实验用磁阻传感器测量地磁场讲义

合集下载

用磁阻传感器测量地磁场解读

用磁阻传感器测量地磁场解读

实验三十七 用磁阻传感器测量地磁场地磁场的数值比较小,约T 510-量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。

本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。

【实验目的】1. 掌握磁阻传感器的特性和定标方法。

2. 掌握地磁场的测量方法。

【实验原理】物质在磁场中电阻率发生变化的现象称为磁阻效应。

对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。

它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。

薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+=∥ (1)其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。

当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。

同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。

[精品]用磁阻传感器测量地磁场

[精品]用磁阻传感器测量地磁场

[精品]用磁阻传感器测量地磁场地磁场是我们生活中重要的自然现象之一,它对于地球磁层的保护、导航、地质勘探等领域都有着广泛的应用。

在地磁场的测量中,传感器的使用显得尤为重要。

在传感器中,磁阻传感器被广泛应用,它具有灵敏度高、响应速度快等特点,基于这些特点,本文将介绍如何利用磁阻传感器测量地磁场。

一、磁阻传感器原理磁阻传感器是一种常见的磁性传感器,它利用磁阻效应来实现磁场的探测。

当磁场存在于传感器内部时,由于磁阻效应的作用,导致传感器输出电压发生变化,通过这种变化可以得到磁场的大小和方向信息。

二、地磁场测量原理地球磁场主要由两部分组成,一部分是由地球内部的自然磁场引起的,称为地球核磁场,另一部分是由外部太阳辐射引起的,称为地球外磁场,两部分磁场相加形成了地球磁场。

地球磁场可以用一个矢量来表示,即磁场强度、方向和地球磁北极的关系。

在地磁场测量中,主要是测量地磁场的磁场强度和方向。

三、测量方法(1)测量方向测量地磁场方向的一种方法是用磁针进行测量。

磁针是一种基于磁力作用原理的传统测量仪器,它可以通过自转调整方向,以指出地球磁场的方向。

但是,由于磁针受到外界环境干扰较大,使用起来不够精确。

另一种测量方法是通过三轴磁阻传感器测量磁场的三个分量,使用矢量运算得出地球磁场的方向。

三轴磁阻传感器一般包括三个独立的磁阻传感器,它们分别测量x、y、z轴方向上的磁场。

通过三轴磁阻传感器可得到磁场强度和方向信息。

(2)测量强度磁场强度的测量可以通过磁阻传感器输出电压的变化来实现。

当磁场强度变化时,磁阻传感器的电阻会发生相应变化,从而导致输出电压的变化。

通过将输出电压与一个标准磁场值的电压比较,可以得到所测量的磁场强度。

根据磁阻传感器的特性,可得到测量磁场强度的公式:B=V/R其中,B为磁场强度,V为磁阻传感器输出电压,R为磁阻传感器的电阻。

四、应用实例利用磁阻传感器测量地磁场可以应用于各种地磁场测量领域,如地球磁场探测、地球磁场导航、地球磁场勘探等。

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告本实验旨在通过使用磁阻传感器测量地磁场的强度,从而了解磁阻传感器的工作原理和地磁场的特性。

