简易斯特林发动机制作原理
斯特林发动机的原理
斯特林发动机的原理1.热源和冷源:斯特林发动机需要一个热源和一个冷源。
热源可以是燃烧或其他方式提供的热能,冷源可以是环境空气或其他冷却介质。
2.活塞和气缸:斯特林发动机有两个气缸,每个气缸里面都有一个活塞。
一个气缸是高温气缸,另一个是低温气缸。
活塞在气缸中往复运动。
3.曲柄轴和连杆:两个活塞通过连杆和曲柄轴连接在一起。
当活塞运动时,连杆将活塞的直线运动转换为曲柄轴的旋转运动。
4.冷热交换器:冷热交换器是将高温气体和低温气体进行热交换的设备。
它使得高温气体变冷,低温气体变热。
1.排气:开始时,两个活塞都在底死点附近。
高温气缸中的活塞往上移动,低温气缸中的活塞往下移动。
这样做可以排出气缸中的残留气体。
2.加热:高温气缸中的活塞继续向上移动,低温气缸中的活塞继续向下移动。
在这个过程中,燃料会燃烧,释放热能。
热能通过冷热交换器传递到高温气缸中,使高温气体膨胀,增加了压力和温度。
3.膨胀:高温气体的膨胀推动高温气缸中的活塞向下移动,低温气缸中的活塞向上移动。
这样做可以将部分热能转化为机械能。
这个过程是斯特林发动机的主要工作过程。
4.冷却:在膨胀过程后,高温气体通过冷热交换器流向低温气缸,并将部分热能传递给低温气体。
高温气体冷却后,其压力和温度下降。
5.压缩:低温气缸中的活塞继续向上移动,高温气缸中的活塞继续向下移动,将气体压缩。
在这个过程中,低温气体会变得更加冷却,增加了低温气缸中的压力和温度。
整个循环在连续进行,不断地从热源吸收热量,并将部分热量转化为了机械能。
斯特林发动机不需要燃烧,因此没有火花塞和汽缸盖等部件,这使得它具有低噪音、低振动和无排放的优点。
然而,斯特林发动机的缺点是体积较大,重量较重,且启动时间较长。
它主要适用于需要长时间运行和低排放的应用场景,比如太空飞行器、潜艇和太阳能发电等领域。
斯特林发动机原理
斯特林发动机原理
斯特林发动机是一种基于循环热力学原理的热机装置,利用两个不同温度的热源的热量差来产生功,其独特的工作原理和性能具有很大的优势和实用价值。
斯特林发动机的原理是利用两个不同温度的热源之间的温度差来产生热能转化为功。
它由气体循环系统和热源系统两部分组成。
气体循环系统包括一个工作空间、两个活塞和两个换热器,热源系统则包括一个高温热源和一个低温热源。
斯特林发动机的工作是先将活塞移动到离高温热源最近的位置,然后开启气门,让气体在工作空间中进行等温膨胀,此时气体吸收了高温热源的热量,产生功。
随后将活塞移动到离低温热源最近的位置,关闭气门,此时气体在工作空间中进行等温压缩,释放掉一部分热量,此时产生的功会较之前略微减少。
最后把活塞移回初始位置,再次开启气门,气体在工作空间中再次进行等温膨胀。
这个过程不断循环反复,将高温热源的热能转化为机械功输出。
斯特林发动机的效率取决于其工作流程中温度的变化,其中最高温度越接近高温热源,最低温度越接近低温热源,效率越高。
斯特林发动机的优点是实现高效率转换、稳定性好、操作安全可靠、环保无污染、耐久性强等。
它可以使用任何种类的热源,不像内燃机一样需要使用燃油或其他可燃制品,因此对环境的伤害较小。
此外,斯特林发动机还比其他类型的发动机更加耐用,因为它没有旋转部件或内部摩擦,所以不需要进行润滑。
由于斯特林发动机的工作原理独特,使其在各种环境和工况下都有着广阔的应用领域,如农村、山区以及船舶等地方的微型供电系统等。
总之,斯特林发动机是一种非常有潜力的发动机类型,具有许多优点,可以在从微型发电到大型电站等多个领域得到广泛的应用。
斯特林发动机机械效率
斯特林发动机机械效率斯特林发动机是一种热机,利用热量转化为机械能。
其基本工作原理是通过两个热交换器和一个活塞来实现的。
斯特林发动机的机械效率是指其能够将输入的热能转化为输出的机械能的比例。
本文将从斯特林发动机的基本原理、影响机械效率的因素以及提高机械效率的方法三个方面进行详细阐述。
一、斯特林发动机基本原理1.1 斯特林循环斯特林循环是指在恒定体积下进行的一种理想循环过程,它由四个过程组成:等温膨胀、绝热膨胀、等温压缩和绝热压缩。
在等温膨胀过程中,气体从低温热源吸收热量并膨胀;在绝热膨胀过程中,气体不断向高温热源移动,并且不断膨胀;在等温压缩过程中,气体向高温热源放出热量并且被压缩;在绝热压缩过程中,气体不断向低温热源移动,并且不断被压缩。
斯特林循环的效率可以通过卡诺循环效率公式来计算。
1.2 斯特林发动机原理斯特林发动机是基于斯特林循环的一种热机,其基本原理是利用两个热交换器和一个活塞来将输入的热能转化为输出的机械能。
在斯特林发动机中,气体在两个热交换器之间循环流动,其中一个热交换器与高温热源接触,另一个与低温热源接触。
气体在高温热源处膨胀、吸收热量,在低温热源处被压缩、放出热量。
由于气体的膨胀和压缩过程都是通过活塞实现的,因此可以将其转化为机械能输出。
