.将函数⎪⎭⎫ ⎝⎛-=3sin 2πx y 的图象向左平移6π个单位,所得函数图象的一条对称轴是( ) A .3π-=x B .6π-=x C .6π=xD .3π=x6.执行如图所示的程序框图,若输10=n ,则输出的=S( ) A.115B .1110C.5536D .55727.已知圆014222=++-+y x y x C :,在区间[]64,-上任取整数m ,则直线0=++m y x l :与圆C 相交所得ABC ∆为钝角三角形(其中B A 、为交点,C 为圆心)的概率为( )A .52B .112C .113D .1148.已知ABC ∆满足OAB ,4=是ABC ∆所在平面内一点,满足222OC OB OA ==,且R AC OB OA ∈=+λλ,,则BA BO ∙= ( )A .28B .8C .24D .49.已知实数y x ,满足可行域⎪⎩⎪⎨⎧≤-+≥+-≥-+09301033y x y x y x D :,曲线5=+-+Γa y x :,恰好平分可行域D 的面积,则a 的值为( )A .4-B .24-C .6-D .8-10.已知实数d ,6,c ,d 满足12ln 22=--=c dd b a ,则()()22d b c a -+-的最小值为( )A .12-B .22-C .223-D .221-第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。

上海市浦东新区2015届高三上学期期末考试(一模)数学试题 Word版含答案

上海市浦东新区2015届高三上学期期末考试(一模)数学试题 Word版含答案

浦东新区2014学年度第一学期期末质量测试高三数学 2015.1注意:1. 答卷前,考生务必在答题纸上指定位置将学校、姓名、考号填写清楚. 2. 本试卷共有32道试题,满分150分,考试时间130分钟.一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.不等式21x>的解为 .2.已知复数z 满足2)1(=+i z (i 为虚数单位),则z = .3.关于,x y 的方程22240x y x y m ++-+=表示圆,则实数m 的取值范围是 . 4.函数sin 3cos y x x =-的最大值为 . 5.若0lim =∞→nn x ,则实数x 的取值范围是 .6.已知一个关于y x ,的二元线性方程组的增广矩阵是⎪⎪⎭⎫ ⎝⎛-210211,则y x += .7.双曲线1322=-y x 的两条渐近线的夹角为 . 8.已知1()y f x -=是函数3()f x x a =+的反函数,且1(2)1f -=,则实数a = .9.二项式4)2(x x +的展开式中,含3x 项系数为 . 10.定义在R 上的偶函数()y f x =,在),0[+∞上单调递增,则不等式)3()12(f x f <-的解是 .11.如图,已知⊥PA 平面ABC ,AB AC ⊥,BC AP =,︒=∠30CBA ,D 、E 分别是BC 、AP 的中点. 则异面直线AC 与DE 所成角的大小为 .12.若直线l 的方程为0=++c by ax (b a ,不同时为零),则下列命题正确的是 .(1)以方程0=++c by ax 的解为坐标的点都在直线l 上; (2)方程0=++c by ax 可以表示平面坐标系中的任意一条直线; (3)直线l 的一个法向量为),(b a ; (4)直线l 的倾斜角为arctan()ab-.二、选择题(本大题共有12题,满分36分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.13.设椭圆的一个焦点为)0,3(,且b a 2=,则椭圆的标准方程为 ( )()A 1422=+y x ()B 1222=+y x ()C 1422=+x y ()D 1222=+x y PABCDE14.用1,2,3,4、5组成没有重复数字的三位数,其中是奇数的概率为 ( )()A15 ()B 25 ()C 35 ()D 4515.下列四个命题中,为真命题的是 ( )()A 若a b >,则22ac bc > ()B 若a b >,c d >则a c b d ->-()C 若a b >,则22a b >()D 若a b >,则11a b<16.某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人.为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为 ( )()A 84 ()B 78 ()C 81 ()D 96 17.等差数列}{n a 的前n 项和为n S ,若17017=S ,1197a a a ++则的值为 ( )()A 10 ()B 20 ()C 25 ()D 3018.“直线l 垂直于ABC △的边AB ,AC ”是“直线l 垂直于ABC △的边BC ”的 ( ) ()A 充分非必要条件 ()B 必要非充分条件 ()C 充要条件()D 既非充分也非必要条件19.函数1, 0()=2ln , >0x x f x xx x ⎧-<⎪⎨⎪-+⎩的零点个数为 ( ) ()A 0 ()B 1 ()C 2 ()D 320.某股民购买一公司股票10万元,在连续十个交易日内,前五个交易日,平均每天上涨5%,后五个交易日内,平均每天下跌4.9%. 则股民的股票赢亏情况(不计其它成本,精确到元)( )()A 赚723元 ()B 赚145元 ()C 亏145元 ()D 亏723元 21.已知数列{}n a 的通项公式2,n a n n N *=∈,则5231234201220134345620142015a a a a a a a a a a a a a a a a ++++= ( ) ()A 16096-()B 16104- ()C 16112-()D 16120- 22.如果函数)(x f y =在区间I 上是增函数,而函数xx f y )(=在区间I 上是减函数,那么称函数)(x f y =是区间I 上“缓增函数”,区间I 叫做“缓增区间”. 若函数2321)(2+-=x x x f 是区间I 上“缓增函数”,则“缓增区间”I 为 ( )()A ),1[∞+ ()B ]3,0[ ()C ]1,0[ ()D ]3,1[23.设θ为两个非零向量,a b r r 的夹角,已知对任意实数t ,||b ta -r r的最小值为2,则 ( )()A 若θ确定,则||a r 唯一确定 ()B 若θ确定,则||b r唯一确定()C 若||a r 确定,则θ唯一确定 ()D 若||b r 确定,则θ唯一确定24.已知12,x x 是关于x 的方程2(21)0x mx m +-+=的两个实数根,则经过两点211(,)A x x ,222(,)B x x 的直线与椭圆221164x y +=公共点的个数是 ( ) ()A 2 ()B 1()C 0()D 不确定三、解答题(本大题共有8题,满分78分)解答下列各题必须写出必要的步骤. 25.(本题满分7分)已知函数xxy -+=11lg的定义域为集合A ,集合)1,(+=a a B . 若B A ⊆,求实数a 的取值范围. 26.(本题满分8分)如图所示,圆锥SO 的底面圆半径1||=OA ,其侧面展开图是一个圆心角为32π的扇形,求此圆锥的体积. 27.(本题满分8分)已知直线12y x =与抛物线22(0)y px p =>交于O 、A 两点(F 为抛物线的焦点,O 为坐标原点),若17AF =,求OA 的垂直平分线的方程.28.(本题满分12分,第1小题6分、第2小题6分)在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且c b =,A ∠的平分线为AD ,若.AB AD mAB AC ⋅=⋅uu u r uuu r uu u r uu u r(1)当2m =时,求cos A 的值;(2) 当23(1,)3a b ∈时,求实数m 的取值范围.29.(本题满分13分,第1小题6分、第2小题7分)在数列{}n a ,{}n b 中,13a =,15b =,142n n b a ++=,142n n a b ++=(*n N ∈). (1)求数列{}n n b a -、{}n n a b +的通项公式;(2)设n S 为数列{}n b 的前n 项的和,若对任意*n N ∈,都有(4)[1,3]n p S n -∈,求实数p 的取值范围.OASB30.(本题满分8分)某风景区有空中景点A 及平坦的地面上景点B .已知AB 与地面所成角的大小为60,点A 在地面上的射影为H ,如图.请在地面上选定点M ,使得AB BMAM+达到最大值.31.(本题满分10分,第1小题4分、第2小题6分)设函数x x x f sin )(=(20π≤<x ). (1)设0,0>>y x 且2π<+y x ,试比较)(y x f +与)(x f 的大小;(2)现给出如下3个结论,请你分别指出其正确性,并说明理由.①对任意]2,0(π∈x 都有1)(cos <<x f x 成立;②对任意0,3x π⎛⎫∈ ⎪⎝⎭都有<)(x f !11!9!7!5!31108642x x x x x -+-+-成立; ③若关于x 的不等式k x f <)(在]2,0(π有解,则k 的取值范围是),2(+∞π.32.(本题满分12分,第1小题5分、第2小题7分)已知三角形ABC △的三个顶点分别为)0,1(-A ,)0,1(B ,(0,1)C .(1)动点P 在三角形ABC △的内部或边界上,且点P 到三边,,AC AB BC 的距离依次成等差数列,求点P 的轨迹方程;(2)若0a b <≤,直线l :y ax b =+将ABC △分割为面积相等的两部分,求实数b 的取值范围.MHBAO浦东新区2014学年度第一学期期末质量测试高三数学参考答案及评分标准一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分. 1.0x >; 2.i -1; 3.(,5)-∞; 4.2; 5.)1,1(-; 6.6; 7.3π; 8.1; 9.24; 10.(1,2)-; 11.42arccos (7arctan ); 12.(1)、(2)、(3).二、选择题(本大题共有12题,满分36分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分. 13.()A ; 14.()C ; 15.()C ; 16.()B ; 17.()D ; 18.()A ; 19.()C ; 20.()D ; 21.()A ; 22.()D ; 23.()B ; 24.()A .三、解答题(本大题共有8题,满分78分)解答下列各题必须写出必要的步骤. 25.(本题满分7分)解:集合)1,1(-=A ,……………………………………………………………………3分因为B A ⊆,所以 ⎩⎨⎧≤+-≥111a a ,01≤≤-⇒a .…………………………………6分即[]0,1-∈a . ………………………………………………………………………7分 26.(本题满分8分)解:因为1||=OA ,所以弧AB 长为π2,……………………………………………2分又因为32π=∠BSA ,则有ππ232=⋅SA ,所以3=SA .