4.3 第2课时 用完全平方公式分解因式
4.3.2公式法

5.把下列多项式因式分解: (1)-3x2-12+12x; (2)3ax2+6axy+3ay2; (3)4(x+y)2-20(x+y)+25. 解: (1)原式=-3(x2+4-4x)=-3(x-2)2; (2)原式=3a(x2+2xy+y2)=3a(x+y)2; (3)原式=[2(x+y)-5]2=(2x+2y-5)2.
B.3x(x-4)2
C.3x(x+2)(x-2)
D.3x(x-2)2
3.把代数式 x3-4x2+4x 因式分解,结果正确的是( D ) A.x(x2-4x+4) B.x(x-4)2 C.x(x+2)(x-2) D.x(x-2)2 【解析】 原式=x(x2-4x+4)=x(x-2)2,故选 D.
4.因式分解: (1) x2-6x+9=___(_x_-___3_)_2_. (2) 4a2-4a+1=___(2__a_-___1_)_2. (3) 2a2-4a+2=___2_(_a_-___1_)_2_. (4) 2x2-8xy+8y2=___2__(x__-__2__y_)_2. (5) 3ax2-6axy+3ay2=___3_a_(_x_-___y_)_2. (6) x2y-2xy2+y3=___y_(_x_-___y_)_2_.
A.x-1
B.x+1
C.x2-1
D.(x-1)2
【解析】 因为 mx2-m=m(x2-1)=m(x-1)(x+1), x2-2x+1=(x-1)2,所源自以公因式为 x-1.故选 A.
8.已知 x2+y2+16x-4y+68=0,则 x+y=__-___6_.
【解析】 由于 x2+y2+16x-4y+68=0, 所以(x+8)2+(y-2)2=0. 由于(x+8)2≥0,(y-2)2≥0, 所以 x+8=0,y-2=0, 即 x=-8,y=2, 所以 x+y=-8+2=-6.
八年级数学下册 第4章 因式分解4.3 公式法第2课时 用完全平方公式分解因式习

(2) (x2+16y2)2-64x2y2; =(x2+16y2)2-(8xy)2 =(x2+16y2+8xy)(x2+16y2-8xy) =(x+4y)2(x-4y)2.
(3)a3-a+2b-2a2b; =a(a2-1)+2b(1-a2) =(a-2b)(a+1)(a-1).
(4)【2019·齐齐哈尔】a2+1-2a+4(a-1).
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+ 12b-61,c是△ABC中最短边的长(三边长各不相等), 且c为整数,那么c可能是哪几个数?
解:∵a2+b2=10a+12b-61, ∴(a-5)2+(b-6)2=0, ∴a=5,b=6,∴1<c<11. ∵c 是△ABC 中最短边的长,且 c 为整数,∴c 可能是 2,3,4.
8.如图是一个正方形,分成四部分,其面积分别是a2,ab, ab,b2,其中a>0,b>0,则原正方形的边长是( ) A.a2+b2 B.a+b C.a-b D.a2-b2
【点拨】从图形的特征入手,利用面积公式求解. 【答案】B
9.【2019·哈尔滨】把多项式a3-6a2b+9ab2分解因式 的结果是_a_(_a_-__3_b_)2___.
题.相信你也能很好地解决下面两个问题.请写出你的解题过程.
ห้องสมุดไป่ตู้
解决问题: (1)若x2-4xy+5y2+2y+1=0,求xy的值; 解:∵x2-4xy+5y2+2y+1=0, ∴x2-4xy+4y2+y2+2y+1=0, ∴(x-2y)2+(y+1)2=0,∴x-2y=0,y+1=0, 解得 x=-2,y=-1,故 xy=(-2)-1=-12.
10.【中考·聊城】把8a3-8a2+2a进行因式分解,结果正 确的是( C ) A.2a(4a2-4a+1) B.8a2(a-1) C.2a(2a-1)2 D.2a(2a+1)2 【点拨】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a -1)2.故选C.