二、影响斯特林发动机机械效率的因素2.1 温差斯特林发动机的工作效率与其所处的温差有关。
当温差越大时,工作效率越高。
因此,在设计和使用斯特林发动机时,需要尽可能地增大温差。
2.2 气体斯特林发动机中的气体对其机械效率也有影响。
理想气体在斯特林循环中的效率比实际气体高。
因此,在设计和使用斯特林发动机时,需要选择适合的气体类型并控制其压力和温度,以提高其效率。
2.3 活塞活塞是将气体膨胀和压缩转化为机械能输出的重要部件。
因此,在设计和制造活塞时,需要考虑其材料、形状、尺寸等因素,以确保其能够有效地转化气体膨胀和压缩产生的能量。
三、提高斯特林发动机机械效率的方法3.1 提高温差通过增大斯特林发动机所处的温差可以有效地提高其工作效率。
斯特林发动机工作原理
斯特林发动机工作原理
斯特林发动机是一种外燃循环热机,其工作原理如下:
1. 压缩气体:发动机通过连杆机构将活塞往复运动转化为连续的压缩和膨胀过程。
在压缩行程中,气体被压缩并推向热交换器。
2. 加热气体:在压缩行程中,气体进入热交换器,与外部加热源接触。
热交换器使气体吸收热量,从而增加其温度和压力。
3. 膨胀气体:在膨胀行程中,由于气体的温度和压力升高,气体向发动机的另一侧推动活塞运动。
这个过程产生的动力通过连杆机构传递到输出轴上。
4. 冷却气体:在膨胀行程结束后,气体被推回至热交换器。
此时,气体被冷却,使其温度和压力降低,为下一个压缩行程做准备。
5. 反复循环:上述的压缩、加热、膨胀和冷却过程在斯特林发动机中反复进行,在外部加热源的作用下不断将热量转化为机械能。
斯特林发动机的工作原理基于热力学循环,由于它使用气体作为工作流体而非常态,因此可以实现高效的能量转换。
与传统的内燃机相比,斯特林发动机的优点是低噪音、低排放和高效率,在某些特定的应用领域有着广泛的应用。
斯特林发动机实验原理
斯特林发动机实验原理斯特林发动机是一种热机,它利用燃烧产生的热能来产生机械功,而不像内燃机那样利用高温与低温之间的热差来产生机械功。
和内燃机相比,斯特林发动机的热效率更高,因此在一些特殊应用,如低温环境或需要长时间运行的应用中得到了广泛的应用。
斯特林发动机的工作原理是通过一个循环过程将热能转化为机械能。
这个循环过程包括以下几个步骤:1. 加热气体:在发动机内部有一个热源(例如一个火炉),它加热气体(通常是氢气或氮气),使气体温度升高。
2. 膨胀气体:加热后的气体进入一个气缸,气缸外围有一个活塞,气体膨胀时会推动活塞向外运动。
3. 冷却气体:气缸的另一侧与一个冷源相连,使气体冷却并收缩。
4. 压缩气体:冷却并收缩后的气体由于压力下降而吸回活塞,回到第一步重新开始循环。
斯特林发动机的实验可以通过以下几个步骤进行:1. 组装:将实验所需的斯特林发动机装配起来,通常包括一个气缸、活塞、曲轴和连接杆。
2. 准备:在发动机中加入气体(如氢气或氮气),并将热源放置在适当位置,以便将气体加热。
3. 启动:点燃热源,加热气体,使气体膨胀并推动活塞运动,从而带动曲轴旋转。
4. 测试:测量发动机的性能参数,例如产生的功率和效率。
可以通过改变热源的位置、调整气缸的尺寸和形状来改变发动机的性能。
5. 分析:分析实验结果并推导出发动机的工作原理和性能规律。
可以通过理论分析和数值计算来验证实验结果,进一步深入理解斯特林发动机的工作原理。
斯特林发动机的优点在于高效、低污染和可靠性高,但也存在一些局限性,例如需要较长的启动时间、重量较大、体积较大等。
随着技术的不断发展,一些新型斯特林发动机已经解决了这些问题,并在特定领域得到了广泛应用。
为了进一步提高斯特林发动机的性能,研究人员开发了许多改进器件和技术,例如:1. 调节调速器:将变速器安装在斯特林发动机上,可以更好地控制发动机的转速,从而提高其效率和性能。
2. 节流阀:通过使用节流阀可以调节发动机的输出功率,从而在运行时节省燃料和能源,同时也能降低机械部件的磨损和维护成本。
DIY斯特林发动机设计制作原理
动手制做动手制做------斯特林发动机模型斯特林发动机模型什么是斯特林热机?热气机(即斯特林发动机)的理想热力循环,为19世纪苏格兰人R.斯特林所提出,因而得名。
它是由两个定容吸热过程和两个定温膨胀过程组成的可逆循环,而且定容放热过程放出的热量恰好为定容吸热过程所吸收。
热机在定温(T (T1)1)膨胀过程中从高温热源吸热,而在定温(T2)压缩过程中向低温热源放热。
斯特林循环的热效率为公式中W 为输出的净功;Q1为输入的热量。
根据这个公式,只取决于T1和T2,T1越高、T2越低时,则越高,而且等于相同温度范围内的卡诺循环热效率。
因此,斯特林发动机是一种很有前途的热力发动机。
斯特林循环也可以反向操作,这时它就成为最有效的制冷机循环。
斯特林循环可以分为4个过程:①定温压缩过程:配气活塞停留在上止点附近,动力活塞从它的下止点向上压缩工质,工质流经冷却器时将压缩产生的热量散掉,当动力活塞到达它的上止点时压缩过程结束。