……………………4分 在SOA Rt ∆中,1||=OA .22h SO SA OA ==-22=, …………………6分 所以圆锥的体积ππ322312==h r V . ………………………………………8分27.(本题满分8分)解:OA 的方程为:12y x =. 由2212y px y x⎧=⎪⎨=⎪⎩ 得280x px -=, 所以(8,4)A p p ,……………………………………………………………………3分由17AF =,可求得2p =.………………………………………………………5分 所以(16,8)A ,AO 中点(8,4)M .…………………………………………………6分 所以OA 的垂直平分线的方程为:2200x y +-=.………………………………8分28.(本题满分12分,第1小题6分、第2小题6分)解:(1)由.b c = 又2.AB AD AB AC ⋅=⋅uu u r uuu r uu u r uu u r 得A bc A A b b cos 22cos )2cos (⋅=⋅………2分2cos 2cos 2AA ∴=…………………………………………………………………4分1cos 2cos .2A A += 1cos .3A ∴= ……………………………………………6分 (2)由.AB AD mAB AC ⋅=⋅u u u r u u u r u u u r u u u r 得1cos 21A m =-;…………………………………8分又222cos 2b c a A bc +-==222221122b a a b b -⎛⎫=-∈ ⎪⎝⎭11(,)32,…………………10分 所以111(,)2132m ∈-,3(,2)2m ∴∈.……………………………………………12分 29.(本题满分13分,第1小题6分、第2小题7分)解:(1)因为122n n b a +=+,122n n a b +=+,111()2n n n n b a b a ++-=--,即数列{}n n b a -是首项为2,公比为12-的等比数列,所以112()2n n n b a --=⋅-.…………………………………………………………3分111()42n n n n a b a b +++=++,1118(8)2n n n n a b a b +++-=+-,1180a b +-=,所以,当*n N ∈时,80n n a b +-=,即8n n a b +=.…………………………6分(2)由1812()2n n n n n a b b a -+=⎧⎪⎨-=⋅-⎪⎩ 得114()2n n b -=+-,214[1()]32n n S n =+--,21(4)[1()]32n n p p S n -=--,211[1()]332n p ≤--≤, 因为11()02n -->,所以1231131()1()22nnp ≤≤----.………………………8分 当n 为奇数时,11111()1()22n n=--+随n 的增大而增大, 且nnp )21(1332)21(11+≤≤+,2321≤≤p ,323≤≤p ;………………………10分 当n 为偶数时,11111()1()22n n=---随n 的增大而减小, 且n n p )21(1332)21(11-≤≤-,33234≤≤p ,292≤≤p . 综上,32≤≤p .…………………………………………………………………13分30.(本题满分8分)解:因为AB 与地面所成的角的大小为60,AH 垂直于地面,BM 是地面上的直线,所以 60,60≥∠=∠ABM ABH .∵,sin sin sin BAMA BM M AB ==…………………………………………………………2分∴()BM B M B A M AM BM AB sin sin sin sin sin sin ++=+=+ sin sin cos cos sin 1cos sin cos sin sin M B M B M B M M B B+++==+22cos 2sin cos cot sin cos sin 2B B M M M M B =+=+……………………………4分 cot30sin cos 3sin cos 2sin(30).M M M M M ≤+=+=+……………6分当60=∠=∠B M 时,AB BMAM+达到最大值,此时点M 在BH 延长线上,HM BH =处.……………………………………8分31.(满分10分,第1小题4分、第2小题6分) 解:(1)方法一(作商比较):显然0)(>x f ,0)(>+y x f ,于是x y x x yx x y x x x x y x y x x f y x f sin sin sin cos cos sin sin )sin()()(++=⋅++=+. ………1分 因为x x y x x x x y sin cos sin 00sin 1cos 0<<⇒⎭⎬⎫><<.……………………………2分又x y y x x x x x x x y y sin sin cos 0sin cos 0tan 0sin 0<<⇒⎭⎬⎫<<⇒<<<<.……3分 所以x y x x y x x y x x sin sin sin cos cos sin 0+<+<. 即)()(1)()(x f y x f x f y x f <+⇒<+.…………………………………………4分 方法二(作差比较):因为0)1(cos sin 0sin 1cos 0<-⇒⎭⎬⎫><<y x x x x y .…………………………………1分又0sin sin cos sin cos 0tan 0sin 0<-⇒⎭⎬⎫<<⇒<<<<x y y x x x x x x x y y .……2分 xy x xy x y x x x f y x f )(sin )()sin()()(++-+=-+0)()sin sin cos ()1(cos sin <+-+-=xy x x y y x x y x x .即)()(x f y x f <+.………………………………………………………………4分(2)结论①正确,因20π<<x .xx x x x x cos 1sin 1tan sin 0<<⇒<<<⇒.1)(cos <<⇒x f x .………………………………6分结论②错误,举反例: 设=)(x g !11!9!7!5!31108642x x x x x -+-+-.(利用计算器)010*********.3)5.0()5.0(14>⨯=--g f 等………………………………8分(010*********.3)6.0()6.0(13>⨯=--g f , 010*********.1)1()1(10>⨯=--g f ,0)9.0()9.0(,0)8.0()8.0(,0)7.0()7.0(>->->-g f f f g f 均可).结论③正确,由)()(x f y x f <+知x x x f sin )(=在区间]2,0(π上是减函数.所以ππ2)()2()(≥⇒≥x f f x f ,又1)(<x f ,所以x x x f sin )(=的值域为)1,2[π.要使不等式k x f <)(在]2,0(π有解,只要π2>k 即可.………………………10分32.(满分12分,第1小题5分、第2小题7分) 解:(1)法1:设点P 的坐标为(),x y ,则由题意可知:11222x y x y y -++-+=,由于10x y -+≥,10x y +-≤,0y ≥,…2分所以11222x y x y y -++--=,…………………………………………………4分化简可得:21y =-(2222x -≤≤-)……………………………………5分 法2:设点P 到三边,,AC AB BC 的距离分别为123,,d d d ,其中2d y =,||2||2||2AB AC BC ===.所以 131322122122d d yy d y d +=⎧⎪⇒=-⎨++=⎪⎩………4分 于是点P 的轨迹方程为12-=y (2222-≤≤-x )……………………5分 (2)由题意知道01a b <≤<,情况(1)b a =.直线l :(1)y a x =+,过定点()1,0A -,此时图像如右下: 由平面几何知识可知,直线l 过三角形的重心10,3⎛⎫ ⎪⎝⎭,从而13b a ==.………………………………………………7分情况(2)b a >.此时图像如右下:令0y =得1bx a=-<-,故直线l 与两边,BC AC 分别相交,设其交点分别为,D E ,则直线l 与三角形两边的两个交点坐标()11,D x y 、()22,E x y 应该满足方程组:()()110y ax by x x y =+⎧⎪⎨--+-=⎪⎩. 因此,1x 、2x 是一元二次方程:()()()()()()11110a x b a x b -+-++-=的两个根.即()22212(1)(1)0a x a b x b -+-+-=, 由韦达定理得:()212211b x x a -=-而小三角形与原三角形面积比为12x x -,即1212x x =-.所以()221112b a -=--,()22112a b =--,亦即2112a b -=-. 再代入条件b a >,解得103a <<, 从而得到211,23b ⎛⎫∈- ⎪ ⎪⎝⎭.……………………………………………………………11分综合上述(1)(2)得:211,23b ⎛⎤∈- ⎥ ⎝⎦.……………………………………………12分解法2:由题意知道01a b <≤< 情况(1)b a =.直线l 的方程为:(1)y a x =+,过定点()1,0A -,由平面几何知识可知,直线l 应该过三角形的重心10,3⎛⎫ ⎪⎝⎭, 从而13b a ==.……………………………………………………………………7分 情况(2)b a >.设直线l :y ax b =+分别与边[]:1,0,1BC y x x =-+∈, 边[]:1,1,0AC y x x =+∈-的交点分别为点,D E , 通过解方程组可得:1(,)11b a b D a a -+++,1(,)11b a bE a a ----,又点(0,1)C , ∴0111112111111CDEba b S a a b a ba a ∆-+=++----=12,同样可以推出()22112a b --=.亦即2112a b -=-,再代入条件b a >,解得103a <<,从而得到211,23b ⎛⎫∈-⎪⎝⎭.………………………………………………………11分综合上述(1)(2)得:211,23b ⎛⎤∈-⎥⎝⎦.………………………………………12分解法3:情况(1)b a =.直线l 的方程为:(1)y a x =+,过定点()1,0A -, 由平面几何知识可知,直线l 过三角形的重心10,3⎛⎫ ⎪⎝⎭,从而13b a ==.………………………………………………………………………7分 情况(2)b a >.令0y =,得1bx a=-<-,故直线l 与两边,BC AC 分别相交,设其交点分别为,D E ,当a 不断减小时,为保持小三角形面积总为原来的一半,则b也不断减小.当//DE AB 时,CDE ∆与CBA ∆相似,由面积之比等于相似比的平方.可知2211=-b ,所以212b >-, 综上可知211,23b ⎛⎤∈- ⎥ ⎝⎦.…………………………………………………………12分- 11 -。

