人教版七年级数学上册期中考试题一(附答案)

合集下载

人教版七年级上册数学期中考试试卷(含答案)

人教版七年级上册数学期中考试试卷(含答案)

人教版七年级上册数学期中考试试卷(含答案)人教版七年级上册数学期中考试试卷(含答案)一、选择题1. 以下哪个数是整数?A. √2B. 3/4C. -5D. 0.752. 下列有理数中,绝对值最大的是:A. -3B. 1/3C. 0D. -5/63. 对于非零有理数a,以下等式成立的是:A. a^2 = -aB. a * a = -aC. a * a = aD. a^2 = a二、填空题1. 计算:5/6 + 2/3 = ____2. 将72cm^2写成平方分米为____(注:1平方分米=100平方厘米)3. 若a = -2/3,b = 1/2,求ab的值。

三、解答题1. 线段AB的长度为3.2厘米,线段CD的长度为7.5厘米,求AB与CD的比值。

2. 小明从家到学校的距离为4千米,他刚走了2千米,这时他离学校还有多远?3. 将小数-0.125改写成分数。

四、应用题1. 一块长方形花坛长为12米,宽为8米,小明要用花砖铺满这个花坛。

每块花砖的正方形面积为0.25平方米,小明需要多少块花砖?2. 甲乙两个人同时从A地出发,以相同的速度向B地行驶,甲车开车时图示速度为75千米/小时,乙车开车时图示速度为80千米/小时。

若甲车到达B地用时比乙车早30分钟,求A到B地的距离。

五、解答题1. 有理数运算的要点是什么?请分析有理数的加法、减法、乘法和除法运算的规律和特点。

2. 计算题:5/12 + 4/9 - 1/3 + 2/5 = ____ ---答案:一、选择题1. C2. D3. A二、填空题1. 11/62. 0.723. -1/3三、解答题1. AB与CD的比值为 32/752. 离学校还有 2千米3. -0.125可以写成 -1/8四、应用题1. 需要 384 块花砖2. A到B地的距离为 100 千米五、解答题1. 有理数运算的要点是:符号相同的有理数相加减,绝对值大的数保留符号;符号相反的有理数相加减,先求绝对值相加减,再给结果加上原来的符号;有理数相乘除,符号相同为正,符号不同为负。

人教版七年级数学上册期中考试卷(附带答案)

人教版七年级数学上册期中考试卷(附带答案)

人教版七年级数学上册期中考试卷(附带答案)(满分:150分时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。

(每小题4分,共10题,共40分)1.﹣2023的绝对值是()A.﹣12023B.﹣2023 C.12023D.20232.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。

如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同(第2题图)(第5题图)(第7题图)3.在数﹣2,﹣3.14156,﹣13,﹣5%,﹣6.3,2023,200%,0,﹣0.01001中,负分数有()A.4个B.5个C.6个D.7个4.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358X105B.35.8X103C.3.58X105D.3.58X1045.如图,小红把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.圆形B.长方形C.三角形D.椭圆6.下面的说法中,正确的是()A.x +3是多项式B.(﹣2)3中底数是2C.3ab35的系数是3 D.单项式﹣ab2的次数是2次7.如图,是一个正方体的表面展开图,则原正方体中与"就"字相对的面上的字是()A.知B.是C.力D.量8.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a+b>0B.a-b>0C.ab>0D.ab<0(第8题图)(第9题图)9.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1-C 2的值( )A.0B.a -bC.2a -2bD.2b -2a10.已知:m=|a+b |c +2|b+c |a +3|c+a |b ,且abc >0,a+b+c=0.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则x+y=( )A.4B.3C.2D.1第II 卷 (非选择题 共110分)二.填空题(共6小题,每小题4分,满分24分)11.中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作"+50元",那么亏损30元,记作 元.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇如丝飞.译文:喧哗的雨已经过去、逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为 .13.若(m+1)2+|n -2|=0,则m n = .14.若一个棱柱有12个顶点,且所有侧棱长的和为30cm ,则每条侧棱长为 cm.15."整体思想"是中学数学解题中重要的思想方法,在多项式的求值中应用极为广泛.若3a 2-a -2=0,则﹣6a 2+2a+3值为 ﹣ .16.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是 .三.解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.(本小题满分6分)在数轴上表示下列各数:0,﹣4.5,312,﹣2,+7,113.并用"<"号把各数连接起来.19.(本小题满分12分)计算:(1)5+(﹣6)﹣(﹣3) (2)﹣58×(﹣4)÷(﹣52)(3)(﹣16+34-112)×(﹣24) (4)﹣14+(﹣2)3÷4×[5-(-3)3]20.(本小题满分6分)一个几何体的三种视图如图所示.(1)这个几何体的名称是 .(2)求这个几何体的体积.(结果保留π)21.(本小题满分6分)化简:(1)x2+5y-4x2-y-1 (2)7a+3(a-3b)-(b+3a)22.(本小题满分8分)山东是红富士苹果的主要产地,现有30箱红富士苹果,以每箱25kg 为标准,其中重量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(1)30箱红富士苹果中,最重的一箱比最轻的一箱多kg.(2)与标准重量相比,30箱红富士苹果总计超过或不足的重量为多少?(3)若红富士苹果每千克售价6元,则这30箱红富士苹果可卖多少钱?23.(本小题满分8分)如图,某居民小区有一块长为a,宽为2b的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b的扇形花台,其余部分铺设草坪.(1)草坪(阴影部分)的周长为,面积为.(结果用含有a,b,π的式子表示)(2)如果铺设草坪的费用为每平方米50元.当a=6米,b=2米,π取3时,铺设草坪共需多少元?24.(本小题满分10分)学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐人,第二种方式能坐人.(2)当有n张桌子时,第一种方式能坐人,第二种方式能坐人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,现在请你当一回小老师,你打算选择以下哪种方式来摆放餐桌?为什么?25.(本小题满分12分)阅读材料,回答问题.材料一:因为23=2×2×2,22=2×2,所以23×22=(2×2×2)×(2×2)=25.材料二:求31+32+33+34+35+36的值.解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②-①得,3S -S=(32+33+34+35+36+37)-(31+32+33+34+35+36)=37-3所以2S=37-3,即S=37-32 所以31+32+33+34+35+36=37-32这种方法我们称为"错位相减法".(1)填空:5×58=5( ),a 2·a 5=a ( ).(2)"棋盘摆米"是一个著名的数学故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏.阿基米德对国王说:"我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行"国王以为要不了多少粮食,就随口答应了.①国际象棋共有64个格子,则在第64格中应放 粒米.(用幂表示)②设国王输给阿基米德的总米粒数为S ,求S.26.(本小题满分12分)如图,已知数轴点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=22.(1)写出数轴上点B 表示的数.(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.试探究:①若|x -8|=3,则x= .②动点P 从O 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t 为多少秒时,A ,P 两点之间的距离为2?(3)动点P ,Q 分别从O ,B 两点,同时出发,点P 以每秒2个单位长度沿数轴向右匀速运动,Q 点以P 点速度的两倍,沿数轴向右匀速运动,设运动时间为t(1>0)秒.求当t 为多少秒时,P ,Q 之间的距离为4?答案解析一.单选题。

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 比小的数是 ( )A. B. C. D.2. 在式子 , , , , , 中 , 整式有 ( )A. 个B. 个C. 个D. 个3. 算式的值为 ( )A. B. C. D.4. 若和相减的结果是, 则的值是 ( ) A. B. C.D.5. 下列计算正确的是 ( )A.B.C.D.6. 若 , 互为相反数 , , 互为倒数 ,.则的值为 ( )A. B. C. 或 D.7. 若, 则 a-b 的值是 ( ) A. B. C.D. 8. 如图 , 在数轴上 , 点 , 所表示的数分别为,, 则 , 两点之间表示整数的点一共有 ( )A. 个B. 个C. 个D. 个9. 按如图所示程序流程计算 , 若开始输入的值.则最后输出的结果是 ( )A. B. C. D.10. 如图 , 把张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形的盒子底部 , 盒子底面未被覆盖的部分用阴影部分表示则图中两块阴影部分的周长的和是 ( )A.B.C.D.二、填空题(每小题3分,共15分)11.的相反数是 ____ . 12. 多项式的次数是____. 13. 目前 , 第五代移动通信技术正在阔步前行 , 按照产业间关联关系测算 , 2020 年 ,间接拉动增长将超过亿元数据“亿”用科学记数法表示为_____. 14. 已知数 , 在数轴上的位置如图所示 , 则 , , ,的大小关系是____.15. 观察下列式子:, , 它们是按照一定规律排列的 , 依照此规律 , 则第个式子为 _______ .三.解答题(本大题共8个小题,满分75分)16. 计算:( 1 ); ( 2 ).17. 化简:( 1 ); ( 2 ). 18. 化简并求值:, 其中,.19. 小王在新藏公路某路段设置了一个加水站 , 他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负 , 加水车当天的行驶记录如下 ( 单位:千米 ) :+8 , -9 , +7 , -4 , -3 , +5 , -6 , -8 , +6 , +7 .( 1 ) 加水车最后到达地方在出发点的哪个方向 ? 距出发点多远 ?( 2 ) 若加水车行驶过程中每千米耗油量为升 , 求这天加水车共耗油多少升 ?20. 小刚同学做一道题:“已知两个多项式 , , 计算.”小刚同学误将看作, 求得结果.若多项式. ( 1 ) 请你帮助小刚同学求出的正确答案; ( 2 ) 若的值与的取值无关 , 求的值.21. 学校让综合实践活动课外学习小组参与学校校办工厂的足球生产活动 , 在工人师傅的指导和帮助下 , 综合实践活动课外学习小组一周计划生产 700 个足球 , 平均每天生产 100 个 , 由于各种原因实际每天生产产量与计划量相比有出入 , 下表是某周的生产情况 ( 超产为正、减产为负 ) :( 1 ) 根据记录可知前四天共生产个;( 2 ) 产量最多的一天比产量最少的一天多生产个;( 3 ) 该校办工厂实行每周计件奖励制 , 生产一个足球奖励给综合实践活动课外学习小组元.超额完成任务超额部分每个再奖元 , 那么该校的综合实践活动课外学习小组这一周得到的奖励总额是多少元 ?22. 某校准备到服装超市购一批演出服装 ( 男 , 女服装价格相同 ) 以供文艺汇演使用 , 一套服装定价元 , 领结 ( 花 ) 每条定价元 , 适逢新中国成立周年 , 服装超市开展促销活动 , 向客户提供两种优惠方案:①买一套服装送一条领结 ( 花 ) ;②服装和领结 ( 花 ) 都按定价的销售. 现该校要到该服装超市购买服装套 , 领结 ( 花 ) 条.( 1 ) 若该校按方案①购买.需付款 _______ 元 ( 用含的式子表示 ) ;若该校按方案②购买.需付款元 ( 用含的式子表示 ) ;( 2 ) 若, 通过计算说明此时按哪种方案付款比较合算; ( 3 ) 当时 , 你能给出一种更为省钱的购买方案吗 ? 试写出你的购买方案 , 并计算出需付款多少元.23. ( 1 ) 如图 , 点 M 在数轴上对应数为 -4 .点 N 在点 M 右边距 M 点 6 个单位长度 , 求点 N 对应的数;( 2 ) 在 ( 1 ) 的条件下.保持 N 点静止不动 , 点 M 沿数轴以每秒 1 个单位长度的速度匀速向右运动 , 经过多长时间 M , N 两点相距 4 个单位长度;( 3 ) 若已知点 M , N 在数轴上对应的数分别为 -6 、 2 .点 M 以每秒 3 个单位长度的速度沿数轴向右运动 , N 以每秒 2 个单位长度的速度同时沿数轴向右运动 , 当 M , N 两点相距个单位长度时 , 请直接写出点 M 所对应的数.初一数学21个必考知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

人教版七年级上学期期中数学试题(含答案)