②定容回热过程:动力活塞仍停留在它的上止点附近,配气活塞下行,迫使冷腔内的工质经回热器流入配气活塞上方的热腔,低温工质流经回热器时吸收热量,使温度升高。
③定温膨胀过程:配气活塞继续下行,工质经加热器加热,在热腔中膨胀,推动动力活塞向下并对外作功。
④定容储热过程:动力活塞保持在下止点附近,配气活塞上行,工质从热腔经回热器返回冷腔,回热器吸收工质的热量,工质温度下降至冷腔温度。
在理论上,定容储热量等于回热量,其循环效率等于卡诺循环效率。
两个活塞的运动规律是由菱形传动机构来保证的。
—1878)斯特林(Robert Stirling,17901790—英国物理学家,热力学研究专家。
斯特林对于热力学的发展有很大贡献。
他的科学研究工作主要是热机。
热机的研制工作,是18世纪物理学和机械学的中心课题,各种各样的热机殊涌而出,不断互相借鉴,取长补短,热机制造业兴旺起来,工业革命处于高潮时期。
随着热机发展,热力学理论研究提到了重要位置,不少科学家致力于热机理论的研究工作,斯特林便是其中著名的一位。
斯特林发动机原理
斯特林发动机原理
很多朋友都听说过史蒂芬斯特林发动机,但是很少有人真正了解其原理,今天就让我们一起来了解一下史蒂芬斯特林发动机,是如何驱动甚至改变了世界的。
史蒂芬斯特林发动机,又称斯特林反应火箭发动机,是一种特殊的热力发动机,它的结构简单,体积小,可以获得巨大的推力,是现代航天飞行器的主要动力装置。
斯特林发动机的工作原理是,火箭发动机的发动机的燃料是一种类似液氯的混合物,它包括氯化氢(HCl)和亚氯酸(HCIO),在工作状态下,这种特殊的发动机会把气体燃烧,产生极高的温度,温度达到几千度。
燃烧过程中产生的气体及热量会被推力缸接收并转换成动能,使推进剂燃烧出大量的热量和气体,旋转动力发动机,把动能转换成空气动力,这是斯特林发动机能够获得巨大动力的不可替代的原因之一。
史蒂芬斯特林发动机的发明最终改变了世界。
他的发明对航空航天工业的发展产生了深远的影响。
如今,这款发动机推动着各类航天飞行器进入太空,它给我们的科学研究提供了更多的机会,为人类的和平发展做出了重大贡献。
史蒂芬斯特林发动机的结构也是非常复杂的。
它主要由发动机体、喷射装置、润滑系统和控制系统组成。
它的特点是,燃料和氧气可以相互独立,不需要冷却系统,动力输出稳定可控。
另外,斯特林发动机的结构也很紧凑,体积小,比其他发动机节省更多的空间。
总之,史蒂芬斯特林发动机的发明令科学史上留下了不可磨灭的印记。
斯特林发动机是一种具有重大历史意义的发动机,它的出现为航空航天提供了可靠的动力源,并为我们的航天飞行提供了可观的动能,也为人类航天发展做出了重要贡献。
斯特林发动机简单原理
斯特林发动机简单原理
斯特林发动机(Stirling Engine)是一种利用温度差而产生功能的机械装置,它可以将温度差转化为旋转机械能。
该发动机是由英国发明家史蒂文•斯特林于1816年创造的,因此得名。
斯特林发动机是一种循环式热机,其原理很简单。
它利用热量源(如煤、石油、太阳能等)的热能来推动发动机,然后把热量转换成机械能。
斯特林发动机的基本原理是热能转换机械能。
它由三个主要部件组成:一个活塞、一个头箱和一个尾箱。
其中,头箱可以吸收热量,活塞则在头箱和尾箱之间运动,从而将热能转换成机械能。
其工作过程可以分为四个步骤:
第一步:头箱内的气体吸收热量,它会使气体急剧膨胀,产生一个大量的气体压力;
第二步:活塞顺势地沿着箱体内的活塞杆运动,将气压力传达到尾箱;
第三步:尾箱内的气体因受到压力而收缩,释放出一些热量;
第四步:活塞反弹回去,从而形成一次循环。
通过以上四个步骤,斯特林发动机不断循环,将温度差转换成机械能,从而推动发动机发挥作用。
斯特林发动机的特点是体积小、功率小、效率高、噪音小,因此被广泛应用于冷冻制冷、汽车发动机、遥控器等领域。
斯特林发动机是一种高效的发动机,通过不断循环的活塞杆来转换热量,从而提供动力源。
斯特林发动机工作原理
斯特林发动机是一种热力发动机,与您汽车上的内燃机有很大的区别。
该发动机于1816年由罗伯特·斯特林发明。
斯特林发动机可能比汽油发动机或柴油发动机的效率更高。
但现在,斯特林发动机的使用还仅限于一些特殊领域,如潜艇或用于游艇的辅助发电机,这些地方静音操作非常重要。
尽管斯特林发动机在市场上的应用还没有取得普遍成功,但一些权威发明者正在研究这个问题。
斯特林发动机使用斯特林循环,这不同于内燃机中的循环。
斯特林发动机中使用的气体从来都不会离开发动机。
与汽油发动机或柴油发动机不同,它没有排放高压气体的排气阀,并且不会发生爆炸过程。
因此,斯特林发动机的噪音很低。
斯特林循环使用外热源,可以是汽油、太阳能或由腐烂植物产生的热量。
发动机气缸中不会发生燃烧过程。
斯特林发动机的配置方式有数百种。
在本文中,我们将了解斯特林循环以及这款发动机两种不同配置的工作原理。