首先,我们需要理解磁阻传感器的基本原理。

磁阻传感器是一种利用磁阻效应测量磁场强度的传感器,它的工作原理是基于材料在外加磁场作用下磁阻发生变化的特性。

在外加磁场的作用下,磁阻传感器的磁阻值会发生变化,通过测量这种变化可以得到磁场的强度。

在实验中,我们首先搭建了一个简单的实验电路,将磁阻传感器连接到电压表上,并将磁阻传感器放置在地面上。

接着,我们对磁阻传感器进行校准,使其能够准确测量地磁场的强度。

在进行校准时,我们需要注意避免外界磁场的干扰,以确保测量结果的准确性。

随后,我们开始进行地磁场的测量。

在实验中,我们发现地磁场的强度并不是均匀的,而是存在一定的变化。

这种变化可能是由地球内部的地磁场和外部磁场的相互作用所导致的。

通过实验数据的分析,我们可以得出地磁场的强度在不同位置存在一定的差异,这为我们进一步研究地磁场的特性提供了重要的参考。

通过本次实验,我们深入了解了磁阻传感器的工作原理和地磁场的特性。

磁阻传感器作为一种重要的传感器,在许多领域都有着广泛的应用,比如导航、地质勘探、磁力传动等。

而地磁场作为地球的重要特征之一,对于我们了解地球内部结构和地球物理现象具有重要意义。

因此,通过本次实验,我们不仅对磁阻传感器有了更深入的了解,同时也对地磁场有了更加全面的认识。

总的来说,本次实验取得了预期的效果,我们通过实际操作深入理解了磁阻传感器的工作原理和地磁场的特性,这对我们今后的学习和科研工作都具有重要的意义。

希望通过今后的实验和研究,我们能够进一步深化对磁阻传感器和地磁场的认识,为相关领域的发展做出更大的贡献。

大学物理实验讲义实验磁阻效应法测量磁场

大学物理实验讲义实验磁阻效应法测量磁场

实验15 磁阻效应法测量磁场物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。

磁场的测量可利用电磁感应,霍尔效应,磁阻效应等各种效应。

其中磁阻效应法发展最快,测量灵敏度最高。

磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。

也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。

磁阻元件的发展经历了半导体磁阻(MR ),各向异性磁阻(AMR ),巨磁阻(GMR ),庞磁阻(CMR )等阶段。

本实验研究AMR 的特性并利用它对磁场进行测量。

【实验目的】1. 了解AMR 的原理并对其特性进行实验研究。

2. 测量赫姆霍兹线圈的磁场分布。

3. 测量地磁场。

【仪器用具】ZKY-CC 各向异性磁阻传感器(AMR )与磁场测量仪【实验原理】各向异性磁阻传感器AMR (AnisotropicMagneto-Resistive sensors )由沉积在硅片上的坡莫合金(Ni 80 Fe 20)薄膜形成电阻。

沉积时外加磁场,形成易磁化轴方向。

铁磁材料的电阻与电流与磁化方向的夹角有关,电流与磁化方向平行时电阻R max 最大,电流与磁化方向垂直时电阻R min 最小,电流与磁化方向成θ角时,电阻可表示为:θ2min max min cos )(R R R R -+= (1)在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图1所示。

图1中,易磁化轴方向与电流方向的夹角为45度。

理论分析与实践表明,采用45度偏置磁场,当沿与易磁化轴垂直的方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。

无外加磁场或外加磁场方向与易磁化轴方向平行时,磁化方向即易磁化轴方向,电桥的4个桥臂电阻阻值相同,输出为零。

磁阻传感器与地磁场实验

磁阻传感器与地磁场实验
2.鲁绍曾、现代计量学概论。北京,中国计量出版社,1987:492-493
3.黄一菲、郑神、吴亮、陆申龙,玻莫合金磁阻传感器的特性研究和应用、物理实验。第22卷第4期,2002 ,4:45-48
4.Honeywell公司,固态传感器(磁阻传感器部分)说明书,2001
三.仪器外型
FD-HMC-2型 磁阻传感器与地磁场实验仪
(以下实验讲义和实验结果由复旦大学物理实验教学中心提供)
一.简介
地磁场的数值比较小,约 T量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。
表5 不同位置及不同结构大楼地磁场水平分量测量结果
测量位置 校园内操场空地 物理楼三楼 复旦科技园区2号楼五楼试制组
金属屏蔽情况 水泥地面无金属 1959年建造
地顶为钢筋水泥,墙为泥砖 2000年建造
全钢筋水泥结构
测得地磁场水平分量
0.341×10 T
0.294×10 T
0.268×10 T磁倾角β 46.0
2.将磁阻传感器平行固定在转盘上,调整转盘至水平(可用水准器指示)。水平旋转转盘,找到传感器输出电压最大方向,这个方向就是地磁场磁感应强度的水平分量 的方向。记录此时传感器输出电压 后,再旋转转盘,记录传感器输出最小电压 ,由 ,求得当地地磁场水平分量 。
3.将带有磁阻传感器的转盘平面调整为铅直,并使装置沿着地磁场磁感应强度水平分量 方向放置,只是方向转900。转动调节转盘,分别记下传感器输出最大和最小时转盘指示值和水平面之间的夹角 和 ,同时记录此最大读数 和 。由磁倾角 计算 的值。

