生物质热转换制氢的研究进展

合集下载

生物质转化制氢技术的进展与展望

生物质转化制氢技术的进展与展望

生物质转化制氢技术的进展与展望随着工业化进程的加快和能源需求的日益增长,化石燃料的储量逐渐减少,环境污染也越来越严重。

因此,寻找新型的能源是十分必要的。

其中,利用生物质转化制氢技术制取氢能源的重要性日益凸显。

1. 生物质转化制氢技术的概念生物质转化制氢技术是以生物质为原料,通过热化学或生化学方法,提取氢气的新型能源技术。

生物质包括木材、灌木、农作物秸秆、动物粪便等具有生物来源的有机物质。

将这些有机物质进行转化,可以产生高质量的氢气能源。

2. 生物质转化制氢技术的发展历程生物质转化制氢技术的研究始于20世纪60年代,当时主要采用微生物发酵方法来制取氢气。

但是,由于该方法存在工业化难度大、开放式生产流程不太安全等缺陷,因此寻求其他制氢技术逐渐成为研究重点。

随着现代化科技的不断发展,新型生物质转化制氢技术也应运而生。

热化学方法中,热解法被广泛采用。

该方法可以将生物质分解为水、碳、CO和CO2等气体,其中的水会进一步分解为氢气和氧气。

而在生化学方法中,大多数采用生物催化的方式,即利用微生物菌群分解生物质并产生氢气。

在20世纪末和21世纪初,一些国家提出了关于生物质转化制氢技术的专项计划。

这些计划致力于推动生物质转化制氢技术的发展,并在实践中不断调整与改进。

3. 生物质转化制氢技术的应用前景生物质转化制氢技术可以作为一种新兴能源,有望在未来得到广泛应用。

与化石燃料相比,生物质转化制氢技术具有以下的优势:·环保:生物质转化制氢技术不会产生二氧化碳等人类活动造成的温室气体。

·可持续发展:生物质是可再生的,可以使能源开采保持持续性。

·可利用范围广泛:生物质可以来自于农业废弃物、食品废品以及废木材等,可从多个来源提取能源。

·降低成本:化石燃料拥有高昂的采集、生产和运输成本,而生物质转化制氢技术的成本要更低。

·提升能源供应的可靠性:生物质转化制氢技术可以直接应用于生活中,适合于需求迅速增长的能源应用场合。

生物质制氢技术的研究与开发

生物质制氢技术的研究与开发

生物质制氢技术的研究与开发生物质作为一种可再生的能源资源,在当前的能源结构调整中扮演着越来越重要的角色。

随着人们对可再生能源需求的增加,各种生物质转换技术也得到了更广泛的关注与研究。

生物质制氢技术作为其中的一个重要方向,在实现清洁能源生产、减缓气候变化、提高能源利用效率等方面具有巨大的潜力与优势。

本文旨在对生物质制氢技术进行深入研究与探讨,以期为该领域的进一步发展提供一定的参考和借鉴。

首先,生物质作为一种来源丰富、分布广泛的可再生资源,具有其独特的优势。

与化石能源相比,生物质具有循环再生的特性,能够有效减少对化石能源的依赖,从而降低对环境的破坏。

同时,生物质资源的利用也能够带动农业、林业等产业的发展,促进经济的可持续增长。

在当前全球温室气体排放不断增加的背景下,生物质资源的充分利用对于减缓气候变化具有重要的意义。

生物质制氢技术作为一种利用生物质资源生产氢气的技术,具有诸多优势。

首先,生物质资源广泛,种类多样,可以有效避免资源单一化的风险。

其次,生物质在一定条件下可以通过生物发酵、热解等过程产生氢气,无污染、环保。

第三,氢气作为一种清洁能源具有高能量密度、燃烧产物为水等特点,是替代传统化石能源的理想选择。

因此,生物质制氢技术在实现清洁能源生产、减缓气候变化等方面具有重要的应用前景。

目前,生物质制氢技术在国内外已经取得了一定的研究成果。

国外以美国、德国、日本等国家为代表,通过不断的研发与技术创新,已经建立起一套较为完善的生物质制氢技术体系,并着手在工业化生产规模上进行探索。

在国内,生物质制氢技术也逐渐引起了学术界与产业界的广泛关注,多家科研机构和企业纷纷投入了相关研究与开发工作。

然而,与国外相比,我国在生物质制氢技术领域仍存在一定的技术与产业基础不足的问题,需要进一步加大研究投入,加强国际合作,以提高我国在该领域的技术水平和市场竞争力。

生物质制氢技术的研究与开发需要从多方面入手,包括生物质资源的选择与加工、氢气生产技术的优化与改进、氢气的储存与运输技术等方面。

生物质热转换制氢的研究进展

生物质热转换制氢的研究进展
维普资讯
第4 2卷第 3期
20 0 8年 5月
生 物 质 化 学 工 程
Bi ma s C e c lEn i e rn o s h mi a gn e i g
Vo . 142 No. 3 M a 00 y2 8
氢气 无 毒 、 味 , 无 燃烧 生 成 水 , 现 真 正 “ 实 零
排放 ” 不 产 生 任 何 污 染 物 ; , 可储 存 运 输 , 适 于 也
术 的主 要发展 方 向之一 , 一种很 有前 途 的方 法 。 是
本 文论 述 了生物 质热转换 法 制氢 的方 法和研 究进
展。
生物 质 热 转 换 制 氢 的研 究进 展
黄 国胜 ,陈 明 强 ,王 君 ,陈 明功 ,于 宗保
( 安徽理 工大学 化学工程学院 ,安徽 淮南 22 0 ) 3 0 1 摘 要 : 气是一种理想的洁净能源。从 能源角度和环境 角度考虑 , 氢 发展 生物质制 氢技 术都具有 重要 的意义。生物质制
Ab t a t sr c :Hy rg n i a kn f d a la n r o r e .C n i e n o n r o r ep ito iw a d e vr n n o n d o e s i d o e lce n e eg s u c s o sd r gf m e e g s u c on fve n n i me t it i y i r y o p
管道 运输 , 是一 种理 想 、 效 、 生 的清 洁能 源 , 高 可再
r i s b emoh mc cnes n i u i gs ai , ai ao ec t a w t ; y yi a m r e f m bo as yt r c e i ovr o (nldn aict n gs ct ni sprri a r prls )w s u ma zd o m h l a i c g i f o i f i nu ic l e o s s i

