Fernandplans活塞式斯特林引擎_详细图纸001

合集下载

斯特林 发动机 图纸

斯特林 发动机 图纸

1981 wurde erstmals eine kleine 2 Zylinder Oszillierende nachveröffentlichten Plänen gebaut. Die Maschine hätte ein Länge von 58 mm, einen Bohrung von 6 mm und eine Schwungscheibe von 32 mm. Nun Ralph Weidman in Wooster, Ohio, liebte es nicht in so kleinen Dimensionen zu arbeiten und verdoppelte kurzer Hand die Masse des Plans und fügte 2 Zylinder und ein Umsteuerventil hinzu. Seine Pläne waren die Grundlage für die Überarbeitung der hier gezeigten Pläne.Die Anfertigung der SeitenrahmenDie Rahmen haben einen 1.6mm Passstift, damit wird der Endblock gegen verdrehen fixiert. (Siehe Plan). Nach dem ausschneiden derRahmen werden diese zusammengespannt und die 3mm Bohrungen gebohrt. Dann werden beide Rahmen zusammengeschraubt und mit einem 7,7 mm Bohrer das Kurbelwellenlager gebohrt und auf 8mmaufgerieben. Das Gleiche wird mit den 4 mm Drehzapfenlagern derZylinder gemacht.Die Endblöcke.Nach dem die 2 Endblöcke hergestellt sind, werden diese passendmit den Seitenrahmen zusammen gespannt und mit einen 3mmBohrer die Bohrungen für die 3mm Gewindebohrungen markiert.Nach lösen der Klammern werden die 3mm Gewinde Sackbohrungen angefertigt.Die Bohrlehre für die Dampfkanäle,ist ein einfacher Stahlstreifen mitgeriebenen Bohrungen für das 8mmKurbelwellenlager, das 4mmZylinderdrehzapfenlager und der1,6mm Bohrung für die Dampfpassagen.Markiere eine Seite.Das Bohren für die PassstifteBaue die Seitenrahmen und die Endblöcke zusammen und richte sie exakt aus. Nimm einen 1,6mm Bohrer und bohre durch die Rahmen in die Endblöcke. Entferne die Rahmen und klebe mit Loctite die Passstifte in die Endblöcke. Warte ca. 20 min bis der Kleber fest ist, entferne sorgfältig den Kleber von den Außenseiten der Endblöcke und schraube die Rahmen wieder an. Alle vier Ecken werden von 1 bis 4 markiert und die Ober und die Unterseite auf den Endblöcken gekennzeichnet. So sind das Zerlegen und der Zusammenbau einfach und rasch möglich.Das Bohren der DampfkanäleStecke ein 8mm Rundmaterial durch die Kurbelwellenbohrungen und ein 4mm Rundmaterial durch die Zylinder Drehlager.Die Bohrlehre wird auf die 4mm Achse gesteckt und das untere Ende gegen die Kurbelwellenachse gedrückt, wie im Foto gezeigt. Bohre dann den Dampfkanal mit einem Bohrer ungefähr 8mm tief durch die 1,6mm Bohrung der Bohrlehre.Entferne die Bohrlehre und drehe sie um auf die gegenüberliegende Seite und wiederhole das Ganze für den 2. Dampfkanal.Bohre alle 8 Dampfkanäle auf gleiche Weise. Entferne die Rahmen und bohre die Kanäle mit einem 2,5 mm Bohrer von der jeder Seite bis zur Mitte. Achtung bohre nicht den Dampfkanal nur von einer Seite durch.Bohre dann so tief bis eine Durchgangsbohrung für die Dampfkanäle entsteht.Jetzt werden die restlichen Bohrungen der zwei Endblöcke angefertigt.Auf einen der Blöcke wird das Dampfsteuerventil angebracht.Von der inneren Seite wie im Schnitt B-B gezeigt wird eine Bohrung zum untern Dampfkanal gebohrt. Die Ventilbohrungen werden im Abstand von 6mm wie im Plan gezeigt hergestellt. Zwei Bohrungen gehen durch den Block und haben Anschlüsse für den Dampfein- und Austritt.Die dritte Bohrung führt zum oberen Dampfkanal, die vierte zum unteren Dampfkanal. In der Mitte ist die Bohrung für die Achse des Dampfventils.Die Oberfläche des Blocks muss eben und spiegelglatt geschliffen sein, um gut abzudichten. Dies muss auch an den allenZylinderflächen der Fall sein. Das polieren der Flächen geschieht mit einen feinen Schmirgelleinen in Stufen. Beginnend mit einerKörnung von 120 hinauf, Stufe für Stufe, bis zur Körnung 800. (120, 180,240,320,400, …) Es wir immer solange geschliffen bis keine Spur mehr von der letzten Körung zu sehen ist.Die Bohrungen auf der Innenseite der Endblöcke werden mitStiftschrauben und Loctite dampfdichtverschlossen. (Siehe Bild)Baue die Rahmen und Endblöckezusammen. Verbinde mitKupferrohren(kann auch Messing sein) dieunteren Dampfkanäle der einen Seite