2015年12月份高三数学试题

2015年12月份高三数学试题

2015年12月份高三数学试题资源包括:河南省八市重点高中2015-2016学年高二12月联考数学(理)试题河南省八市重点高中2015-2016学年高二12月联考数学(文)试题广东省汕尾市2016届高三12月调研考试数学文试题(扫描版)江苏省江阴市青阳中学2016届高三12月联合调研测试数学(文理)试题广东省汕尾市2016届高三12月调研考试数学理试题(扫描版)四川省成都市高2016届高三第一次诊断考试数学理试题(WORD版)四川省成都市2016届高三第一次诊断性检测数学文试卷启慧·全国大联考2016届高三12月联考试题数学(文)Word版含解析启慧·全国大联考2016届高三12月联考试题数学(理)Word版含解析福建省漳州八校2016届高三12月联考理科数学试卷福建省漳州八校2016届高三12月联考文科数学试卷山东省平度市2016届高三统一抽考数学(理)试题山东省平度市2016届高三统一抽考数学(文)试题黑龙江省哈尔滨市第六中学2016届高三12月月考文数试题解析黑龙江省哈尔滨市第六中学2016届高三12月月考理数试题解析江西省新余市第一中学2016届高三上学期第四次模拟考试文数试题解析江西省新余市第一中学2016届高三上学期第四次模拟考试理数试题解析湖北省武汉市华中师范大学第一附属中学、黄石二中、孝感高中、荆州中学等八校2016届高三上学期第一次联考理数试题解析湖北省武汉市华中师范大学第一附属中学、黄石二中、孝感高中、荆州中学等八校2016届高三上学期第一次联考理数试题解析江门市2015年普通高中高三调研测试数学(理科)试题江门市2015年普通高中高三调研测试数学(文科)试题2016届江西省南昌二中高三上学期第四次考试(数学文卷)2016届江西省南昌二中高三上学期第四次考试(数学理卷)2016届山西省康杰中学、临汾一中、忻州一中、长治二中高三上学期第二次联考(数学文)2016届山西省康杰中学、临汾一中、忻州一中、长治二中高三上学期第二次联考(数学理)2016届河北省邯郸市第一中学高三一轮收官考试(数学文)2016届河北省邯郸市第一中学高三一轮收官考试(数学理)数学文卷·2016届四川省成都七中高三上学期一诊模拟考试数学理卷·2016届四川省成都七中高三上学期一诊模拟考试数学理卷·2016届江西省师大附中、临川一中高三上学期第一次联考试题数学文卷·2017届湖北省荆州中学高二上学期第二次月考数学文卷·2016届内蒙古赤峰二中高三上学期第三次(12月)月考数学理卷·2016届内蒙古赤峰二中高三上学期第三次(12月)月考数学文卷·2016届浙江省嘉兴一中、杭州高级中学、宁波效实中学等五校高三上学期第一次联考数学理卷·2016届浙江省嘉兴一中、杭州高级中学、宁波效实中学等五校高三上学期第一次联考数学理卷·2016届山东省枣庄三中高三12月质量检测数学文卷·2016届山东省枣庄三中高三12月质量检测数学(文)卷·2016届吉林省东北师大附中高三上学期第二次模拟考试数学理卷·2016届河南省信阳高级中学高三上学期第八次大考数学理卷·2016届云南省玉溪一中高三第四次月考数学(文)卷·2017届江西省丰城中学高二上学期第三次月考试题数学(理)卷·2016届安徽省马鞍山二中、安师大附中、淮北一中、铜陵一中高三第三次联考数学(文)卷·2016届安徽省马鞍山二中、安师大附中、淮北一中、铜陵一中高三第三次联考数学文卷·2016届广西桂林中学高三12月月考数学理卷·2016届广西桂林中学高三12月月考数学文卷·2016届湖北省宜昌一中高三上学期12月月考数学理卷·2016届湖北省宜昌一中高三上学期12月月考数学文卷·2016届辽宁省沈阳二中高三上学期12月月考数学理卷·2016届辽宁省沈阳二中高三上学期12月月考数学文卷·2016届辽宁省抚顺市第一中学高三上学期12月月考(2015.12)word 版数学理卷·2016届辽宁省抚顺市第一中学高三上学期12月月考(2015.12)word 版数学理卷·2016届吉林省实验中学高三上学期第四次模拟考试数学文卷·2016届吉林省实验中学高三上学期第四次模拟考试数学理卷·2016届河南省郑州一中高三联考数学文卷·2016届河南省郑州一中高三联考数学文(普通班)卷·2016届甘肃省天水一中高三上学期第三次考试数学文(辅导班)卷·2016届甘肃省天水一中高三上学期第三次考试数学理(普通班)卷·2016届甘肃省天水一中高三上学期第三次考试数学理(辅导班)卷·2016届甘肃省天水一中高三上学期第三次考试数学理卷·2016届河南省开封市高三第一次质量检测模拟考试数学文卷·2016届河南省开封市高三第一次质量检测模拟考试数学文卷·2016届湖北省鄂豫晋冀陕五省高三12月联考数学理卷·2016届湖北省鄂豫晋冀陕五省高三12月联考数学卷·2016届福建省闽粤联合体高三第三次联考数学文卷·2016届重庆市南开中学高三12月月考试题数学理卷·2016届重庆市南开中学高三12月月考试题数学理卷·2016届吉林省长春市十一中高三上学期12月月考数学文卷·2016届吉林省长春市十一中高三上学期12月月考数学理卷·2016届吉林省长春外国语学校高三上学期第二次质量检测数学文卷·2016届吉林省长春外国语学校高三上学期第二次质量检测数学文卷·2016届重庆市巴蜀中学高三上学期第三次月考数学理卷·2016届重庆市巴蜀中学高三上学期第三次月考海南省海南中学2016届高三第四次月考数学(文)试题海南省海南中学2016届高三第四次月考数学(理)试题天津市2016届高三“五校”联考数学(文)试题天津市2016届高三“五校”联考数学(理)试题江西省于都实验中学2016届高三上学期第三次大考数学(文)试题江西省于都实验中学2016届高三上学期第三次大考数学(理)试题广东省汕尾市2016届高三12月调研考试数学理试题福建省四地六校2016届高三第三次联考数学(文)试题福建省四地六校2016届高三第三次联考数学(理)试题上海市崇明县2016届高三第一次高考模拟考试数学试卷(WORD版)2016届广东云浮、揭阳、清远、阳江等八市联考数学理(含解析和分析)上海市崇明县2016届高三第一次高考模拟考试数学试卷(pdf版)上海市普陀区2016届高三12月教学质量调研数学理试题上海市普陀区2016届高三12月教学质量调研数学文试题山东省淄博市2016届高三12月摸底考试数学(理)试题山东省淄博市2016届高三12月摸底考试数学(文)试题[dl href=""]2015年12月份高三数学试题[/dl]提取码:u979。