斯特林发动机的主要原理是,首先在发动机内封入一定量的气体,然后斯特林循环的一系列活动会改变发动机内部的气压,从而导致其做功。
有几种气体的特性对斯特林发动机的运转非常重要:如果向一定空间中注入一定量的气体,当气体的温度升高时,压力就会增加。
如果压缩一定数量的气体(减少所占用空间的体积),气体的温度就会升高。
让我们以简化的斯特林发动机为例,详细了解一下斯特林循环的各个部分。
这种简化发动机采用两个气缸。
一个由外热源(如火)进行加热,另一个由外部冷却源(如冰)进行制冷。
两个气缸的气腔相通,并通过连杆让两个活塞相连,其中连杆决定了活塞的相对运动。
斯特林循环由四部分组成。
上面动画中的两个活塞完成了整个循环:对加热式气缸(左边)内的气体进行加热,导致压力上升。
这会强制活塞往下运动。
斯特林循环中的这个过程是做功过程。
当右边的活塞向下运动时,左边的活塞就会向上运动。
这会将热气推入冷却式气缸中,然后将气体快速冷却到冷却源的温度,从而降低压力。
这有助于在循环的下一个环节压缩气体。
斯特林发动机原理
斯特林发动机原理
斯特林发动机是一种用于生产能量的发动机,并且被认为是一种重要的发展方向。
它是由美国物理学家斯特林于1930年创造而成,它是由一组主要部件组成,被认为是一种较为可行的发动机。
主要有活塞、连杆、活塞杆、活塞环、曲轴和轴承等部件。
斯特林发动机是典型的内燃机,作为一种发动机,它的主要工作原理是利用液体燃料的燃烧,将液体燃料燃烧产生的气体推动活塞运动,从而达到转动曲轴的目的。
活塞的运动由连杆在曲轴和活塞杆之间控制,活塞环在活塞杆和活塞头之间控制。
等等。
斯特林发动机可以用于家用产品、汽车和航空发动机等。
由于其结构紧凑,可以有效地进行水平安装,外形美观,同时具有更高的效率,更短的冷却时间,较低的消耗和较低的噪声等优点,有助于发动机的发展。
斯特林发动机工作原理很简单,首先,活塞在活塞环的作用下,经过活塞杆的活动,被推动前进,同时压缩燃料,然后由点火系统点火,燃料被燃烧,产生高温气流,气流又推动活塞向下,通过连杆再推动曲轴转动,最终转动发动机,达到产生动能的目的。
斯特林发动机运转稳定、噪声低,运动效率高,重量轻,使用寿命长,维护简便,为发动机的发展带来了很多有益的影响。
如今,它已经广泛应用于航空、汽车、汽艇、拖拉机和其他工业推动设备等领域,发挥着重要的作用。
总之,斯特林发动机在发动机发展史上起着举足轻重的作用,在
各种发动机的设计和应用中发挥着重要的作用,也有助于实现高效的能量转换。
斯特林发动机的未来发展将大有可为,希望能够继续使它更加发达先进。
斯特林发动机工作原理
斯特林发动机工作原理斯特林发动机是一种热机,它通过燃烧工质使气缸内的气体膨胀,从而驱动活塞做功。
在斯特林发动机中,气体的膨胀和压缩是在不同的气缸内进行的,这是与内燃机的一个显著区别。
下面我们将详细介绍斯特林发动机的工作原理。
首先,斯特林发动机由气缸、活塞、燃烧室、热交换器和工作物质组成。
工作物质可以是氢气、氦气、氮气或空气,而燃料可以是任何可燃烧的物质,比如天然气或液化石油气。
当燃料在燃烧室中燃烧时,会释放热量,使热交换器受热。
热交换器中的工作物质被加热后膨胀,推动活塞做功。
而后,燃烧室中的废气被排出,工作物质被冷却,从而收缩,活塞则被推回原位置。
斯特林发动机的工作过程可以分为四个阶段,加热、膨胀、冷却和压缩。
在加热阶段,燃料燃烧释放热量,使热交换器中的工作物质受热膨胀;在膨胀阶段,膨胀的工作物质推动活塞做功,从而驱动发动机输出功率;在冷却阶段,废气被排出,工作物质被冷却,收缩;在压缩阶段,活塞被推回原位置,使工作物质再次进入加热循环。
斯特林发动机的工作原理可以用热力学循环来描述,即斯特林循环。
斯特林循环由等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程组成。
在等温膨胀过程中,工作物质受热膨胀,推动活塞做功;在绝热膨胀过程中,活塞继续做功,但不再受热;在等温压缩过程中,废气被排出,工作物质被冷却收缩;在绝热压缩过程中,活塞被推回原位置,使工作物质再次进入加热循环。
总的来说,斯特林发动机通过热交换器将燃料燃烧释放的热量转化为机械功,驱动活塞做功,从而驱动发动机输出功率。
它的工作原理基于斯特林循环,通过加热、膨胀、冷却和压缩四个阶段完成一个工作循环。
这种发动机具有结构简单、振动小、噪音低、排放清洁等优点,因此在某些特定领域有着广泛的应用前景。
斯特林发动机原理
斯特林发动机原理斯特林发动机是19th世纪末由英国发明家吉米斯特林发明的,它是一种发动机,用来将化学能转化成机械能。
它的正确运作取决于结构,工作流程和一些其他参数的完美协调。
斯特林发动机通过一种叫做热压缩流程的热机运动来转化能量。
它是一种典型的热机械设备,具有传动、转轴、轨道等传动元件,其中包含四个基本过程,即燃烧,推动,压缩和扩散。