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告一、实验目的1、了解磁阻传感器的工作原理和特性。

2、掌握利用磁阻传感器测量地磁场的方法。

3、学会对实验数据进行处理和分析,得出地磁场的相关参数。

二、实验原理1、磁阻效应磁阻效应是指某些金属或半导体在磁场中电阻值发生变化的现象。

磁阻传感器就是利用磁阻效应来测量磁场的。

2、地磁场地磁场是地球周围存在的磁场,其强度和方向在不同的地理位置有所不同。

地磁场可以分解为水平分量和垂直分量。

3、测量原理通过将磁阻传感器放置在不同的方向,测量磁场在不同方向上的分量,然后利用三角函数关系计算出地磁场的大小和方向。

三、实验仪器1、磁阻传感器实验仪包括磁阻传感器、亥姆霍兹线圈、数字电压表等。

2、电脑及数据采集软件四、实验步骤1、仪器连接与调试将磁阻传感器与实验仪连接好,打开电源,预热一段时间,确保仪器正常工作。

2、测量地磁场水平分量(1)将磁阻传感器水平放置,旋转传感器,使数字电压表的示数最大,此时传感器的方向即为地磁场水平分量的方向。

(2)记录此时的电压值,根据仪器的标定系数,计算出地磁场水平分量的大小。

3、测量地磁场垂直分量(1)将磁阻传感器垂直放置,同样旋转传感器,使数字电压表的示数最大。

(2)记录电压值,计算出地磁场垂直分量的大小。

4、数据记录与处理将测量得到的数据记录下来,利用三角函数计算地磁场的大小和方向。

五、实验数据|测量项目|电压值(V)|标定系数(V/T)|磁场分量大小(T)|||||||地磁场水平分量|_____ |_____ |_____ ||地磁场垂直分量|_____ |_____ |_____ |六、数据处理1、地磁场大小根据公式$B =\sqrt{B_{H}^{2} + B_{V}^{2}}$,其中$B_{H}$为地磁场水平分量,$B_{V}$为地磁场垂直分量,计算地磁场的大小。

2、地磁场方向利用反正切函数$\theta =\arctan\frac{B_{V}}{B_{H}}$计算地磁场的方向。

磁阻传感器与地磁场测量讲义

磁阻传感器与地磁场测量讲义

实验15 磁阻传感器与地磁场测量地球本身具有磁性,所以地球和近地空间之间存在着磁场,叫做地磁场。

地磁场的数值比较小,约510 T 量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响。

地磁场作为一种天然磁源,在军事、工业、医学、探矿等众多领域有着广泛的应用。

本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁场的水平分量和垂直分量;测量地磁场的磁倾角。

从而掌握磁阻传感器的特性及测量地磁场的一种方法。

由于磁阻传感器体积小,灵敏度高,易安装,因而在弱磁场测量方面有广泛的应用前景。

实验目的和学习要求1. 了解什么是磁阻效应?磁阻效应的物理机制?2.了解HMC1021Z 型磁阻传感器的结构原理及特性;3. 用磁阻传感器测定地磁场磁感应强度及地磁场的水平分量和地磁倾角。

实验原理1.地磁场地球磁场跟地球引力场一样,是一个地球物理场,它是由基本磁场与变化磁场两部分组成的。

基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢。

变化磁场包括地磁场的各种短期变化,与电离层的变化和太阳活动等有关,并且很微弱。

地磁场也是一个向量场。

描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素。

常用的地磁要素有7个,即地磁场总强度B ,水平强度B ∥,垂直强度B ⊥,X 和Y 分别为B ∥的北向和东向分量,α和β分别为磁偏角和磁倾角。

地磁场的强度和方向随地点(甚至随时间)而异。

地磁场的北极、南极分别在地理南极、北极附近,彼此并不重合,如图15-1.5所示,而且两者间的偏差随时间不断地在缓慢变化。

地磁轴与地球自转轴并不重合,有11o 交角。

在一个不太大的范围内,地磁场基本上是均匀的,可用三个参量来表示空间某一点地磁场的方向和大小(如图15-1.6所示):磁偏角α:地球表面任一点的地磁场矢量所在垂直平面(图6中B ∥与Z 构成的平面,称地磁子午面),与地理子午面(图6中X 、Z 构成的平面)之间的隔角。

用磁阻效应测量地磁场

用磁阻效应测量地磁场

用磁阻效应测量地磁场地磁场的数值比较小,约10-5T 量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。