高考数学模拟试卷 理(含解析)-人教版高三全册数学试题

高考数学模拟试卷 理(含解析)-人教版高三全册数学试题

某某市南开中学2015届高考数学模拟试卷(理科)一、选择题(每小题有且只有1个选项符合题意,将正确的选项涂在答题卡上,每小题5分,共40分.)1.(5分)复数z满足(z﹣i)(2﹣i)=5,则z=()A.﹣2﹣2i B.﹣2+2i C.2﹣2i D.2+2i2.(5分)已知全集U=R,A={y|y=2x+1},B={x||x﹣1|+|x﹣2|<2},则(∁U A)∩B=()A.∅B.{x|<x≤1}C.{x|x<1} D.{x|0<x<1}3.(5分)设变量x,y满足约束条件,则目标函数z=2x+3y的最小值为()A.2 B.4 C.5 D.204.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.(5分)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2的最大值为()A.2 B.C.1 D.6.(5分)设,则对任意实数a,b,a+b≥0是f(a)+f (b)≥0的()A.充分必要条件B.充分而非必要条件C.必要而非充分条件D.既非充分也非必要条件7.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.8.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A. B. C.D.二、填空题:(每小题5分,共30分.)9.(5分)如图是某算法的程序框图,则程序运行后输出的结果是.10.(5分)已知,则二项式的展开式中含x2项的系数是.11.(5分)如图,在△ABC中,AB=3,BC=4,CA=5,D是BC的中点,BE⊥AC于E,BE的延长线交△DEC的外接圆于F,则EF的长为.12.(5分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数)则圆C上的点到直线l的距离的最大值为.13.(5分)如图,在四边形ABCD中,AB⊥BC,AB=3,BC=4,△ACD是等边三角形,则的值为.14.(5分)已知函数f(x)=a x+x2﹣xlna,对∀x1,x2∈[0,1]不等式|f(x1)﹣f(x2)|≤a ﹣1恒成立,则a的取值X围.三、解答题:(15-18每小题13分,19-20每小题13分,共80分.)15.(13分)甲、乙两人参加某种选拔测试.规定每人必须从备选的6道题中随机抽出3道题进行测试,在备选的6道题中,甲答对其中每道题的概率都是,乙只能答对其中的3道题.答对一题加10分,答错一题(不答视为答错)得0分.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.16.(13分)已知函数f(x)=2sinxcosx﹣2cos2x+1(1)求函数f(x)的最小正周期及单调递增区间;(2)在△ABC中,若f()=2,b=1,c=2,求a的值.17.(13分)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.18.(13分)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.19.(14分)已知数列{a n}的前n项和为S n,若4S n=(2n﹣1)a n+1+1,且a1=1.(Ⅰ)证明:数列{a n}是等差数列,并求出{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,证明:T n<.20.(14分)设函数f(x)=lnx+x2﹣ax(a∈R).(Ⅰ)当a=3时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],求证:f(x1)﹣f(x2)≥﹣+ln2;(Ⅲ)设g(x)=f(x)+2ln,对于任意a∈(2,4),总存在,使g(x)>k(4﹣a2)成立,某某数k的取值X围.某某市南开中学2015届高考数学模拟试卷(理科)参考答案与试题解析一、选择题(每小题有且只有1个选项符合题意,将正确的选项涂在答题卡上,每小题5分,共40分.)1.(5分)复数z满足(z﹣i)(2﹣i)=5,则z=()A.﹣2﹣2i B.﹣2+2i C.2﹣2i D.2+2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由复数z满足(z﹣i)(2﹣i)=5,变形为,再利用复数的运算法则即可得出.解答:解:∵复数z满足(z﹣i)(2﹣i)=5,∴==2+2i.故选:D.点评:本题考查了复数的运算法则,属于基础题.2.(5分)已知全集U=R,A={y|y=2x+1},B={x||x﹣1|+|x﹣2|<2},则(∁U A)∩B=()A.∅B.{x|<x≤1}C.{x|x<1} D.{x|0<x<1}考点:绝对值不等式的解法;交、并、补集的混合运算;函数的值域.专题:集合.分析:求出两个集合,然后求解补集以及交集即可.解答:解:全集U=R,A={y|y=2x+1}={y|y>1},∴∁U A={y|y≤1}B={x||x﹣1|+|x﹣2|<2}={x|},则(∁U A)∩B={x|<x≤1}.故选:B.点评:本题考查函数的定义域,绝对值不等式的解法,集合的交、并、补的运算,考查计算能力.3.(5分)设变量x,y满足约束条件,则目标函数z=2x+3y的最小值为()A.2 B.4 C.5 D.20考点:简单线性规划.专题:不等式的解法及应用.分析:本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数2x+3y的最小值.解答:解:由约束条件得如图所示的三角形区域,令2x+3y=z,显然当平行直线过点A(2,0)时,z取得最小值为4;故选B.点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.4.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l考点:平面与平面之间的位置关系;平面的基本性质及推论.专题:空间位置关系与距离.分析:由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.解答:解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选D.点评:本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.5.(5分)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2的最大值为()A.2 B.C.1 D.考点:基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:将x,y用a,b表示,用基本不等式求最值解答:解:∵a x=b y=3,∴x=log a3=,y=log b3=,∴当且仅当a=b时取等号故选项为C点评:本试题考查指数式和对数式的互化,以及均值不等式求最值的运用,考查了变通能力6.(5分)设,则对任意实数a,b,a+b≥0是f(a)+f (b)≥0的()A.充分必要条件B.充分而非必要条件C.必要而非充分条件D.既非充分也非必要条件考点:必要条件、充分条件与充要条件的判断;函数单调性的性质;奇函数.专题:计算题;压轴题.分析:由f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x),知f(x)是奇函数.所以f(x)在R上是增函数,a+b≥0可得af(a)+f(b)≥0成立;若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a+b≥0成立a+b >=0是f(a)+f(b)>=0的充要条件.解答:解:f(x)=x3+log2(x+),f(x)的定义域为R∵f(﹣x)=﹣x3+log2(﹣x+)=﹣x3+log2=﹣x3﹣log2(x+)=﹣f(x).∴f(x)是奇函数∵f(x)在(0,+∞)上是增函数∴f(x)在R上是增函数a+b≥0可得a≥﹣b∴f(a)≥f(﹣b)=﹣f(b)∴f(a)+f(b)≥0成立若f(a)+f(b)≥0则f(a)≥﹣f(b)=f(﹣b)由函数是增函数知a≥﹣b∴a+b≥0成立∴a+b≥0是f(a)+f(b)≥0的充要条件.点评:本题考查充要条件的判断,解题时要注意单调性的合理运用.7.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.解答:解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2=2,∴双曲线C2的离心率e===.故选D.点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.8.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A. B. C.D.考点:轨迹方程.专题:圆锥曲线的定义、性质与方程.分析:设出F1,F2的坐标,在设出动点M的坐标,由新定义列式后分类讨论去绝对值,然后结合选项得答案.解答:解:设F1(﹣c,0),F2(c,0),再设动点M(x,y),动点到定点F1,F2的“L﹣距离”之和等于m(m>2c>0),由题意可得:|x+c|+|y|+|x﹣c|+|y|=m,即|x+c|+|x﹣c|+2|y|=m.当x<﹣c,y≥0时,方程化为2x﹣2y+m=0;当x<﹣c,y<0时,方程化为2x+2y+m=0;当﹣c≤x<c,y≥0时,方程化为y=;当﹣c≤x<c,y<0时,方程化为y=c﹣;当x≥c,y≥0时,方程化为2x+2y﹣m=0;当x≥c,y<0时,方程化为2x﹣2y﹣m=0.结合题目中给出的四个选项可知,选项A中的图象符合要求.故选:A.点评:本题考查轨迹方程的求法,考查了分类讨论的数学思想方法,解答的关键是正确分类,是中档题.二、填空题:(每小题5分,共30分.)9.(5分)如图是某算法的程序框图,则程序运行后输出的结果是10.考点:程序框图.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.解答:解:程序在运行过程中各变量的值如下表示:S n 是否继续循环循环前0 1第一圈0 2 是第二圈 3 3 是第三圈 5 4 是第四圈10 5 否此时S值为10.故答案为:10.点评:本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.10.(5分)已知,则二项式的展开式中含x2项的系数是﹣192.考点:二项式定理的应用;定积分.专题:计算题;概率与统计.分析:先求定积分得出a的值,再在二项式展开式的通项公式中,再令x的系数等于2,求得r的值,即可求得展开式中含x2项的系数.解答:解:∵已知=(sinx﹣cosx)=2,则二项式=的展开式的通项公式为T r+1=••(﹣1)r•=•x3﹣r.令3﹣r=2,解得 r=1,故展开式中含x2项的系数是=﹣192,故答案为﹣192.点评:本题主要考查求定积分,二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.11.(5分)如图,在△ABC中,AB=3,BC=4,CA=5,D是BC的中点,BE⊥AC于E,BE的延长线交△DEC的外接圆于F,则EF的长为.考点:与圆有关的比例线段.专题:直线与圆;推理和证明.分析:由已知条件求出BD=2,BE=,再由切割线定理知BE•BF=BD•BC,由此能求出EF.解答:解:∵在△ABC中,AB=3,BC=4,CA=5,D是BC的中点,BE⊥AC于E,∴BD=2,BE==,∵BE•BF=BD•BC,∴,解得EF=.故答案为:.点评:本题考查线段长的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.12.(5分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数)则圆C上的点到直线l的距离的最大值为3.