人教版七年级上学期期中数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题2分,共12分) 1.8的相反数是( ) A .8B .18C .8-D .18-2.计算2(3)-的结果等于( ) A .6B .6-C .9D .—93.在下列选项中,既是分数,又是负数的是( ) A .8B .15-C .12D .2-4.下列式子中:a -,23abc ,x y -,3x ,32872x x -+,整式有( ) A .2个B .3个C .4个D .5个5.若单项式235y a b 与单项式32x a b 是同类项,则x y +的值是( ) A .3B .5C .7D .86.一个长方形的周长为l ,若长方形的长为a ,则该长方形的宽为( ) A .2la - B .12a- C .l a -D .12a二、填空题(每小题3分,共24分) 7.23-的倒数是_______. 8.单项式2445x y -的系数是_______.9.多项式2312245xy x y --的常数项是_______. 10.据统计,全国共有学生团员48300000名,数据48300000用科学记数法表示为_______. 11.用四舍五入法将5.1289精确到百分位的近似值为_______.12.数轴上点A 表示的数为0.3点.B 表示的数为13-,则这两点中距离原点较近的是点______(填“A ”或“B ”). 13.我市某天最低气温是5C -︒,最高气温比最低气温高8℃,则这天的最高气温是_______℃. 14.如果关于x 、y 的多项式21(2)13axy a y --+是三次三项式,则a 的值为_______. 三、解答题(每小题5分,共20分) 15.计算:216()32⨯-.16.计算:3221(2)9()()32-+⨯-÷-. 17.化简:()()32232x y x y ---.18.把下列各式的序号填入相应集合的括号内;①22123a b ab +;②1a b-;③0;④223m n +;⑤15mm -;⑥235x y -=;⑦263a abc k ++单项式集合:{ …}; 多项式集合:{ …}. 四、解答题(每小题7分,共28分)19.(1)请把下面不完整的数轴画完整,并在数轴上标出下列各数:-3,12-,4,2.5. (2)比较(1)中各数的大小(用“<”号连接).20.先化简,再求值:()22222336x y x y⎡⎤----+⎣⎦,其中 x 、y 满足()2110x y ++-=.21.已知a 、b 互为相反数;c 、d 互为倒数,2m =,求()()20223612a cd m +-+--的值.22.已知多项式2134331m x y x y x --+--与单项式42x y 的次数相同.(1)求m 的值;(2)把这个多项式按x 的降幂排列. 五、解答题(每小题8分,共16分)23.某同学计算22256x xy y -+减去某个多项式.由于粗心,误算为加上这个多项式,而得到22744y xy x --+,请你帮他求出正确的答案.24.如图是一块长为30cm ,宽为2xcm 的长方形铁片,从中挖去直径分别为2x cm .2y cm 的四个半圆(已知2230x y +<).(1)用含x 、y 的式子表示剩下铁片的面积;(2)当6x =,2y =时,剩下铁片的面积是多少平方厘米(结果保留π)? 六、解答题(每小题10分,共20分)25.某灯具厂为抓住商业契机,计划每天生产某种景观灯300盏以便投入市场进行销售.但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入,下表是该灯具厂上周的生产情况(增产记为正,减产记为负):(1)求该灯具厂上周实际生产景观灯多少盏?(2)该灯具厂实行每天计件工资制,每生产一盏景观灯可得50元,若超计划完成任务,则超过部分每盏另外奖励15元,少生产一盏扣20元,那么该灯具厂工人上周的工资总额是多少元?26.如图.点A 、C 、B 在数轴上表示的数分别是→3,1、5.动点P 、Q 同时出发,动点P 从点A 出发,以每秒4个单位长度的速度沿A →B →A 运动.回到点A 时停止运动;动点Q 从点C 出发,以每秒1个单位长度的速度沿C →B 向终点B 运动,设点P 的运动时间为t (s ).(1)当点P 到达点B 时,点Q 表示的数为______; (2)当t =1时,求点P 、Q 之间的距离;(3)当点P 沿A →B 运动时,用含t 的式子表示点P 、Q 之间的距离;(4)当点P 沿B →A 运动时,若点P 、B 之间的距离是2,直接写出点Q 、B 之间的距离.参考答案一、1.C 2.C 3.B 4.C 5.B 6.A二、7.32-8.45- 9.22 10.74.8310⨯ 11.5.13 12.A 13.3 14.-2 三、15.解:原式216643132=⨯-⨯=-=.16.解:原式16=-. 17.解:原式y =18.解:单项式集合:{③,⑤,…}; 多项式集合{①,④,⑦…}; 四、19.解:(1)数轴如下:(2)13 2.542-<-<<. 20.解:原式2266x y =--.∵2|1|(1)0x y ++-=,∴1x =-, 1y =,∴原式11=-. 21.解:根据题意,每0a b +=,1cd =,2m =或2-.当2m =时,原式20223(01)(1)223146=⨯-+--⨯=-+-=-;当2m =-吋,原式20223(01)(1)2(2)3142=⨯-+--⨯-=-++=.22.解:(1)4m =.(2)按x 的降幂排列为4323331x x y x y -+--.五、23.解:由题意可得()()2222744256y xy x x xy y --+--+222222744256132y xy x x xy y y xy x =--+-+-=-++,∴()2222256132x xy y y xy x -+--++22222256132619x xy y y xy x xy y =-++--=-+, 即正确的答案是2619xy y -+.24.解:(1)剩下铁片的面积为()22260cm x x y ππ--. (2)当6x =, 2y =时,剩下铁片的面积为2(36040)cm π-.六、25.解:(1)()()()()()()30043006300330010300530011(3002)2109++-+-+++-+++-=(盖) 答:该灯具厂上周实际生产景观灯2109盏..(2)()()4101115635220 37532055++⨯-+++⨯=-=(元). 55210950105505+⨯=(元). 答:该灯具厂工人上周的工资总额是105505元. 26.解:(1)3.(2)当1t =时,点P 表示的数是3411-+⨯=,点Q 表示的数是1+1=2,所以点P 、Q 之间的距离是1. (3)当点P 沿A →B 运动时,若点P 、Q 重合前,则点Q 表示的数大于点P 表示的数,所以()13443t t t +--+=-,所以点P 、Q 之间的距离为4—3t ;当点P 、Q 重合时,点P 、Q 之间的距离是0;当点P 超过点Q 时,则点P 表示的数大于点Q 表示的数,所以()34134t t t -+-+=-,所以点P 、Q 之间的距离为3t -4. (4)1.5.。

人教版七年级上学期期中数学试卷(含答案)

人教版七年级上学期期中数学试卷(含答案)

人教版七年级第一学期期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.20222.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.63.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×1094.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.5.(3分)计算:8×5的结果是()A.8B.25C.40D.416.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣88.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是210.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.12.(2分)化简分数:﹣=.13.(2分)计算:(+5)+(﹣6)+(﹣4)=.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回元.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日柚子销售超过或不足计划量情况(单位:千克)+3﹣5﹣2+11﹣7+13+5(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.(参考答案与详解)一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.2022【解答】解:﹣2022的相反数是2022,故选:D.2.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.3.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×109【解答】解:110425000=1.10425×108.故选:C.4.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.【解答】解:A选项的数轴1,2的位置不对,故不符合题意;B选项的数轴有单位长度,有正方向,有原点,故符合题意;C选项的数轴正数和负数的位置反了,不符合题意;D选项的数轴单位长度不一致,故不符合题意;故选:B.5.(3分)计算:8×5的结果是()A.8B.25C.40D.41【解答】解:8×5=×5=41.故选:D.6.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃【解答】解:﹣2+5=3(℃),即该地15:00的气温是3℃.故选:B.7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣8【解答】解:积最大的是(﹣4)×(﹣3)=12,故选:B.8.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b【解答】解:由题意可知,a<b<0,∴a<b<﹣b<﹣a.故选:A.9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是2【解答】解:A、﹣15x2y的系数是﹣15,次数是3,故A不符合题意;B、多项式﹣x3﹣2x2y2+3y2有3项,次数是4,正确,故B符合题意;C、单项式x的系数是1,次数是1,故C不符合题意;D、多项式4x2﹣4x2y+y2的次数是3,故D不符合题意,故选:B.10.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元【解答】解:的意义是将原价打6折之后,再降低8元.故选:A.二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.【解答】解:有理数的倒数是.故答案为:.12.(2分)化简分数:﹣=﹣.【解答】解:﹣=﹣=﹣,故答案为:﹣.13.(2分)计算:(+5)+(﹣6)+(﹣4)=﹣5.【解答】解:(+5)+(﹣6)+(﹣4)=5+[(﹣6)+(﹣4)]=5+(﹣10)=﹣5.故答案为:﹣5.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回3225元.【解答】解:3000+3000×3.75%×2=3000+225=3225(元),∴到期时他取回3225元,故答案为:3225.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为2n+1.【解答】解:搭1个三角形需要火柴棒的根数为:3,搭2个三角形需要火柴棒的根数为:5=3+2=3+2×1,搭3个三角形需要火柴棒的根数为:7=3+2+2=3+2×2,…搭n个三角形需要火柴棒的根数为:3+2(n﹣1)=2n+1,故答案为:2n+1.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).【解答】解:原式=[(﹣0.5)+(﹣5.5)]+(3.25+2.75)=﹣6+6=0.17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.【解答】解:﹣22×[5﹣(﹣1)2022]+|﹣1+5|=﹣4×(5﹣1)+4=﹣4×4+4=﹣16+4=﹣12.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.【解答】解:原式=x2y+4xy2﹣6x2y﹣3xy2+6x2y﹣3=(1﹣6+6)x2y+(4﹣3)xy2﹣3=x2y+xy2﹣3,当x=﹣2,y=1时,原式=(﹣2)2×1+(﹣2)×12﹣3=4×1﹣2×1﹣3=4﹣2﹣3=﹣1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?【解答】解:(1)10﹣9+8﹣6+7.5﹣6+8﹣7=10+8+7.5+8﹣9﹣6﹣6﹣7=33.5﹣28=5.5(cm),答:停止时所在位置距A点5.5cm,在A点的右方;(2)10+9+8+6+7.5+6+8+7=61.5(cm),61.5÷2=30.75(秒).答:共用30.75秒.20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日+3﹣5﹣2+11﹣7+13+5柚子销售超过或不足计划量情况(单位:千克)(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?【解答】解:(1)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(2)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?Array【解答】解:(1)这套房子的总面积为:3x+xy+6y+3x=(6x+6y+xy)m2,答:这套房子的总面积为(5x+6y+xy)m2;(2)当x=5,y=8时,房子的总面积为:30+48+40=118(m2),0.5×118=59(万元),答:购买这套房子共需要59万元.22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5,∴A﹣3B=(3x2﹣x+2y﹣4xy)﹣3(x2﹣2x﹣y+xy﹣5)=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy+15=5x+5y﹣7xy+15;(2)∵+|xy+1|=0,∴x+y﹣=0,xy+1=0,∴x+y=,xy=﹣1,∴A﹣3B=5x+5y﹣7xy+15=5(x+y)﹣7xy+15=5×﹣7×(﹣1)+15=4+7+15=26.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.【解答】解:(1)∵|x﹣3|=|x+1|,∴x=(﹣1+3)=1;(2)由数轴得:|x﹣3|+|x+1|≤4,∴式子|x﹣3|+|x+1|的最小值为4.。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

人教版七年级上册数学《期中检测卷》附答案

人教版七年级上册数学《期中检测卷》附答案

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共36分)1.下列立体图形属于棱柱..的有( )A. 2个B. 3个C. 4个D. 5个2.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A. B. C. D.3.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是( )A. ①②相同‘③④相同B. ①③相同;②④相同C. ①④相同;②③相同D. 都不相同4.下列四个数中,比﹣3小的数是( )A. 0B. 1C. ﹣1D. ﹣55.如图所示几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )A. B. C. D.6.某粮店出售三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差( ). A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏7.下列计算正确是( ) A. ﹣5+2=﹣7B. (﹣1)2017=1C. ﹣22=4D. 6÷(﹣2)=﹣38. 5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( ) A.B.C.D.9.下列说法中,正确的是( )A. 24m n不是整式B. ﹣32abc的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式10.若232n x y 与2m -5xy 是同类项,则m n -的值是( ) A. 0B. 1C. 7D. -111.下列运算中,正确的是( ). A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=12. 小明做这样一道题“计算:|(-3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是( ) A. 3B. -3C. 9D. -3或9二、填空题(每小题4分,共24分)13.笔尖在纸上快速滑动写出英文字母C ,这说明了_____.14.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为 个.15.计算(111678++)﹣2×(11112678---)﹣3×(11116789++-)的结果是_____.16.有一种“24点”游戏,其游戏规则是这样,将4个1~13之间的数,进行加减乘除四则运算(每个数且只能用一次),使运算结果为24,例如,1,2,3,4可作如下运算:(1+2+3)×4=24,1×2×3×4=24.现有四个有理数3,4,﹣6,10,你能运用上述规则,写出一种运算式,使其结果等于24.你写出算式是:_____.17.若“△”是新规定的某种运算符号,设a△b=2a–3b,则(x+y)△(x–y)运算后的结果为__________.18.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用_____根火柴棒,搭n条“小鱼”所需火柴棒的根数为_____(填写化简后的结果).三、解答题(本题6个小题,满分60分)19.你来算一算!千万别出错!(1)计算:251(5)()0.813-÷-⨯-+-;(2)计算:﹣36×111()4912--÷(﹣2).20.学习有理数得乘法后,老师给同学们这样一道题目:计算:492425×(﹣5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=﹣124925×5=﹣12495=﹣24945;明明:原式=(49+2425)×(﹣5)=49×(﹣5)+2425×(﹣5)=﹣24945;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:291516×(﹣8)21.将6个棱长为2cm的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积.22.解下列各题:(1)化简:(5a2b﹣3ab2)﹣2(a2b﹣7ab2).(2)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣32x2y)+xy],其中x=3,y=﹣13.23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.24.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km 到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?25.按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入 3 2 -2 13…输出答案0 …(2)你发现规律是____________.(3)用简要过程说明你发现的规律的正确性.答案与解析一、选择题(每小题3分,共36分)1.下列立体图形属于棱柱..的有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】根据棱柱的意义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.由此分析判定即可.解:第一、二、四个几何体属于棱柱.故选B.2.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A. B. C. D.【答案】A【解析】【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是( )A. ①②相同‘③④相同B. ①③相同;②④相同C. ①④相同;②③相同D. 都不相同【答案】A【解析】①②都是棱长为边的正方形,故相同;③④为对角面,故相同.所以选A.4.下列四个数中,比﹣3小的数是( )A. 0B. 1C. ﹣1D. ﹣5【答案】D【解析】试题分析:﹣5<﹣3<﹣1<0<1,所以比﹣3小的数是﹣5,故选D.考点:有理数大小比较.5.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )A. B. C. D.【答案】A【解析】A选项通过旋转得到两个圆柱;B选项通过旋转得到一个圆柱,一个圆桶,本选项错误;C选项通过旋转得到一个圆柱,两个圆桶,本选项错误;D选项通过旋转得到三个圆柱,本选项错误.故选A.点睛:圆柱体可以由矩形绕着一边旋转得到.6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差().A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏【答案】B【解析】【分析】根据题意给出三袋面粉的质量波动范围,从而求出任意两袋质量相差的最大数.【详解】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3-(-0.3)=0.6kg.故选:B.【点睛】此题主要考查了正数和负数表示的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.7.下列计算正确的是( )A. ﹣5+2=﹣7B. (﹣1)2017=1C. ﹣22=4D. 6÷(﹣2)=﹣3【答案】D【解析】A选项错误,-5+2=-3;B选项错误,(﹣1)2017=-1;C选项错误,-22=-4;D选项正确.故选D.8.5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( )A. B. C. D.【答案】B【解析】试题分析:44亿==4.4×109,故选B.考点:科学记数法—表示较大的数.9.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C 【解析】 【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc 的系数是﹣32,次数是3;多项式2x 2y ﹣xy 是三次二项式;故选择C .10.若232n x y 与2m -5xy 是同类项,则m n -的值是( ) A. 0 B. 1 C. 7 D. -1【答案】B 【解析】 【分析】直接利用同类项的概念得出n ,m 的值,再利用绝对值的性质求出答案. 【详解】∵232nx y 与2m-5xy 是同类项,∴2n =1,2m =3,解得:m =32,n =12, ∴|m−n|=|32−12|=1.故选:B .【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键. 11.下列运算中,正确的是( ). A. 325a b ab += B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=【答案】C 【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C . 考点:合并同类项.12. 小明做这样一道题“计算:|(-3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是( )A. 3B. -3C. 9D. -3或9【答案】D【解析】本题考查的是绝对值的定义和有理数的加减法法则先根据计算的结果是等于6得到绝对值里面的数,再根据有理数的加减法法则即可求得结果.,,当时,,当时,,故选D.二、填空题(每小题4分,共24分)13.笔尖纸上快速滑动写出英文字母C,这说明了_____.【答案】点动成线【解析】笔尖在纸上快速滑动写出英文字母C,这说明了点动成线.故答案为点动成线.14.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为个.【答案】5【解析】【详解】由俯视图可以看出组成这个几何体的底面小正方体有4个,由左视图可知第二层最少有1个,故组成这个几何体的小正方体的个数最少为:4+1=5(个),故答案为5.15.计算(111678++)﹣2×(11112678---)﹣3×(11116789++-)的结果是_____.【答案】2 3【解析】【分析】将16+17+18看成一个整体,利用分配律进行计算即可.【详解】原式=(16+17+18)-2×12+2×(16+17+18)-3×(16+17+18)+3×19=-1+1 3=-23.故答案为-23.16.有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数,进行加减乘除四则运算(每个数且只能用一次),使运算结果为24,例如,1,2,3,4可作如下运算:(1+2+3)×4=24,1×2×3×4=24.现有四个有理数3,4,﹣6,10,你能运用上述规则,写出一种运算式,使其结果等于24.你写出算式是:_____.【答案】3×[4+10+(﹣6)]=24【解析】3×[4+10+(-6)]=24或3×(10-4)-(-6)=24等.故答案为3×[4+10+(-6)]=24.17.若“△”是新规定的某种运算符号,设a△b=2a–3b,则(x+y)△(x–y)运算后的结果为__________.【答案】–x+5y【解析】【详解】(x+y)△(x-y)=2(x+y)-3(x-y)=2x+2y-3x+3y=-x+5y.故答案为-x+5y.18.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用_____根火柴棒,搭n条“小鱼”所需火柴棒的根数为_____(填写化简后的结果).【答案】(1). 62(2). 6n+2【解析】搭第1条小鱼需要的火柴棒个数为:2+6=8;搭第2条小鱼需要的火柴棒个数为:2+6×2=14;搭第3条小鱼需要的火柴棒个数为:2+6×3=20;…搭第n条小鱼需要的火柴棒个数为:2+6n.搭第10条小鱼需要的火柴棒个数为:2+6×10=62. 故答案为(1)62 ;(2) 6n+2.三、解答题(本题6个小题,满分60分)19.你来算一算!千万别出错!(1)计算:251(5)()0.813-÷-⨯-+-;(2)计算:﹣36×111()4912--÷(﹣2).【答案】(1)415;(2)1.【解析】试题分析:(1)先对乘方和绝对值进行运算,然后进行乘除运算,最后进行加法运算;(2)利用乘法分配律将式子展开,计算出括号里面的数值再进行除法运算.试题解析:解:(1)原式=-1×125×(-53)+0.2=415;(2)原式=(-9+4+3)÷(-2)=-2÷(-2)=1.点睛:有理数混合运算时,有时运用乘法分配律会简化运算.20.学习有理数得乘法后,老师给同学们这样一道题目:计算:492425×(﹣5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=﹣124925×5=﹣12495=﹣24945;明明:原式=(49+2425)×(﹣5)=49×(﹣5)+2425×(﹣5)=﹣24945;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:291516×(﹣8)【答案】(1)明明解法较好;(2)还有更好的解法;解法见解析;(3)1 2392 -.【解析】【分析】(1)根据计算过程的步骤长短判断出明明的解法好;(2)把492425写成(50-125),然后利用乘法分配律进行计算即可得解; (3)把191516写成(20-116),然后利用乘法分配律进行计算即可得解. 【详解】解:(1)因为明明计算步骤比较少,所以明明的解法较好(2)还有更好的解法24149(5)(50)(5)2525150(5)()(5)251250542495⨯-=-⨯-=⨯-+-⨯-=-+=- (3)1529(8)161(30)(8)16130(8)()(8)161240212392⨯-=-⨯-=⨯-+-⨯-=-+=- 【点睛】本题考查有理数的乘法分配律,解题的关键是掌握乘法分配律.21.将6个棱长为2cm 的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积.【答案】(1)见解析;(2)84cm 2.【解析】试题分析:(1)分别作出主视图、主视图、俯视图;(2)数出露出表面正方形的个数,再用计算出的个数乘以每个正方形的面积即可.试题解析:解:(1)作图如下:(2)(4+4+4+4+5)×(2×2)=21×4=84(cm 2)答:该几何体被染成红色部分的面积为84cm 2.点睛:计算露出表面的正方形个数时,要考虑前面,后面,左面,右面,上面,不能遗漏.22.解下列各题:(1)化简:(5a 2b ﹣3ab 2)﹣2(a 2b ﹣7ab 2).(2)先化简,再求值:3x 2y ﹣[2xy ﹣2(xy ﹣32x 2y)+xy],其中x=3,y=﹣ 13. 【答案】(1)3a 2b+11ab 2;(2) 1.【解析】试题分析:(1)先去括号,再合并同类项;(2)先去小括号,再去中括号,最后合并同类项得到最简形式,接着将x 、y 的值分别代入化简后的式子求出结果.试题解析:解:(1)原式=5a 2b -3ab 2-2a 2b +14ab 2=3a 2b +11ab 2;(2) 原式=3x 2y -2xy +2xy -3x 2y -xy =-xy ,当x =3,y =-13时,原式=-3×(-13)=1. 点睛:去括号的时候注意符号问题.23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.【答案】(1)x 2﹣8x+4;(2)13.【解析】试题分析:(1)根据题意确定出所挡的二次三项式即可;(2)把的值代入计算即可求出值.试题解析:(1)所挡的二次三项式为:()222513151338 4.x x x x x x x x -+--=-+-+=-+ (2)当1x =-时,原式=1+8+4=13.24.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km 到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?【答案】(1)见解析;(2)点C与点A的距离为6 km;(3)这趟路共耗油0.54升.【解析】试题分析:(1)再数轴上分别表示出A、B、C三个村庄位置;(2)用A点表示的数减去C点表示的数;(3)计算出邮递员行驶的总路程,再用总路程乘以每千米的耗油量.试题解析:解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2-(-4)=6km;(3)依题意得邮递员骑了:2+3+9+4=18km,∴共耗油量为:18×0.03=0.54升.点睛:数轴上两个点所表示的数之差的绝对值即为这两个点之间的距离.25.按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入 3 2 -2 13…输出答案0 …(2)你发现规律是____________.(3)用简要过程说明你发现的规律的正确性.【答案】(1)0,0,0;(2)输入任何数的结果都为0;(3)理由见解析【解析】(1)利用计算程序:x→平方→+x→÷2→-12x 2→-12x→答案,即可求出结果. (2)由前几项都为0可得出规律:输入任何数的结果都为0.(3)根据程序可写出关于x 的方程式,此方程式的值为0,所以无论x 取任何值,结果都为0. 解:(1)0,0,0;(2)输入任何数的结果都为0;(3)因为222211111102222222x x x x x x x x +--=+--=222211111102222222x x x x x x x x +--=+--=, 所以无论x 取任何值,结果都为0,即结果与字母x 的取值无关“点睛”本题是找规律题,计算程序实际是整式的运算.。