本实验采用新型坡莫合金磁阻传感器测量地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特征及测量地磁场的一种重要方法。

由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。

一、实验原理物质在磁场中电阻率发生变化的现象称为磁阻效应。

对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

本实验所用得HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。

它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。

薄膜的电阻率ρ(θ)依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式2()()cos ρθρρρθ⊥⊥=+-P (1)其中ρP 、ρ⊥分别是电流I 平行于M 和垂直于M 时的电阻率。

当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。

同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。

用磁阻传感器测量地磁场的实验报告

用磁阻传感器测量地磁场的实验报告

用磁阻传感器测量地磁场的实验报告一、引言地磁场是地球表面或附近空间的磁场,是由地球内部流动的液态外核形成的。

地磁场在地球物理学、地磁导航等领域具有重要作用。

而磁阻传感器是一种能够测量磁场强度变化的传感器,可以用于测量地磁场。

本实验旨在通过使用磁阻传感器,测量地磁场的变化,从而探究地磁场的性质及其变化规律。

二、实验目的1.使用磁阻传感器测量地磁场的变化;2.探究地磁场的性质及其变化规律;3.分析实验结果,加深对地磁场的理解。

三、实验原理地球磁场的方向是指向地磁极的,地磁场强度的大小和方向随着地理位置和时间的变化而变化。

磁阻传感器是一种能够测量磁场强度变化的传感器,其工作原理是基于霍尔效应。

当受到外部磁场的作用时,传感器内部产生霍尔电位差,从而输出相应的电压信号,通过对电压信号的测量,可以得到磁场强度的大小。

四、实验材料和装置1.磁阻传感器2.数字万用表3.磁铁4.实验记录表5.实验数据处理软件五、实验步骤1.将磁阻传感器连接至数字万用表,设置为电压测量模式;2.将磁阻传感器放置于地面上,记录下磁场强度的数值;3.在磁阻传感器周围移动磁铁,观察并记录磁场强度的变化;4.将实验数据输入至数据处理软件,进行数据分析;5.根据分析结果,得出地磁场的性质及其变化规律。

六、实验结果与分析通过实验数据的测量和分析,我们得到了地磁场强度随地理位置和外界磁场影响下的变化规律。

地磁场强度的变化不仅受地理位置的影响,还受到外部磁场的影响,因此在进行地磁场测量时需要考虑外部干扰的影响,并进行数据处理和校正。

七、结论与展望本实验通过磁阻传感器测量地磁场的变化,探究了地磁场的性质及其变化规律。

在实验过程中,我们也发现了一些问题和不确定因素,如外部磁场的影响等,需要进一步研究和改进。

通过本实验的学习,我们对地磁场有了更深入的理解,同时也为未来的地磁场研究和应用提供了一定的参考价值。

八、个人观点与理解地磁场是一个十分复杂的自然现象,其变化规律和影响因素需要进一步深入研究。

实验37 磁阻传感器与地磁场的测定

实验37 磁阻传感器与地磁场的测定

教师签字: 月 日
3
大学物理实验预习报告
姓名 实验班号 实验三十七
实验目的:
实验号 磁阻传感器与地磁场的测定
实验原理及仪器介绍:
1. 什么是地磁场?表示地磁场的方向和大小的三个参量是什么?
2. 简述用磁阻传感器测地磁场的原理。
3. 用磁阻传感器测地磁场为什么要先定标(测灵敏度 K) ,采用什么方法定标。
1
实验内容:
1. 测量地磁场时为什么要将亥姆霍兹线圈与直流电源的连线拆去。
2. 水平旋转转盘时,传感器输出电压的最大方向是地磁场哪个分量的方向。

3. 测量磁倾角时怎样将转盘面调整为地磁子午面方向?
4. 公式 U out U 0 KB 其中“B”在“实验内容 1”和“实验内容 2”表示的意义是否相 同,详细解释说明。
2
数据表格:
1. 记录所用测量仪器的仪器误差:
2. 列出数据记录表格:

实验32 用磁阻传感器测量地磁场

实验32 用磁阻传感器测量地磁场

实验32 用磁阻传感器测量地磁场地磁场的数值较小约10-5T 量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。

本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角。

由于磁阻传感器体积小、灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景[实验目的]1.了解磁阻传感器的特性;2.掌握测量地磁场的一种重要方法。