八年级数学北师大版初二下册--第四单元 4.3《公式法--第二课时:用完全平方公式分解因式》课件

7 【2017·安顺】若代数式x2+kx+25是一个完全 平方式,则k=___±__1_0__.
知识点 2 用完全平方公式分解因式
知2-导
用公式法正确分解因式关键是什么?
从项数看: 都是有3项
熟知公式特征!
从每一项看: 都有两项可化为两个数(或整式)的平方, 另一项为这两个数(或整式)的乘积的2倍.
容易忽视②⑤,注意②提出 1 ,⑤提出3以后 2
就能利用完全平方公式分解因式.
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
A.b<c<a
B.a<c<b
C.b<a<c
D.c<b<a
知3-练
4 若一个长方形的面积是x3+2x2+x(x>0),且 一边长为x+1,则其邻边长为__x_2_+__x__.
1 知识小结
完全平方公式法: 两个数的平方和加上(或减去)这两个数的积的2倍, 等于这两个数的和(或差)的平方. 即:a2±2ab+b2=(a±b)2.
(来自《完全平方公式进行因式分解的 是( D )
A.x2+1
B.x2+2x-1
C.x2+x+1
D.x2+4x+4
知2-练
3 (2016·长春)把多项式x2-6x+9分解因式,结果正
确的是( A )
A.(x-3)2
B.(x-9)2
C.(x+3)(x-3)
D.(x+9)(x-9)
知1-导
a2 2ab b2 a2 2ab b2
我们把以上两个式子叫做完全平方式 . 两个“项”的平方和加上(或减去)这两“项” 的积的两倍
知1-讲
用完全平方公式分解因式 浙教版数学七年级下册同步练习(含解析)

4.3用乘法公式分解因式第2课时用完全平方公式分解因式基础过关全练知识点1完全平方式1.若关于x的多项式x2-4x+a(其中a是常数)是完全平方式,则a的值是()A.2B.-2C.4D.-42.【新独家原创】若关于x的多项式x2+mx+n是完全平方式,则m,n 的值可能是()A.-1,14B.12,14C.14,-14D.-14,143.下列各式中,与2x2-6x的和是完全平方式的是()A.x+9B.3C.9D.9-x2知识点2用完全平方公式分解因式4.下列可以用完全平方公式因式分解的是()A.4a2-4a-1B.4a2+2a+1C.1-4a+4a2D.2a2+4a+15.(2022浙江杭州余杭期末)下列因式分解正确的是()A.x2+y2=(x+y)2B.x2+2xy+y2=(x-y)2C.x2+x=x(x-1)D.x2-y2=(x+y)(x-y)6.(2022贵州黔东南中考)分解因式:2 022x2-4 044x+2 022=.7.【一题多变】(2022黑龙江绥化中考)分解因式: (m+n)2-6(m+n)+9=.[变式] 分解因式:19-13(a+b)+14(a+b)2= . 8.【教材变式·P108T5变式】因式分解:(1)m 2-4mn+4n 2; (2)-a+2a 2-a 3;(3)4+12(a-b)+9(a-b)2; (4)(x 2+4)2-16x 2.9.(2021浙江杭州余杭模拟)给出三个多项式:①a 2+3ab-2b 2;②b 2-3ab;③ab+6b 2.请任意选择两个多项式进行加法运算,并把结果分解因式.知识点3 简便运算10.用简便方法计算: 1012+198×101+992.能力提升全练11.下列因式分解正确的是( ) A.ab+ac+a=a(b+c)B.a 2-4b 2=(a+4b)(a-4b)C.9a 2+6a+1=3a(3a+2)D.a 2-4ab+4b 2=(a-2b)212.(2022浙江绍兴柯桥期中,7,)若x 2+2(k+1)x+4是完全平方式,则k 的值为( ) A.1 B.