人教版七年级上册数学《期中考试卷》(带答案)

人教版七年级上册数学《期中考试卷》(带答案)

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和23.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1055.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<09.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a =﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个 10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m +n )C. 4nD. 4(m ﹣n )二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.12.已知13(3)m m x y +- 是关于x ,y 的七次单项式,则222m m -+的值为________13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).15.若2210m m +-=,则2425m m ++的值为__________16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______. 17.一条数轴由点A 处对折,表示﹣30数的点恰好与表示4的数的点重合,则点A 表示的数是_____. 18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭ (3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×99717220.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +值. 22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.23.邮递员骑车从邮局出发,先向西骑行 2 km 到达 A 村,继续向西骑行 3 km 到达 B 村, 然后向东骑行 9 km 到达 C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用 1 cm 表示 1 km 画数轴,并在该数轴上表示 A ,B ,C 三个村庄的位置;(2)C 村离 A 村有多远?(3)邮递员一共骑行了多少千米?24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星 一 二 三 四 五 六 日增 +6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?25.如图,四边形ABCD 与四边形CEFG 是两个正方形,边长分别为a ,b ,其中B ,C ,E 在一条直线上,G 在线段CD 上,三角形AGE 的面积为S .(1)①当a=5,b=3时,求S 值;②当a=7,b=3时,求S 的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步【答案】B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向北走5步记作+5步,∴向南走7步记作﹣7步.故选B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和2【答案】C【解析】试题解析:∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故选C.3.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx【答案】A【解析】【分析】根据同类项的定义,所含字母相同并且相同字母的指数也相同的项是同类项,逐一判断即可.【详解】A. 相同字母指数不同,不是同类项;B. C.D都是同类项,故选:A.【点睛】考查同类项的概念: 所含字母相同并且相同字母的指数也相同的项是同类项,与字母的位置无关.4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×105【答案】A【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】先对每个数进行化简,然后再确定负数的个数.【详解】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选B.【点睛】本题考查绝对值,有理数的乘方、正数和负数的意义,正确化简各数是解题的关键.7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d【答案】B【解析】【分析】根据去括号法则即可求解.【详解】A. a-(b-c)=a-b+c,故错误;B. x2-[-(-x+y)]= x2-[x-y]=x2-x+y,正确;C. m-2(p-q)=m-2p+2q,故错误;D. a+(b-c-2d)=a+b-c-2d,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<0【答案】D【解析】试题解析:A、由ab异号得,ab<0,故A正确,不符合题意;B、b>0,a<0,|a|>|b|,a+b<0,故B正确,不符合题意;C、由b>0,a<0,|得a-b<0,故C正确,不符合题意;D、由ab异号得,a<0,b>0,a2b>0,故D错误;故选D.点睛:根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.9.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)【答案】A【解析】【分析】设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【详解】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选A.【点睛】本题考查整式的运算,解题的关键是设2张形状大小完全相同的小长方形卡片的长和宽分别为x 、y ,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.【答案】10【解析】【分析】根据“某天的温差=当天的最高温度-当天的最低温度”计算即可得出答案.【详解】根据题意可得,温差=6℃-(-4℃)=10℃,故答案为10.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解决本题的关键.12.已知13(3)m m x y+- 是关于x ,y 的七次单项式,则222m m -+的值为________ 【答案】17【解析】分析】根据单项式次数的定义即可求出m 的值,再将m 代入后面的式子即可得出答案. 【详解】∵13(3)m m x y +- 是关于x ,y 的七次单项式 ∴3014m m -≠⎧⎨+=⎩解得33m m ≠⎧⎨=±⎩ 综上所述:m=-3将m=-3代入2222=(-3)-2(-3)+2=17m m -+⨯故答案为17.【点睛】本题主要考查的是单项式次数的定义,单项式的次数指单项式中所有字母的指数和.13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.【答案】3x 2-10x +9【解析】【分析】将3x 2-5x +9加上-5x 即可得出答案.【详解】由题意可得:3x 2-5x +9+(-5x )=3x 2-10x +9故答案为3x 2-10x +9.【点睛】本题考查的是整式的加减,熟练掌握整式加减的运算法则是解决本题的关键,14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).【答案】0【解析】【分析】 根据“规定图形表示运算a b c -+,图形表示运算x z y w +--.”得出新的运算方法,再根据新的运算方法,解答即可.【详解】原式=1-2+3+(4+6-7-5)=2-2=0,故答案为:0.【点睛】解答此题的关键是,根据所给的式子,找出新的计算方法,再运用新的计算方法,解答即可. 15.若2210m m +-=,则2425m m ++的值为__________【答案】7【解析】【分析】根据2210m m +-=得出22=1-m m ,将22=1-m m 代入2425m m ++中即可得出答案.【详解】∵2210m m +-=∴22=1-m m将22=1-m m 代入2425m m ++中得原式=2(1-m )+2m+5=7故答案为7.【点睛】本题考查的是求代数式的值,整体代入法是解决本题的关键.16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______.【答案】81 77【解析】【分析】由题中数据可知第n个数的分子为(n+2)2,分母为(n+2)2-4=n2+4n.故可求得第7个数.【详解】第一个数的分子为(1+2)2=9,分母为1×1+4×1=5;第二个数的分子为(2+2)2=16,分母为2×2+4×2=12;第三个数的分子为(3+2)2=25,分母为3×3+4×3=21;第四个数的分子为(4+2)2=36,分母为4×4+4×4=32;第n个数的分子为(n+2)2,分母为n2+4n.第7个数是=()22727487771=++⨯.故答案为:81 77.【点睛】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.17.一条数轴由点A处对折,表示﹣30的数的点恰好与表示4的数的点重合,则点A表示的数是_____.【答案】-13【解析】【分析】根据对称的知识,若﹣30表示的点与4表示的点重合,则对称点是两个点的表示的数的和的平均数,由此求得点A表示的数.【详解】解:点A表示的数是(-30+4)÷2=﹣13.故答案为﹣13.【点睛】此题考查数轴,掌握点和数之间的对应关系以及中心对称的性质是解决问题的关键.18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.【答案】 (1). 白子24个 (2). 黑子25个【解析】【分析】本题以正方形的周长计算公式为基础,分析图形规律,即可得出答案.【详解】第一个图形:棋子共有23个,其中黑子有1个,白子有231-个;第二个图形:棋子共有个,其中黑子有个,白子有2242-个;第三个图形:棋子共有25个,其中黑子有23个,白子有2253-个;……由此可以推出,第n 个图形:棋子共有()22n +个,其中黑子有2n 个,白子有()222n n +-个;故第五个图形:棋子共有2749=个,其中黑子有2525=个,白子有2275492524-=-=个; 故答案为24,25.【点睛】本题是图形类找规律类题型,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭(3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×997172【答案】(1)-143;(2)12;(3)5;(4)﹣359912. 【解析】根据有理数的混合运算的法则计算即可.【详解】解:(1)原式=10+19﹣5﹣167=29﹣172=﹣143;(2)原式=﹣1×(13 ﹣12 )×6÷2 =﹣6×(13﹣12)÷2 =(﹣6×13+6×12 )÷2 =(﹣2+3)÷2 =12; (3)原式=278 ×(253 ﹣258)÷2524 ×827 =278 ×(253 ﹣258)×2425 ×827 =(253 ﹣258 )×2425 =253 ×2425 ﹣258×2425 =8﹣3=5;(4)(﹣36)×997172=﹣36×(100﹣172) =﹣3600+12=﹣359912 . 故答案为(1)-143;(2)12 ;(3)5;(4)﹣359912. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律. 20.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.【答案】化简结果为:229-7a b ab ,值为:-22.【分析】根据整式的加减法则先化简22225(3)2(3)a b ab ab a b --+,再将a =-2,b =-1代入化简后的式子即可得出答案.【详解】解:222222225(3)2(3)=15-5-2-6a b ab ab a b a b ab ab a b --+22=9-7a b ab将a =-2,b =-1代入得原式22=9(2)(1)-7(2)(1)22⨯-⨯-⨯-⨯-=-【点睛】本题考查的是整式的化简求值,注意先化简再求值.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +的值.【答案】-22【解析】【分析】根据多项式不含有的项的系数为零,求出a,b 的值代入2a+3b 即可.【详解】解:原式4332223(5)(37)62x ax x x x bx x =+++--+-=432(5)(4)62x a x b x x +++--+-由题意,得50a +=,40b --=,解得5a =-,4b =-,所以232(5)3(4)22a b +=⨯-+⨯-=-.【点睛】本题考查了合并同类项,利用多项式不含有的项的系数为零得出a ,b 是解题关键.22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.【答案】(1)a <-1<-b <0<b <1<-a ;(2)a【解析】【分析】(1)根据数轴得出a<-1<0<b<1,再比较,即可得出答案;(2)先根据第(1)问的结果判断出每个绝对值的正负并去掉绝对值,再进行计算即可得出答案.【详解】解:(1)根据题意可得:a<-1<-b<0<b<1<-a(2)∵a<0,a+b-1<0,b-a-1>0∴原式=-a-[-(a+b-1)]-(b-a-1)=-a+(a+b-1)-(b-a-1)=-a+a+b-1-b+a+1=a【点睛】本题考查了数轴、绝对值、合并同类项以及有理数的大小比较等知识点,能正确去掉绝对值符号是解决本题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.23.邮递员骑车从邮局出发,先向西骑行2 km 到达A村,继续向西骑行3 km到达B 村,然后向东骑行9 km到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km 画数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?【答案】(1)答案见解析;(2)6km;(3)18km【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据数轴列出算式即可得出答案;(3)根据题意可求出从邮局到C处所走的路程为:2+3+9=14km,再由数轴可得C到邮局的距离为4km,相加即可得出答案.【详解】解:(1)根据题意可得:(2)C村离A村的距离为9-3=6(km)(3)邮递员一共行驶了2+3+9+4=18(千米)【点睛】本题考查的是正负数的应用,解题的关键是理解题目中“正”和“负”的相对概念.24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星一二三四五六日增+6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产个;(2)产量最多的一天比产量最少的一天多生产个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?【答案】(1)298;(2)23;(3)该厂工人这一周的工资是35390元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【详解】解:(1)前三天生产的辆数是100×3+(6﹣3﹣5)=298(个).答案是:298;(2)14﹣(﹣9)=23(个),故答案是23;(3)这一周多生产的总辆数是6﹣3﹣5+11﹣8+14﹣9=6(个).50×700+65×6=35390(元).答:该厂工人这一周的工资是35390元.【点睛】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.25.如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a,b,其中B,C,E在一条直线上,G在线段CD上,三角形AGE的面积为S.(1)①当a=5,b=3时,求S值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.【答案】(1)①4.5;②4.5;(2)S =12b 2,证明见解析 【解析】【分析】(1)①根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG ,即可得出答案;②方法同①;(2)结论S =12b 2,根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG 即可证明. 【详解】(1)①∵四边形ABCD 与四边形CEFG 是两个正方形,AB =5,EC =3,∴DG =CD -CG =5-3=2.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=25+9-12×8×5-12×5×2-12×3×3=4.5. ②∵四边形ABCD 与四边形CEFG 是两个正方形,AB =7,EC =3,∴DG =CD -CG =7-3=4.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=49+9-12×10×7-12×7×4-12×3×3=4.5 (2)结论S =12b 2. 证明:∵S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=a 2+b 2-12(a +b )•a -12•a (a -b )-12b 2 =a 2+b 2-12a 2-12ab -12a 2+12ab -12b 2 =12b 2, ∴S =12b 2. 【点睛】本题主要考查的是整式的加减,需要熟练掌握整式的加减规律.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应的数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.【答案】(1)-4,2;(2)0或8;(3)MN=8.【解析】【分析】(1)由“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C 在A 、B 之间;点C 在B 的右侧.列出方程进行解答;(3)设运动时间为t 秒,根据PQ=16,列出t 的方程求得t ,再求得运动后的M 、N 点表示的数即可.【详解】:(1)由题意得,a+4=0,b-2=0,解得,a=-4,b=2,故答案为:-4,2;(2)设C 点表示的数为x ,根据题意得,①当点C 在A 、B 之间时,有x+4=2(2-x ),解得,x=0;②当点C 在B 的右侧时,有x+4=2(x-2),解得,x=8.故点C 表示的数为0或8;(3)设运动的时间为t 秒,根据题意得, 2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P :-4-2×2=-8,Q :2+3×2=8,M :0-4×2=-8,N :2808-+=, ∴MN=0-(-8)=8.【点睛】本题主要考查了一元一次方程的应用,用数轴上的点表示数,数轴上的动点问题,两点间的距离,非负数的性质,解题的关键是正确列出一元一次方程.。