mitden oberen Dampfkanälen der anderenSeite.Ein Rohr verbindet die Einströmkanäle, das andere Rohr verbindet die Ausströmkanäle. Mit dem Dampfsteuerventil werden die Strömungsrichtungen gewechselt, und damit die Drehrichtung der Maschine bestimmt.Die Lager der Kurbelwelle werden vorsichtig mit Loctite in die Rahmen geklebt. Dabei ist es wichtig die Kurbelwelle einzufetten, einzubauen und bis zum Aushärten des Klebers in den Lagern zu belassen. Danach werden die Ölbohrungen in die Rahmen eingebracht. Reinigen sie alles gründlich und schließen Sie dieDie Zylinder werden nach den Plänen gefertigt, Dabei ist zubeachten dass diese 0,3mm kleinergebohrt und dann mir einer Reibahle aufEndmaß gerieben werden. Der Drehzapfenmuss exakt im rechten Winkel moniertwerden. Dafür ist es von Vorteil wenn dasGewindeloch auf der Bohrmaschine perHand hergestellt, (exakt rechter Winkel)und das Gewinde des Zapfens auf derDrehbank geschnitten wird.Der Zapfen wird dann mit Loctiteeingeklebt.Die Herstellung der Kolben beginnt mit den Kolbenstangen laut Plan. Die Pleuellager werden fertig gestellt und hart mit den Stangenverlötet. Danach werden die Kolben mit einen Übermaß von 0,5mmvorgefertigt und mit den Kolbenstangen verbunden. Auch hier wird mit Loctite geklebt. Danach werden die Kolbenstangen in Die Drehbank eingespannt und auf das vorläufige Endmaß abgedreht. Der Kolben muss streng in die Zylinderbohrung passen. Durch vorsichtiges schleifen mit einer Läpppaste wird der Kolben in den Zylinder eingepasst.Jeder Kolben und Zylinder wird mit der Nummer der Ecke an der er montiert wird gezeichnet.Die Kurbelscheiben werden laut Plan hergestellt und die Kurbelzapfen eingepresst und eingeklebt. Um 90° versetzt werden die Kurbelscheiben auf der Kurbelwelle montiert. Dies macht die Maschine selbstanlaufend.Das Schwungrad kann nach eigenen Ideen gefertigt werden und wird zwischen den Rahmen montiert. Dabei kann sowohl ein Seilrad wie auch ein Zahnrad zur Kraftübertragung mit montiert werden. Die Verrohung kann mit Kupferrohren wie auch mit Messingrohren erfolgen. Beachten sie dabei das vor dem biegen die Rohre ausgeglüht werden. Messingrohr sollte nur in glühenden Zustand gebogen werden.Die Maschine ist sehr drehfreudig und läuft bereist mit 0.3 bar an wenn sie exakt gebaut ist.Das Dampfventil wird aus Messing oderBronze Rundmaterial hergestellt.Nachdem es fertig gedreht ist und dieMitte mit einen Zentrumsbohrervorgebohrt ist, wird eine Seite mitwasserfesten Filzstift bemalt. Das Layoutder Umsteuerkanäle wird darauf markiert und die Endpunkte mit einem passenden Bohrer gebohrt. Die Kanäle auf der Fräsmaschine hergestellt, und der Rest fertig gedreht. Der Hebel für das Ventil wird gebogen und hart eingelötet. Das Ventilwird an der Unterseite dampfdichtgeschliffen.Die Kurbelscheiben werden laut Planhergestellt und die Kurbelzapfeneingepresst und eingeklebt. Um 90°versetzt werden die Kurbelscheiben aufder Kurbelwelle montiert. Dies macht dieMaschine selbstanlaufend.Das Schwungrad kann nach eigenen Ideen gefertigt werden und wird zwischen den Rahmen montiert. Dabei kann sowohl ein Seilrad wie auch ein Zahnrad zur Kraftübertragung mit montiert werden. Die Verrohung kann mit Kupferrohren wie auch mit Messingrohren erfolgen. Beachten sie dabei das vor dem biegen die Rohre ausgeglüht werden. Messingrohr sollte nur in glühenden Zustand gebogen werden.Die Maschine ist sehr drehfreudig und läuft bereist mit 0.3 bar an wenn sie exakt gebaut ist.Von diesem Grunddesign lassen sich viele Varianten der Maschine bauen. Zum Beispiel eine 4 Zylinder zweifach wirkende Maschine oder eine V-Maschine.Viel Spaß beim bauen.666ABCDHelmut PirkerCAD GENERATED DRAWING,DO NOT MANUALLY UPDATEUNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MMMATERIAL--Kurbelwellen GruppeMATERIALOszillierende 4 Zylinder Boxer Dampfmaschine ABCDPOS.-NR.BENENNUNGM E N G E1Kurbelwelle12Schwungscheibe 13Kubelscheibe 2 Kurbelscheibe 1 Kurbelstift1 ISO 4029 - M3 x 8-S 1。