-3 C.-1或3 D.1或-313.把(a+b)2-4(a 2-b 2)+4(a-b)2因式分解为( )A.(3a-b)2B.(3b+a)2C.(3b-a)2D.(3a+b)214.若ab=2,b-a=3,则-a 3b+2a 2b 2-ab 3的值为 .15.因式分解:a 2-b 2-x 2+y 2-2ay+2bx= .16.【新独家原创】下列单项式:①3x;②-5x;③-154;④-1516x 2;⑤-3x 中,加上x 2-x+4后成为一个完全平方式的有 .(填序号)17.【作差法比大小】已知P=2x2+4y+13,Q=x2-y2+6x-1,试比较P,Q的大小.18.【学科素养·运算能力】(2022浙江杭州外国语学校期中,22,)配方法是一种重要的解决问题的数学方法,它不仅可以将一个看似不能分解的多项式因式分解,还能解决一些与非负数有关的问题或代数式最大值、最小值的问题.请用配方法解决以下问题.(1)试说明:无论x,y取何值,多项式x2+y2-4x+2y+6的值总为正数;(2)分解因式:a4+a2+1;(3)已知实数a,b满足-a2+5a+b-3=0,求a+b的最小值.素养探究全练19.【运算能力】我们知道(x+a)(x+b)=x2+(a+b)x+ab,若将该式从右到左使用,就可得到用“十字相乘法”因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)分解因式:x2+6x+8=(x+)(x+);(2)请用上述方法解方程:x2-3x-4=0.答案全解全析基础过关全练1.C ∵关于x 的多项式x 2-4x+a(其中a 是常数)是完全平方式,∴a=4,故选C.2.A 当m=-1,n=14时,x 2+mx+n=x 2-x+14=(x −12)2,故选A. 3.D (2x 2-6x)+(9-x 2)=2x 2-6x+9-x 2=x 2-6x+9.故选D.4.C 1-4a+4a 2=(1-2a)2,故选C.5.D x 2+y 2不能分解,故A 错误;x 2+2xy+y 2=(x+y)2,故B 错误; x 2+x=x(x+1),故C 错误;x 2-y 2=(x+y)(x-y),故D 正确.故选D.6.答案 2 022(x-1)2解析 原式=2 022(x 2-2x+1)=2 022(x-1)2.7.答案 (m+n-3)2解析 原式=(m+n)2-2·(m+n)·3+32=(m+n-3)2.[变式] 答案 (13−12a −12b)2解析 原式=[13−12(a +b)]2=(13−12a −12b)2. 8.解析 (1)原式=m 2-2·m·2n+(2n)2=(m-2n)2.(2)原式=-a(a 2-2a+1)=-a(a 2-2·a·1+12)=-a(a-1)2.(3)原式=22+2·2·3(a-b)+[3(a-b)]2=[2+3(a-b)]2=(2+3a-3b)2.(4)原式=(x 2+4)2-(4x)2=(x 2+4+4x)(x 2+4-4x)=(x 2+4x+4)(x 2-4x+4)=(x+2)2(x-2)2.9.解析答案不唯一,写出以下任意一个即可.①+②得a2+3ab-2b2+b2-3ab=a2-b2=(a+b)(a-b).①+③得a2+3ab-2b2+ab+6b2=a2+4ab+4b2=(a+2b)2.②+③得b2-3ab+ab+6b2=7b2-2ab=b(7b-2a).10.解析1012+198×101+992=1012+2×99×101+992=(101+99)2=2002=40 000.能力提升全练11.D ab+ac+a=a(b+c+1),故A错误;a2-4b2=(a+2b)(a-2b),故B错误; 9a2+6a+1=(3a+1)2,故C错误;a2-4ab+4b2=(a-2b)2,故D正确.