人教版数学七年级上册《期中考试卷》(含答案)

人教版数学七年级上册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017-3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33< 4.下列各式中,等号不成立的是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab 7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.10.单项式 35ab -8的系数是__,次数是__. 11.若315k y x 与3873x y -是同类项,则k=_____. 12.我国2006年参加高考报名总人数约为950万人,则该人数可用科学记数法表示为_____人. 13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).14.已知单项式3a m b 2与423n a b -和是单项式,那么m=_____,n=_____. 15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48. (3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78. (4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn) (6)13(9a ﹣3)+2(a +1). 四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=ab a b+,试求2*(﹣4)的值. 19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?21.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.答案与解析一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元【答案】B【解析】试题分析:若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B .考点:正数和负数.2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017- 【答案】D【解析】分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是12017-.故选D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33<【答案】C【解析】【分析】(1)根据两个负数,绝对值大的其值反而小作答;(2)根据负数都小于0作答;(3)根据两个负数,绝对值大的其值反而小作答;(4)根据两个正数,绝对值大的数较大作答.【详解】A.∵|−6|<|−8|,∴−6>−8,错误;B.∵11000-−11000是负数,∴11000-<0,错误; C.∵11,57->- ∴1157--<,正确; D.1 3>0.3,错误.故选C.【点睛】考查有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.4.下列各式中,等号不成立是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 【答案】B【解析】试题分析:正数绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值为零.444-==,则本题不成立的是B .5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项【答案】D【解析】试题分析:由同类项的定义可知,D 选项中的两个单项式所含字母m 、n 相同,并且相同字母的指数也相等,因此本题选D.考点:同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab【答案】B【解析】【详解】解:A 选项不是同类项,无法进行加减法计算;B 选项计算正确;C 、原式=2x ;D 选项不是同类项,无法进行加减法计算.故选B .【点睛】本题主要考查的就是合并同类项的计算,属于简单题目.对于同类项的加减法,我们只需要将同类项的系数进行相加减,字母和字母的指数不变即可得出答案,很多同学会将字母的指数也进行相加减,这样就会出错.如果两个单项式不是同类项,我们无法进行加减法计算,这一点很多同学会出错.7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1) 【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A :0.05019精确到0.1是0.1,正确;B :0.05019精确到百分位是0.05,正确;C :0.05019精确到千分位是0.050,错误;D :0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元 【答案】D【解析】 由题意得0.7a 元,所以选D. 点睛:涨价,降价与折扣一个物品价格为a ,涨价b %,现价 为a (1+b %),一个物品价格为a ,降价b %,现价 为a (1-b %),一个物品价格为a ,9折出售,现价为90%a.二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.【答案】(t +15)【解析】(t +15).10.单项式 35ab -8的系数是__,次数是__. 【答案】 (1). 58- (2). 4【解析】 因为单项式的系数是指字母前数字因数,所以358ab -的系数是58-,单项式的次数是指所含字母指数之和,所以358ab -的次数是4,故答案为5 8-,4. 11.若315k y x 与3873x y -是同类项,则k=_____. 【答案】8【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:k=8.12.我国2006年参加高考报名的总人数约为950万人,则该人数可用科学记数法表示为_____人.【答案】9.5×106【解析】试题分析:科学计数法是指将一个数字表示成a 10n ⨯的形式,其中1≤a <10,n 为原数的整数位数减一,则950万人=9500000人=69.510⨯人.13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).【答案】不合格【解析】【分析】根据正负数的意义,求得合格零件的直径的范围,再进一步分析.【详解】解:根据题意,得该零件直径最小是20-0.02=19.98(mm ),最大是20+0.02=20.02(mm ),因为19.9<19.98,所以该零件不合格.故答案为不合格.【点睛】此题考查了正、负数在实际生活中的意义,±0.02表示和标准相比,超过或不足0.02. 14.已知单项式3a m b 2与423n a b -的和是单项式,那么m=_____,n=_____. 【答案】 (1). 4 (2). 2【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=4,n=2.15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.【答案】0或﹣6.【解析】试题分析:在数轴上两点所表示的数的差的绝对值为这两个点之间的距离.设这个点表示的数为x ,则()33x --=,则x 33+=±,解得:x=0或-6,即这个点表示的数为0或-6.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.【答案】5或1.【解析】试题分析:根据绝对值的计算方法可得:a 3=±,b 2=±,根据a b >可得:a=3,b 2=±,则a+b=3+2=5或a+b=3+(-2)=1.点睛:正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的相反数为零;互为相反数的两个数的绝对值相等.本题首先根据绝对值的性质求出a 和b 的值,然后根据有理数的大小比较方法确认a 和b 的值,然后进行计算得出答案.这种题目有的时候还是会出现平方根,根据平方根的性质得出答案.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48.(3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78.(4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m2n﹣5mn)﹣(4m2n﹣5mn)(6)13(9a﹣3)+2(a+1).【答案】(1)﹣1;(2)24;(3)﹣1;(4)19;(5)3m2n;(6)5a+1【解析】试题分析:(1)、首先将同号的进行相加,然后再进行异号的加法计算;(2)、利用乘法分配律进行简便计算;(3)、首先进行绝对值和去括号计算,然后将同分母的放在一起进行计算,最后进行整数之间的计算;(4)、先进行幂的计算,然后进行加减法计算;(5)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案;(6)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案.试题解析:解:(1)、原式=﹣23+22=﹣1;(2)、原式=﹣8+36﹣4=24;(3)、原式=0.75﹣3+0.25+18+78=1﹣3+1=﹣1;(4)、原式=﹣4+3×1+20=﹣4+3+20=19;(5)、原式=7m2n﹣5mn﹣4m2n+5mn=3m2n;(6)、原式=3a﹣1+2a+2=5a+1四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=aba b+,试求2*(﹣4)的值.【答案】4【解析】【分析】根据给出的新定义的计算法则将数字分别代入公式计算即可得出答案.【详解】2*(﹣4)=()()248 244⨯--=+--=4.【点睛】考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.【答案】6.【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项计算,最后将x 和y 的值代入化简后的式子进行计算即可得出答案.试题解析:解:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y)=2x 2y ﹣4xy 2+3xy 2﹣x 2y=x 2y ﹣xy 2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=6.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)34L【解析】【分析】(1)由已知,把所有数据相加,如果得数是正数,则A 处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【详解】解:(1)(+10)+(-8)+( +7)+(-15)+(+6)+(-16)+(+4)+(-2) 1分=-14答:停留时,A 处在岗亭的南方,距离14千米(2)()108715616420.5+++++++++++⨯---- ()108715616420.5=+++++++⨯680.5=⨯34=答:这一天共耗油34升考点:正数和负数.21.已知:m,x,y 满足:(1)23(x -5)2+5|m|=0;(2)-2a 2b y +1与7b 3a 2是同类项. 求:代数式2x 2-6y 2+m(xy -9y 2)-(3x 2-3xy +7y 2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.。

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。

2024年全新七年级数学上册期中试卷及答案(人教版)

2024年全新七年级数学上册期中试卷及答案(人教版)

2024年全新七年级数学上册期中试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 11B. 12C. 13D. 142. 下列哪个数是合数?A. 15B. 16C. 17D. 183. 下列哪个数是偶数?A. 19B. 20C. 21D. 224. 下列哪个数是奇数?A. 23B. 24C. 25D. 265. 下列哪个数是整数?A. 27B. 28C. 29D. 306. 下列哪个数是分数?A. 31B. 32C. 33D. 347. 下列哪个数是无理数?A. 35B. 36C. 37D. 388. 下列哪个数是有理数?A. 39B. 40C. 41D. 429. 下列哪个数是正数?A. 43B. 44C. 45D. 4610. 下列哪个数是负数?A. 47B. 48C. 49D. 50二、填空题(每题2分,共20分)1. 一个正方形的边长是4厘米,它的面积是_________平方厘米。

2. 一个长方形的长是8厘米,宽是5厘米,它的周长是_________厘米。

3. 一个圆的半径是6厘米,它的周长是_________厘米。

4. 一个圆柱的底面半径是3厘米,高是5厘米,它的体积是_________立方厘米。

5. 一个圆锥的底面半径是4厘米,高是9厘米,它的体积是_________立方厘米。

6. 一个三角形的底是6厘米,高是8厘米,它的面积是_________平方厘米。

7. 一个梯形的上底是5厘米,下底是10厘米,高是6厘米,它的面积是_________平方厘米。

8. 一个平行四边形的底是7厘米,高是8厘米,它的面积是_________平方厘米。

9. 一个正六边形的边长是6厘米,它的周长是_________厘米。

10. 一个等腰三角形的底是8厘米,腰是5厘米,它的面积是_________平方厘米。

三、解答题(每题10分,共50分)1. 已知一个三角形的两边长分别是5厘米和8厘米,求第三边的长度。

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。

人教版数学七年级上册《期中测试卷》(附答案)