生物质能源热解制氢技术研究

生物质能源热解制氢技术研究

生物质能源热解制氢技术研究近年来,随着环保理念的不断普及和能源资源的日益匮乏,生物质能源作为一种替代传统化石能源的新型清洁能源备受关注。

而生物质能源的热解制氢技术,作为一种具备广泛应用前景的新兴领域,也越来越引起了研究者们的重视。

生物质能源热解制氢技术是指通过对生物质进行高温分解,转换为氢气、焦油和其他化合物的过程。

这种技术具有适用范围广、原料可再生、产品清洁高效等优点,所以在实际应用中具有很大的潜力。

首先,生物质热解制氢技术的应用范围非常广泛。

与传统的燃料相比,生物质能源可以来源于农业生产、森林伐木、城市废弃物等多种渠道,具有更加丰富的供应来源,从生产的角度来说,其能源潜力是足够充分的。

同时,生物质热解制氢技术可应用于制氢、焦油和酸气等多个方面,产生的多种有价值的化学物质可以广泛应用于不同的领域。

其次,生物质热解制氢技术的优点在于其可再生性。

传统的化石能源一旦消耗完毕,就再也无法获取,而生物质热解制氢技术所使用的生物质源具有很强的再生能力,无需过多考虑其后续开发。

此外,生物质热解制氢技术所产生的化学物质在短时间内可以大量再生,而且其成本相对较低,因此具有一定的竞争优势。

最后,生物质热解制氢技术可带来高效、清洁的能源转化。

由于其具备高能量密度和排放不会造成重大环境污染等特点,这种技术可以视作传统化石能源的有效替代。

同时,生物质能源的使用对于减少化石燃料想带来的环境压力和CO2排放具有很强的意义。

总的来说,生物质能源热解制氢技术正处于快速开发阶段,为了更好地实现其应用与转化,相关研究还需不断推进。

当前,主要的研究进展集中在技术改良、能量变化机制等方面。

其中前者通过改善生产工艺和热解设备的设计条款,为更加高效、稳定的生物质热解制氢提供了有益尝试;后者运用先进的实验手段和理论模型构建对生物质热解制氢的能量转化机制和多相反应过程进行深入研究,从而揭示了热解制氢的基本原理和机理,并有望在未来推进技术的应用和推广。