斯特林发动机原理图解(经典)

斯特林发动机原理图解(经典)

斯特林发动机原理图解2010-02-10 18:53如图1 把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。

A2移气器如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。

这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。

其原理如下:当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。

相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端為冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。

如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。

由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。

国立成功大学航太系郑金祥教授把Displacer 命名為”移气器”,实在更為贴切,也比较不容易混淆,比较不会使人误以為它的作用跟输出功率的动力活塞一样。

A3 曲柄机构要让移气器上下移动,只要将移气器与一曲轴连结(图6) 。

当曲轴旋转时,移气器就会被带上及带下。

将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。

A4 动力活塞橡皮的膨胀及收缩运动,可以转换為动力输出,此时,橡皮的作用即如同一动力活塞。

我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运动转换為曲轴的旋转运动。

连接到移气器的曲轴部位与连接到动力活塞的曲轴部位必须呈固定的角度差,一般是90度(图8,9)。

科技成果——自由活塞式斯特林发动机

科技成果——自由活塞式斯特林发动机

科技成果——自由活塞式斯特林发动机技术开发单位中国电子科技集团公司第二十一研究所技术简介斯特林发动机技术作为世界上热转换效率最高的热机,是目前世界发达国家竞相投巨资重点开发的新兴主导战略产业。

技术开发单位一体化解决了自由活塞式斯特林发电机和斯特林制冷机核心技术及其一系列产品生产工艺问题,成功开发了40W、60W、80W和800W、1000W、1200W以及3000W等系列斯特林发电机和制冷机产品,拥有独立知识产权,具备低成本与规模化量产能力。

主要技术指标1、斯特林发电机主要性能指标结构优化,完整气密式/全密封设计;太阳能热发电效率达29%,综合发电效率最高可达95%的能量转换效率;可适用多种热源发电,180℃电机启动温度;超静音(65db噪音)、低震动、低废热释放。

2、斯特林制冷机主要技术指标机身全密封设计;超静音(60db噪音)、低震动、低废热释放;制冷2分钟达到-50℃,10分钟达到-100℃,20分钟内达到-120℃,真空条件下最低温度可达-233℃;使用氯气为冷却剂。