人教版数学七年级上册《期中测试卷》(附答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12-的相反数是( ) A.B. 2C. 12-D.122.下列有理数的大小比较正确的是( ) A.1123< B. 11||||23->- C. 1123->- D. 11||||23-->-+ 3.下列各组数中的两个数,不相等的是( ) A. ()6++和()6-- B. ()6-+和()6+- C. -6和6-D. -0.2和15-4.有理数a b ,在数轴上的对应的位置如图所示,则下列四个选项正确的是( )A. 0a b +<B. 0a b +=C. 0a b -=D. 0a b ->5.下列计算正确的是( ) A. 2x +3y =5xy B. 2a 2+2a 3=2a 5 C. 4a 2﹣3a 2=1D. ﹣2ba 2+a 2b =﹣a 2b6.对于单项式22r π-的系数、次数分别是( ) A. -2,2 B. -2,3C. -2,2D. -2,37.如果12a 3xb y与–a 2y b 3同类项,则 A. x =–2,y =3B. x =2,y =3C. x =–2,y =–3D. x =2,y =38.下列各式中正确的是( ) A 由213132x x --=-去分母得()()221133x x -=-- B 由 ()()221331x x ---=去括号得42391x x ---= C. 由743x x =-移项得743x x -=D. 由743x x -=-合并同类项,化系数为1得1x =- 9.若关于x 的方程2x+a-4=0的解是x=-2,则a=( ) A. -8B. 0C. 2D. 810.下列等式形式运用正确的是( ) A 若22x y =,则x y = B. 若x ya a=,则x y = C. 若382x -=,则12x =- D. 若axy a =,则1xy =11.已知a b 、互为相反数,是绝对值最小的负整数,mn 、互为倒数,则243a b c mn ++-的值等于( ) A. 1B. 2C. 3D. -312.若2237y y ++的值为8,则2469y y +-的值是( ). A. 2B. -17C. -7D. 7二、填空题(每题3分,满分18分)13.若1260m x -+=是关于x 的一元一次方程,则m 的值为_______.14.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.15.某农户有水稻田6亩,计划每亩施化肥a kg ,有玉米田11亩,计划每亩田施化肥b kg .该农户共应购回化肥__________千克.16.代数式21a +与2a +互为相反数,则a =__________. 17.定义新运算“”,规定bab a a=+⊗,则42-=⊗__________.18.已知关于x y ,的多项式222x axy xy +-与多项式233xy axy y --的和不含项,则的值为__________.三、解答题:共66分.19.有理数的计算 (1)713620-+-+(2)()()()231118533⎛⎫--⨯-+-⨯- ⎪⎝⎭20.整式的化简 (1)22a a -+-(2)()22231253x xy xy x -+--+21.解一元一次方程 (1)()2179x x -=- (2)253164x x---= 22.先化简再求值:已知()2210m n n ++-=,求多项式()231mn mn mn ⎡⎤---⎣⎦的值.23.某检修站,甲小组乘坐一辆汽车,沿东西方向公路进行检修线路,约定向东为正,从地出发到收工时,行走记录为(单位:km ): +8,- 2, -13, -1, +10.同时,乙小组也从地出发, 沿南北方向的公路检修线路,约定向北为正,行走记录为: -7, +9,- 2, +8,- 6.(1)分别计算收工时,甲,乙两组各在地的哪一边,分别距离地多远? (2)若每千米汽车汽油消耗为0.3,求出发到收工时两组各耗油多少升?24.一辆公交车上原来有()66a b -人,中途下去一半,又上来若干人,使车上共有乘客()106a b -人. (1)中途上来了多少乘客?(用含a b 、式子表示) (2)当3a =,2b =时,中途上车的乘客是多少? 25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++ 26.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫=⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.答案与解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12-的相反数是( ) A. B. 2C. 12-D.12【答案】D 【解析】 【详解】因为-12+12=0,所以-12的相反数是12. 故选D.2.下列有理数的大小比较正确的是( ) A.1123< B. 11||||23->- C. 1123->- D. 11||||23-->-+ 【答案】B 【解析】 选项A ,1123>,A 错误;选项B ,1123->-正确;选项C ,1123--<,C 错误;选项D ,11|23---+,D 错误.故选B .3.下列各组数中的两个数,不相等的是( ) A. ()6++和()6-- B. ()6-+和()6+- C. -6和6- D. -0.2和15-【答案】C 【解析】 【分析】先化简再比较两个数,即可判断出答案.【详解】解:A. ()6++和()6--相等,此选项错误; B. ()6-+和()6+-相等,此选项错误;C. -6和6-不相等,此选项正确;D. -0.2和15-相等,此选项错误; 故选:C .【点睛】本题考查的知识点是绝对值以及有理数的加法,比较基础,易于掌握. 4.有理数a b ,在数轴上的对应的位置如图所示,则下列四个选项正确的是( )A. 0a b +<B. 0a b +=C. 0a b -=D. 0a b ->【答案】D 【解析】 【分析】根据数轴可得出101,b a a b -<<<<>,据此逐项分析即可.【详解】解:根据异号相加,去绝对值较大的数的符号,则0a b +>,选项A 错误,选项B 错误; 根据减去一个负数等于加上这个数的相反数,则0a b ->,选项C 错误,选项D 正确. 故选:D .【点睛】本题考查的知识点是数轴,根据数轴得出a ,b 的关系是解此题的关键. 5.下列计算正确的是( ) A. 2x +3y =5xy B. 2a 2+2a 3=2a 5 C. 4a 2﹣3a 2=1 D. ﹣2ba 2+a 2b =﹣a 2b【答案】D 【解析】试题分析:A .2x 和3y 不是同类项,无法合并,错误; B .22a 和32a 不是同类项,无法合并,错误; C .22243a a a -=,错误; D .2222ba a b a b -+=-,正确.故选D .考点:合并同类项.6.对于单项式22r π-的系数、次数分别是( ) A. -2,2 B. -2,3C. -2,2D. -2,3【答案】C 【解析】 分析】根据单项式的系数、次数的定义求解即可.【详解】解:单项式单项式22r π-的系数、次数分别是-2,2. 故选:C .【点睛】此题重点考查学生对单项式系数、次数的把握,抓住次数包含所有未知数的次数是解题关键. 7.如果12a 3xb y与–a 2y b 3同类项,则 A. x =–2,y =3 B. x =2,y =3 C. x =–2,y =–3 D. x =2,y =3【答案】B 【解析】 【分析】根据同类项的定义列出方程组,然后利用代入消元法求解即可. 【详解】∵312x ya b 与23y a b -是同类项, ∴323x y y =⎧⎨=⎩①②, ②代入①得,3x =6, 解得x =2,所以,方程组的解是23.x y =⎧⎨=⎩故选:B.【点睛】考查同类项的概念,所含字母相同并且相同字母的指数也相同的项叫做同类项. 8.下列各式中正确的是( )A. 由213132x x --=-去分母得()()221133x x -=-- B. 由 ()()221331x x ---=去括号得42391x x ---= C. 由743x x =-移项得743x x -=D. 由743x x -=-合并同类项,化系数为1得1x =- 【答案】D 【解析】 【分析】根据解一元一次方程的步骤计算,判断即可得出答案. 【详解】解:A. 由213132x x --=-去分母得()()221633x x -=--,故错误; B. 由 ()()221331x x ---=去括号得42391x x --+=,故错误; C. 由743x x =-移项得743x x -=-,故错误;D. 由743x x -=-合并同类项,化系数为1得1x =-,故正确. 故选:D .【点睛】本题考查的知识点是解一元一次方程以及整式的加减,掌握解一元一次方程的步骤是解此题的关键.9.若关于x 的方程2x+a-4=0的解是x=-2,则a=( ) A. -8 B. 0C. 2D. 8【答案】D 【解析】 【分析】将方程的解x=-2代入方程即可求得答案. 【详解】将x=-2代入方程,得-4+a-4=0, 得a=8, 故选:D.【点睛】此题考查方程的解,一个数是方程的解即可将其代入方程,由此求出方程中其他未知数的值. 10.下列等式形式运用正确的是( ) A 若22x y =,则x y =B. 若x ya a=,则x y =C. 若382x -=,则12x =- D. 若axy a =,则1xy =【答案】B 【解析】 【分析】利用等式的性质对四个选项逐一判断即可.【详解】解:A. 若22x y =,则x y =±,此选项错误;B. 若x ya a =,则x y =,此选项正确; C. 若382x -=,则163x =-,此选项错误;D. 当0a =时不成立,此选项错误. 故选:B .【点睛】本题考查的知识点是等式的性质,熟记等式的性质内容是解此题的关键.11.已知a b 、互为相反数,是绝对值最小的负整数,mn 、互为倒数,则243a b c mn ++-的值等于( ) A. 1 B. 2C. 3D. -3【答案】D 【解析】 【分析】根据相反数的定义可知0a b +=,根据倒数的定义可知1mn =,由绝对值最小的负整数得出1c =-,代入计算即可.【详解】解:由已知条件可得:0a b +=,1c =-,1mn =, ∴241433a b c mn ++-=-=-. 故选:D .【点睛】本题考查了相反数、倒数、有理数的加减运算,理解题意得出0a b +=,1c =-,1mn =,是解此题的关键.12.若2237y y ++的值为8,则2469y y +-的值是( ). A. 2 B. -17C. -7D. 7【答案】C 【解析】【详解】解:由题意知,2y 2+3y=1, 代入4y 2+6y-9得:2(2y 2+3y)-9=2×1-9=-7. 故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2y 2+3y 的值,然后利用“整体代入法”求代数式的值.二、填空题(每题3分,满分18分)13.若1260m x -+=是关于x 的一元一次方程,则m 的值为_______. 【答案】2 【解析】【详解】∵方程2x m-1+6=0是关于x 的一元一次方程, ∴m-1=1, 解得:m=2, 故答案为2.14.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________. 【答案】4.027810⨯ 【解析】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:4 0270 0000用科学记数法表示是4.027×108. 故答案为4.027×108.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.某农户有水稻田6亩,计划每亩施化肥a kg ,有玉米田11亩,计划每亩田施化肥b kg .该农户共应购回化肥__________千克. 【答案】(611)a b + 【解析】 【分析】根据题意水稻田需化肥6a 千克,玉米田需化肥11b 千克,求和即可得出答案.【详解】解:由题意可得,农户共应购回化肥:(611)a b +千克.故答案是: (611)a b +.【点睛】本题考查的知识点是列代数式,比较基础,注意要加括号.16.代数式21a +与2a +互为相反数,则a =__________.【答案】-1【解析】【分析】根据互为相反数的性质可得2a+1+(2+a)=0,解出a 的值即可.【详解】因为代数式21a +与2a +互为相反数,所以2a+1+(2+a)=0,解得a=-1,故答案为-1.【点睛】本题考查的是相反数的意义,根据相反数的意义列式结算是本题的关键.17.定义新运算“”,规定b ab a a =+⊗,则42-=⊗__________. 【答案】12【解析】【详解】解:∵b a b a a=+⊗, ∴()2424441612-⊗=-+-=-+=-故答案为:12.18.已知关于x y ,的多项式222x axy xy +-与多项式233xy axy y --的和不含项,则的值为__________. 【答案】32-【解析】【分析】 将两个多项式相加,得出项的系数,令其为0,即可得出答案.【详解】解:222322323(23)(1+)x axy xy xy axy y x a xy a xy y +=--++--+-∵多项式222x axy xy +-与多项式233xy axy y --的和不含项,∴230a += ∴32a =-.故答案为:32-. 【点睛】本题考查的知识点是整式的加减运算和多项式的项,解题的关键是通过计算得出xy 项的系数.三、解答题:共66分.19.有理数的计算(1)713620-+-+(2)()()()231118533⎛⎫--⨯-+-⨯- ⎪⎝⎭ 【答案】(1)20;(2)12【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)先算乘方运算,再进行乘法运算,最后进行加减运算.【详解】解:(1)71362020-+-+=;(2)()()()231118531215123⎛⎫--⨯-+-⨯-=--+= ⎪⎝⎭ 【点睛】本题考查知识点是有理数的混合运算,掌握运算顺序以及运算法则是解此题的关键.20.整式的化简(1)22a a -+-(2)()22231253x xy xy x -+--+【答案】(1)2a -;(2)39xy -【解析】【分析】(1)合并同类项即可化简;(2)先去括号,再合并同类项即可.【详解】解:(1)222a a a -+-=-(2)()2222231253231106239x xy xy x x xy xy x xy -+--+=-+-+-=-【点睛】本题考查的知识点是整式的加减,掌握去括号法则以及合并同类项法则是解此题的关键. 21.解一元一次方程(1)()2179x x -=-(2)253164x x ---= 【答案】(1)7x =;(2)13x =【解析】【分析】(1)去括号,移项合并同类项,系数化为1即可;(2)方程两边同时乘以12,再去括号,移项合并同类项,系数化为1即可;【详解】解:(1)()2179x x -=-21637x x -=-642x =7x =(2)253164x x ---= 122(25)3(3)x x --=-1241093x x -+=-13x -=-13x =【点睛】本题考查的知识点是解一元一次方程,掌握解一元一次方程的一般步骤是解此题的关键. 22.先化简再求值:已知()2210m n n ++-=,求多项式()231mn mn mn ⎡⎤---⎣⎦的值. 【答案】23mn -;132-【解析】【分析】利用绝对值的非负性以及偶次方的非负性求出m ,n 的值,再将原式化简后代入求解即可.【详解】解:∵210n -=,0m n += ∴12m =-,12n = 原式23mn =- 当12m =-,12n =时原式132=-. 【点睛】本题考查的知识点是整式的化简求值,利用已知条件求出m ,n 的值是解此题的关键.23.某检修站,甲小组乘坐一辆汽车,沿东西方向的公路进行检修线路,约定向东为正,从地出发到收工时,行走记录为(单位:km ): +8,- 2, -13, -1, +10.同时,乙小组也从地出发, 沿南北方向的公路检修线路,约定向北为正,行走记录为: -7, +9,- 2, +8,- 6.(1)分别计算收工时,甲,乙两组各在地哪一边,分别距离地多远?(2)若每千米汽车汽油消耗为0.3,求出发到收工时两组各耗油多少升?【答案】(1)甲在正东方向2km 处,乙在正北方向2km 处;(2)甲:10.2L ,乙:9.6L【解析】【分析】(1)将两组的各数依次相加,结合正负数的含义即可得出结论;(2)将两组数据各数的绝对值相加,得出路程,再乘以油耗即可得出结论.详解】解:甲:()()()()82131102++-+-+-++=乙:()()()7928(6)2-+++-+++-=∴甲在正东方向2km 处乙在正北方向2km 处(2)甲:()82131100.3340.310.2L ++++⨯=⨯=乙:()792860.3320.39.6L ++++⨯=⨯=【点睛】本题考查的知识点是正负数,根据题目理解正负数所表示的含义是解此题的关键.24.一辆公交车上原来有()66a b -人,中途下去一半,又上来若干人,使车上共有乘客()106a b -人.(1)中途上来了多少乘客?(用含a b 、的式子表示)(2)当3a =,2b =时,中途上车的乘客是多少?【答案】(1)73a b -;(2)15【解析】【分析】根根据题意表示出车上原来的人数,将a ,b 的值代入计算即可.【详解】解:(1)由题意得出:()()1106(66)66732a b a b a b a b ⎡⎤-----=-⎢⎥⎣⎦, 即中途上车的人数为:73a b -;(2)当3a =,2b =时, 73732315a b -=⨯-⨯=(人)【点睛】本题考查的知识点是列代数式、代数式求值以及整式的加减,弄清题意是解此题的关键. 25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++【答案】(1)2550;(2)50505150a m +【解析】【分析】(1)利用所给规律计算求解即可;(2)先去括号,再分组利用所给规律计算.【详解】解:(1)原式()()()21004985052=++++⋅⋅⋅++102252550=⨯=(2)原式()()23100234101a a a a m m m m =+++⋅⋅⋅+++++⋅⋅⋅+50505150a m =+【点睛】本题考查的知识点是去括号与添括号、有理数的加法、合并同类项,灵活运用加法的运算律是解此题的关键.26.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.【答案】(1)5,3;(2)有正格数对,正格数对为()26L ,【解析】【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -= ∵,为正整数且为整数∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.。

人教版七年级上册数学期中试题(含简单答案)

人教版七年级上册数学期中试题(含简单答案)

B.5 或 1
C.5 或 1
D. 5 或 1
7.如果 2xn2 y3 与 3x3 y2m1 是同类项,那么 m,n 的值是( )
A. m 2 , n 1 B. m 0 , n 1
C. m 2 , n 2
D. m 1, n 2
8.关于 x、y 的多项式1 4xy2 nxy2 xy 中不含三次项,则 n 的值是( )
A.0
B.4
C. 1
D. 4
二、填空题
9.单项式 2 ab2 的次数为