[实验原理]物质在磁场中电阻率发生变化的现象称为磁阻效应。

对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

HMC1021Z 型磁阻传感器是由长而薄的坡莫合金(铁镍合金)制成的一维磁阻微电路集成芯片,其坡莫合金膜,如图1所示,该薄膜的电阻率ρ(θ)依赖于磁化强度M 和电流I 方向的夹角θ ,具有以下关系式θρρρθρ2cos )//()(⊥⊥-+= (1)其中⊥ρρ、//分别是电流I 平行于M 和垂直于M 时的电阻率。

当沿着坡莫合金膜的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,坡莫合金膜的电阻值会发生较大的变化,利用这一变化,可以测量磁场的大小和方向。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。

传感器由四条铁镍合金磁电阻构成一个非平衡直流电桥(关于直流电桥,请阅实验 ),非平衡电桥输出部分接集成运算放大器,将信号放大输出,如图5-50所示。

由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。

因而输出电压U out 可以用下式表示:/b U U R R =⨯∆(2)式中U b 是电桥的工作电压,∆R/R 是外磁场引起的磁电阻阻值的相对变化。

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告磁阻传感器与地磁场测量实验报告引言地磁场是地球上存在的一种自然磁场,它在地球的表面上呈现出一定的分布规律。

磁阻传感器是一种可以测量磁场强度的传感器,通过测量磁场对传感器内部电阻的影响来实现磁场测量。

本实验旨在通过使用磁阻传感器来测量地磁场的强度,并对实验结果进行分析和讨论。

实验方法实验使用的磁阻传感器是一种常见的磁敏传感器,它由磁敏电阻和信号调理电路组成。

实验中,我们将磁阻传感器固定在一个支架上,使其与地面平行。

然后,我们将传感器放置在不同的位置,记录下每个位置的磁场强度值。

为了减小外界磁场对实验结果的干扰,我们选择在没有大型金属物体附近进行实验,并且避免使用磁性材料。

实验结果通过实验,我们得到了一系列不同位置下的磁场强度值。

实验结果显示,磁场强度在不同位置下存在一定的差异。

在某些位置,磁场强度较高,而在其他位置,磁场强度较低。

这表明地磁场的分布并不均匀,存在一定的空间变化。

讨论与分析地磁场的分布受到地球内部的磁场产生机制和地表地质结构的影响。

地球内部的磁场产生主要是由于地球的自转和地核的涡电流所引起的。

而地表地质结构则会对地磁场的传播和分布产生影响。

例如,地下有大型矿床或岩石构造会改变地磁场的分布,使得某些地区的磁场强度较高。

在实验中,我们观察到磁场强度在不同位置下的变化,这可能是由于地表地质结构的不均匀性所引起的。

例如,在我们实验中的某些位置,可能存在地下矿床或其他地质构造,导致磁场强度较高。

而在其他位置,可能存在磁场较弱的区域。

这种空间变化可能与地球上的地质构造有关,需要进一步的研究来探究。

此外,实验中还需要考虑到其他可能的干扰因素。

例如,周围的电子设备、电源线以及人体本身都可能产生磁场干扰,影响实验结果的准确性。

因此,在进行磁场测量实验时,需要选择合适的实验环境,并采取措施来减小干扰。

结论通过使用磁阻传感器测量地磁场的强度,我们观察到了地磁场在不同位置下的变化。

磁阻传感器与地磁场测量

磁阻传感器与地磁场测量

磁阻传感器与地磁场测量
Ⅰ. 关于地磁场的简介
地球本身具有磁性,所以地球和近地空间之间存在着磁场,称为地磁场。

地磁场的强度和方向随地点不同(甚至随时间)而不相同。

地磁场的北极、南极分别在地理南极、北极附近,彼此并不重合,如图1所示,而且两者间的偏差随时间不断地在缓慢变化。

地磁轴与地球自转轴并不重合,大约有11°交角。

在一个不太大的范围内,地磁场基本上是均匀的,可用三个参量来表示地磁场的方向和
大小(如图2所示):
图1 地理南、北极与地磁南、北极图2 地磁场的磁偏角、磁倾角和水平分量
B与z构成的平面,(1) 磁偏角,地球表面任一点的地磁场矢量所在垂直平面(图2中
//
称地磁子午面),与地理子午面(图2中x、z构成的平面)之间的夹角。