生物制氢技术的研究进展

生物制氢技术的研究进展

生物制氢技术的研究进展随着全球能源需求的持续增长,化石燃料的资源短缺和环境问题日益凸显,新能源的研究和应用已成为各国的热点之一。

生物制氢技术作为一种可持续发展的新能源技术,近年来受到越来越多的关注。

本文将着重介绍生物制氢的基本原理和最新研究进展。

生物制氢是一种利用微生物将有机废弃物转化为氢气的过程。

生物制氢的基本原理是通过微生物代谢处理有机物质时,产生氢气作为副产物。

常见的生物制氢微生物有产氢菌,其中发酵产气菌属于产氢菌的一种。

产氢菌的代谢途径主要分为两类:靠营养成分产生氢气的生产型代谢和利用有机物产生氢气的基质型代谢。

生产型代谢是指通过微生物使用酸类营养物,产生氢气和有机酸的代谢途径。

其中产氢细菌普遍采用的是厌氧性的、低pH值的发酵过程。

主要原理是将有机酸通过与细菌产生的氢气反应,进而分解为氢气和二氧化碳。

基质型代谢则是一种通过在有机废物中加入特定微生物,加速有机质分解产生氢气的技术。

这种代谢重要的是它可以将工业和农业废弃物转化为有价值的能源。

生物制氢技术的研究与应用已经得到广泛的关注。

从微观方面,目前主要研究生物转化氢气的代谢途径以及代谢途径中涉及的酶和基因,优化有机废弃物转化为氢气的过程。

同时研究如何培养、筛选最有效的产氢微生物,提高产氢的效率,并有效避免废弃物过多对环境造成二次污染。

从宏观方面,主要是降低成本,提高生产效率,从而使生物制氢技术广泛应用于能源产业。

在微观方面,针对生物制氢应用中的硫毒化现象,一些学者提出了新的解决办法。

首先,添加硫抑制剂法,这种方法利用抑制剂对细菌进行处理,以降低硫对产氢细菌的抑制作用。

其次,即时空分布将硫的影响降到最低,即在出口流速快的气流中添加酸,让酸从出口流向反应器的中心,使酸反映的时间和硫的浓度最小化。

同时,研究人员发现了新型产氢的细菌,这一细菌的厌氧发酵能力较强,电位差大,使得酶的反应速度加快,从而使其对于转化能源的作用进一步提升。

除此之外,生物制氢技术在产氢效率方面也取得了不小的进展。

生物质气化及制氢技术研究

生物质气化及制氢技术研究

生物质气化及制氢技术研究随着全球能源需求的不断增长,以及对环境保护的日益重视,开发新型清洁能源已经成为了各国的共同目标。

而生物质能作为一种可持续发展的清洁能源,越来越受到了人们的关注。

在众多生物质能技术中,生物质气化及制氢技术属于比较重要的一种,在此,我们将介绍其研究现状及前景。

一、什么是生物质气化?生物质气化是一种将生物质高温下反应,产生可再生能源的技术。

在生物质气化过程中,通过加热和催化的方式,将生物质原料转化成气体,其中包括主要的一氧化碳、氢气、二氧化碳以及少量甲烷等气体。

这些气体可以被用作化学建材生产的原料,也可以被用作发电机及燃料电池的燃料。

二、生物质气化技术的研究现状在生物质气化技术的研究过程中,最主要的挑战就在于技术难度较高,生产成本较高。

如果没有适当的技术和设备,那么生物质气化及制氢就难以实现。

因此,各国科学家和工程师不断进行研究,以提高生物质气化技术的效率和成本。

目前,生物质气化技术被成功应用于能源工业、化工工业、建筑材料和环保领域。

世界各个国家开展了大量的基础研究和应用研究工作,从技术研究到生产应用,不断深化和完善这项技术。

三、制氢技术的研究现状制氢技术一般是指通过各种化学和物理方法,将水分解成氢气和氧气的过程。

氢气是一种绿色、清洁、高效的能源,因此制氢技术也是一项重要的绿色能源技术。

目前,制氢技术的研究现状非常活跃,主要集中在以下几个方面:(1)常规制氢技术指通过加热或电解的方法来产生氢气,其中电解水制氢是最常见的方法。

该方法优点是制氢条件稳定、不受环境影响,但成本较高。

(2)生物制氢技术利用微生物,通过生物转化的过程产生氢气。

该方法具有可持续性、能源浓度高、温度低等优点,但需要进一步的研究和改进。

(3)水热加氢制氢技术利用高压、高温条件下,将水利用氢化剂转化为氢气的方法。

该方法能够有效提高水的能源利用率,但在实践过程中存在技术和安全问题。

四、生物质气化与制氢技术的应用前景生物质气化及制氢技术的应用前景广阔。

生物质转化制氢技术的研究与发展

生物质转化制氢技术的研究与发展

生物质转化制氢技术的研究与发展一、引言随着全球化进程和环保理念的普及,越来越多的国家开始关注能源问题。

传统的化石燃料资源日益枯竭,而新能源的研究和利用变得越来越重要。

作为一种新型能源,氢气具有化石燃料所没有的优点,如碳排放减少、高效利用、环保等,已经成为国际上极为重要的能源。

而生物质转化制氢技术则成为了制取氢气的一种重要途径,其不仅可以减少化石能源的使用,还可以有效地解决生物质资源的再利用问题。

因此,生物质转化制氢技术在未来的能源中发挥着重要作用。

二、生物质转化制氢技术的研究现状(一)生物质转化制氢技术的定义和分类生物质转化制氢技术指利用生物质资源,通过化学反应或生物反应,将生物质转化为氢气的过程。

其主要包括热化学法、生物化学法和生物发酵法三种分类。

其中,热化学法是将生物质通过高温加热分解产生气体,如各种有机废物、玉米秸秆、热力石油焦、木材等可以作为原料。

生物化学法以微生物为基础,通过微生物的代谢过程将生物质转化为氢气,如光合细菌、厌氧细菌、产氢菌、甲烷菌等可以用来制氢。

生物发酵法则是指利用生物质资源,通过发酵过程转化为氢气,例如各种有机碳水化合物、食品残渣、废水等。

(二)热化学法热化学法是将生物质物料通过高温加热分解产生气体。

其通过生物质的干馏、氧气气化、蒸汽气化等过程产生氢气,具有能量利用效率高、生产效益好等优点。

但是,该方法需要大量能源进行加热,对环境造成污染严重,需要继续改良提高其适用性。

(三)生物化学法生物化学法则是指利用微生物代谢过程将生物质转化为氢气。

其具有非常明显的环保优势,同时其原料来源广泛,可以充分利用各种农作物和生物质废弃物,有很大的发展前景。

但是,其效率较低,且微生物代谢容易受到环境因素影响,需要有很好的环境条件,才能得到良好的反应结果。

(四)生物发酵法生物发酵法是将生物质废弃物通过一定的条件和生物发酵菌种,转化为氢气的过程。

其除了生产氢气之外,还可以处理生物质的废弃物,具有双重效益。

生物质能源的热化学制氢技术研究

生物质能源的热化学制氢技术研究

生物质能源的热化学制氢技术研究生物质是指由生物体经由光合作用或化学反应,在自然界中形成或人工培育的有机物的总称。

这些有机物分布广泛,包括木材、农作物、剩余物、废弃物和动植物残体。

然而,这些生物质资源在能源化利用上面临很多困难,例如能量密度低、易受负荷性等方面。

随着全球对可再生能源的需求不断增加,生物质能源的热化学制氢技术逐渐受到人们重视。

一、生物质能源的热化学制氢技术生物质制氢技术有许多方法,其中热化学制氢是主要的制氢技术之一。

随着科技的不断发展,热化学制氢技术也得到了逐步的提升和推广。

该技术通过高温高压、气体分离和催化转化等过程将生物质中的碳氢化合物转化为氢气,并同时生成二氧化碳和一些低能的化学物质。

由于生物质不同于化石燃料具有良好的可再生性,因此生物质制氢技术成为了一种重要的能源转换方式。

二、热化学制氢技术的主要流程热化学制氢技术包括三个主要流程,即生物质的热解、气体分离和催化转化。

首先,将生物质通过高温热解来得到可燃性气体,包括甲烷、一氧化碳、氢气等;然后,进一步通过气体分离,将其中的碳氢化合物、含氧化合物、气态无机物分离出来,并得到纯净氢气;最后,利用催化转化技术将气态物质进一步转化为氢气和二氧化碳。

三、热化学制氢技术的优劣势热化学制氢技术具有很多的优劣势。

首先,经过改良的生物质制氢技术可以大量减少温室气体的排放,减缓温室效应和气候变化的影响;其次,生物质资源具有广泛性和可再生性,相比于化石燃料具有更为可持续的发展前景;另外,制氢过程可产生多种低能化学物质,这些化学物质可以用于发电、制氨等许多其他应用领域。