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:直线l的参数方程为(t为参数),消去参数化为3x﹣4y+4=0,圆C的参数方程为(θ为参数),利用cos2θ+sin2θ=1,可得圆的普通方程.求出圆心到直线l的距离d.即可得出圆C上的点到直线l的距离的最大值=d+r.解答:解:直线l的参数方程为(t为参数),消去参数化为3x﹣4y+4=0,圆C的参数方程为(θ为参数),∵cos2θ+sin2θ=1,∴圆的普通方程为(x﹣2)2+y2=1.圆心(2,0)到直线l的距离d==2.则圆C上的点到直线l的距离的最大值=d+r=3.故答案为:3.点评:本题考查了参数方程化为普通方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)如图,在四边形ABCD中,AB⊥BC,AB=3,BC=4,△ACD是等边三角形,则的值为.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过题意可知AD=AC=5,cos∠CAD=,cos∠BAC=,利用=•﹣•,代入计算即可.解答:解:∵AB⊥BC,AB=3,BC=4,∴AC==5,cos∠BAC=,又∵△ACD是等边三角形,∴AD=AC=5,cos∠CAD=,∴=•(﹣)=•﹣•=﹣=,故答案为:.点评:本题考查平面向量数量积的运算,注意解题方法的积累,属于中档题.14.(5分)已知函数f(x)=a x+x2﹣xlna,对∀x1,x2∈[0,1]不等式|f(x1)﹣f(x2)|≤a ﹣1恒成立,则a的取值X围a≥e.考点:利用导数求闭区间上函数的最值.专题:计算题;导数的综合应用.分析:对∀x1,x2∈[0,1]不等式|f(x1)﹣f(x2)|≤a﹣1恒成立等价于|f(x1)﹣f(x2)|max≤a﹣1,而|f(x1)﹣f(x2)|max=f(x)max﹣f(x)min,利用导数可判断函数的单调性,由单调性可求得函数的最值,解不等式即可.解答:解:f′(x)=a x lna+2x﹣lna=(a x﹣1)lna+2x,当a>1时,x∈[0,1]时,a x≥1,lna>0,2x≥0,此时f′(x)≥0;当0<a<1时,a x≤1,lna<0,2x≥0,此时也有f′(x)≥0,综上知,f(x)在[0,1]上单调递增,f(x)min=f(0)=1,f(x)max=f(1)=a+1﹣lna,而|f(x1)﹣f(x2)|≤f(x)max﹣f(x)min=a﹣lna,由题意得,a﹣lna≤a﹣1,解得a≥e,故答案为:a≥e.点评:本题考查利用导数求闭区间上函数的最值,考查恒成立问题,考查转化思想,考查学生解决问难的能力.三、解答题:(15-18每小题13分,19-20每小题13分,共80分.)15.(13分)甲、乙两人参加某种选拔测试.规定每人必须从备选的6道题中随机抽出3道题进行测试,在备选的6道题中,甲答对其中每道题的概率都是,乙只能答对其中的3道题.答对一题加10分,答错一题(不答视为答错)得0分.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.考点:离散型随机变量的期望与方差.专题:概率与统计.分析:(Ⅰ)确定乙得分的取值,求出相应的概率,即可求得分布列和数学期望;(Ⅱ)利用对立事件的概率公式,即可求得甲、乙两人中至少有一人通过测试的概率.解答:解:(Ⅰ)设乙的得分为X,X的可能值有0,10,20,30…(1分),,…(5分)乙得分的分布列为:X 0 10 20 30P…(6分)所以乙得分的数学期望为15…(8分)(Ⅱ)乙通过测试的概率为…(9分)甲通过测试的概率为…(11分)甲、乙都没通过测试的概率为因此甲、乙两人中至少有一人通过测试的概率为…(13分)点评:本题考查概率的求解,考查离散型随机变量的分布列与期望,考查学生分析解决问题的能力,属于中档题.16.(13分)已知函数f(x)=2sinxcosx﹣2cos2x+1(1)求函数f(x)的最小正周期及单调递增区间;(2)在△ABC中,若f()=2,b=1,c=2,求a的值.考点:两角和与差的正弦函数;三角函数的周期性及其求法;余弦定理.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)函数解析式利用二倍角的正弦、余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值代入周期公式即可求出函数f(x)的最小正周期,由正弦函数的单调性即可确定出f(x)的单调递增区间;(Ⅱ)由f()=2,得到sin(A﹣)=1,确定出A的度数,求出cosA的值,再由b,c的值,利用余弦定理即可求出a的值.解答:解:(Ⅰ)f(x)sin2x﹣cos2x=2(sin2x﹣cos2x)=2sin(2x﹣),∵ω=2,∴最小正周期T==π;由2kπ﹣≤2x﹣≤2kπ+,k∈Z得,kπ﹣≤x≤kπ+,k∈Z,则f(x)的单调递增区间为[kπ﹣,kπ+](k∈Z);(Ⅱ)∵f()=2,∴2sin(A﹣)=2,即sin(A﹣)=1,∴A﹣=+2kπ,k∈Z,即A=+2kπ,k∈Z,又0<A<π,∴A=,由余弦定理及b=1,c=2,cosA=﹣得:a2=b2+c2﹣2bccosA=7,即a2=1+4+2=7,解得:a=.点评:此题考查了两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,余弦定理,熟练掌握定理及公式是解本题的关键.17.(13分)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,利用向量垂直于数量积得关系即可得出.解答:(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.点评:本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.18.(13分)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;压轴题.分析:(Ⅰ)根据过F1的直线交椭圆于A、B两点,且△ABF2的周长为8,可得4a=8,即a=2,利用e=,b2=a2﹣c2=3,即可求得椭圆E的方程.(Ⅱ)由,消元可得(4k2+3)x2+8kmx+4m2﹣12=0,利用动直线l:y=kx+m与椭圆E有且只有一个公共点P(x0,y0),可得m≠0,△=0,进而可得P(,),由得Q(4,4k+m),取k=0,m=;k=,m=2,猜想满足条件的点M存在,只能是M(1,0),再进行证明即可.解答:解:(Ⅰ)∵过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.∴4a=8,∴a=2∵e=,∴c=1∴b2=a2﹣c2=3∴椭圆E的方程为.(Ⅱ)由,消元可得(4k2+3)x2+8kmx+4m2﹣12=0∵动直线l:y=kx+m与椭圆E有且只有一个公共点P(x0,y0)∴m≠0,△=0,∴(8km)2﹣4×(4k2+3)×(4m2﹣12)=0∴4k2﹣m2+3=0①此时x0==,y0=,即P(,)由得Q(4,4k+m)取k=0,m=,此时P(0,),Q(4,),以PQ为直径的圆为(x﹣2)2+(y﹣)2=4,交x轴于点M1(1,0)或M2(3,0)取k=,m=2,此时P(1,),Q(4,0),以PQ为直径的圆为(x﹣)2+(y﹣)2=,交x轴于点M3(1,0)或M4(4,0)故若满足条件的点M存在,只能是M(1,0),证明如下∵∴故以PQ为直径的圆恒过x轴上的定点M(1,0)点评:本题主要考查抛物线的定义域性质、圆的性质、直线与圆锥曲线的位置关系,考查运算能力,考查化归思想,属于中档题.19.(14分)已知数列{a n}的前n项和为S n,若4S n=(2n﹣1)a n+1+1,且a1=1.(Ⅰ)证明:数列{a n}是等差数列,并求出{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,证明:T n<.考点:数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)利用4S n=(2n﹣1)a n+1+1,写出4S n﹣1=(2n﹣3)a n+1,两式相减,得,利用累加法求解a n,判断数列{a n}是首项为1,公差为2的等差数列.(Ⅱ)利用放缩法以及裂项法,直接证明求解即可.解答:(Ⅰ)证明:因为4S n=(2n﹣1)a n+1+1,所以当n≥2时,4S n﹣1=(2n﹣3)a n+1,两式相减,得4a n=(2n﹣1)a n+1﹣(2n﹣3)a n(n≥2),所以(2n+1)a n=(2n﹣1)a n+1,即,在4S n=(2n﹣1)a n+1+1中,令n=1,得a2=3,所以=,所以a n﹣a n﹣1=(2n﹣1)﹣(2n﹣3)=2(n≥2),故数列{a n}是首项为1,公差为2的等差数列,且a n=2n﹣1.(Ⅱ)解:由(Ⅰ)知,,当n=1时,;当n≥1时,,所以.点评:本题考查等差数列的判定,数列的递推关系式的应用,放缩法以及裂项求和的应用,考查分析问题解决问题的能力.20.(14分)设函数f(x)=lnx+x2﹣ax(a∈R).(Ⅰ)当a=3时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],求证:f(x1)﹣f(x2)≥﹣+ln2;(Ⅲ)设g(x)=f(x)+2ln,对于任意a∈(2,4),总存在,使g(x)>k(4﹣a2)成立,某某数k的取值X围.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;利用导数研究函数的极值.专题:综合题;导数的综合应用.分析:(Ⅰ)当a=3时,求导数,利用导数的正负,即可求函数f(x)的单调区间;(Ⅱ)函数f(x)有两个极值点x1,x2,则f′(x)==0,即2x2﹣ax+1=0有两个不相等的实数根,结合韦达定理,可得f(x1)﹣f(x2),构造新函数F(x)=2lnx﹣x2++ln2(0<x≤1),确定其单调性,即可得出结论;(Ⅲ)确定g(x)在上单调递增,可得g(x)max=g(2)=2ln(2a+2)﹣2a+4﹣2ln6,h(a)=)=2ln(2a+2)﹣2a+4﹣2ln6﹣k(4﹣a2),分类讨论,确定单调性,即可得出结论.解答:(Ⅰ)解:f(x)的定义域为(0,+∞),f′(x)=,令f′(x)>0,可得0<x<或x>1,f′(x)<0,可得<x<1,∴f(x)的递增区间为(0,)和(1,+∞),递减区间为(,1);(Ⅱ)证明:∵函数f(x)有两个极值点x1,x2,∴f′(x)==0,即2x2﹣ax+1=0有两个不相等的实数根,∴x1+x2=,x1x2=∴2(x1+x2)=a,x2=,∴f(x1)﹣f(x2)=lnx1+x12﹣ax1﹣(lnx2+x22﹣ax2)=2lnx1﹣x12++ln2(0<x≤1).设F(x)=2lnx﹣x2++ln2(0<x≤1),则F′(x)=﹣<0,∴F(x)在(0,1)上单调递减,∴F(x)≥F(1)=﹣+ln2,即f(x1)﹣f(x2)≥﹣+ln2;(Ⅲ)解:g(x)=f(x)+2ln=2ln(ax+2)+x2﹣ax﹣2ln6,∴g′(x)=,∵a∈(2,4),∴x+>0,∴g′(x)>0,∴g(x)在上单调递增,∴g(x)max=g(2)=2ln(2a+2)﹣2a+4﹣2ln6,∴2ln(2a+2)﹣2a+4﹣2ln6>k(4﹣a2)在(2,4)上恒成立.令h(a)=2ln(2a+2)﹣2a+4﹣2ln6﹣k(4﹣a2),则h(2)=0,∴h(a)>0在(2,4)上恒成立.∵h′(a)=,k≤0时,h′(a)<0,h(a)在(2,4)上单调递减,h(a)<h(2)=0,不合题意;k>0时,h′(a)=0,可得a=.①>2,即0<k<时,h(a)在(2,)上单调递减,存在h(a)<h(2)=0,不合题意;②≤2,即k≥时,h(x)在(2,4)上单调递增,h(a)>h(2)=0,满足题意.综上,实数k的取值X围为[,+∞).点评:本题考查导数的综合运用,考查函数的单调性,考查不等式的证明,考查分类讨论的数学思想,属于难题.。