(2) 磁倾角,磁场强度矢量B与水平面(即图2的矢量B和Ox与Oy构成平面的夹角)之间的夹角。

B,地磁场矢量B在水平面上的投影。

(3) 水平分量
//
测量地磁场的这三个参量,就可确定某一地点地磁场B矢量的方向和大小。

当然这三
个参量的数值随时间不断地在改变,但这一变化极其缓慢,极为微弱。

Ⅱ. 本实验的方法介绍
一.实验方法
利用磁阻传感器测量弱磁场的方法,实现地磁场水平分量的测量,并测出地磁场的大小与方向。

二.实验所用的设备及材料。

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告实验报告:磁阻传感器与地磁场测量一、实验目的本实验旨在探究磁阻传感器在测量地磁场中的应用,了解磁阻传感器的原理、特点及使用方法。

二、实验器材1. 磁阻传感器 1个2. 电源 1个3. 数据采集仪 1个4. 计算机 1台5. 实验架 1个三、实验原理磁阻传感器是一种磁性材料薄膜附着在硅芯片表面的敏感元件,其敏感面积的大小取决于薄膜的厚度和直径。

当磁感应强度发生改变时,薄膜内磁感应强度的变化会引起电阻的变化,通过对电阻变化的测量,就可以得到外磁场的强度和方向。

地磁场是指地球磁场的分布和变化情况,其大小和方向存在着规律性变化。

在进行地磁场测量时,磁阻传感器可以通过测量地磁场的变化来得到地磁场的分布和变化情况,实现对地球磁场的研究。

四、实验步骤1. 搭建实验装置。

使用实验架将磁阻传感器固定在平面上,调整位置和方向以保证其与地面平行。

将电源和数据采集仪接入磁阻传感器。

2. 测量磁阻传感器的输出电压。

将电源接通后,使用数据采集仪对磁阻传感器的输出电压进行测量。

3. 更改磁场环境。

使用不同的磁体对磁阻传感器进行干扰,测量磁阻传感器的输出电压并记录。

4. 数据处理。

根据实验数据,计算出磁阻传感器测量的磁场大小,绘制磁场分布图。

五、实验结果与分析通过测量数据和处理结果可得到如下结论:1. 磁阻传感器可以准确地测量地磁场的变化情况。

在实验过程中,我们成功的用磁阻传感器测量了地磁场的强度和方向,并绘制出了磁场分布图。

2. 磁阻传感器的精度和灵敏度取决于其敏感层的材料和尺寸。

在实验过程中我们发现不同的磁阻传感器具有不同的敏感度和精度。

六、实验结论本实验成功的探究了磁阻传感器在测量地磁场中的应用,并了解了磁阻传感器的原理、特点及使用方法。

通过实验,我们认识到磁阻传感器在物理、地理等领域的广泛应用前景。

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告磁阻传感器是一种能够感知磁场变化的传感器,广泛应用于导航、位置检测、智能手机等领域。

本实验旨在通过使用磁阻传感器,测量地磁场的变化,并对实验结果进行分析和讨论。

实验仪器与材料:1. Arduino开发板。

2. 磁阻传感器。

3. 电磁铁。

4. 电源。

5. 万用表。

6. 电磁铁控制模块。

实验步骤:1. 将磁阻传感器连接至Arduino开发板,并通过串口将数据传输至计算机。

2. 将电磁铁与电磁铁控制模块连接至电源,产生磁场。

3. 在实验室内不同位置,测量地磁场的强度,并记录数据。

4. 分析实验数据,得出结论。

实验结果与分析:通过实验测量,我们得到了地磁场在不同位置的强度数据。

实验结果表明,地磁场的强度受到地理位置的影响较大,不同位置的地磁场强度存在一定的差异。

同时,我们还发现在电磁铁附近,地磁场的强度会发生显著的变化,这与电磁场的产生有关。

在实验过程中,我们还发现磁阻传感器对于地磁场的测量具有较高的灵敏度和稳定性,能够准确地感知地磁场的变化。

这为磁阻传感器在导航、位置检测等领域的应用提供了可靠的数据支持。

结论:通过本次实验,我们成功地利用磁阻传感器对地磁场进行了测量,并得出了地磁场在不同位置的强度分布规律。

实验结果表明,磁阻传感器在地磁场测量中具有较高的准确性和可靠性,为相关领域的应用提供了有力支持。

总结:本次实验不仅加深了我们对磁阻传感器原理的理解,还为我们提供了实际操作的机会。

通过实验,我们不仅学会了如何使用磁阻传感器进行地磁场测量,还对地磁场的特性有了更深入的了解。

相信这对我们今后的学习和科研工作具有一定的帮助。

实验6磁阻传感器测量地磁场实验

实验6磁阻传感器测量地磁场实验

实验6 用磁阻传感器测量地磁场实验地磁场的数值比较小,约510-T 量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。