而缺点则在于,生物质含水量较高,通过热解得到的气体产生量和质量相对较低,成本相对较高;此外,热化学制氢技术对环境和工艺条件要求比较高,需要投入大量的费用。

四、热化学制氢技术的应用领域热化学制氢技术的应用领域也越来越广泛。

首先,利用热化学制氢技术可以制备高纯度的氢气,用于氢燃料电池的供能。

生物质资源转化制氢技术研究

生物质资源转化制氢技术研究

生物质资源转化制氢技术研究一、引言生物质是天然的可再生资源,其丰度和分布性使其成为一种非常具有潜力的能源来源。

传统上,生物质通过燃烧转化为热能,但这种方式存在能量利用低、排放污染物多的问题。

因而,越来越多的学者开始尝试将生物质转化为氢气作为一种清洁能源。

二、生物质资源制氢技术的研究现状1.生物质转化制氢技术的分类对于生物质制氢技术而言,常见的研究方向可分为生物化学法、热化学法、光化学法和电化学法四类。

每类技术的本质不同,但其目的一致,都是将生物质中的有机物转化为氢气,同时产生二氧化碳、一氧化碳、甲烷等。

2.生物质转化制氢技术的优缺点相较于用化石燃料制氢而言,生物质转化制氢具有得天独厚的优势。

首先,生物质是可再生的,与天然气、石油等化石燃料不同,不会导致资源的枯竭,且生物质的种类多样,可供选择的范围更广。

其次,生物质是丰富的,可在各种自然或人工环境中形成,并且相对低廉。

最后,这种技术具有二次利用原材料的特点。

但同时,生物质转化制氢也存在制氢效率低、过程复杂、技术要求高等方面的问题。

三、生物质资源转化制氢技术研究的进展1.热化学法热化学法(Thermo-chemical)是目前应用最广泛的一种生物质制氢技术。

这种方法是将桦木等木材或者其他生物质原料通过高温气化转化为氢气和一些固体物质。

其适用范围广,且制氢效率较高,是目前比较成熟的一种成本可行的生物质转化制氢技术。

但是,热化学法制氢产生的固体物质过多,如若不加处理,就可能污染环境,因而这也成为研究者需要解决的问题之一。

2.生物化学法生物化学法(Bio-chemical)是一种将生物质通过微生物的合作转化为氢气的技术。

一方面,这种方法不需要高温操作,因此比起热化学法具有更低的能耗。

但是,相比较高温气化而言,生物化学法的制氢效率很低,主要是因为存在微生物对温度、pH、营养盐等因素的苛刻要求,同时设备的规模也要大得多。

3.光化学法光化学法将生物质中的有机物转化为氢气,依托的是半导体的光诱导反应。

生物质催化制氢技术的研究进展

生物质催化制氢技术的研究进展

生物质催化制氢技术的研究进展近年来,能源不断稀缺,地球的环境也受到了威胁,清洁能源的研究和应用越来越重要。

一个重要的清洁能源之一是氢能源,而生物质催化制氢技术是实现可持续氢能源生产的有前途的方法之一。

本文将探讨生物质催化制氢技术的研究进展。

一、生物质催化制氢技术的定义生物质催化制氢技术可以将生物质(如纤维素、木材等)转化成氢气和一些碳氢化合物的混合物。

这种技术主要基于生物质气化反应,其主要过程包括氧化还原反应、热裂解、甲烷化、重整、流化床等。

由于生物质催化制氢技术可以充分利用生物质资源,同时也可以将这些生物质转化为高附加值的氢气和化学品,所以受到越来越多的关注。

二、生物质催化制氢技术的发展历程生物质催化制氢技术的发展可以分为三个阶段。

第一阶段是20世纪80年代初,主要以生物质热裂解为主。

然而,由于热裂解过程中,产品含杂物比较多,很难得到高纯度的氢气,同时热量效率也相对较低。

第二个阶段是90年代初,先进的流化床反应器广泛应用于生物质气化反应中。

这种技术可以提高气化效率和产气率,同时还可以实现一些催化反应,如乙醇重整反应等。

第三个阶段是2000年后,生物质催化制氢技术得到了进一步提高。

新型的反应器,比如微型反应器和纳米材料催化技术,得到了广泛应用。

这些先进的反应器可以提高反应速度和选择性,同时还可以实现高效的还原反应。

三、生物质催化制氢技术的研究方向目前,生物质催化制氢技术的研究主要集中在以下三个方面:1. 催化剂的合成与优化催化剂是生物质催化制氢技术中最关键的组成部分,其直接影响氢气生成率和选择性。

现在,有多种催化剂应用于生物质催化制氢反应中,包括镍基催化剂、铁基催化剂、铜基催化剂和贵金属催化剂等。

研究人员在不断探索新型催化剂,并通过优化这些催化剂的组成和结构,提高了生物质催化制氢反应的效率和选择性。

2. 生物质气化反应的机理研究为了更好地理解生物质催化制氢反应,研究人员一直在探索生物质气化反应的机理。

生物质制氢技术的研究现状与展望

生物质制氢技术的研究现状与展望

一、引言在当前全球能源形势严峻的背景下,生物质制氢技术作为一种可持续发展的新型能源技术备受关注。

本文将对生物质制氢技术的研究现状和展望进行深入探讨,帮助读者全面了解这一领域的进展。

二、生物质制氢技术概述生物质是指植物在生长过程中固定的光能,可以通过热化学和生物化学方法转化为燃料、化学品等有机化合物。

生物质制氢技术是利用生物质资源生产氢燃料的技术,其优势在于可再生、低碳排放和资源广泛。

随着能源危机和环境污染问题的日益突出,生物质制氢技术受到了广泛关注。

三、生物质制氢技术的研究现状1. 生物质气化制氢技术生物质气化是将生物质物质在高温条件下进行分解,生成一氧化碳、氢气等气体。

通过气化反应,可将生物质转化为合成气,再通过水煤气变换反应制备氢气。

目前,生物质气化制氢技术在实验室和工业化生产中取得了一定进展。

2. 微生物发酵制氢技术生物质可通过微生物发酵产生氢气,这是一种相对环保的生产方法。

随着生物技术的发展,一些特殊菌株的应用使得生物质发酵制氢技术逐渐成熟。

生物质发酵制氢技术在实验室阶段已取得了较好的效果,但在工业化应用中还存在一定的技术难题。

3. 生物质光解制氢技术生物质光解制氢技术利用太阳能作为能源,将生物质中的水分子分解为氢气和氧气。

这是一种潜在的清洁能源制备方式,其研究目前处于实验室阶段,尚未进行工业化应用。

四、生物质制氢技术的展望生物质制氢技术具有巨大的发展潜力,但在实际应用中仍然存在许多挑战。

首先是生物质资源的可持续供应问题,需要建立可持续的生物质供应链;其次是高效的氢气生产技术,需要进一步提高生产效率和降低成本;最后是氢气的应用技术,需要配套发展氢燃料电池等技术。