技术特点热效率高,斯特林发动机的实际有效效率能达到32%-40%,最高可达47%。

排气污染小,和内燃机相比,太太降低了废气中CO、HC 等有害气体的含量。

噪音低,发动机运转比较平稳,噪音比较小。

运转特性好,由于斯特林发动机中最大压力与最小压力之比一般小于2,因此其扭矩比较均匀、运转比较平稳。

超负荷能力强,在超负荷50%的情况下仍然能正常运转,相对于内燃机5%-15%的超负荷能力而言具有更好的运转特性。

结构简单,维修方便,比内燃机少40%的零部件。

技术水平国内领先适用范围高握太阳能应用,太阳能光热发电。

中温太阳能应用,工业蒸汽(替代或部分替代传统工业蒸汽锅炉)、城镇集中供暖工程、社区供暖、太阳能空调集热制冷、稠油热采、烟草、中药材、食品干燥等。

专利状态授权专利多项技术状态小批量生产合作方式计划采取股权投资、风险投资和债权融资等多种途径寻求社会资本投资,合作进行规模化量产、拓展市场,扩大经营。

就地取材制作斯特林发动机

就地取材制作斯特林发动机

就地取材制作斯特林发动机1 工具和材料1.1 材料○ 移气器气缸,其中一个是有锥形底的契形罐,组装在一起○ 两个空的不锈钢汤罐,至少一个拥有锥形底○ 移气器○ 可以刚好被移气缸无摩擦纳住的铝制饮料罐。

○ 两个薄的金属碟片(例如食物罐的盖子)○ 动力活塞缸○ 铜管或者青铜管,尽量圆,约40-50mm长○ 动力活塞○ 飞轮○ 具有较低摩擦系数的球轴承○ CD片,或者其他类似的圆片,制备轮圈○ 硬币(配重)○ 横梁○ 金属片或者木头(12”厚),要保证足够厚,有一定刚度○引擎支架○ 支撑小木头(1”×1/2”也可以稍大),至少24”(600mm)长○ 一块木头作为支承座,至少12"长4"宽(300 x 100mm)其他○ 青铜管(内径1/8”)、不锈钢丝(直径1/8”)-每个约12”长(上述值并不需要非常精确,只需要不锈钢丝可以在管内可以紧贴滑行)○ 衣架铁丝○ 两个接线端子○ JB环氧胶○ 快干环氧胶(例如Araldite)1.2 工具必要工具● 钢锯● 电钻● 木工锯特别工具● 可以打磨去料的抛光工具2 设计γ型斯特林引擎(伪爱因斯坦说:γ型斯特林引擎——具有两个独立气缸,其中一缸中配备动力活塞,一缸配备移气器)的“核心”乃是一个大的移气缸纳住一个移气器(也可以称作转换器,是斯特林引擎的核心装备),该移气缸与另一个动力缸连通,动力活塞缸同时还纳住一个动力活塞,动力活塞通过一系列传动装置,反过来再为移气器提供动力。

在曲柄设计中,我采用了Darryl Boyd’s设计,加入了一个“平衡木”的系统。

利用该平衡木可以实现动力活塞和移气器的动力转换。

不是多新奇或者多巧妙,仅仅是因为……我手上就那点材料,而且看起来效果也可圈可点。

踏破铁鞋,蓦然发现,铝制易拉罐可以与不锈钢的汤罐配合的很好。

因此移气缸我决定选用不锈钢汤罐,而移气器则使用铝制的饮料罐,至于理由嘛,便宜(重点)、轻便、易安装。

Stirling Engine Plans 斯特林发动机模型简易图纸

Stirling Engine Plans 斯特林发动机模型简易图纸

\」回3132'
斗护/泣T
回::J '