3
10.m 与 - - 2 互为相反数,则 m 的值为

3
11.数轴上到原点的距离等于 3 个单位长度的点所表示的数为

12.一个数的绝对值的倒数是 3,这个数是

13.已知 m, n 满足 (m 2)2 | mn 8 | 0 ,求 m n nm 的值.
B. 6.96105
C. 6.96106
D. 0.696106
3.已知 a,b 都是实数,若 a 22 b 1 0 ,则 a b 2023 的值是( )
A. 2023
B. 1
C.1
D.2023
4.数轴上依次排列的四个点,它们表示的数分别为 a,b,c,d ,若 a c 6 , a d 10 ,
1.D
参考答案:
2.B
3.B
4.D
5.C
6.A
7.A
8.D
9.3 10. 2
3
11. 3 12. 1
3 13.22
14.9
27 15.
256
16. 4043x2
17.① 4 ;②1000;③1
1
29 ;④

2024年人教版初一数学上册期中考试卷(附答案)

2024年人教版初一数学上册期中考试卷(附答案)

2024年人教版初一数学上册期中考试卷(附答案)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. ()下列哪个数是有理数?A. √3B. 5C. 1/2D. π2. ()一个正方形的边长为2,那么它的对角线长度为?A. 2B. 2√2C. 4D. √53. ()一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 324. ()下列哪个数是素数?A. 21B. 29C. 35D. 395. ()一个圆的半径为3,那么它的面积是多少?A. 9πB. 9C. 27πD. 27二、判断题(每题1分,共20分)1. ()所有的偶数都是2的倍数。

2. ()如果一个数是4的倍数,那么它一定是偶数。

3. ()等差数列的任意两项之差是相等的。

4. ()等边三角形的三个角都相等。

5. ()平行四边形的对角线互相平分。

三、填空题(每空1分,共10分)1. ()一个正方形的面积是16,那么它的边长是______。

2. ()一个等差数列的第1项是3,公差是2,那么第5项是______。

3. ()一个圆的直径是10,那么它的半径是______。

4. ()一个等边三角形的周长是18,那么它的边长是______。

5. ()如果一个数的平方是36,那么这个数可能是______或______。

四、简答题(每题10分,共10分)1. 请简述等差数列的定义和性质。

2. 请简述平行四边形的性质和判定方法。

五、综合题(1和2两题7分,3和4两题8分,共30分)1. ()一个长方形的长是10,宽是5,求它的面积和周长。

2. ()一个等差数列的第1项是2,公差是3,求前5项的和。

3. ()一个圆的半径是7,求它的面积和周长。

4. ()一个等边三角形的边长是12,求它的面积。

三、填空题(每空1分,共10分)6. ()若一个正方形的对角线长为6√2 cm,则其边长为______cm。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

人教版七年级上册数学《期中考试试卷》含答案

人教版七年级上册数学《期中考试试卷》含答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、反复比较,慎重选择哟!(每小题3分,共30分)1.计算()33--的结果是( )A. 6B. 3C. 0D. -62.下列结论中错误的是( )A. 零整数B. 零不是正数C. 零是偶数D. 零不是自然数 3.若2=a ,则a 的值为( )A. 2B. -2C. ±2D. 不确定 4.如果一个数的平方等于它的倒数,那么这个数一定是( )A. 0B. 1C. ﹣1D. ±1 5.关于多项式26﹣3x 5+x 4+x 3+x 2+x 的说法正确的是( )A. 是六次六项式B. 是五次六项式C. 是六次五项式D. 是五次五项式6.在﹣(﹣1)4,23,﹣32,(﹣4)2这四个数中,最大的数与最小的数的和等于( )A. 7B. 15C. ﹣24D. ﹣17.一个两位数,个位数字为a ,十位数字比个位数字大1,则这个两位数可表示为( )A 11a -1B. 11a +1C. 11a +10D. 11a -108.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为( )A. a 2+(﹣2a+b+c)B. a 2+(﹣2a ﹣b ﹣c) C a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c) 9.化简2a ﹣[3b ﹣5a ﹣(2a ﹣7b)]的结果是( )A. ﹣7a+10bB. 5a+4bC. ﹣a ﹣4bD. 9a ﹣10b 10.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是( )A. 25B. 27C. 55D. 120二、注意审题,细心填空呦!(每小题3分,共30分)11.-3的相反数是_______,-2018的倒数是_______.12.稀士元素具有独特的性质和广泛的应用,我国稀土资源的总储量约为1050000000吨,用科学记数法表示为_____.13.比较有理数大小:﹣3_____﹣2016(选用“>”、“<”或“=”号填空).14.规定a*b=5a+2b-1,则(﹣4)*6的值为_______.15.若|x|=3,y 的倒数为12,则x+y=_____. 16.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费_____元. 17.在数﹣1,2,﹣3,5,﹣6中,任取两个数相乘,其中最大积是_____.18.单项式﹣2223a b cπ是_____次单项式,系数为_____.19.已知代数式x 2+3x+5的值等于7,则代数式3x 2+9x+2的值_____.20.有一列式子,按一定规律排列成3a,﹣9a 2,27a 3,﹣81a 4,243a 5,…这列列式子中第n 个式子为_____.(n 为正整数)三、解答题(共55分)21.计算:(1)5×(﹣2)+(﹣8)÷(﹣2)(2)(﹣24)×(1231238--) (3)﹣14﹣(1﹣0×4)÷13×[(﹣2)2﹣6]. 22.已知|x|=3,(y+1)2=4,且xy <0,求x+y 的值.23.按要求求值(1)化简求值:(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5)其中a=﹣1.(2)若化简(2mx 2﹣x+3)﹣(3x 2﹣x ﹣4)的结果与x 的取值无关,求m 的值.24.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2,当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?25.一位同学做一道题:“已知两个多项式A 、B ,计算2A ﹣B”.他误将“2A ﹣B”看成“A ﹣2B”,求得的结果5x 2﹣2x+4.已知B=2x 2+3x ﹣7,求2A ﹣B 的正确答案.26.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?27.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本金和利润再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元.(1)若商场投资x元,分别用含x的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?答案与解析一、反复比较,慎重选择哟!(每小题3分,共30分)1.计算()33--的结果是( )A. 6B. 3C. 0D. -6【答案】A【解析】试题解析:根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6. 故选A .2.下列结论中错误的是( )A. 零是整数B. 零不是正数C. 零是偶数D. 零不是自然数 【答案】B【解析】【分析】由于零是有理数,也是整数,还是自然数,由此可分别进行判断.【详解】 解:A .零是整数,所以A 选项的说法是正确的;B .零不是整数,所以B 选项说法是错误的;C .零是自然数,所以C 选项的说法是正确的;D .零是有理数,所以D 选项的说法是正确的.故选B .【点睛】本题考查了有理数:整数和分数统称为有理数.3.若2=a ,则a 的值为( )A. 2B. -2C. ±2D. 不确定 【答案】C【解析】试题解析:∵|2|=2,|-2|=2,∴若|a|=2,则a 的值为±2.故选C .4.如果一个数的平方等于它的倒数,那么这个数一定是( )A. 0B. 1C. ﹣1D. ±1【答案】B【解析】试题分析:因为1的平方和倒数都为1,所以一个数的平方等于它的倒数,则这个数一定是1,故答案选B.考点:倒数.5.关于多项式26﹣3x5+x4+x3+x2+x说法正确的是( )A. 是六次六项式B. 是五次六项式C. 是六次五项式D. 是五次五项式【答案】B【解析】【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【详解】多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选B.【点睛】本题考查多项式的次数,多项式中,次数最高的项的次数是这个多项式的次数,不含字母的项叫做常数项,26的次数是0,即该多项式的次数不是六次,而是五次.6.在﹣(﹣1)4,23,﹣32,(﹣4)2这四个数中,最大的数与最小的数的和等于( )A. 7B. 15C. ﹣24D. ﹣1【答案】A【解析】【分析】根据乘方的意义,可得答案.【详解】﹣(﹣1)4=﹣1,23=8,﹣32=﹣9,(﹣4)2=16,最大数是16=(-4)2,最小的数是﹣9=﹣32,最大的数与最小的数的和等于16+(﹣9)=7,故选A.【点睛】本题考查了有理数的加法,利用乘方的意义确定最大数最小数是解题关键7.一个两位数,个位数字为a,十位数字比个位数字大1,则这个两位数可表示为()A. 11a -1B. 11a +1C. 11a +10D. 11a -10【答案】C【解析】【分析】 由于十位数字比个位数字大1,则十位上的数位a+1,又个位数字为a ,则两位数即可表示出来.【详解】由于个位数字为a ,十位数字比个位数字大1,则十位数字为a+1,∴这个两位数可表示为10(a+1)+a=11a+10.故选C .【点睛】本题考查了代数式的列法,正确理解题意是解决这类题的关键.注意两位数的表示方法为:十位数×10+个位数.8.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为( )A. a 2+(﹣2a+b+c)B. a 2+(﹣2a ﹣b ﹣c)C. a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c)【答案】B【解析】试题解析:原式2(2).a a b c =+---故选B.9.化简2a ﹣[3b ﹣5a ﹣(2a ﹣7b)]的结果是( )A ﹣7a+10bB. 5a+4bC. ﹣a ﹣4bD. 9a ﹣10b 【答案】D【解析】试题分析:原式=2a -(3b -5a -2a+7b)=2a -(10b -7a)=2a -10b+7a=9a -10b .考点:去括号的法则和合并同类项10.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是( )A. 25B. 27C. 55D. 120 【答案】C【解析】试题分析:观察发现,从第三个数开始,后一个数是前两个数的和,依次计算求解即可.解:1+1=2,1+2=3,2+3=5,3+5=8,5+8=13,8+13=21,13+21=34,21+34=55.所以第10个数十55.故选C .考点:规律型:数字的变化类.二、注意审题,细心填空呦!(每小题3分,共30分)11.-3的相反数是_______,-2018的倒数是_______.【答案】 (1). 3 (2). -12018 【解析】试题解析:根据相反数,倒数的概念得:-3的相反数是3;-2018的倒数等于-12018. 12.稀士元素具有独特的性质和广泛的应用,我国稀土资源的总储量约为1050000000吨,用科学记数法表示为_____.【答案】91.0510⨯【解析】【分析】绝对值大于1的正数可以科学计数法,a×10n ,即可得出答案. 【详解】n 由左边第一个不为0数字前面的0的个数决定,所以此处n=9,a=1.05,所以答案填写91.0510.⨯【点睛】本题考查了科学计数法的运用,熟悉掌握概念是解决本题的关键.13.比较有理数大小:﹣3_____﹣2016(选用“>”、“<”或“=”号填空).【答案】>【解析】【分析】先计算它们的绝对值,根据两个负数,绝对值大的反而小,即可得出结论.【详解】因为|﹣3|=3,|﹣2006|=2006,3<2006,所以﹣3>﹣2006.故答案为>.【点睛】本题考查了有理数大小的比较,一般有两种办法:一是借助于数轴,先把各数描在数轴上,利用右边的数总大于左边的数比较;二是利用法则,正数大于0;0大于负数,正数大于一切负数;两个负数,绝对值大的反而小.14.规定a*b=5a+2b-1,则(﹣4)*6的值为_______.【答案】-9【解析】【分析】根据a*b=5a+2b-1,可以求得题目中所求式子的值,本题得以解决.【详解】∵a*b=5a+2b-1,∴(-4)*6=5×(-4)+2×6-1=(-20)+12-1=-9,故答案为-9.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.若|x|=3,y的倒数为12,则x+y=_____.【答案】-1或5【解析】【分析】由绝对值等于3的数为3或﹣3,求出x的值,利用倒数的定义求出y的值,即可求出x+y的值.【详解】∵|x|=3,y的倒数为1 2 ,∴x=±3 y=2,当x=3时,x+y=3+2=5,当x=-3时,x+y=-3+2=-1故答案为﹣1或5.【点睛】此题考查了有理数的加法运算,熟练掌握加法法则是解本题的关键.16.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费_____元.【答案】(1.2x﹣24)【解析】【分析】根据应交煤气费=前60立方米的付费+超过60立方米的付费列式即可.【详解】∵超出60立方米的煤气用量为:x﹣60,∴超出的费用是1.2(x﹣60)=1.2x﹣72元,∴应交煤气费是1.2x﹣72+60×0.8=1.2x﹣24.故答案为1.2x﹣24.【点睛】本题考查列代数式,找到所求的量的等量关系是解题关键.17.在数﹣1,2,﹣3,5,﹣6中,任取两个数相乘,其中最大的积是_____.【答案】18.【解析】试题分析:最大的积是:(﹣3)×(﹣6)=18,故答案为18.考点:1.有理数的乘法;2.有理数大小比较.18.单项式﹣2223a b cπ是_____次单项式,系数为_____.【答案】(1). 5(2).2 3π-【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:根据单项式定义得:单项式2223a b cπ-是5次单项式,系数为23π-.故答案为:5;23π-.19.已知代数式的x2+3x+5的值等于7,则代数式3x2+9x+2的值_____.【答案】8【解析】试题解析:∵x 2+3x+5=7,∴x 2+3x=2,∴3x 2+9x+2=3(x 2+3x)+2=3×2+2=8. 20.有一列式子,按一定规律排列成3a,﹣9a 2,27a 3,﹣81a 4,243a 5,…这列列式子中第n 个式子为_____.(n 为正整数)【答案】(﹣1)n+13n a n【解析】【分析】利用归纳法来得出规律解答即可.【详解】第一个式子为:(-1)2 3a,第二个式子为:(-1)2+132a 2,第三个式子为:(-1)3+133a 3,第四个式子为:(-1)4+134a 4,第五个式子为:(-1)5+135a 5,…∴第n 个式子为:(-1)n+13n a n ,故答案为(-1)n+13n a n .【点睛】本题考查了规律型数字的变化.利用归纳法来得出规律是解题关键.三、解答题(共55分)21.计算:(1)5×(﹣2)+(﹣8)÷(﹣2)(2)(﹣24)×(1231238--) (3)﹣14﹣(1﹣0×4)÷13×[(﹣2)2﹣6]. 【答案】(1)-6;(2)37;(3)5.【解析】【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值【详解】(1)原式=﹣10+4=﹣6;(2)原式=﹣12+40+9=37;(3)原式=﹣1﹣3×(﹣2)=﹣1+6=5.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.【答案】0或-2【解析】分析:利用绝对值及平方根定义求出x与y的值,代入计算即可求出x+y的值.详解:根据题意得:x=±3,y+1=±2,即y=1或-3,∵xy<0,∴x=3,y=-3;x=-3,y=1,则x+y=0或-2.点睛:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.23.按要求求值(1)化简求值:(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5)其中a=﹣1.(2)若化简(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.【答案】(1)2;(2)1.5【解析】【分析】(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并后,由结果与x的取值无关,确定出m的值即可.【详解】(1)原式=4a2﹣2a﹣6﹣4a2+4a+10=2a+4,当a=﹣1时,原式=﹣2+4=2;(2)原式=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,由结果与x的取值无关,得到2m﹣3=0,解得:m=1.5.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2,当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?【答案】盈利37元.【解析】试题分析:所得的正负数相加,再加上预计销售的总价,减去总进价,结果为正数说明盈利了,结果是负数说明亏损了.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),所以他卖完这8套儿童服装后是盈利,盈利37元.点睛:本题主要考查有理数的混合运算的实际应用,利用正数跟负数的性质来解决实际生活问题是比较常见的题型,我们应区分现实生活中正数与负数的意义,根据实际情况来解决问题.25.一位同学做一道题:“已知两个多项式A、B,计算2A﹣B”.他误将“2A﹣B”看成“A﹣2B”,求得的结果5x2﹣2x+4.已知B=2x2+3x﹣7,求2A﹣B的正确答案.【答案】4x2+5x﹣13.【解析】【分析】先根据题意求出A,再将A与B代入2A﹣B中,去括号合并即可得答案.【详解】∵A﹣2(﹣2x2+3x﹣7)=5x2﹣2x+4,∴A=x2+4x﹣10,∴2A﹣B=2(x2+4x﹣10)﹣(﹣2x2+3x﹣7)=2x2+8x﹣20+2x2﹣3x+7=4x2+5x﹣13.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?【答案】(1)18,22;(2)4n+2;(3)25【解析】【分析】(1)找规律可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化,据此可得第四、五个上字所需棋子数;(2)根据(1)中规律即可得;(3)结合(2)中结论可列方程,解方程即可得.【详解】(1)∵第一个“上”字需用棋子4×1+2=6枚;第二个“上”字需用棋子4×2+2=10枚;第三个“上”字需用棋子4×3+2=14枚;∴第四个“上”字需用棋子4×4+2=18枚,第五个“上”字需用棋子4×5+2=22枚,故答案为18,22;(2)由(1)中规律可知,第n个“上”字需用棋子4n+2枚,故答案为4n+2;(3)根据题意,得:4n+2=102,解得:n=25,答:第25个上字共有102枚棋子.【点睛】此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是四个端点每次每个端点增加一个,还有两个点在里面不发生变化.27.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本金和利润再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元.(1)若商场投资x元,分别用含x的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)0.265x;0.3x-700;(2)月末出售所获得的利润较多,此时获利11300元.【解析】试题分析:(1)根据题意可以用代数式表示出月初月末两种销售方式获得的利润;(2)将x=40000分别代入(1)中的代数式,然后比较,即可解答本题.试题解析:(1)由题意可得,该商月初出售时的利润为:15%x+x(1+15%)×10%=0.265x(元),该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.。