故选D.12.D∵x2±2·x·2+22=(x±2)2,∴k+1=±2,∴k=1或-3,故选D.13.C(a+b)2-4(a2-b2)+4(a-b)2=(a+b)2-2×2(a+b)(a-b)+[2(a-b)]2=(a+b-2a+2b)2=(3b-a)2.14.答案-18解析当ab=2,b-a=3时,-a3b+2a2b2-ab3=-ab(a2-2ab+b2)=-ab(b-a)2= -2×32=-18.15.答案(a-y+b-x)(a-y-b+x)解析a2-b2-x2+y2-2ay+2bx=(a2-2ay+y2)-(b2-2bx+x2)=(a-y)2-(b-x)2=(a-y+b-x)(a-y-b+x).16.答案③④⑤解析 ①3x+x 2-x+4=x 2+2x+4,不是完全平方式;②-5x+x 2-x+4=x 2-6x+4,不是完全平方式;③-154+x 2-x+4=x 2-x+14=(x −12)2,是完全平方式; ④-1516x 2+x 2-x+4=116x 2-x+4=(14x −2)2,是完全平方式; ⑤-3x+x 2-x+4=x 2-4x+4=(x-2)2,是完全平方式.综上,满足条件的有③④⑤.故答案为③④⑤.17.解析 ∵P=2x 2+4y+13,Q=x 2-y 2+6x-1,∴P-Q=(2x 2+4y+13)-(x 2-y 2+6x-1)=2x 2+4y+13-x 2+y 2-6x+1=x 2-6x+9+y 2+4y+4+1=(x-3)2+(y+2)2+1>0,∴P>Q.18.解析 (1)x 2+y 2-4x+2y+6=x 2-4x+4+y 2+2y+1+1=(x-2)2+(y+1)2+1,∵(x-2)2≥0,(y+1)2≥0,∴(x-2)2+(y+1)2+1>0,∴无论x,y 取何值,多项式x 2+y 2-4x+2y+6的值总为正数.(2)a 4+a 2+1=a 4+2a 2+1-a 2=(a 2+1)2-a 2=(a 2+a+1)(a 2-a+1).(3)∵-a 2+5a+b-3=0,∴b=a 2-5a+3,∴a+b=a 2-4a+3=(a-2)2-1,∴当a=2时,a+b 有最小值,为-1,∴a+b的最小值为-1.素养探究全练19.解析(1)2;4或4;2.(2)因为x2-3x-4=x2+(1-4)x+1×(-4)=(x-4)·(x+1)=0,所以x-4=0或x+1=0, 所以x=4或x=-1.。
4.3.2分解因式——公式法(完全平方)

(m n) 32
字、字母,也可以是
(m n 3)2
单项式或多项式。
(4)(m 2n)2 2(2n m)(m n) (m n)2
(m 2n)2 2(m 2n)(m n) (m n)2
(m 2n) (m n)2
再进一步分解因式。
小结
1、利用完全平方分解因式的公式是什么? 2、什么是完全平方式? 3、式子前有负号要先把负号提出来,有公因 式要先提公因式。
解:原式 x2 2 7 x 72 解:原式 (2a)2 2 2a 3b (3b)2 (x 7来自2 (2a 3b)2
找到完全平方式中的 “头”和“尾”,确 定中间项的符号。
(3)(m n)2 6(m n) 9 完全平方式中的“头”
和“尾”,可以是数
(2m n)2
例2.把下列各式分解因式: (1)3ax2 6axy 3ay2
3a(x2 2xy y2 )
3a(x y)2
(2) x2 4y2 4xy (x2 4 y2 4xy) (x 2 y)2
若多项式中有公因式, 应先提取公因式,然后
结果为:(首±尾)的平方
形如
a2 a2
2ab 2ab
b2 b2
的多项式称为完全平方式.
即:首2 2 首 尾 尾2
对比:可以利用平方差分解 因式的多项式为:
a2-b2
即:平方-平方
落实基础
1.判别下列各式是不是完全平方式.