个人观点与理解生物质制氢技术是未来能源发展的重要方向,具有可持续发展和环境友好的特点。

我认为,在今后的研究中,应当优先考虑改进氢气生产技术,并加大对生物质资源可持续利用和环境友好性的研究。

需要政府、企业和科研机构的共同努力,推动生物质制氢技术的实际应用和商业化。

利用生物质还原制氢技术的研究进展

利用生物质还原制氢技术的研究进展

利用生物质还原制氢技术的研究进展在追求更清洁的新能源的同时,氢能源逐渐受到人们的关注。

而生物质还原制氢技术作为一种绿色可再生的氢能源制备方法,在近年来得到了越来越广泛的研究。

一、生物质还原制氢技术的定义及分类生物质还原制氢技术是指在生物过程中利用特定的微生物将有机废弃物或有机物质转化为氢气的过程。

从反应过程中有机物的来源可以分为四种类型:类纤维素质(如木质素和纤维素)、蛋白质质、淀粉质和脂肪质。

生物质还原制氢技术主要分为两大类——混合微生物发酵和纯培养物发酵。

混合微生物发酵即是用不同的微生物群发酵生物质制备氢气,此类反应的转化效率未必高。

而纯培养物发酵指用已纯化的一种微生物群体发酵生物质制氢,反应条件相对更为严格,但氢气产量和转化效率一般较高。

二、生物质还原制氢技术的优势利用生物质还原制氢技术制备氢气的过程中,相对于传统制氢技术,生物质还原制氢技术还具有很多的优势。

1. 可持续生物质资源广泛且可再生,与石油,煤炭等资源相比较之下,生物质还原制氢技术所利用的原料更为可持续。

2. 无公害在反应过程中,很少会产生其他有害的化学物质,反应后产物主要为氢气、二氧化碳和氮气等生物无害物质。

3. 高效历史上氢气的制取主要依靠传统的化学方法,而此类方式反应效率低下,制氢成本高。

而采用生物质还原制氢技术可以提高氢气转化的效率,同时从废弃物中过滤出有用的物质,从而得到更大的经济利益。

三、生物质还原制氢技术研究现状自20世纪90年代开始,生物质还原制氢技术的研究逐渐发展,目前已进入实际应用阶段。

当前这项技术的研究主要集中在以下几个方面:1. 微生物富集和筛选由于不同的微生物有选择性对不同的有机物反应,因此需要通过筛选适用的微生物的方法来保证反应效果。

多数学者通过市场化酿造公司购买到的微生物起到了发掘出种系的作用。

2. 电极接头优化在生物质还原制氢技术中,不仅需要控制反应条件,还需要对电极接头的结构进行优化,以确保反应具有一定的稳定性。

利用生物质制氢的研究进展

利用生物质制氢的研究进展

利用生物质制氢的研究进展近年来,由于化石能源的不可持续性和对环境的危害,人类开始朝着更加环保和可持续的能源方向发展,其中氢能作为新一代清洁能源备受瞩目。

生物质制氢是氢能领域中的一种绿色途径,其具有低成本、高效益、环境友好等优点。

本文将重点讨论生物质制氢的研究进展。

一、生物质制氢原理生物质制氢是利用天然物质——生物质的含氢基团,采用生物学、化学、物理、计算机等多种科学技术手段,对生物质加热或微生物发酵过程中产生的氢气进行分离和纯化,从而获得高纯度氢气。

生物质制氢技术主要分为生物酶促和热化学两种方式。

(1)生物酶促方式该方式是利用生物酶促反应,将生物质经微生物凝聚和分解后,产生的氢气和二氧化碳、甲酸等物质分离出来。

生物酶促方式可以分为单一微生物种源和混合菌种方法两种。

目前,混合菌种方法得到了广泛的应用。

它可以使用不同的废弃物作为原料,如纸浆、农业废弃物、食品废弃物等,运用微生物新陈代谢作用,获得高效率氢气的制备。

(2)热化学分解法热化学反应是一种将生物质转化为氢气的方式,是通过热化学反应或热解反应技术,将生物质高温加热,使其分解出含氢原始芳香族化合物,采用气相色谱、质谱和核磁共振等方法对气体组分进行分析,从而可以获得高纯度的氢气,主要包括干式热化学反应、湿式热化学反应等几种不同类型。

其中,干式热化学反应技术成为实现生物质制氢技术的一项重要技术之一,其应用前景广阔。

二、生物质制氢技术的优点(1)低成本生物质制氢的原材料使用天然资源,成本相对较低,比传统的化石能源要低得多,其中,生物质余弦和能量植物又属于生命价值评价最高的物质,所以制氢成本会更低。

(2)可再生性和环境友好性生物质制氢技术途径可以使得能源的产生不依赖于非可再生的化石燃料。

因此,可以大大减少自然资源的消耗和损坏,同时生产过程中所排放的二氧化碳排放量极低,因此可以保护环境,减少碳排放,达到二氧化碳减排的目的。

(3)广泛适用性生物质制氢途径可以适用于很多种源。

生物质转化制氢的技术研究

生物质转化制氢的技术研究

生物质转化制氢的技术研究近年来,环保和能源问题成为全球热议的话题,各国也在积极寻求一种可持续的能源替代方案。

而生物质转化制氢技术就是其中一种备受瞩目的方案之一。

什么是生物质转化制氢技术?生物质转化制氢技术是指利用生物质作为原料,采用物理、化学或生物方法将其转化为氢气的过程。

其中,物理方法主要是通过高温高压来裂解生物质,化学方法则是利用催化剂等将生物质转化为氢气,而生物方法则是利用微生物生物体内酶的作用来产生氢气。

为什么选择生物质作为氢气生产原料?相对于化石燃料等传统能源,生物质具有绿色环保、可持续等优点。

同时,生物质也是一种相对容易获取的资源,例如,废弃物、农作物秸秆等都可以作为生物质进行转化。

此外,生物质还具有多样性,不同种类的生物质可进行不同的生产流程,方便生产者进行选择。

生物质转化制氢技术的优势和挑战相对于其他生产方法,生物质转化制氢技术具有以下几点优势:1.绿色环保:生物质转化制氢过程不会产生二氧化碳等有害气体,因此对环境相对友好。

2. 可持续性:生物质作为可再生的原料,可以保证氢气的持续供应。

3. 便于获取:生物质作为一种大量存在的资源,获取和储存都相对容易。

不过,生物质转化制氢技术也面临着一些挑战:1.成本较高:目前生物质转化制氢技术的成本较高,尚不能完全替代传统能源。

2. 生物质的多样性:不同种类的生物质制氢的效率和适用流程都不尽相同,需要进行不断地研究调整。

3. 可scala性: 生物质转化制氢技术的产量还无法达到大规模商业化的水平。

技术创新是未来发展的方向尽管生物质转化制氢技术目前仍面临着诸多问题,但在不断的技术创新下,这项技术也将迎来光明的未来。

在研究人员的不懈努力下,一些新技术已经取得了不错的成果,例如:1.微生物制氢:利用特殊微生物对生物质进行发酵,可产生大量的氢气。

此方法能够充分利用废弃物等资源,但需要调节微生物的生长环境,目前还处于研究阶段。

2.生物质气化:将生物质分解成气体,再通过化学方法或物理方法得到氢气。

生物质制氢研究进展

生物质制氢研究进展

149科技资讯 S CI EN CE & T EC HNO LO GY I NF OR MA TI ON 能源与环境氢气作为一种极为理想的“绿色能源”,其发展前景是十分光明的,人们对氢能开发和利用技术的研究一直进行着不懈的努力。

常规的制氢方法主要有水电解法、水煤气转化法、甲烷裂化法等,这些方法均需耗费大量能量。

水电解法是国内外广泛采用的制氢方法,电解槽在标准状况下制取1m 3氢气(纯度为99.5%)实际电能消耗是4.5~6.0kw/h。

电解法制氢还需配套纯水制备系统和碱液配制使用设备,使氢气生产成本较高。

随着氢气用途的日益广泛,其需求量亦迅速增加,常规的制氢方法已不能适应社会发展的需要,研究开发更为经济的、有良好环保性能的、可再生的制氢技术成为当今世界的热门课题之一,也是社会可持续发展的需要。