斯特林发动机主要由活塞、连杆、燃烧室等组件组成,它的工作既可以是气体燃烧,也可以是液体燃烧,可以被分为四个阶段:燃烧、排放、压缩和展开。
首先,活塞在燃烧室中移动,混合空气和燃料,使其在高温下燃烧,产生大量的热能。
随后,通常这些热能会被排放出来,然后将活塞拉回去,并且把进入燃烧室的空气和燃料压缩到一定的高压,使其燃烧出更多的热能。
当活塞移动到最高的位置之后,像气体一样,压缩的空气和燃料被强制扩散出去,向外围传播,从而推动活塞前进,产生机械能量。
斯特林发动机的主要优点是体积小,重量轻,动力较大,低排放,结构简单,可靠性高。
另外,斯特林发动机不依赖于燃料类型,燃料短缺时可用增压或喷气式发动机替代,无需任何改装。
它还可以应用于高负载工作。
由于其易于制造、操作和维护,斯特林发动机在汽车、拖拉机、摩托车和飞机中都得到了广泛的应用。
它已经在航空发动机中普及,甚至在宇宙飞行器上也有应用,是目前世界上最流行的发动机之一。
虽然斯特林发动机的效率非常高,但是它也有一些缺点。
其中最大的一个缺点是发动机会产生大量的噪声,而且汽车的排放总量较大,燃油的消耗较高。
另外,在斯特林发动机的某些工作条件下,会出现爆震现象,从而影响发动机的性能。
总之,斯特林发动机是一种具有传统价值和现代技术特征的发动机。
它具有结构紧凑、重量轻、动力强、排放低、可靠性高等优点,是一种被广泛应用的发动机。
斯特林发动机基础研究与优化设计
斯特林发动机基础研究与优化设计斯特林发动机是一种热机,利用外部热源和内部工作物质的循环变化完成能量转换,实现动力输出。
与内燃机相比,斯特林发动机具有结构简单、噪音低、排放少、维护成本低等优点,而且可以使用多种燃料,因此备受研究者和工程师的关注。
本文将介绍斯特林发动机的基础原理和优化设计方法。
一、斯特林发动机的基础原理斯特林发动机的工作原理基于一个简单的热力学循环,称为斯特林循环。
这个循环包括四个处理过程:加热、等容膨胀、冷却和等容压缩。
斯特林发动机的关键组成部分包括热源、工作物质、热交换器、活塞、缸筒和阀门。
斯特林发动机的热源可以是任何方便的燃料,例如天然气、液化石油气和生物质。
燃料在热源中燃烧,产生高温高压的气体。
这些气体通过热交换器传递给工作物质,使工作物质的温度升高。
工作物质是斯特林发动机的动力源,通常是氢气、氦气或空气。
当工作物质从温度低的热交换器进入温度高的热交换器时,它会被加热并膨胀。
此时,压力在活塞的作用下推动活塞向外运动,这就是等容膨胀过程。
等容膨胀完成后,工作物质从热交换器中流出,进入温度低的热交换器,被冷却并压缩。
这就是等容压缩过程。
最后,工作物质从压缩器流回膨胀室,完成一个斯特林循环,可以输出动力。
二、斯特林发动机的优化设计虽然斯特林发动机具有许多优点,但是它也存在一些缺陷。
例如,斯特林发动机的功率密度通常低于内燃机,而且在实际应用中具有较低的效率。
因此,研究人员一直在进行斯特林发动机的优化设计,以提高功率密度和效率。
1. 优化工作物质为了提高斯特林发动机的功率密度和效率,研究人员通常会优化工作物质的选择和属性。
例如,在高温下,氢气比空气更适合用作工作物质,因为它具有更高的热导率和更低的分子量。
此外,添加适量的抑制剂可以减少工作物质的分子大小和热传导率,有助于提高发动机的效率。
2. 优化热交换器热交换器是斯特林发动机中的一个重要组成部分,其性能对发动机的效率和功率密度有较大影响。
斯特林发动机工作原理
斯特林发动机工作原理
斯特林发动机是一种热力循环发动机,它利用气体的压缩和膨胀来产生动力。
它的工作原理可以简单地概括为四个基本过程,压缩、加热、膨胀和冷却。
下面我们将详细介绍斯特林发动机的工作原理。
首先,斯特林发动机的工作开始于压缩过程。
在压缩过程中,气体被压缩成高压状态,这一过程通常是通过活塞在气缸内的运动来完成的。
当活塞向气缸内移动时,气体被挤压,使得气体的压力和温度都会增加。
这一过程使得气体能够储存更多的能量,为后续的过程提供动力。
接下来是加热过程。
在这一过程中,高压气体被引入到加热器中,通过加热器中的热源(通常是燃烧燃料产生的热能)使得气体温度升高。
高温的气体能够释放更多的能量,为后续的膨胀过程提供动力。
然后是膨胀过程。
在膨胀过程中,高温高压的气体被释放到活塞上,推动活塞做功。
这一过程使得发动机能够产生动力,驱动车辆或机器运行。
膨胀过程也是斯特林发动机最重要的工作过程,它直接决定了发动机的输出功率。
最后是冷却过程。
在冷却过程中,高温高压的气体被排出活塞外,进入冷却器中进行散热。
冷却过程使得气体温度降低,为下一个循环做好准备。
通过这四个基本过程,斯特林发动机能够不断地进行循环工作,产生持续的动力输出。
相比于其他类型的发动机,斯特林发动机具有工作稳定、噪音小、排放清洁等优点,因此在一些特定的领域得到了广泛的应用。
总结一下,斯特林发动机的工作原理是基于热力循环的,通过压缩、加热、膨胀和冷却四个基本过程来产生动力。