I
3 /3 2' To p 7M
E:>f MC 25i叫

FIZGIG
Shee 吃
12
Li gh 吃 weigh 吃
Pis 吃 on ,
'-'μ r ~ ~
@口
2
311 坦
>SSU E' 0 (B E'-t oJ
C C>n俨。d
M龟 w e e n
c e ntr e ~
Sheet 7
Cylinde 俨&
豆二
Pis 吃 on
@口
(8" 变 α 〉
37/6 ~
"♂
E
Lodite ω〉唁
( tetedr T
~-- Approx
See de~ωled no 飞 E for fit协 9 p'" 毛~ to cy们 nder
@
一一γ
→忖←
U~
'"
也旬'

S .,..,. Sh ee t II for
"' r . QOk . d
"" hol. . T Ip of 1/驴
, .啊<co肝脏 l
《 ?①
},
,-,
E
g
E:>, ~c …
FIZGIG
Issue 0
4
Sheet 2b (Be 吃 Q)
1110' or 2MN bedplQte 0 口
S ~ ve 俨 5old~r
3/1豆

斯特林发动机模型制作大全

斯特林发动机模型制作大全

制作热声效应斯特林引擎十九世纪的吹玻璃工人,偶尔会听到被加热的玻璃管自然发出神秘的单音,这令人费解的声音其实是热机的另一种输出形式。

一般的引擎以转动的形式输出能量;声音也具有能量,只不过以空气作为传递的媒介。

热声效应的原理空气振动形成声音,声音发生时,为方便讨论,将传播声音的空气分成无数小块空气,应用牛顿力学来分析空气振动的情形,会得到声音的波动方程式,此方程式的解显示:声音传播时,各个小块空气都会发生膨胀收缩和位移。

如果小块空气被压缩后,再被加热膨胀,对周围空气作较大的正功;之后这小块空气又先被冷却,再被压缩,作较小的负功 (周围空气对这小块空气作较小的功) 。

虽然这小块空气并非对活塞或涡轮作功,而是对周围空气作功,事实上也完成了工作流体加热后膨胀,冷却后被压缩的热机循环,把热能转换成声音振动的能量,增加声音的强度,此即所谓“热声效应”。

凡是利用工作流体在冷、热区间移动,执行压缩的工作流体经加热而膨胀作正功,膨胀后先冷却再压缩作负功的热机循环,这样的机构都被归类为斯特林引擎。

利用热声效应把热能转换成机械能的装置,也就称为热声效应斯特林引擎(thermoacoustics stirling heat engine) ,热声效应斯特林引擎大致可分为驻波(standing wave)和行波(traveling wave)两种。

驻波型斯特林引擎的作功原理驻波型斯特林引擎,基本上是一端闭口,一端开口的管状共振腔,在共振腔内近闭口端装有热片堆(stack),热片堆中有许多平行共振腔轴向的密集穿孔。

热片堆在靠近闭端温度较高,另一端温度较低,于是延共振腔轴向的温度梯度(temperature gradient)相当大。

当驻波发生时,热堆片穿孔中的各小块空气(工作流体)向闭口端位移,而被压缩,同时移向热片堆较高温处,该小块空气在热穿透深度(thermal penetration depth)以内的部分,会被热片堆加热,使得温度升高,随即膨胀对周围空气做较大的正功,驻波的能量于是加大,小块空气也随着膨胀,同时移至热片堆的冷端,当能量增加的驻波再度压缩这小块空气时,此小块空气已先被较低温的热片堆冷却,只消耗较少的声波能量即可被压缩。

AIP发动机原理图

AIP发动机原理图

AIP发动机原理图潜水艇对动力系统的要求,非常苛刻.即要有强大的动力.更要能非常的安安静静.尽量是无声.AIP 发动机就是这样的发动机.再加上燃料电池驱动.更是完美的搭配.因为到目前为止.除了声纳探测可发现水下潜艇.还未有真正的探测技术,能发现潜艇.所以中国潜艇在日本近海.能驶到美国航空母舰的身边浮出水面,才被老美发现.当然那是故意叫老美知道."请不要在我家门口耀武扬威"!AIP发动机原理图斯特林发动机系统斯特林发动机(SE/AIP)系统与闭式循环柴油机系统大致相同,最主要的不同就是发动机。