生物制氢技术作为一种无污染的清洁生产技术,已在世界上引起广泛重视,越来越多的科学家投身并致力于生物制氢技术的研究开发和应用,日本、美国等一些国家为此成立了专门机构,并建立了生物制氢的发展规划,以期通过对生物制氢技术的基础性和应用性研究,使该技术实现商业化生产。

我国生物制氢的研究有很大进展,国家863项目也给予支持。

生物质制氢包括两种方法:一种是生物质气化法,即通过热化学转化方式将处理过的生物质转化为燃气或合成气;另一种是生物质微生物制氢法,包括光合生物产氢、发酵细菌产氢、光合生物与发酵细菌的混合培养产氢。

生物质气化法制氢需消耗大量能量,副产物多,很少采用;与光合法生物制氢技术相比,发酵法生物制氢技术在许多方面表现出优越性:目前的研究表明,发酵产氢菌种的产氢能力要高于光合产氢菌种,发酵产氢细菌的生长速率比光合产氢生物快;发酵法生物制氢无需光源,不但可以实现持续稳定产氢,而且反应装置的设计、操作及管理简单方便;可生物降解的工农业有机废料都可作为发酵法生物制氢的原料,原料来源广且成本低廉;兼性的发酵产氢细菌更易于保存和运输。

生物质热化学法制氢技术的研究进展

生物质热化学法制氢技术的研究进展

meca rn f a h tc n lg eeea oae .P r c lr r ilt do c h oo yw r lb rtd e e e at ual h emo y a ca ay i a he e nso fr ig i y,tet r d n mi n ls c iv me t f eo n h s r m
生 物 质 热 化 学 法 制 氢 技 术 的研 究进 展
鄢 伟 孙绍 晖 孙培 勤 陈俊 武
( 郑州大学化工与能源学院 , 河南 郑州 400 ) 502
摘 要 介绍木质生物质热化学法生产氢气 的四条主要技术路线 , 分别是生 物质气 化制氢 、 物质热解油制 氢、 物 生 生
质超临界水气化制氢 、 于生物质 的小分子 有机物催 化重整 制氢方 法 , 重从化 学反 应机理 、 源 着 热力学模 拟、 催化 剂种
( o eeo h m cl nier ga dE eg ,h nzo nvr t, e a h nzo 5 0 2 C l g f e i g e n n nry Z e gh uU i s y H nnZ e gh u4 0 0 ) l C aE n i ei
Ab t a t Hy r g n wh c a d a tg s i ih h a n au n n i n n a re d i e s sa d a 。 sr c d o e ih h s a v n a e n h g e t g v l e a d e v r me tl i n l s ,i n i e l i o f n l a tr ai e e e g rt d t n l a b n s b t t r n p r t n f e .Ye o a e t o v n o a y r g n p o u ・ e n t n r y f a ai a r o u sr e t s o ti 1 v o r o c a a ao u t mp r d wi c n e t n h d e r d c c h i l o