人教版数学七年级上册《期中考试试卷》(含答案解析)

人教版数学七年级上册《期中考试试卷》(含答案解析)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(下列各题只有一个答案是正确的,将正确答案序号填入下表相应的空格内.每小题2分,共20分)1.-2的绝对值是( )A. 2B. -2C. 2或-2D. 12或12- 2.下列计算中,正确是A. 462a a a -=B. 32a a a -=C. 22532a a -=D. 11033a a -= 3.下列方程是一元一次方程的是( )A. 2-5=x yB. 3-2=2+6x xC. 210x -=D. 15x x+= 4.如果方程32-2x m -=的解是,那么的值是( )A. B. C. D. 4-5.若代数式312x -的值与-3互为相反数,则的值为( )A. -3B. -5C. 5D. 36.一种巧克力的质量标识为“100±0.25克”,则下列巧克力合格的是( )A. 100.30克B. 100.70克C. 100.51克D. 99.80克 7.下列说法正确的是( )A. ﹣25xy 的系数是﹣2B. x 2+x ﹣1的常数项为1C. 22ab 3的次数是6次D. 2x ﹣5x 2+7是二次三项式 8.已知|a |=6,|b |=2,且a >0,b <0,则a +b 值为()A. 8B. -8C. 4D. -4 9.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A 的值为( ) A. 820 B. 830 C. 840 D. 85010.某班42名同学去公园乘电动船或脚踏船游玩,每只电动船坐6人,每只脚踏船坐4人,一共乘坐了8只船(全部坐满).若设电动船只,则可列方程( )A. ()46842x x +-=B. ()64842x x +-=C. 42846x x -+=D. 42864x x -+= 二、填空题(每题2分,共16分)11.如果把向西走5米记为-5米,则向东走8米表示为________米;12.比较大小:﹣34_____﹣65(填“>”“<”或“=”) 13.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.14.单项式326x y -系数是__________;次数是__________.15.化简:()()423a b a b ---=_________.16.如果单项式a m b 3单项式a 2b n 是同类项,那么(﹣m )n 的值是__________.17.若222x x --的值为0,则236x x -的值是__________.18.任何一个无限循环小数都可以写成分数的形式.我们以无限循环小数0.5•为例说明如下:设0.5•=x ,由0.5•=0.555…可知,10x =5.555…,所以10x ﹣x =5,解方程得x =59,于是,0.5•=59.请你把0.27••写成分数的形式是_____. 三、解答题(19题16分,20题8分,21题6分,共30分)19.计算①()2617633-+-- ②33(7)(13)44⎛⎫⨯---⨯- ⎪⎝⎭③5511(36)4612⎛⎫-⨯-- ⎪⎝⎭④23(2)5(2)4-⨯--÷ 20.解方程:①455x x =- ②2(x-1)-3(2+x)=521.先化简,再求值:已知2235A a b ab =+-,22234B ab b a =-+,求当12a =-,2b =时,2B A -+的值.四、解答题(第22题8分,第23题10分,共18分)22.如图,大小两个正方形的边长分别为、. (1)用含、的代数式直接表示阴影部分的面积;(无需简化)(2)如果6a =、4b =,求阴影部分面积.23.如图,小蚂蚁在9×9的小方格上沿着网格线运动(每小格边长为1),一只蚂蚁在C 处找到食物后,要通知A 、B 、D 、E 处的其他小蚂蚁,我们把它的行动规定:向上或向右为正,向下或向左为负.如果从C 到D 记为:C →D (+2,-3)(第一个数表示左、右方向,第二个数表示上、下方向),那么;(1)C →B ( ),C →E ( ),D → (-4,-3),D → ( ,+3);(2)若这只小蚂蚁的行走路线为C →E →D →B →A →C ,请你计算小蚂蚁走过的路程.五、解答题(本题8分)24.我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a N =(0a >,1a ≠,0N >),则叫做以为底的对数,记作a log N b =,例如:因为35125=,所以51233log =;因为211121=,所以111212log =请同学们利用上面的对数运算的方法,完成下列各题:(1)填空:66log =__________,636log =__________;(2)如果()223log m -=,求的值.六、解答题(本题8分)25.甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a副球拍和b盒羽毛球(b>a).(1)按上述促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a、b的代数式表示;(2)当a=10,b=20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?答案与解析一、选择题(下列各题只有一个答案是正确的,将正确答案序号填入下表相应的空格内.每小题2分,共20分)1.-2的绝对值是( )A. 2B. -2C. 2或-2D. 12或12- 【答案】A【解析】【分析】根据绝对值的定义直接可以得到答案.【详解】解:的绝对值为,故答案为.【点睛】本题考查了绝对值定义,明确负数的绝对值为其相反数,0的绝对值为0,正数的绝对值为其本身. 2.下列计算中,正确的是A. 462a a a -=B. 32a a a -=C. 22532a a -=D. 11033a a -= 【答案】D【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,可得出答案.【详解】解:A. 462a a a -=-, 故本选项错误;B 、a 3与a 2所含字母相同,但相同字母的次数不同,故本选项错误;C. 22532a a -=a 2, 故本选项错误;D. 11033a a -=, 故本选项正确. 故选D.【点睛】本题考查同类项,合并同类项,零指幂数的知识,比较简单,注意对基础知识的熟练掌握. 3.下列方程是一元一次方程的是( )A. 2-5=x yB. 3-2=2+6x xC. 210x -=D. 15x x+= 【答案】B【解析】【分析】含有一个未知数并且未知数的次数是1的方程是一元一次方程,根据定义解答即可.【详解】A 、含有两个未知数,不符合定义,故不是一元一次方程;B 、整理后为x=8,,符合定义,故是一元一次方程;C 、未知数的次数是2,不符合定义,故不是一元一次方程;,D 、未知数在分母中,是分式方程,不符合定义,故不是一元一次方程;故选:B.【点睛】此题考查一元一次方程定义,正确理解定义并熟练解题是关键.4.如果方程32-2x m -=解是,那么的值是( )A.B. C. D. 4-【答案】C【解析】【分析】把x=2代入方程3x-2m=-2得到关于m 的一元一次方程,解之即可.【详解】把x=2代入方程3x-2m=-2得:6-2m=-2,解得:m=4,故选C .【点睛】此题考查一元一次方程的解,解题关键在于正确掌握解一元一次方程的方法是解题的关键. 5.若代数式312x -的值与-3互为相反数,则的值为( )A. -3B. -5C. 5D. 3 【答案】C【解析】分析】根据相反数的定义即可求出答案.【详解】解:由题意可知:3x-12+(-3)=0,∴x=5故答案为C.【点睛】本题考查相反数,解题的关键是正确理解相反数的定义,本题属于基础题型.6.一种巧克力的质量标识为“100±0.25克”,则下列巧克力合格的是( )A. 100.30克B. 100.70克C. 100.51克D. 99.80克【答案】D【解析】【分析】计算巧克力的质量标识的范围:在100−0.25和100+0.25之间,即99.75到100.25之间.【详解】解:100﹣0.25=99.75(克),100+0.25=100.25(克),所以巧克力的质量标识范围是:在99.75到100.25之间.故选D.【点睛】此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围.7.下列说法正确的是( )A. ﹣25xy的系数是﹣2 B. x2+x﹣1的常数项为1C. 22ab3的次数是6次D. 2x﹣5x2+7是二次三项式【答案】D【解析】分析】根据单项式和多项式的有关概念逐一求解可得.【详解】解:A.﹣25xy的系数是﹣25,此选项错误;B.x2+x﹣1的常数项为﹣1,此选项错误;C.22ab3的次数是4次,此选项错误;D.2x﹣5x2+7是二次三项式,此选项正确;故选D.【点睛】本题考查多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.8.已知|a|=6,|b|=2,且a>0,b<0,则a+b的值为()A. 8B. -8C. 4D. -4【答案】C【解析】【分析】根据绝对值的意义及a >0,b <0可得a 和b 的值,从而求得a +b 的值.【详解】解:∵|a |=6,a >0,∴a =6,∵ |b |=2,b <0,∴ b =-2,∴ a +b =6+(-2)=4故选C.【点睛】本题考查了绝对值的意义和有理数的减法.9.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A 的值为( ) A. 820B. 830C. 840D. 850【答案】C【解析】【分析】对于b a A (b <a )来讲,等于一个乘法算式,其中最大因数是a ,依次少1,最小因数是b .依此计算即可.【详解】解:根据规律可得: 47A =7×6×5×4=840;故选C .【点睛】本题考查了规律型-数字的变化,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到b a A (b <a )中的最大因数,最小因数.10.某班42名同学去公园乘电动船或脚踏船游玩,每只电动船坐6人,每只脚踏船坐4人,一共乘坐了8只船(全部坐满).若设电动船只,则可列方程( )A. ()46842x x +-=B. ()64842x x +-=C. 42846x x -+=D. 42864x x -+= 【答案】B【解析】【分析】电动船只共乘坐8只船故脚踏船有(8-x )只,乘以对应的每只船上的人数即可得到总人数42,由此列出方程.【详解】∵电动船只,共乘坐了8只船(全部坐满),∴脚踏船有(8-x )只,∴共可乘坐6x 人+4(8-x )人,∴()64842x x +-=故选:B.【点睛】此题考查一元一次方程的实际应用,正确理解题意是列方程的关键.二、填空题(每题2分,共16分)11.如果把向西走5米记为-5米,则向东走8米表示为________米;【答案】+8.【解析】【分析】根据正数和负数表示相反意义的量,向西记为负,可得向东的表示方法.【详解】解:把向西走5米记为-5米,那么向东走8米记为+8米,故答案为+8.【点睛】本题考查了正数和负数,相反意义的量用正数和负数表示.12.比较大小:﹣34_____﹣65(填“>”“<”或“=”) 【答案】>.【解析】【分析】利用两个负数比大小,绝对值越大的反而小的法则进行比较即可. 【详解】解:33154420-==,66245520-== , ∵15242020< ∴3645< , ∴3645->- 故答案为>.【点睛】本题考查两个负数比大小,掌握法则:两个负数比大小,绝对值越大的反而小,是解题关键.13.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.【答案】75.510⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将55000000用科学记数法表示为:5.5×107, 故答案为5.5×107. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.单项式326x y -的系数是__________;次数是__________.【答案】 (1). -6 (2). 5【解析】【分析】根据单项式的系数与次数的概念即可解答.【详解】解:单项式326x y -的系数是-6;次数是5.故答案为:-6,5.【点睛】本题考查了单项式的次数与系数的概念,解题的关键是熟记概念.15.化简:()()423a b a b ---=_________.【答案】2a-b .【解析】【分析】直接利用整式的加减运算法则计算得出答案.【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b .故答案为 2a-b .【点睛】本题考查整式的加减运算,正确掌握相关运算法则是解题关键.16.如果单项式a m b 3单项式a 2b n 是同类项,那么(﹣m )n 的值是__________.【答案】-8【解析】【分析】根据同类项定义即可求出m 、n 的值,进而可得答案.【详解】解:∵单项式a m b 3和单项式a 2b n 是同类项,∴m=2,n=3,∴(-m )n =-8,故答案为-8.【点睛】本题主要考查了同类项,关键是掌握①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项. 17.若222x x --的值为0,则236x x -的值是__________.【答案】6【解析】【分析】由已知代数式的值求出x 2−2x 的值,原式变形后代入计算即可求出值.【详解】解:由x 2−2x−2=0,得到x 2−2x =2,则原式=3(x 2−2x )=6,故答案为6.【点睛】此题考查了代数式求值,熟练掌握整体思想的应用是解本题的关键.18.任何一个无限循环小数都可以写成分数的形式.我们以无限循环小数0.5•为例说明如下:设0.5•=x ,由0.5•=0.555…可知,10x =5.555…,所以10x ﹣x =5,解方程得x =59,于是,0.5•=59.请你把0.27••写成分数的形式是_____. 【答案】311【解析】【分析】设0.27••=x ,则 27.27••=100x ,列出关于x 的一元一次方程,解之即可.【详解】解:设0.27••=x ,则27.27••=100x ,100x ﹣x =27,解得:x =311, 故答案为311. 【点睛】本题考查了解一元一次方程和有理数,正确根据题意列出一元一次方程是解题的关键.三、解答题(19题16分,20题8分,21题6分,共30分)19.计算①()2617633-+-- ②33(7)(13)44⎛⎫⨯---⨯- ⎪⎝⎭③5511(36)4612⎛⎫-⨯-- ⎪⎝⎭④23(2)5(2)4-⨯--÷ 【答案】①-30;②-15;③18;④22【解析】【分析】①先去括号,再相减即可得到答案;②利用乘法分配率的逆运算进行计算;③利用乘法分配率计算;④先计算乘方,再同时计算乘除法,最后将结果相加减即可.【详解】①解:26﹣17+(﹣6)﹣33,=26﹣17﹣6-33,=﹣30 ; ②解:34×(﹣7)﹣(﹣13)×(﹣34) =34×(﹣7)﹣13×34, =34×(﹣20), =﹣15;③解:(﹣36)×(55114612--) =(﹣36)×54﹣(﹣36)×56﹣(﹣36)×1112 ,=﹣45+30+33,=18;④解:(﹣2)2×5﹣(﹣2)3÷4, =4×5﹣(﹣8)÷4, =20+2,=22.【点睛】此题考查有理数混合计算能力,掌握有理数的计算顺序是解题的关键.20.解方程:①455x x =- ②2(x-1)-3(2+x)=5【答案】①x =5;②x =﹣13.【解析】【分析】①先移项再合并同类项,将系数化为1即可得到方程的解;②先去括号,再移项、合并同类项、系数化为1即可得到方程的解.【详解】①解:移项合并得:﹣x =﹣5,解得:x =5.②解:去括号得:2x ﹣2﹣6﹣3x =5,移项合并得: ﹣x =13,解得: x =﹣13.【点睛】此题考查解一元一次方程,根据方程的特点及解方程的步骤正确计算是解题的关键.21.先化简,再求值:已知2235A a b ab =+-,22234B ab b a =-+,求当12a =-,2b =时,2B A -+的值. 【答案】222512+-a b ab ,1322. 【解析】分析】用括号将A 、B 两个整式括起来,根据题意列出式子,去括号合并同类项,再代入数据求值即可.【详解】()()22222=234235-+--+++-B A ab b a a b ab =22222346210-+-++-ab b a a b ab=222512+-a b ab当12a =-,2b =时, 原式=221125212222⎛⎫⎛⎫⨯-+⨯-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=1254124⨯+⨯+ =1322【点睛】本题考查整式的化简求值,熟练掌握去括号与合并同类项是解题的关键.四、解答题(第22题8分,第23题10分,共18分)22.如图,大小两个正方形的边长分别为、. (1)用含、的代数式直接表示阴影部分的面积;(无需简化)(2)如果6a =、4b =,求阴影部分的面积.【答案】(1)a 2+b 2﹣12a 2﹣12(a +b )b ;(2)阴影部分的面积是14. 【解析】【分析】 (1)利用两个正方形的面积和减去两个直角三角形的面积即可得到阴影部分的面积;(2)将a 、b 的值代入(1)的代数式进行计算即可.【详解】解:(1)大小两个正方形的边长分别为a 、b ,∴阴影部分的面积为:S =a 2+b 2﹣12a 2﹣12(a+b )b ; (2)∵a =6,b =4,∴S =a 2+b 2﹣12a 2﹣12(a +b )b , =62+42-12×62﹣12×(6+4)×4, =36+16-18-20,=14,所以阴影部分的面积是14.【点睛】此题考查列代数式,求代数式的值,根据图形的特点利用面积加减关系找出所求图形的面积的计算方法是解题的关键.23.如图,小蚂蚁在9×9的小方格上沿着网格线运动(每小格边长为1),一只蚂蚁在C处找到食物后,要通知A、B、D、E处的其他小蚂蚁,我们把它的行动规定:向上或向右为正,向下或向左为负.如果从C到D记为:C→D(+2,-3)(第一个数表示左、右方向,第二个数表示上、下方向),那么;(1)C→B( ),C→E( ),D→ (-4,-3),D→ ( ,+3);(2)若这只小蚂蚁的行走路线为C→E→D→B→A→C,请你计算小蚂蚁走过的路程.【答案】(1)+4,-5;+7,+3;A;C,-2.(2)40.【解析】【分析】(1) C→B要先向右4格,再向下5格;C→E要先向右7格,再向上3格;从D开始,先向左4格,再向下3格是点A;从D开始,向上3格的线上只有点C,还需向左2格.(2)分别求出各段路程,求和.【详解】(1)根据向上或向右走为正,向下或向左走为负,第一个数表示左、右方向,第二个数表示上、下方向,结合图形可知C→B(+4,-5);C→E(+7,+3);(-4,-3)从D处表示向左走4个单位,向下走3个单位,观察图形可知即可到达A处;+3表示从D点向上走3个单位,观察图形,再向左走2个单位即可到达C处. (2)根据题意,由C→E→D→B→A→C,结合图形可知:C→E小蚂蚱走的路程为7+3=10;E→D小蚂蚱走的路程为5+6=11;D→B小蚂蚱走的路程为2+2=4;B→A小蚂蚱走的路程为1+6=7;A→C小蚂蚱走的路程为2+6=8;所以小蚂蚱走的路程为10+11+4+7+8=40.故答案为(1)+4,-5;+7,+3;A;C,-2.(2)40.【点睛】此题考查坐标轴在生活实际中的应用.解决此类问题关键是从题目中获取信息.五、解答题(本题8分)24.我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a N =(0a >,1a ≠,0N >),则叫做以为底的对数,记作a log N b =,例如:因为35125=,所以51233log =;因为211121=,所以111212log =请同学们利用上面的对数运算的方法,完成下列各题:(1)填空:66log =__________,636log =__________;(2)如果()223log m -=,求的值.【答案】(1)1,2;(2)10.【解析】【分析】(1)根据定义分别计算61=6,62=36,即可得到答案;(2)根据定义列得方程,解方程即可得到答案.【详解】解:(1)∵61=6,62=36,∴log 66=1,log 636=2,故答案为:1,2;(2)∵log 2(m ﹣2)=3,∴23=m ﹣2,解得:m =10.【点睛】此题考查新定义运算,正确理解新定义的计算方法,能根据新定义进行列式或是列方法解题是关键.六、解答题(本题8分)25.甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a 副球拍和b 盒羽毛球(b >a ).(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a 、b 的代数式表示;(2)当a =10,b =20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?【答案】(1)在甲商店购买的费用为(270a +36b )元,在乙商店购买的费用为(260a +40b )元;(2)当a =10,b =20时,到乙商店购买球拍和羽毛球便宜.【解析】【分析】(1)根据题意可以用代数式分别表示出校羽毛球队在甲、乙两家商店各应花费的钱数;(2)根据(1)中代数式,将a=10,b=20代入即可解答本题;【详解】(1)由题意可得,在甲商店购买的费用为:(300a+40b)×0.9=(270a+36b)(元),在乙商店购买的费用为:300a+40(b-a)=(260a+40b)(元);(2)当a=10,b=20时,在甲商店购买的费用为:270×10+36×20=3420(元),在乙商店购买的费用为:260×10+40×20=3400(元),∵3420>3400,∴当a=10,b=20时,到乙商店购买球拍和羽毛球便宜.【点睛】本题考查列代数式、代数式求值,解答本题的关键是明确题意,找出所求问题需要的条件.。