高三数学模拟试卷(12)(含解析)新人教A版-新人教A版高三全册数学试题

高三数学模拟试卷(12)(含解析)新人教A版-新人教A版高三全册数学试题

某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(12)一、填空题(共14小题,每小题3分,满分41分)1.设集合M={x|x2﹣x﹣2≤0},N={y|y=x2,﹣1≤x≤2},则M∩N=__________.2.函数的定义域是__________.3.已知幂函数y=f(x)的图象过点,则=__________.4.已知函数f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则a+b=__________.5.若存在实数x∈[1,2]满足2x2﹣ax+2>0,则实数a的取值X围是__________.6.设函数f(x)=,则函数g(x)=f(x)﹣x的零点的个数为__________.7.若函数y=的定义域为R,则实数m的取值X围是__________.8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=__________.9.定义min{a,b,c}为a,b,c中的最小值,设f(x)=min{2x+4,x2+1,5﹣3x},则f (x)的最大值是__________.10.=__________.11.已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为__________.12.已知函数若f(2﹣a2)>f(a),则实数a的取值X围是__________.13.若实数a,b,c满足lg(10a+10b)=a+b,lg(10a+10b+10c)=a+b+c,则c的最大值是__________.14.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值X围是__________.二、解答题(共3小题,满分20分)15.已知集合A={x|(x﹣2)(x﹣3a﹣1)<0},y=lg的定义域为集合B.(1)若A=B,某某数a;(2)是否存在实数a使得A∩B=φ,若存在,则求出实数a的值,若不存在,说明理由.16.已知函数f(x)=,其中b∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)设b>0.若∃x∈[,],使f(x)≥1,求b的取值X围.17.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(12)一、填空题(共14小题,每小题3分,满分41分)1.设集合M={x|x2﹣x﹣2≤0},N={y|y=x2,﹣1≤x≤2},则M∩N=[0,2].考点:交集及其运算.专题:集合.分析:先求出x2﹣x﹣2≤0的解集M,由二次函数的性质求出集合N,再由交集的运算求出M∩N.解答:解:由x2﹣x﹣2≤0得,﹣1≤x≤2,则集合M=[﹣1,2],因为y=x2,﹣1≤x≤2,所以0≤y≤4,则N=[0,4],所以M∩N=[0,2],故答案为[0,2].点评:本题考查交集及其运算,以及一元二次不等式、一元二次函数的性质,属于基础题.2.函数的定义域是{x|x>﹣1且x≠1}.考点:函数的定义域及其求法.专题:计算题.分析:欲求此函数的定义域,可由x+1>0,且1﹣x≠0,解出x的取值X围,最终得出答案.解答:解:∵x+1>0,且1﹣x≠0,∴x>﹣1且x≠1,故答案为:{x|x>﹣1且x≠1}.点评:本题考查的是求定义域时要注意对数函数的真数大于0,并且分母不能是0的问题.3.已知幂函数y=f(x)的图象过点,则=2.考点:幂函数的性质.专题:函数的性质及应用.分析::设幂函数y=f(x)的解析式为 f(x)=xα,根据幂函数y=f(x)的图象过点求出α的值,可得函数的解析式,从而求得的值.解答:解:设幂函数y=f(x)的解析式为 f(x)=xα,由幂函数y=f(x)的图象过点可得=3α,∴α=﹣,∴f(x)=,∴==2,故答案为 2.点评:本题主要考查幂函数的定义,用待定系数法求函数的解析式,求函数的值,属于基础题.4.已知函数f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则a+b=2.考点:二次函数的性质.专题:函数的性质及应用.分析:偶函数定义域关于原点对称,且f(﹣x)=f(x),由此即可求出a,b.解答:解:因为偶函数的定义域关于原点对称,所以2a﹣3+4﹣a=0,解得a=﹣1.由f(x)为偶函数,得f(﹣x)=f(x),即ax2﹣(b﹣3)x+3=ax2+(b﹣3)x+3,2(b﹣3)x=0,所以b=3.所以a+b=3﹣1=2.故答案为:2.点评:偶函数的定义域关于原点对称,f(﹣x)=f(x)恒成立,对于函数的奇偶性问题,往往从定义上考虑.5.若存在实数x∈[1,2]满足2x2﹣ax+2>0,则实数a的取值X围是(﹣∞,5).考点:特称命题.专题:不等式的解法及应用.分析:构造函数f(x)=2x2﹣ax+2,若存在实数x∈[1,2]满足2x2﹣ax+2>0,则f(1)>0,或f(2)>0,进而可得实数a的取值X围解答:解:令f(x)=2x2﹣ax+2若存在实数x∈[1,2]满足2x2﹣ax+2>0,则f(1)>0,或f(2)>0即4﹣a>0,或10﹣2a>0,即a<4,或a<5故a<5即实数a的取值X围是(﹣∞,5)故答案为:(﹣∞,5)点评:本题考查的知识点是特称命题,其中构造函数,将存在性问题(特称命题),转化为不等式问题是解答的关键.6.设函数f(x)=,则函数g(x)=f(x)﹣x的零点的个数为2.考点:根的存在性及根的个数判断.专题:计算题.分析:函数g(x)=f(x)﹣x的零点的个数即函数y=f(x)的图象与直线y=x的交点个数,数形结合可得答案.解答:解:函数g(x)=f(x)﹣x的零点的个数即函数y=f(x)的图象与直线y=x的交点个数,如图所示:由于函数y=f(x)的图象与直线y=x只有2个交点,故答案为 2.点评:本题主要考查方程的根的存在性及个数判断,抽象函数的应用,体现了转化与数形结合的数学思想,属于中档题.7.若函数y=的定义域为R,则实数m的取值X围是[0,12).考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,即可求出结论.解答:解:∵y=的定义域为R,∴不等式mx2+mx+3≠0,若m=0,则3≠0成立,若m≠0,则等价为判别式△=m2﹣12m<0,解得0<m<12,综上0≤m<12,故答案为:[0,12)点评:本题主要考查函数定义域的求解,要求熟练掌握常见函数成立的条件以及一元二次不等式的求解.8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=﹣1.考点:函数奇偶性的性质.专题:计算题.分析:由题设知,当x≥0时,f(x)不可能为负,故应求出x<0时的解析式,代入f(a)=﹣2,求a的值.解答:解:令x<0,则﹣x>0,所以f(﹣x)=﹣x(1﹣x),又f(x)为奇函数,所以当x<0时有f(x)=x(1﹣x),令f(a)=a(1﹣a)=﹣2,得a2﹣a﹣2=0,解得a=﹣1或a=2(舍去).故应埴﹣1点评:本题考点是函数奇偶性的运用,用奇偶性这一性质求对称区间上的解析式,这是函数奇偶性的一个重要应用.9.定义min{a,b,c}为a,b,c中的最小值,设f(x)=min{2x+4,x2+1,5﹣3x},则f (x)的最大值是2.考点:函数的值域.专题:新定义.分析:根据min{a,b,c}的意义,画出函数图象,观察最大值的位置,通过求函数值,可得答案.解答:解:画出y=2x+4,y=x2+1,y=5﹣3x的图象,观察图象可知,当x≤﹣1时,f(x)=2x+4,当﹣1≤x≤1时,f(x)=x2+1,当x>1时,f(x)=5﹣3x,f(x)的最大值在x=±1时取得为2,故答案为:2点评:本题考查函数的图象函数的图象、函数最值问题,利用数形结合可以很容易的得到最大值.10.=.考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质,直接化简表达式,求出它的值.解答:解:==﹣故答案为:﹣点评:本题主要考查函数值的求法,以及对数的运算,11.已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为﹣.考点:利用导数求闭区间上函数的最值.专题:计算题.分析:由a,b为正实数,知函数f(x)=ax3+bx+2x是增函数,故f(x)在[0,1]上的最大值f(1)=a+b+2=4,所以a+b=2.由此能求出f(x)在[﹣1,0]上的最小值.解答:解:∵a,b为正实数,函数f(x)=ax3+bx+2x,∴f(x)在R上是增函数,∴f(x)在[0,1]上的最大值f(1)=a+b+2=4,∴a+b=2.∴f(x)在[﹣1,0]上的最小值f(﹣1)=﹣(a+b)+2﹣1=﹣2+=﹣.∴f(x)在[﹣1,0]上的最小值是﹣.故答案为:﹣.点评:本题考查函数的单调性的应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.12.已知函数若f(2﹣a2)>f(a),则实数a的取值X围是(﹣2,1).考点:其他不等式的解法.专题:计算题;转化思想.分析:先得到函数在定义域上是增函数,再由函数单调性定义求解.解答:解:易知函数在定义域上是增函数∴f(2﹣a2)>f(a),可转化为:2﹣a2>a解得:﹣2<a<1∴实数a的取值X围是(﹣2,1)故答案为:(﹣2,1)点评:本题主要考查函数的单调性定义在解不等式中的应用,一般来讲,抽象函数不等式,多数用单调性定义或数形结合法求解.13.若实数a,b,c满足lg(10a+10b)=a+b,lg(10a+10b+10c)=a+b+c,则c的最大值是lg.考点:其他不等式的解法;对数的运算性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:运用对数和指数的关系,及基本不等式,可得10a+b≥2,即10a+b≥4,当且仅当a=b,取等号.对第二个等式,求出10c,再化简代入,分子常数化,即可得到c的最大值.解答:解:lg(10a+10b)=a+b,即为10a+b=10a+10b,而10a+10b≥2=2,即有10a+b≥2,即10a+b≥4,当且仅当a=b,取等号.lg(10a+10b+10c)=a+b+c,即为10a+b+c=10a+10b+10c,即10c===1+≤1+=.则c≤lg.当且仅当a=b,c取得最大值lg.故答案为:.点评:本题考查对数与指数的互化,考查指数的运算性质,以及基本不等式的运用,考查运算能力,属于中档题.14.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值X围是.考点:函数与方程的综合运用.专题:计算题;不等式的解法及应用.分析:通过t的X围,求出f(t)的表达式,判断f(t)的X围,然后代入已知函数,通过函数的值域求出t的X围即可.解答:解:因为t∈[0,1],所以f(t)=3t∈[1,3],又函数,所以f(f(t)=,因为f(f(t))∈[0,1],所以解得:,又t∈[0,1],所以实数t的取值X围.故答案为:.点评:本题考查函数一方程的综合应用,指数与对数不等式的解法,函数的定义域与函数的值域,函数值的求法,考查计算能力.二、解答题(共3小题,满分20分)15.已知集合A={x|(x﹣2)(x﹣3a﹣1)<0},y=lg的定义域为集合B.(1)若A=B,某某数a;(2)是否存在实数a使得A∩B=φ,若存在,则求出实数a的值,若不存在,说明理由.考点:函数的定义域及其求法;交集及其运算.专题:函数的性质及应用;集合.分析:(1)由集合B非空得出a≠1,对3a+1与2的大小比较,可分①当时,②当时,③当时3种情况,利用A=B求得a的值;(2)仍分第(1)问的三种情况,化简集合A,再由条件A∩B=φ求得a的X围.解答:解:(1)由于函数的定义域是非空数集,故a≠1.①当时,A=(2,3a+1),B=(2a,a2+1),由A=B可得:,方程组无解;②当时,A=φ,A=B不可能;③当时,A=(3a+1,2),B=(2a,a2+1),由A=B可得:,∴a=﹣1.(2)①当时,A=(2,3a+1),B=(2a,a2+1),由A∩B=φ可得3a+1≤2a或a2+1≤2,又,则;②当时,A=φ,则A∩B=φ,符合题意;③当时,A=(3a+1,2),B=(2a,a2+1),由A∩B=φ可得2≤2a或a2+1≤3a+1,又,则.∴当a∈[0,1)时,A∩B=φ..点评:本题主要考查函数的定义域的求法,同时考查集合与集合之间的关系,对于含有字母的函数定义域的求法,通常要讨论.16.已知函数f(x)=,其中b∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)设b>0.若∃x∈[,],使f(x)≥1,求b的取值X围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)分情况讨论:①当b=0时,②当b>0时,③当b<0时,然后利用导数即可求得单调区间;(Ⅱ)f(x)≥1等价于b≤﹣x2+x,g(x)=﹣x2+x,则“∃x∈[,],使得b≤﹣x2+x”等价于b小于等于g(x)在区间[,]上的最大值.解答:解:(Ⅰ)①当b=0时,f(x)=.故f(x)的单调减区间为(﹣∞,0),(0,+∞);无单调增区间.②当b>0时,f′(x)=.令f′(x)=0,得x1=,x2=﹣.f(x)和f′(x)的情况如下:x (﹣∞,﹣)﹣(﹣,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)↘↗↘故f(x)的单调减区间为(﹣∞,﹣),(,+∞);单调增区间为(﹣,).③当b<0时,f(x)的定义域为D={x∈R|x≠±}.因为f′(x)=<0在D上恒成立,故f(x)的单调减区间为(﹣∞,﹣),(﹣,),(,+∞);无单调增区间.(Ⅱ)解:因为b>0,x∈[,],所以f(x)≥1等价于b≤﹣x2+x,其中x∈[,].设g(x)=﹣x2+x,g(x)在区间[,]上的最大值为g()=.则“∃x∈[,],使得b≤﹣x2+x”等价于b≤.所以b的取值X围是(0,].点评:本题考查利用导数研究函数的单调性、函数恒成立及函数在区间上的最值问题,考查学生综合运用所学知识分析问题解决问题的能力.17.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.考点:函数模型的选择与应用.专题:应用题;压轴题.分析:(1)总面积为xy=3000,且2a+6=y,则y=,(其中6<x<500),从而运动场占地面积为S=(x﹣4)a+(x﹣6)a,代入整理即得;(2)由(1)知,占地面积S=3030﹣6x﹣=3030﹣(6x+),由基本不等式可得函数的最大值,以及对应的x的值.解答:解:(1)由已知xy=3000,∴,其定义域是(6,500).S=(x﹣4)a+(x﹣6)a=(2x﹣10)a,∵2a+6=y,∴,∴,其定义域是(6,500).(2),当且仅当,即x=50∈(6,500)时,上述不等式等号成立,此时,x=50,y=60,S max=2430.答:设计x=50m,y=60m时,运动场地面积最大,最大值为2430平方米.点评:本题以实际问题为载体,考查函数模型的构建,考查应用基本不等式求函数最值,构建函数关系式是关键,属于中档题.。