(1) x2 y2;不是 (2) x2 2xy y2; 是 (3) x2 2xy y2; 是 (4) x2 2xy y2; 不是 (5) x2 2xy y2.是
《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D
)
课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考
(2020•眉山)已知 + = − − ,则 −
. 4
的值为
解析:由 +
得
+
= − − ,
− + + = ,
即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的推导、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
一、教学内容
北师大版八年级数学下册第四章因式分解4.3节,主要围绕完全平方公式展开教学。本节课内容如下:
1.探索完全平方公式的推导过程,掌握完全平方公式:(a±b)^2 = a^2 ± 2ab + b^2。
2.学会运用完全平方公式分解因式,解决实际问题。
其次,对于完全平方公式的应用,我发现学生们在解决具体问题时,有时会忽略符号的判断。在讲解过程中,我特别强调了“同号得正,异号得负”的规律,并通过大量练习帮助学生加深记忆。但在实际操作中,仍有个别学生会出现错误。为此,我考虑在今后的教学中,增加一些关于符号判断的专项训练,以提高学生们的准确率。
此外,在学生小组讨论环节,我发现学生们能够积极参与,主动提出自己的观点和想法。但在讨论过程中,部分学生可能会偏离主题,讨论一些与完全平方公式无关的内容。为了提高讨论效率,我计划在今后的教学中,明确讨论主题,并在讨论过程中适时引导,确保学生们围绕主题展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和运用这两个重点。对于难点部分,如符号判断,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题。
4.3公式法2-利用完全平方公式因式分解

2
这个公式可以用文字表述为: 两个数的平方和加上(或减去) 这两个数的积的两倍,等于这两个 数的和(或差)的平方。
牛刀小试(对下列各式因式分解): (a+3)2 ① a2+6a+9 = _________________ (n–5)2 ② n2–10n+25 = _______________ 4(t–1)2 ③ 4t2–8t+4 = _________________ (2x–3y)2 ④ 4x2–12xy+9y2 = _____________
a 2ab b
2
2
完全平方式的特点:
1、必须是三项式(或可以看成三项的)
2、有两个同号的平方项 3、有一个乘积项(等于平方项底数的±2倍)
简记口诀:
首平方,尾平方,首尾两倍在中央。
① 16x2 + 24x + 9 = (4x+3)2 ② – 4x2 + 4xy – y2 = – (4x2–4xy+y2) = – (2x–y)2
做一做
①a 2 18a 81 2 1 ②x x 3 9 2 2 ③ s t 2st
2
用完全平方公式进行因式分解。
运用公式法分解因式 要有整体思想正确 套用公式!
④m 4 n 2 2 m 2 n 1 ⑤a 2b 2 c 2 4abc 4 ⑥ 25x 2 20x 4
2 2
添项减项公式来
2 、已知 x y a,z y 10 , 4 、 则代数式 x 2 y 2 z 2 xy xz yz的最小值为 ___。
新课引入
此处运用了什么公式? 逆用 完全平方公式
999×1 + 1 试计算:9992 +
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.综合运用各种方法分解因式
【典例 4】 分解因式: (1)-a+2a2-a3. (3)8a3-2a(a+1)2.
(2)x4-18x2+81. (4)(x2+y2)2-4x2y2.
【点拨】 (1)分解因式的步骤有两步:一是“提”,二是
分解因式吗?
课堂讲解
完全平方式的是 ( )
A.x2+x+14
B.-a2-6a+9
C.4a2-10ab+9b2
D.x2-4x-4
【点拨】 完全平方公式的特点:左边三项中的首末两
项都是数或式的平方和的形式,而中间一项(不看符号)
是这两数或式的乘积的 2 倍,右边是这两数或式的和(或
差)的平方,等号两边中间的符号相同(即左边中间项的符
号与右边两数间的符号相同).
【解析】 ∵x2+x+14=x+122, ∴x2+x+14是完全平方式,其余选项均不是,故选 A.
【典例 2】 分解因式: (1)2x2-8xy+8y2. (3)-3x2-12+12x.
(2)16x2+24x+9. (4)(a+b)2-12(a+b)+36.
新课预习
1.完全平方公式:a2+2ab+b2=(a+b)2;a2-2ab+b2 =(a-b)2.