这一原理使得斯特林发动机成为一种高效、稳定的动力装置,为各种应用提供了可靠的动力支持。
斯特林发动机的工作原理
斯特林发动机的工作原理
斯特林发动机是一种外燃循环热机,利用恒定温差产生的热能转化为机械能。
其工作原理如下:
1. 步骤一(加热):燃烧燃料,加热一个密闭的热源(通常为气体)。
燃烧产生的高温热量使气体温度升高,压力增加。
2. 步骤二(气体膨胀):高温气体通过热交换器流向活塞室(热端),推动活塞向并与发电机连接的曲柄轴执行往复运动。
这个过程称为气体膨胀,活塞移动时斯特林发动机执行功。
3. 步骤三(冷却):活塞移动到最大位置时,热源和活塞室之间的连接关闭。
在这个阶段,活塞室与冷却器(冷端)之间是开放的。
4. 步骤四(气体压缩):冷却器中的气体被压缩,温度下降,压力减少。
这个过程称为气体压缩,也推动活塞向后运动,并将活塞室中剩余的气体推向冷却器。
5. 步骤五(再次加热):在活塞最后的运动阶段,与气体膨胀阶段类似,热源和活塞室连接再次打开。
气体被再次加热,压力增加。
这样一来,斯特林发动机的工作循环就完成了。
通过这种循环过程,斯特林发动机可以将热能转化为机械能,并辅以适当的装置将机械能输出,实现驱动发电或执行其他任务的目的。
此
外,由于斯特林发动机采用外燃烧,因此可以使用各种燃料,如石油、天然气、生物质等,具有很好的燃料灵活性。
斯特林发动机工作原理
斯特林发动机工作原理斯特林发动机是一种热机,它通过气体的循环流动来完成能量转换。
它的工作原理基于热力学循环,利用气体的膨胀和压缩来产生功。
斯特林发动机最早是由苏格兰牧师罗伯特·斯特林于1816年发明的,它是一种外燃式热机,与内燃机有着明显的区别。
斯特林发动机的工作原理可以分为四个基本过程,加热、膨胀、冷却和压缩。
在这四个过程中,气体的状态发生了变化,从而完成了热能到机械能的转换。
首先是加热过程。
在斯特林发动机中,气体通常是氢气或氦气,它们被封闭在一个密封的容器中。
当气体被加热时,它的温度会上升,同时压力也会增加。
这个过程通常是通过外部的燃烧器或者太阳能来完成的。
接下来是膨胀过程。
在加热过程完成后,气体会膨胀,从而推动活塞向外运动。
这个过程是斯特林发动机产生功的关键步骤,因为气体的膨胀会驱动活塞的运动,从而产生机械能。
然后是冷却过程。
在活塞达到最大位移时,气体会被送入冷却器中进行冷却,从而使气体的温度和压力降低。
这个过程是为了让气体重新准备好进行下一轮的加热和膨胀。
最后是压缩过程。
在冷却完成后,活塞会向内运动,将气体压缩,使其重新回到最初的状态。
这个过程是为了让气体重新准备好进行下一轮的加热。
斯特林发动机的工作原理与内燃机有着明显的区别。
内燃机是通过燃烧混合气体来推动活塞运动,而斯特林发动机则是通过加热和冷却气体来完成这一过程。
这使得斯特林发动机在工作时产生的噪音和振动都比较小,因此在一些特殊场合下有着更广泛的应用。
斯特林发动机的工作原理虽然看起来比较简单,但是要实现高效率的能量转换并不容易。
在实际应用中,需要考虑到许多因素,比如加热和冷却的方式、活塞和气体的材料、密封性能等等。
这些因素都会影响到斯特林发动机的性能和效率。
总的来说,斯特林发动机是一种通过气体循环流动来完成能量转换的热机,它的工作原理基于热力学循环,利用气体的膨胀和压缩来产生功。
与内燃机相比,斯特林发动机在工作时产生的噪音和振动都比较小,因此在一些特殊场合下有着更广泛的应用。
斯特林发动机原理
斯特林发动机原理
斯特林发动机是1816年由苏格兰人R斯特林提出来的,因而得名。
它在理论上接近于理论最大效率。
它是通过气体受热膨胀、遇冷压缩而产生动力的。
这是一种外燃发动机,使燃料连续地燃烧,蒸发的膨胀氢气(或氦)作为动力气体使活塞运动,膨胀气体在冷气室冷却,反复地进行这样的循环过程,便可为外机提供动力。
它的工作原理如下:
图示是一个简易的斯特林发动机的模型。
气缸内装有一定量的惰性气体。
它包括两个活塞,黄色的为交换活塞,墨绿色的为动力活塞,都连接于曲轴上。
整个缸体下部为热气室,上部为冷气室。
首先对热气室进行加热到一定程度,给活塞一个初速度。
动力活塞往下运动将冷气室的气体压到热气室,气体在热气室受热膨胀推动活塞向上运动,当气体到达冷气室,气体冷却收缩,活塞缩回,又将气体压到热气室,这样就形成了一个往复运动,从而可以产生动力。
这就是斯特林发动机的基本原理。
斯特林发动机的工作原理
斯特林发动机的工作原理
哎呀,斯特林发动机,这玩意儿可真有意思。
你知道吗,这玩意儿其实挺简单的,就是利用热能来驱动一个循环,然后产生动力。
不过,别急,我慢慢给你讲。
首先,你得知道,斯特林发动机跟普通的内燃机不一样,它不靠燃烧燃料来产生动力。
它用的是外部热源,比如太阳能啊,或者火炉啊,来加热里面的气体。
这就像是你把一个气球放在太阳底下,气球会因为热胀冷缩而膨胀,对吧?