上海市嘉定区2015届高三一模数学(理)试题含答案

上海市嘉定区2015届高三一模数学(理)试题含答案

上海市嘉定区2015届高三第一次质量调研(一模)数学(理)试题考生注意:1.答题前,务必在答题纸上将姓名、学校、班级等信息填写清楚,并贴好条形码.2.解答试卷必须在答题纸规定的相应位置书写,超出答题纸规定位置或写在试卷、草稿纸上的答案一律不予评分.3.本试卷共有23道试题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题编号的空格内直接填写结果,每个空格填对4分,否则一律得零分. 1.设i 是虚数单位,则=-+iii 123__________. 2.函数xx y -+-=21)1lg(的定义域是________________. 3.已知直线l 垂直于直线0532=+-y x ,则直线l 的一个法向量=n___________. 4.已知24=a,a x =lg ,则=x ____________.5.为了解300名学生的视力情况,采用系统抽样的方法从中抽取容量为20的样本,则分段的间隔为______________.6.若椭圆122=+y mx 的一个焦点与抛物线x y 42=的焦点重合,则=m __________.7.若圆锥的侧面积是底面积的4倍,则其母线与轴所成角的大小是____________(结果用反三角函数值表示). 8.将函数xx x f 2sin 12cos 3)(=的图像向左平移m (0>m )个单位,所得图像对应的函数为偶函数,则m 的最小值为______________.9.设无穷等比数列}{n a 的公比为q .若1242)(lim a a a a n n =+++∞→ ,则=q ________.10.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知A c C a cos 2cos 3=,31tan =A ,则=B ___________.11.甲、乙、丙三位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是___________.12.设正数a 、b 满足ab b a =+32,则b a +的最小值是____________.13.若函数)(x f 满足:①在定义域D 内是单调函数;②存在D b a ⊆],[(b a <),使)(x f 在],[b a上的值域为],[a b --,那么)(x f y =叫做对称函数.现有k x x f --=1)(是对称函数,则实数k 的取值范围是_______________.14.设数列}{n a 是等差数列,其首项11=a ,公差0<d ,}{n a 的前n 项和为n S ,且对任意n *N ∈,总存在m *N ∈,使得m n a S =.则=d _________.二.选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.“10<<x ”是“1)1(log 2<+x ”的…………………………………………………( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件16.设a 、b 是关于t 的方程0sin cos 2=-θθt t 的两个不相等实根,则过),(2a a A 、),(2b b B 两点的直线与双曲线1sin cos 2222=-θθy x 的公共点个数是…………………( ) A .3 B .2 C .1 D .017.定义在区间),1[∞+上的函数)(x f 满足:①)(2)2(x f x f =;②当42≤≤x 时,|3|1)(--=x x f ,则集合)}34()({f x f x S ==中的最小元素是……………………( )A .2B .4C .6D .818.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点, 角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在],0[π上的图像大致为………………………………………………………( )A .B .C .D .O AMP三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分满分7分.已知R ∈x ,向量)cos ,2(sin x x a = ,)cos 2,1(x b = ,b a x f⋅=)(.(1)求)(x f 的单调递增区间;(2)若α是第二象限角,12cos 4cos 5242+⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛απααf ,求ααsin cos -的值.20.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.如图,在直三棱柱111C B A ABC -中,︒=∠90BAC ,21===AA AC AB ,点E 、F 分别为棱AC 与11B A 的中点.(1)求三棱锥11EFC A -的体积;(2)求异面直线C A 1与EF 所成角的大小.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知点)2,0(-A ,椭圆E :12222=+by a x (0>>b a )的长轴长为4,F 是椭圆的右焦点,直线AF 的一个方向向量为)2,3(=d,O 为坐标原点.(1)求椭圆E 的方程;F C AE B A 1C 1B 1(2)设过点A 的动直线l 与椭圆E 相交于P 、Q 两点,当△OPQ 的面积S 最大时,求l 的方程. 22.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.已知函数x x k x f -⋅+=22)((R ∈x ). (1)判断函数)(x f 的奇偶性,并说明理由;(2)设0>k ,问函数)(x f 的图像是否关于某直线m x =成轴对称图形,如果是,求出m 的值;如果不是,请说明理由;(可利用真命题:“函数)(x g 的图像关于某直线m x =成轴对称图形”的充要条件为“函数)(x m g +是偶函数”)(3)设1-=k ,函数a a x h x x 3422)(1--⋅=-,若函数)(x f 与)(x h 的图像有且只有一个公共点,求实数a 的取值范围. 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列}{n a 、}{n b 的各项均为正数,且对任意*N ∈n ,都有n a ,n b ,1+n a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且101=a ,152=a .(1)求证:数列}{n b 是等差数列; (2)求数列}{n a 、}{n b 的通项公式; (3)设n n a a a S 11121+++=,如果对任意*N ∈n ,不等式nn n a b S a -<⋅22恒成立,求实数a 的取值范围.2014学年嘉定区高三年级第一次质量调研数学试卷参考答案与评分标准一.填空题(每题4分,满分56分)1.1- 2.)2,1( 3.)2,3( 4.105.15 6.21 7.41arcsin 8.3π9.215- 10.43π11.4312.625+ 13.⎪⎭⎫⎢⎣⎡45,1 14.1-第14题详解:d n n n d n n na S n 2)1(2)1(1-+=-+=,因为对任意*N ∈n ,存在*N ∈m ,使得m n a S =,即d m d n n n )1(12)1(-+=-+,取2=n ,得d m d )1(1-=+,d m 12+=, 因为0<d ,所以2<m ,故1=m ,1-=d .二.选择题(每题5分,满分20分)15.A 16.D 17.C 18.B三.解答题(本大题满分74分)注:解答题评分标准所给的是各步骤的累加分,与参考答案不同的解法可酌情给分. 19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分满分7分. (1)142sin 212cos 2sin cos 22sin )(2+⎪⎭⎫ ⎝⎛+=++=+=πx x x x x x f ,……(2分)由224222πππππ+≤+≤-k x k (Z ∈k ), …………(4分)得)(x f 的单调递增区间是⎥⎦⎤⎢⎣⎡+-8,83ππππk k (Z ∈k ). …………(5分)(2)由已知得,12cos 4cos 52414sin 2+⎪⎭⎫ ⎝⎛+=+⎪⎭⎫⎝⎛+απαπα,…………(2分) 即απαπα2cos 4cos 544sin ⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+, ………………(3分)所以,)sin )(cos sin )(cos sin (cos 54cos sin αααααααα+--=+,………(4分)若0cos sin =+αα,则1tan -=α,所以2sin cos -=-αα;……………(5分)若0cos sin ≠+αα,则1)sin (cos 542=-αα,25sin cos -=-αα.…………(6分)综上,ααsin cos -的值为2-或25-. …………(7分)(分类得到2个答案,不写最后一步可不扣分) 20.