氢能源在生物质能转化过程中的应用研究

氢能源在生物质能转化过程中的应用研究

氢能源在生物质能转化过程中的应用研究一、现状分析氢能源作为清洁能源的一种,其在生物质能转化过程中的应用已经引起广泛关注。

生物质能是一种可再生资源,可以通过生物质气化或者生物质发酵等方式转化为氢气。

氢气作为一种高效清洁能源,具有密度高、燃烧后只产生水蒸气等优点,被认为是未来替代传统化石能源的重要选择。

目前,已经取得了一定的进展。

研究人员通过生物质气化实现氢气的生产,通过生物质发酵实现生物质生物氢的生产。

但是在实际应用过程中还存在一些问题亟待解决。

二、存在问题1. 生物质气化过程中的产氢效率不高。

生物质气化是将生物质物料在缺氧或氧气气氛下加热,从而产生氢气。

然而,目前生物质气化产氢效率有限,需要继续优化技术以提高氢气产量。

2. 生物质发酵产生生物质生物氢的过程复杂度高。

生物质发酵是通过微生物将生物质废弃物转化为氢气的过程,但是该过程受到微生物种类、废弃物种类和环境条件等多种因素影响,生物氢产量不稳定。

3. 生物质氢气的储存和运输问题。

由于氢气是一种易燃易爆气体,其在储存和运输过程中存在安全隐患,需要开发更安全可靠的储氢和输氢技术。

4. 生物质氢气的利用方式有限。

目前生物质氢气主要用于燃料电池发电,但是其在交通运输、农业等领域的应用还比较有限,需要进一步拓展氢能源的应用领域。

三、对策建议1. 提高生物质气化产氢效率。

可以通过优化气化工艺、改进气化设备等方式提高生物质气化过程中的氢气产量,提高生物质气化的氢气产能。

2. 发展高效稳定的生物质发酵技术。

可以通过筛选优良微生物菌种、优化发酵条件等方式提高生物质发酵产氢效率,降低生物氢的生产成本。

3. 研究生物质氢气的储存和运输技术。

可以通过开发新型储氢材料、设计安全可靠的输氢管道等方式解决生物质氢气的储存和运输问题,确保生物质氢气的安全使用。

4. 推动生物质氢气的多元化利用。

可以通过研发氢气发动机、生产氢气燃料等方式拓展生物质氢气的应用领域,实现生物质氢气在多个领域的应用,推动氢能源产业的发展。

生物质资源制氢的技术研究

生物质资源制氢的技术研究

生物质资源制氢的技术研究生物质资源制氢技术是一种可持续发展的能源生产方式,其在减少碳排放和替代传统石油能源方面具有重要意义。

生物质资源是指植物、微生物等有机物在自然界中以生物组织形式存在的可再生能源,包括秸秆、木屑、沼气等。

而制氢技术是指利用生物质资源作为原料,通过气化、发酵等技术将其转化为氢气的过程。

本文将对进行深入探讨,分析其在能源生产领域的应用前景。

首先,生物质资源作为一种可再生能源,具有丰富的资源储备和广泛的分布,是替代传统化石能源的重要选择。

以秸秆为例,我国每年的秸秆产量庞大,长期以来一直没有得到有效利用,导致了资源的浪费和环境的污染。

而利用生物质资源进行制氢,不仅可以实现资源的再生利用,还可以减少对化石能源的依赖,有利于缓解我国能源短缺和环境污染问题。

其次,生物质资源制氢技术具有较高的能源转化效率和环境友好性。

相比于传统的石油氢气制备方式,生物质资源制氢技术更加环保,不会产生有害的废气废水污染。

同时,生物质资源制氢过程中还可以产生一定量的生物炭等副产品,具有一定的经济价值和环境效益。

因此,生物质资源制氢技术在实现能源高效利用和环境保护方面具有重要意义。

另外,生物质资源制氢技术在能源产业的应用前景广阔。

随着可再生能源的重要性越来越突出,生物质资源制氢技术在氢能源、燃料电池、城市燃气等领域具有广泛的应用前景。

尤其在氢能源汽车领域,生物质资源制氢技术可以为车辆提供清洁、高效的能源,有望成为传统石油汽车的重要替代品。

同时,生物质资源制氢技术还可以为我国能源结构调整和碳减排提供新的思路和方向。

让我们总结一下本文的重点,我们可以发现,生物质资源制氢技术作为一种可持续发展的能源生产方式,具有重要的意义和应用前景。

未来,我们需要进一步加大对生物质资源制氢技术的研究力度,提高其能源转化效率和经济效益,推动其在我国能源产业的广泛应用。

相信随着技术的不断革新和完善,生物质资源制氢技术将会为我国实现能源可持续发展和生态文明建设作出重要贡献。

生物质能转化制氢技术的研究与应用

生物质能转化制氢技术的研究与应用

生物质能转化制氢技术的研究与应用随着环保观念的日益增强,绿色、清洁、可持续的能源成为了未来的主流。

在这种背景下,生物质能转化制氢技术逐渐成为研究和应用的热点。

一、生物质能转化制氢技术的研究生物质能转化制氢技术是利用生物质能源通过热解、气化、生物法等方式产生氢气的一种技术。

热解法是将生物质加热至一定温度,使其内部的化学键断裂,产生大量的氢气。

气化法是将生物质转化为气体,再通过特殊处理获得高纯度氢气。

生物法则是借助微生物、酶类等将有机物转化为氢气。

这项技术的优势在于生物质来源广泛、易获取,是实现可持续发展的重要手段。

同时,生物质转化制氢技术不会产生氧化性废气,符合“零排放”的要求,更好地保护了环境。

二、生物质能转化制氢技术的应用生物质能转化制氢技术在能源领域有着广泛的应用前景。

首先,它可以作为燃料电池的供氢源。

目前,燃料电池的应用范围正在不断拓展,其中以汽车燃料电池为代表。

生物质转化制氢技术可以为燃料电池提供高纯度、可再生的氢气,这将更好地促进燃料电池技术的发展。

其次,生物质能转化制氢技术可以为城市煤气、煤制氢等传统工业提供替代能源。

这将降低传统工业的碳排放量,更好地保护环境。

最后,生物质能转化制氢技术还可以为制氢站等领域提供氢气。

当前,氢能源正逐渐走向实用化,而氢气的储存是实现规模化应用的重要环节。

生物质转化制氢技术可以为制氢站等领域提供氢气,这将加速氢能源的推广和应用。

三、生物质能转化制氢技术的研究方向目前,生物质能转化制氢技术还存在一些不足之处,需要进一步完善。

其中,提高转化效率是最主要的一个问题。

当前的生物质转化制氢技术仍然存在能量损失大、废气排放等问题。

因此,提高技术的转化效率、降低废气排放是未来的研究方向之一。

同时,在生物质能转化制氢技术的应用领域,还需要进一步完善相关的产业标准和政策,推动生物质能转化制氢技术的产业化发展。

只有形成一个完整的产业链,才能更好地推广和应用生物质转化制氢技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4 卷第3 2 期
2 8年 5月 0
生 物 质 化 学 工 程
Bo as hmcl ni e n i s C e i E g er g m a ni
Vo. 2N . l4 o 3
Ma 0 2 8 y
生物质热转换制氢的研究进展
黄国胜, 陈明强’ 王 君, , 陈明功,于宗保
( 安徽理工大学 化学工程学院,安徽 淮南 2 0 1 犯0 )
1 3 催化剂 .
产品气品质较差, 热值为4一 M N 氢气体 6 J 砰, /
积 分数 为 8 一1 %, % 4 反应器温度为 9 - 0 1 ( ℃, 0 ) 但成本较低。2 氧气气化: X ) 产品气具有