斯特林发动机里头有个小活塞,它在热气体的推动下会往一个方向移动。
然后,当气体冷却下来,活塞就会往回移动。
这样一推一拉的,就产生了动力。
我记得有一次,我在一个科技展览会上看到有人现场演示斯特林发动机。
那是一个阳光明媚的下午,他们把发动机放在一个大玻璃罩里,然后用太阳的热量来驱动它。
我看着那个小活塞,它就像一个勤劳的小工人,不停地来回移动,推动着旁边的一个小风扇转个不停。
那个风扇转得可真快,我都担心它会飞出去。
但是,它就那样稳稳地转着,好像在说:“看,我多厉害!”我当时就想,这玩意儿要是能装在我家的太阳能板上,那得多省电啊。
不过,斯特林发动机也有它的局限性。
比如说,它需要一个稳定的热源,而且效率不是特别高。
但是,这并不妨碍我对它的喜爱。
毕竟,它用一种完全不同的方式,让我们看到了热能转换成机械能的可能性。
最后,我想说的是,斯特林发动机虽然不是最完美的,但它的工作原理真的很酷。
它就像是一个小小的奇迹,让我们这些普通人也能窥见科学的力量。
下次,当你在阳光下看到一个小风扇在转的时候,别忘了,那可能就是斯特林发动机在工作呢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易斯特林发动机制作原理史特灵引擎属於外燃引擎,只要高温热源温度够高,无论是使用太阳能、废热、核原料、牛粪、丙烷、天然气、沼气(甲烷)、丁烷与石油在内的任何燃料,皆可使之运转,不同於必须使用特定燃料的汽油引擎、柴油引擎等内燃引擎。
A.基础篇A1气体的特性如图1把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。
A2移气器如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。
这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。
其原理如下:当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。
相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端为冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。
如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。
由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。
国立成功大学航太系郑金祥教授把Displacer命名为”移气器”,实在更为贴切,也比较不容易混淆,比较不会使人误以为它的作用跟输出功率的动力活塞一样。
A3曲柄机构要让移气器上下移动,只要将移气器与一曲轴连结(图6)。
当曲轴旋转时,移气器就会被带上及带下。
将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。
A4动力活塞橡皮的膨胀及收缩运动,可以转换为动力输出,此时,橡皮的作用即如同一动力活塞。
我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运动转换为曲轴的旋转运动。
连接到移气器的曲轴部位与连接到动力活塞的曲轴部位必须呈固定的角度差,一般是90度(图8,9)。
橡皮的膨胀及缩收所產生的曲轴的旋转运动提供了移气器上下移动的力量,多餘的力量则可以输出。
必须注意的是,移气器本身不会动,而是被曲轴带动,动力来源是动力活塞。
为何相位角是90度?如图9当移气器移到最顶点的位置时,底部加热空间最大,此时所產生的压力也最大,当移气器移到最底点的位置时,顶部冷却空间最大,此时所產生的压力也最小,如把动力活塞的曲柄连接到曲轴水平位置最远的地方时可產生最大的扭力,此时可看到连接到移气器的曲轴部位与连接到动力活塞的曲轴部位呈90度的角度差,该角度称为相位角。
曲柄连接到曲轴水平的位置也决定了引擎旋转方向。
上述的条件为静态环境的结果,当随著引擎的转速、负载、温度及使用气体的不同则会有不同的最佳相位角,一般以90度作为通用的相位角。
A5飞轮如果只有上述的零件,引擎还是不能运转。
因为利用橡皮的膨胀或收缩(图8,9),并无法让曲轴旋转一整圈。
因此,必须加上一个有旋转惯性的设备,即“飞轮”,才能达成连续的运转。
一般採用的飞轮,最常见的是圆形飞轮,如图10所示。
如果除了惯性需求外,还要考虑平衡问题,则在曲轴旋转面的另一端加一配重物充当飞轮,便可解决平衡问题(图11)。
B.进阶篇史特灵引擎是一种高效率的能量转换装置,係採用封闭气体循环(Closedgascycle)及再生器(Regenerator)设计。
理论上,理想史特灵引擎的热效率(Thermalefficiency)与卡诺引擎(Carnotengine)相当,二者皆属可逆热机(Reversiblecycle),具最高热力循环转换效率。
史特灵引擎的使用的工作气体可为高压之空气、氮气、氦气、或氢气。
一般而言,大致分为两种可能的配置:第一种配置利用一个动力活塞(Piston)压缩或膨胀气体,另利用一个移气器(Displacer)使工作气体在气缸内来回流动;第二种配置则不用移气器,完全利用两个活塞来达到压缩膨胀气体与来回驱赶气体的目的。
当气缸内部气体被驱赶至加热部而受热时,即因膨胀推动动力活塞而对外作功。
以气缸数与动力活塞及移气器的排列构型来区分,史特灵引擎又可以分为下列三种形式:(1)α型—又称双气缸型(twin-cylinderStirlingengine),此型无移气器,然具有二个动力活塞,分别在二个独立的气缸内作动。
(2)β型—又称为同轴活塞型(coaxialpiston-displacerStirlingengine),具有一动力活塞与一移气器,二者位於同一气缸,且沿相同轴移动。
自由活塞式史特灵引擎即属此类。
(3)γ型—具有二个独立气缸,其中一气缸内设置动力活塞,另一气缸则设置一移气器,本模型则属於γ型。