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 一个等边三角形的每个内角是多少度?A. 30°B. 45°C. 60°D. 90°2. 一个正方形的对角线长是边长的多少倍?A. 1B. √2C. 2D. √33. 一个圆的半径是5cm,它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 25π4. 一个长方形的长是10cm,宽是5cm,它的面积是多少平方厘米?A. 50B. 25C. 20D. 155. 一个立方体的体积是27cm³,它的边长是多少厘米?A. 3B. 6C. 9D. 12二、判断题(每题1分,共5分)1. 一个等腰三角形的底角和顶角相等。

()2. 一个圆的直径等于它的半径的两倍。

()3. 一个正方形的对角线等于它的边长的√2倍。

()4. 一个长方形的面积等于它的长乘以宽。

()5. 一个立方体的体积等于它的边长的三次方。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。

2. 一个正方形的对角线长是边长的______倍。

3. 一个圆的半径是5cm,它的面积是______平方厘米。

4. 一个长方形的长是10cm,宽是5cm,它的面积是______平方厘米。

5. 一个立方体的体积是27cm³,它的边长是______厘米。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 简述正方形的性质。

3. 简述圆的性质。

4. 简述长方形的性质。

5. 简述立方体的性质。

五、应用题(每题2分,共10分)1. 一个等边三角形的边长是6cm,求它的面积。

2. 一个正方形的对角线长是10cm,求它的面积。

3. 一个圆的半径是4cm,求它的面积。

4. 一个长方形的长是8cm,宽是4cm,求它的面积。

5. 一个立方体的边长是3cm,求它的体积。

六、分析题(每题5分,共10分)1. 分析等边三角形、正方形、圆、长方形、立方体之间的区别和联系。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册期中考试题一(附答案)
一、单选题(共12题;共24分)
1.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()
A. 0
B. 2
C. 1
D. ﹣1
2.在﹣3、0、4、0.5这四个数中最小的数是()
A. -3
B. 0.5
C. 0
D. 4
3.如图,下列结论中错误的是()
A. a+b<0
B. c+d>0
C. b+c>0
D. c+a<0
4.下列说法中,正确的是()(可以看第4页课本)
A. 正整数、负整数和零统称整数
B. 正分数、负分数统称有理数
C. 零既可以是正整数,也可以是负分数
D. 所有的分数都是有理数
5.比较数的大小,下列结论错误的是()
A. 2 >–3 >0
B. –5 <–3
C. -<0<
D. ->->-
6.﹣2015的倒数是()
A. 2015
B. -2015
C. -
D.
7.下列各数:-|-3|,-(-3),-32,(-3)2中,负数有()
A. 4个
B. 3个
C. 2个
D. 1个
8.关于近似数2.4×103,下列说法正确的是()
A. 精确到十分位,有2个有效数字
B. 精确到百位,有4个有效数字
C. 精确到百位,有2个有效数字
D. 精确到十分位,有4个有效数字
9.下列各数中最小的数是()
A. -5
B. -1
C. 0
D. 3
10.计算(﹣3)﹣(﹣5)的结果等于()
A. 8
B. -6
C. 2
D. -2
11.如图,数轴上每个刻度为1个单位长,则A,B 分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()
A. A 点
B. B 点
C. C 点
D. D 点
12.已知a、b为非零有理数,则的值不可能为()
A. -2
B. 1
C. 0
D. 2
二、填空题(共6题;共9分)
13.计算:﹣8÷(﹣2)×
=________. 14.比较大小 ________
(填”<”或“>”) 15.描金又称泥金画漆,是一种传统工艺美术技艺.起源于战国时期,在漆器表面,用金色描绘花纹的装饰方法,常以黑漆作底,也有少数以朱漆为底.描金工作分为两道工序,第一道工序是上漆,第二道工序是描绘花纹.现甲、乙两位工匠要完成A ,B ,C 三件原料的描金工作,每件原料先由甲上漆,再由乙描绘花纹.每道工序所需的时间(单位:小时)如下:
则完成这三件原料的描金工作最少需要________
小时.
16.已知|x ﹣2|+|y+2|=0,则x+y=________.
17.在学校秋季运动会中,小明的跳远比赛跳出了4.25米,若小明的跳远成绩记做+0.25米,那么小东跳出了3.85米,记作________米.
18.金砖五国成员国巴西的首都巴西利亚、新西兰的首都惠灵顿与北京的时差如下表:
若现在的北京时间是11月16日8:00,请从A ,B 两题中任选一题作答.
A .那么,现在的惠灵顿时间是11月________日________
B .那么,现在的巴西利亚时间是11月________日________.
三、计算题(共3题;共35分)
19. (1)-2-(-6)÷3; (2)-14-[(-2)2-32×(-
)].
20.计算:
21.计算
(1)
(2) (3) (4) 四、解答题(共3题;共15分)
22.当b 为何值时,5﹣|2b ﹣1|有最大值,最大值是多少?
23.已知 , 互为相反数, , 互为倒数, ,求代数式25 ( +b) 2+6cd-m 的值
24.若a >0,b <0,且|x-a|+|x-b|=a-b ,求x 的取值范围.
五、综合题(共3题;共27分)
25.计算:
(1);(2)﹣6+(﹣2)3×()÷()2÷(﹣3).
26.计算:
(1)23﹣17﹣(﹣7)+(﹣16);(2)﹣14﹣×[2﹣(﹣3)2].
27.操作探究:已知在纸面上有一数轴(如图所示),
(1)操作一:
折叠纸面,使数字1表示的点与﹣1表示的点重合,则﹣3表示的点与________表示的点重合;
(2)操作二:
折叠纸面,使﹣1表示的点与5表示的点重合,回答以下问题:
①10表示的点与数________表示的点重合;
(3)②若数轴上A、B两点之间距离为15,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?
答案
一、单选题
1. C
2. A
3. C
4. A
5. A
6. C
7. C
8. C
9. A 10. C 11.C 12.B
二、填空题
13. 2 14. < 15. 47 16. 0 17. -0.15 18. 16;12;15;21
三、计算题
19. (1)解:原式=-2-(-2)=-2+2=0;
(2)解:原式=-1-[4-9×(- )]=-1-10=-11.
20. 解:= = .
21. (1)解:原式
(2)解:原式
(3)解:原式
(4)解:原式
四、解答题
22. 解:当b=""时原式有最大值,最大值为5.
23. 解:因为,互为相反数,所以+ =0
因为,互为倒数,所以=1
因为,所以m=3或-3
所以25 ( +b) 2+6cd-m= 3或9
24. 解:∵a>0,b<0,
∴a-b>0,
又∵|x-a|+|x-b|=a-b,
即a-x+x-b=a-b
∴x-a<0且x-b>0,
∴b<x<a;
当x=a时,a-x+x-b = a-a+a-b =a-b,成立;
当x=b时,a-x+x-b = a-b+b-b =a-b,成立;
∴ b≤x≤a
五、综合题
25. (1)解:原式= + ﹣+1=﹣+1=
(2)解:原式=﹣6﹣8× ×36×(﹣)=﹣6+16=10
26. (1)解:23﹣17﹣(﹣7)+(﹣16)=23+7﹣17﹣16=30﹣33=﹣3 (2)解:﹣14﹣×[2﹣(﹣3)2] =﹣1﹣×(2﹣9)=﹣1+ = 27. (1)3(2)﹣6
(3)解:由题意可得,A、B两点距离中心点的距离为15÷2=7.5,
∵中心点是表示2的点,
∴A、B两点表示的数分别是﹣5.5,9.5.。

相关文档
最新文档