在气化过程中通常加人催化剂, 其主要作用 为: 降低热解气化反应温度, ) 1 减少能耗;) 2 减少 气化剂的投人; 进行定向催化裂解, ) 3 促进反应 很好的品质, 热值为 r 一 JN o 巧M 时。此过程温 / 平衡, 得到更多的目 标产物。 度可以达到 1 刃一 4 ℃, ( 0 10 但存在成本和安全 生物质催化气化系统主要包括两大部分, 一 问题。 水蒸气气化: ) 3 生成气体、 焦炭、 焦油, 氢气 是生物质气化部分, 在流化床气化炉( 或其他形 体积分数为 3 % 一 %, 0 0 6 但焦油的存在会导致 催化剂中毒、 降低气化效率、 腐蚀设备等问 题。吕 式的 气化炉) 内进行; 二是气化气催化交换部分, 鹏梅等【对生物 气一 ’ 〕 质空 水蒸气气化制 氢 取富 燃 在装有催化剂的固定床内进行。生物质废弃物由 螺旋进料器进入预热过的流化床, 在流化床内发 气的特性进行了一系列实验研究。发现较高的反 生热解反应产生热解气和焦炭等, 热解产物再与 应器温度, 适当的 E ( R 实际通人氧气质量/ 完全 从底部进来的空气或水蒸气等发生化学反应产生 燃烧所需氧气质量) /B 水蒸气质量 生物 值和S ( / 气化气从流化床上部进人旋风分离器, 将 质质 值( 量) 在实验研究中 分别为02,. ) 气化气, . 2 , 3 0 2 以及较小的生物质颗粒比 较有利于氢的产出。 炭粒分离, 然后进人焦油裂解床, 进行焦油的初步 1 2 气化反应器 . 催化裂解, 经焦油裂解后的气化气再进人通常装 根据气化反应器形式不同可分为: 流化床 ) 1 有镍基催化剂的固定床内进行进一步的催化裂解 反 应器: a 等‘ 一 试规 流 床 z g 【在 个中 模的 化 反 及交换反应。 h n 】 目 前用于生物质催化气化的催化剂主要有白 应器中进行了生物质空气气化制氢的研究, 获得 云石、 镍基催化剂、 高碳烃或低碳烃水蒸气重整催 的氢气体积分数相对较低, 大约80 . %。实验通 方解石、 菱镁矿等。 过改变温度、 空气流速、 水蒸气/ 气体比 进行操作, 化剂、 利用水蒸气重整焦油和轻的碳氢化合物、 水蒸气 ^a l 等[研究了 7 s ua 〕 dl h 纤维素气化生产合成 的置换反应大大增加 了氢气体 积分数, 到 达 气过程中R e: 丫Co 的催化性能及不同载体对锗
摘 要: 氢气是一种理想的洁净能源。从能源角度和环境角度考虑, 发展生物质制氮技术都具有重要的意义。生物质制 氢技术主要包 括热化学法和生物法, 其中热化学法主要是将生物质气化或液化, 再进行重整和水蒸气变换反应, 获得氢 气。本文综述了生物质热化学转化( 括气化、 界水气化、 包 超临 热裂解等) 制氮技术的研究进展, 并对典型的制氮技术作
( ste Ce a n ne嗯,n i n e i fc e e n Tcnl H a a 3( , h a Eg er A u U i rtOSi c ad eho g, ui 22 1 C i ) I t to h而c i i ni f u l h v y s n o y n n ) X n
A t c: yr e ia i Oi aca ee s e C s rg mee s r 卯i ov ad nin et n sa b rt Hd g s k d dl l nr o s o i i f n r oc nfi n ev m n即i on nf e e n g u . n d nr y r c e o y g ue t e w o r t ov ,tse m rntdv叩 t ho g ohd g P co fmb m s Tcn o oh面 g P utn m fi iiv w e 叮ip at e l e n o f yr e r tn o t o e c ly o n 记u i r i . hog f y e 耐 co f o o s a e ly n ir o b m s a ynl e t r h而c ad ioc P e . n e re P e , i s a g i do l f ,hn i a m 记 i u s m e an b l a r s I t f r r s b m w a 五 r i i t os l cd ho ec l og l o s h o i c m o s o c s a ss e 职ee e d e d n sf ae r 二e ad h r t 场 w e v tP u hd g . e s hp 脚 s it t ho 留 ohd g 耐 utn o f ie d t c t a a o r c yr e T o a r sn e cn o f yr e r 阿 d o e o nh e c r o h e l o np co i o o 场trc mc o e o il 铭脚i ao, i ao is c taw e;卿li w s az r i fmb m s h o ei c v i ( c d s a e h a n r n nu m l s i i i ai i f t s f tnn u rc a rp ys a u r e cn c 拌r i t il s) s z i d m its a r dh t c e hi f hd g P utn mb m s a o et a v e. n ipp a t 即i cn o y o n r co f i h e n e 目t 叫e r r e o i r d O o w l s s a a 叨c n d d e d u n en i w
器温度( 一 5 ℃) 7 8 0 5 0 决定气体产率和产品气的
组成; 气体产率和氢气含量随着反应器温度的升
1 1 气化剂 .
在气化过程中加人的气化剂主要有空气、 氧 气、 水蒸气。根据气化剂不同可分为: 空气气 ) 1 化: 这是获得高效率单一产物最广泛使用的技术。
高而增大, 焦油、 焦炭产量相应减少。 在气化反应器方面主要开发的3 种形式的设 备: 流化床反应器、 下吹式气化炉反应器和自由落 体反应器, 反应器装置趋向于大型化。近期研究 的注意力多数集中于循环流化床和有催化剂的高 压反应器。前者是出于装置大型化的考虑, 后者 是为了获得含氢量高的合成原料气。 总之, 生物质气化制取氢气共同存在的问题 是气化效率低, 产物种类分散, 不易提取高纯度氢 气; 其优点是工艺流程简单。
1 e n c e c C n e ino B o ss 七 n o h 而 a o v r o f ima l s
H A GG o hn, H NMn一ag W N u , H NMn一 n, UZn一 o U N u一 eg C E i q n, A GJ C E i g g Y og a s gi n g o b
了评述和展望。
关键词: 生物质; 热化学转换 氢; 中图分类号:Q 75 T5 . 1
文献标识码: A
文章编号: 7 一 842 )0 一 3 一 1 6 55 加83 09 肠 3 (
o r nP d i Rs h o 55 1 H d g r utn y e a P 脚 1 y e o co b e r c r
计划(1 j 05 2拓p7 ) 洲 l 作者简介 : 胜( 8 一 , 安徽庐江人, 生, 要研究 黄国 1 )男, 9 4 硕士 主 方向为生 物质能源; m uh 石 h 曲 . . - Ea : a @y 0 。 c s a gD n l o n * 通讯作者 : 强( 6 一 , 安徽宿州人, 陈明 1 9 )男, 4 教授, 要从事生物质能源 主 转化方面的 研究; m l q e u. u。 - i mh E a : c @a e . n sd n t o
用高加热速率研究两种生物质 ( 豆秆和松木锯 屑) 的水蒸气气化特性。研究发现: B / S 值和反应
体积分数提高1 %以上。 0
催化制氢主要表现在催化剂的基本选择性不 同。硅土支撑的锗、 镍催化剂在制氢过程中显 钉、 示了很低的选择性, 而铂、 钉对重整反应制氢 镍、 显示了很高的活性。铂、 把在制氢过程中显示了 相对较高的选择性。
了极好的效果, 碳元素 1 % 转化成气体, 0 其氢 气产率最大。温度升高, 氢气产率增加。吕 鹏梅
等[以 化床为 8 流 〕 反应器研究生物质催化气化, 结
果表明: 白云石和镍基催化剂可使产品气中的氢
前者的 两倍, 最大达到1. M N 3 自 落 1 l J 扩。 ) 由 / 体 器:e 6 个自 落体反应器中, 反应 w 等〔 i 〕 在一 由 采
术的主要发展方向之一, 是一种很有前途的方法。 本文论述了生物质热转换法制氢的方法和研究进
展。
1 生物质气化制氢
生物质气化是生物质在高温( 一0 ℃) 8 9 0
下通过气化剂的作用部ቤተ መጻሕፍቲ ባይዱ氧化转化成含一氧化碳 和氢气等易燃气体混合物的过程, 该方法适用于 含水率低于3 %的生物质, 标是将生物质原 5 其目 料部分氧化转化成气体燃料, 产生的低热值气体
万方数据
生 物 质 化 学 工 程
第4 卷 2
加热分解转化成气体、 焦炭和一级焦油。2 一级 ) 焦油热解成气体, 同时生成二级、 三级焦油。 ) 3 二级、 三级焦油的热解。其化学反应主要包括: ) 1热解过程生成焦炭的非均相和均相气化反应; 2 热解过程生成焦炭的燃烧和易燃气体的氧化 ) 反应。
相关文档
最新文档