文字表达:两数的平方和,加上(或者减去)这两数的 积的 2 倍,等于这两数和(或者差)的平方. 2.完全平方式:我们把多项式 a2+2ab+b2 及 a2-2ab+ b2 叫做完全平方式. 3.一般地,利用公式 a2-b2=(a-b)(a+b),或 a2±2ab +b2=(a±b)2 把一个多项式分解因式的方法,叫做公 式法. 思考 x92+1-23x 是完全平方式吗?如果是,你可以将它
要点小结
1.要灵活辨别完全平方公式,充分注意以下两点:①不 要被项的排列顺序所迷惑,例如:x92+1-23x 也是完 全平方式;②当作为首项的二次项系数为负数或分数 时,一般应先提取整个负系数或提取分数系数.
2.完全平方式有两种(完全平方和与完全平方差). 3.因式分解要彻底,注意整体思想的应用.
(3)8a3-2a(a+1)2=2a[(2a)2-(a+1)2]
=2a(2a+a+1)(2a-a-1)=2a(3a+1)(a-1).
(4)(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy) =(x+y)2(x-y)2.
随堂练习
1.(聊城中考)把 8a3-8a2+2a 进行因式分解,结果正确
的是
()
A.2a(4a2-4a+1)
B.8a2(a-1)
C.2a(2a-1)2
D.2a(2a+1)2
【解】 原式=2a(4a2-4a+1) =2a(2a-1)2.
【答案】 C
2.在横线上填上适当的代数式,使等式成立:
(1)9a2-12ab+4b2=(
)2.
(2)16m2+
+9n2=(4m+3n)2.
按时完成B本P48-P49课后训练
点此进入
【答案】 (1)3a-2b (2)24mn
3.若 m-n=2,则 2m2-4mn+2n2-1=____.
【解】 ∵m-n=2, ∴2m2-4mn+2n2-1 =2(m-n)2-1 =2×22-1=7.
【答案】 7
4.分解因式: (1)x2-9-2xy+y2.
【解】 原式=x2-2xy+y2-9=(x-y)2-32 =(x-y+3)(x-y-3).
(3)-3x2-12+12x=-3(x2-4x+4)=-3(x-2)2.
(4)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62 =[(a+b)-6]2=(a+b-6)2.
2.完全平方公式的运用
【典例 3】 已知 4x2+y2-4x+6y+10=0,求 4x2-12xy +9y2 的值.
【点拨】 把已知条件的左边转化为两个完全平方和的 形式,再利用完全平方式的非负性求解. 【解析】 ∵4x2+y2-4x+6y+10=0, ∴4x2-4x+1+y2+6y+9=0,∴(2x-1)2+(y+3)2=0.
∵(2x-1)2≥0,(y+3)2≥0,∴2y+x-3=1=0,0,解得xy==-12,3.
【点拨】 (1)作为首项的二次项系数为负时,一般应先 提取-1 或整个系数;如果各项有公因式时,应先提取公 因式. (2)完全平方公式中的 a 与 b 可以是数、单项式,也可以 是多项式.
【解析】 (1)2x2-8xy+8y2=2(x2-4xy+4y2)=2(x- 2y)2.
(2)16x2+24x+9=(4x)2+2·(4x)·3+32=(4x+3)2.
“套”,即先看有没有公因式可提,有公因式就先提取公因
式,然后再套公式,用公式法来分解因式.
(2)分解因式一定要分解到不能再分解为止.
【解析】 (1)-a+2a2-a3=-a(1-2a+a2)=-a(1-a)2.
(2)x4-18x2+81=(x2-9)2=[(x+3)(x-3)]2
=(x+3)2(x-3)2.
(2)(x-y)2+10(y-x)+25.
【解】 原式=(x-y)2-2·(x-y)·5+52=(x-y-5)2. (3)x42+xy+y2. 【解】 原式=14(x2+4xy+4y2)=14(x+2y)2. (4)80a2(a+b)-45b2(a+b). 【解】 原式=5(a+b)(16a2-9b2) =5(a+b)(4a+3b)(4a-3b).