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分. (1)3221313111111111111=⋅⋅⋅⋅=⋅==∆--AA F A C A AA S V V FC A FC A E EFC A . ……(5分) (参考答案只给出最后结果,如果结果错误,可视中间步骤适当给分)(2)取1AA 中点G ,联结EG ,FG ,则EG ∥C A 1, ………(1分) 所以,FEG ∠是异面直线C A 1与EF 所成的角(或其补角), …………(2分) 在△EFG 中,2==FG EG ,6=EF , ………………………(4分)所以,232cos 222=⋅⋅-+=∠EG EF FG EF EG FEG ,故6π=∠FEG . ……(6分)所以,异面直线C A 1与EF 所成角的大小为6π. ………………………(7分)21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)设)0,(c F ,直线AF 的点方向式方程为223+=y x , ………………(2分)令0=y ,得3=x ,即3=c , ………………………………………(3分)由已知,2=a ,所以1222=-=c a b . ………………………………………(5分)所以椭圆E 的方程为1422=+y x . ………………………………………(6分) (2)由题意,设直线l 的方程为2-=kx y ,将2-=kx y 代入1422=+y x ,得01216)14(22=+-+kx x k , …………(1分) 当△0)34(162>-=k ,即432>k 时,直线l 与椭圆E 相交, ……………(2分)设),(11y x P ,),(22y x Q ,则1416221+=+k k x x ,1412221+=k x x , ………(3分) 所以]4))[(1())(1()()(||2122122212221221x x x x k x x k y y x x PQ -++=-+=-+-=34141414481416)1(2222222-⋅++=⎥⎥⎦⎤⎢⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⋅+=k k k k k k k , 又点O 到直线l 的距离122+=k d ,所以△OPQ 的面积14344||2122+-=⋅=k k d PQ S . 设t k =-342,则0>t ,tt t t S 44442+=+=, ………………(5分) 因为44≥+t t ,所以1≤S ,当且仅当2=t ,即27±=k 时,S 取最大值1.……(7分)所以,当△OPQ 的面积S 最大时,直线l 的方程为227-±=x y . ……………(8分)(直线方程用其他形式也可以) 22.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.(1)x x k x f 22)(⋅+=--,若)(x f 是偶函数,则)()(x f x f =-,即x x x xk k --⋅+=⋅+2222, …………(1分)所以0)22)(1(=---x x k 对任意实数x 成立,所以1=k ; …………………(2分) 若)(x f 是奇函数,则)()(x f x f -=-,即x x x xk k --⋅--=⋅+2222,………(3分)所以0)22)(1(=++-x x k 对任意实数x 成立,所以1-=k 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届高三模拟试题高三数学(理科)
(满分150分,完卷时间120分钟)
一、填空题 (每小题4分,满分56分)
1.已知集合,,则▲.
2.已知数列是公差为2的等差数列,是的前n项和,则= ▲.3.函数的最小正周期为▲.
4.某小组中有6名女同学和4名男同学,从中任意挑选3名同学组成环保志愿者宣传队,则这个宣传队由2名女同学和1名男同学组成的概率是▲(结果用分数表示).
5.已知圆柱M的底面直径与高均等于球O的直径,则圆柱M与球O的体积之比
= ▲
6.已知、是平面上两个不共线的单位向量,向量,.若,则实数= ▲.
7.二项式的展开式中系数最大的项是第▲项.
8.已知直线,,若直线与的夹角为,则= ▲.
9.已知是函数的反函数,则
▲.
10.阅读右边的程序框图,如果输出的函数值在区间
内,则输入的实数的取值范围是▲.
11.若等差数列的首项为公差为,前项的
和为,则数列为等差数列,且通项
为.类似地,请完成下列命题:若
各项均为正数的等比数列的首项为,公比为,前项的积为,则▲.
12.若集合且对中其它元素,总有则▲.
13.已知,,,
,则的最大值等于▲.
14.平面直角坐标系中,如果与都是整数,就称点为整点,命题:
①存在这样的直线,既不与坐标轴平行又不经过任何整点;
②如果与都是无理数,则直线不经过任何整点;
③如果与都是有理数,则直线必经过无穷多个整点;
④如果直线经过两个不同的整点,则必经过无穷多个整点;
⑤存在恰经过一个整点的直线;
其中的真命题是▲(写出所有真命题编号).
二、选择题 (每小题5分,共20分)
15.在极坐标系中,圆C过极点,且圆心的极坐标是(),则圆C的极坐标方程是
A.. B.. C.. D..
16.已知,.若是的充分非必要条件,则实数的取值范围是
A.. B.. C.. D..
17.若,则称点在抛物线C:外.已知点在抛物线C:外,则直线与抛物线C的位置关系是
A.相交 B.相切 C.相离
D.不能确定
18.在正方体AC1中,若点P在对角线AC1上,且P点
到三条棱CD 、A1D1、BB1的距离都相等,则这
样的点共有
A.1 个. B.2 个. C.3 个. D.无穷多
个.
三.解答题(本大题满分74分)
19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分
如图,直三棱柱的底面是等腰直角三角形,,侧棱底
面,且,是的中点,是上的点.
(1)求异面直线与所成角的大小(结果用反三角函数
表示);
(2)若,求线段的长.
20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分
已知函数.
(1)讨论函数的奇偶性;
(2)若函数在上为减函数,求的取值范围.
2.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分
电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”, 并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约
为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高元/张,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少,“铁杆足球
迷”愿意前往观看的人数会减少.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?
22.(本题满分16分)第1小题满分4分,第2小题满分6分,第3小题满分6分
已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点、(,都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论
如何变化,直线总经过此定点?若存在,求出该
定点的坐标;若不存在,请说明理由.
23.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满分8分
若正项数列满足条件:存在正整数,使得对一切都成立,则称数列为级等比数列.
(1)已知数列为2级等比数列,且前四项分别为,求的值;
(2)若为常数),且是级等比数列,求所有可能值的集合,并求取最小正值时数列的前项和;
(3)证明:为等比数列的充要条件是既为级等比数列,也为级等比数列.
2015届高三模拟试题高三数学(理科)参
考答案
一、填空题
1.2.3.4..
5. 3:2 6.2 7. 9 8.0或
9. 10.
11.数列为等比数列,且通项为.
12. 13.2 14.①④⑤
二选择题 15.B 16.C 17.A 18. D
三、解答题
19.(本题12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.
解:(1)取的中点,连,则,即即为异面直线与所成的角.…………(2分)
连.
在中,由,

在中,由,知……(4分)
在中,
∴…………(6分)
(2)以为原点,建立如图空间直角
坐标系,设的长为
则各点的坐标为,,,,……(2
分)
∴,
由知…………(4分)
即,解得
∴线段的长为…………(6分)
20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
解:(1)…………(1分)
若为偶函数,则对任意的,都有,
即,,对任意的都成立.由于不恒等于0,故有,即 ∴当时,是偶函数.…………(4分)
若为奇函数,则对任意的,都有,
即,对任意的都成立.由于不恒等于0,故有,即 ∴当时,是奇函数.…(6分)
∴当时,是奇函数;当时,是偶函数;当时,是非奇非偶函数.…………(7分)
(2)因函数在上为减函数,故对任意的,都有,…………(2分)
即恒成立.…(4分)
由,知恒成立,即恒成立.
由于当时…………(6分)
∴…………(7分)
21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
解:
(1)样本中“足球迷”出现的频率=…………(2分)
“足球迷”的人数=(万)…………(4分)
“铁杆足球迷”=(万)
所以16万“足球迷”中,“铁杆足球迷”约有3万人. …………(6分)(2)设票价为元,则一般“足球迷”中约有万人,“铁杆足球迷”约有万人去现场看球. …………(3分)
令…………(5分)
化简得:
解得:,由,……(7分)
即平均票价至少定为100+40=140元,才能使前往现场观看足球比赛
的“足球迷”不超过10万人. …………(8分)
22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
解:解:(1)设,则,……………………(2分)
化简得:椭圆C的方程为:…………(4分)
(2),
,…………(3分)
代入得:,,代入得
,…………(5分)
,…………(6分)
(3)解法一:由于,.…………(1分)

设直线方程:,代入得:
…………(3分)
,…………(5分)
直线方程:直线总经过定点…………(6分)
解法二:由于,所以关于x轴的对称点在直线上.

设直线方程:,代入得:
,,令,得:

直线总经过定点
23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
解(1)…………(2分)
…………(4分)
(2)是级等比数列,
……(1分)
所以,
……(3分)
最小正值等于,此时
,,
……(5分)
……(6分)
(3)充分性:若为等比数列,则
对一切成立,显然对成立.
所以既为级等比数列,也为级等比数列.……(2分)
必要性:若为级等比数列,,则均成等比数列,设等比数列的公比分别为,为级等比数列,,则成等比数列,设公比为………………(3分)既是中的项,也是中的项,
既是中的项,也是中的项,
………………(5分)
设,则
所以(),(),
又,,
所以,………………(7分)
()
所以,,()
综合得:,显然为等比数列.………………(8分)。

相关文档
最新文档