SE/AIP系统使用的是热气机,而CCD/AIP系统使用的是闭式循环柴油机。

热气机的构想是英国科学家罗伯特·斯特林于1816年率先提出来的,它是一种由外部热源加热,并将热能转换为机械能的热机,其循环是一种闭式、采用定容下回热的气体循环,简称斯特林循环,其具体工作原理是:斯特林发动机的活塞上室为热室,它与另一活塞的下室相连,四个缸相互连接在一起,具体的是1号缸上部的热室与2号缸下部的冷室相连,2号缸上部的热室与3号缸下部的冷室相连,3号缸上部的热室与4号缸下部的冷室相连,4号缸上部的热室与1号缸下部的冷室相连,互相差90°角。

它们使工作气体在热室和冷室之间来回移动,使活塞运动并带动曲柄转动。

斯特林发动机主要是在水下续航状态下工作,与蓄电池并联,向推进电机、全艇辅机及其他用电设备供电。

技术实现的难点和重点主要在于斯特林发动机的水下燃烧系统,因为该系统所使用的氧化剂是纯氧,燃烧方式为燃气再循环,并且是在高于周围海水压力的高压情况下进行燃烧。

主要技术优点机械噪声与振动较小。

因为斯特林发动机是一种从外部对内部气体工质连续加热使之做功的活塞式往复发动机,燃烧过程中没有柴油机的爆燃现象,燃烧过程平稳,因此发动机的噪声与振动较小,但是有些斯特林发动机的部件依然采用往复式运动机械,所以在装备潜艇时仍要加装双层隔振系统以减小水下噪声。

自制斯特林发动机制作教程及斯特林发动机原理、图纸

自制斯特林发动机制作教程及斯特林发动机原理、图纸

自制斯特林发动机制作教程及斯特林发动机原理、图纸一杯咖啡不能化身为一杯汽油,但是它一样可以用来驱动一个发动机,只不过这个发动机有点特别,是用硬纸板做成的小型发动机,当然也不是全部用硬纸板做成,还包括黄金冲件,激光切割的铝片,低摩擦的塑料轴承以及弹性钢丝。

来自德国一家叫作Astromedia,以硬纸板小发明和小玩意为主的公司。

这个能在一杯热咖啡上就能转起来的发动机,正是斯特林发动机(Stirling engine),由于能源,环境和可持续发展等人类问题的影响,人们开始热衷发展斯特林发动机,由Robert Stirling(罗伯特斯特林)在1816年发明的外燃发动机。

前不久我们网络文摘收过一篇文章,讲著名的发明家Dean Kamen(Segway的发明者)也在挪威成立一个公司,投身于他的下一个大项目,就是使用斯特林发动机的交通工具的计划。

斯特林发动机是活塞式热气发动机,在外部加热密封气室,里面的气体(氢气或氦气)膨胀推动活塞做功,膨胀后的气体在冷气室冷却,然后进入下一个流程。

同样只要有一定值的温度差存在,都可以形成斯特林发动机,比如上面这个咖啡杯上的斯特林发动机,如果下面是冰块,它也能转起来,而且比里面是热咖啡(或热水)还要持久,一个小时左右。

斯特林发动机可以使用多种的燃料,各种可燃气体估计是最佳材料,Dean Kamen还用牛粪来作过燃料。

而且排气洁净,还有一个优势相对于内燃机来说,因为没有气体爆炸,所以大大降低了噪音污染。

这个“玩意”是不是设计也没什么值得讨论的,以前人们总是很难分辨设计师或者发明家,但现在来说好像足够分明了,设计师是明星,艺术家……,而在国内发明家基本都是农民。

如果你既是设计师,又是发明家,那么肯定会得到更多人的敬佩(人人喜欢hardcore),如果你还有商业头脑,那你就是下一个Dyson了。

虽然说学科细分很难让普通人精通几般武艺,但这不是100%的,因为一方面设计本来就是知识面广泛的学科,有深入钻研的机会,另外还有想成为非普通人的普通人呢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档