史特灵引擎在不同的额定功率下皆能表现出高效率,且因其乃属常压燃烧供热之外燃机,燃烧较为完全,故排气洁净。
最重要的是,它可以适用不同的热来源,包括汽油、天然气、太阳能、生质能、废热利用等。
近年来,能源工程技术相关的研究者对史特灵引擎的研究兴趣正逐渐加温,极可能成为另一个未来可供选择的动力来源之一。
配合上图,理想史特灵引擎的热力循环概念介绍如下:(1)a→b过程中,工作流体等体积吸热升温;(2)b→c过程中,工作流体等温吸热膨胀;(3)c→d过程中,工作流体等体积冷却降温;(4)d→a过程中,工作流体等温冷却收缩。
史特灵引擎与卡诺引擎比较,前者由两个等温过程和两个等体积过程所构成,而后者係由两个等温过程和两个绝热过程所构成。
换言之,史特灵引擎循环以两个等体积的吸热与排热过程,取代卡诺循环的两个绝热过程。
因此,若史特灵引擎循环欲达成卡诺引擎相同的热效率,必须将c→d过程中,工作流体等体积排热过程所排出的的热量,必须用来提供在a→b过程中,工作流体等体积吸热升温所需的热量,这个步骤,叫作再生(Regeneration),所使用的装置,称为再生器(Regenerator)。
值得注意的是,实际上史特灵引擎内部工作流体的温度和压力,在循环变化过程中并非是完全均匀的。
因此,体积和压力的变化也非如上图所示那样清楚分明。
AIP发动机原理图潜水艇对动力系统的要求,非常苛刻.即要有强大的动力.更要能非常的安安静静.尽量是无声.AIP发动机就是这样的发动机.再加上燃料电池驱动.更是完美的搭配.因为到目前为止.除了声纳探测可发现水下潜艇.还未有真正的探测技术,能发现潜艇AIP发动机原理图斯特林发动机系统斯特林发动机(SE/AIP)系统与闭式循环柴油机系统大致相同,最主要的不同就是发动机。
SE/AIP系统使用的是热气机,而CCD/AIP系统使用的是闭式循环柴油机。
热气机的构想是英国科学家罗伯特•斯特林于1816年率先提出来的,它是一种由外部热源加热,并将热能转换为机械能的热机,其循环是一种闭式、采用定容下回热的气体循环,简称斯特林循环,其具体工作原理是:斯特林发动机的活塞上室为热室,它与另一活塞的下室相连,四个缸相互连接在一起,具体的是1号缸上部的热室与2号缸下部的冷室相连,2号缸上部的热室与3号缸下部的冷室相连,3号缸上部的热室与4号缸下部的冷室相连,4号缸上部的热室与1号缸下部的冷室相连,互相差90°角。
它们使工作气体在热室和冷室之间来回移动,使活塞运动并带动曲柄转动。
斯特林发动机主要是在水下续航状态下工作,与蓄电池并联,向推进电机、全艇辅机及其他用电设备供电。
技术实现的难点和重点主要在于斯特林发动机的水下燃烧系统,因为该系统所使用的氧化剂是纯氧,燃烧方式为燃气再循环,并且是在高于周围海水压力的高压情况下进行燃烧。
主要技术优点机械噪声与振动较小。
因为斯特林发动机是一种从外部对内部气体工质连续加热使之做功的活塞式往复发动机,燃烧过程中没有柴油机的爆燃现象,燃烧过程平稳,因此发动机的噪声与振动较小,但是有些斯特林发动机的部件依然采用往复式运动机械,所以在装备潜艇时仍要加装双层隔振系统以减小水下噪声。
废气排放方便,当热气机的燃烧压力为22公斤/厘米2时,废气水下排放不需要闭式循环柴油机系统的庞大水管理系统,在潜深200米内可以自主排放,即使增加潜深也只需要小型压缩机协助。
当燃烧压力小于20公斤/厘米2时,废气水下自主排放的深度要相应减小。
这种发动机的废气排放深度与燃烧压力有关,这也是技术实现的一个难点。
缺点和不足功率较低,斯特林发动机由于其自身固有的低功率密度的特点,因而决定了整个AIP系统的功率密度小于CCD/AIP系统。
如果要加大功率,需要配几台发动机,但这又影响到整个潜艇的布局与使用,实现功率突破难度较大;燃油消耗量较大,目前要高于普通柴油机。
当前,在SE/AIP系统较有建树的国家是瑞典。
瑞典考库姆公司从上世纪60年代末就开始斯特林发动机的研制工作,目前已经成功研制出71千瓦的V4-275R 型斯特林发动机,装备于1995年2月2日下水的“哥特兰”号潜艇,并使之成为世界上第一艘装备SE/AIP系统的常规潜艇,这也标志着斯特林发动机进入了实用阶段。
近年来,日本也从瑞典引进了斯特林发动机的建造技术,用于装备或改装海上自卫队潜艇。
闭式循环汽轮相系统闭式循环汽轮机系统(MESMA/IP)系统主要由4个分系统构成:液氧储存罐、燃料储存罐及一、二回路系统。
其中燃料通常选择乙醇,存放在储存罐中的橡胶袋中;一回路系统包括高压燃烧室、热交换机、冷凝器;二回路系统包括蒸汽发生器、蒸汽轮机、冷凝器。
具体工作原理及过程:将储存在绝热罐中的低温液氧送到加热器中加温呈气态,乙醇和气态氧在高压燃烧室里燃烧,燃气通过蒸汽发生器后大部分被冷却,这些经冷却的燃气重新回到燃烧室,用于冷却烟道壁,调节燃烧壁壁温,使其保持在1000℃以下,同时稀释乙醇/氧气的混合气体,使其燃烧温度保持在700℃的最佳状态。
一小部分未经冷却的燃气有些直接排出艇外,有些以液态方式储存在艇内。
水在蒸汽发生器吸收燃气热量后变成高温高压蒸汽,温度达500℃,压力大约为18公斤/厘米2,这些蒸汽推动蒸汽轮机做功,驱动交流发电机和整流机组产生直流电,为推进系统提供能量。
水蒸汽冷凝成水后,返回蒸汽发生器,完成循环过程。
技术实现的难点和重点主要在于此系统的液氧采用的是高压储存(60公斤/厘米2)或者低温低压储存(??185℃,2-10公斤/厘米2),无论液氧储存罐置于何处,必须要经得起5g的冲击。
因此液氧储存罐应安装在低频率的弹性基座上,基座固有频率应小于5赫兹。
主要技术优点功率大,可满足潜艇水下航行需要,法国在为巴基斯坦建造的“阿戈斯塔”90B级潜艇上所安装的MESMA/AIP系统的功率为200千瓦;燃烧产物的排放非常隐蔽,由于燃烧时的压力较大,燃烧产物的压力也较大,不需要使用其他机械系统加压就能自动排出艇外,相应也就减少了潜艇的自噪声;另外使用气泡***系统使排出的二氧化碳气泡减小,提高废气的海水溶解度,如果情况危急,可将燃烧产物进行冷凝储存在艇内,此举将大大提高潜艇的隐蔽性。