本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。

由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。

[实验目的]1、掌握磁阻传感器的特性。

2、了解测量地磁场的一种重要方法。

[实验仪器]测量地磁场装置如图6-1所示。

它主要包括底座、转轴,带角刻度的转盘、磁阻传感器的引线、亥姆霍兹线圈、地磁场测定仪控制主机(包括数字式电压表、5V 直流电源等)[实验原理]物质在磁场中电阻率发生变化的现象称为磁阻效应。

对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。

它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图31-2所示。

薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 图6-1 磁阻传感器测量地磁场实验装置θρρρθρ2cos )()(⊥⊥-+=∥ (1)其中//ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。

当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。

同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

实验报告磁阻传感器和地磁场的测量

实验报告磁阻传感器和地磁场的测量

磁阻传感器和地磁场的测量一.实验目的掌握磁阻传感器的特性。

掌握地磁场的测量方法。

二.实验原理物质在磁场中电阻率发生变化的现象称为磁阻效应。

对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。

它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。

薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+=∥其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。

当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。

同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。

传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。

传感器内部结构如图6-8-2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。

因而输出电压out U 可以用下式表示为b out V R U ⨯⎪⎫⎛∆=传感器造示意传感器惠斯通对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系,KB U U out +=0上式中,K 为传感器的灵敏度,B 为待测磁感应强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三十七 用磁阻传感器测量地磁场
地磁场的数值比较小,约T 5
10-量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。

本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。

【实验目的】
1. 掌握磁阻传感器的特性和定标方法。

2. 掌握地磁场的测量方法。

【实验原理】
物质在磁场中电阻率发生变化的现象称为磁阻效应。

对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。

它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。

薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式
θρρρθρ2cos )()(⊥⊥-+=∥ (1)
其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。

当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。

同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。

传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。

传感器内部结构如图2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。

因而输出电压out U 可以用下式
表示为
b out V R R U ⨯⎪⎭
⎫ ⎝⎛∆= (2)
对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系,
KB U U out +=0 (3)
上式中,K 为传感器的灵敏度,B 为待测磁感应强度。

0U 为外加磁场为零时传感器的输出量。

由于亥姆霍兹线圈的特点是能在其轴线中心点附近产生较宽范围的均匀磁场区,所以常用作弱磁场的标准磁场。

亥姆霍兹线圈公共轴线中心点位置的磁感应强度为
I R
NI B 42
/301096.445
8
-⨯==
μ (4)
上式中每个线圈匝数500=N 匝;亥姆霍兹线圈的平均半径cm R 10=;真空磁导率
270/104A N -⨯=πμ;I 为线圈流过的电流,单位A (安培);B 为磁感应强度,单位T 。

【实验仪器】
测量地磁场装置如图3所示。

它主要包括底座、转轴,带角刻度的转盘、磁阻传感器的引线、亥姆霍磁线圈、地磁场测定仪控制主机(包括数字式电压表、5V 直流电源等)。

3 / 7
【实验内容与步骤】
1.用亥姆霍磁线圈产生磁场作为已知量,测量磁阻传感器的灵敏度K 。

1) 将亥姆霍兹线圈与直流电源连接好。

2) 使磁阻传感器的管脚和磁感应强度的方向平行,即转盘刻度调节到角度 0=θ。

调节底板上螺丝使转盘至水平(用水准仪指示)。

3) 按一下复位键,调节电流到零,电压调零。

4) 依次调节电流到10mA ,20mA ,30mA ,40mA ,50mA ,60mA ,分别记录下正向电压读数正U 。

5) 调节电流到零,电流换向,按一下复位键,电压调零,重复步骤4),记录下反向电压读数反U 。

测正向和反向两次,目的是消除地磁沿亥姆霍兹线圈方向(水平)分量的影响。

6) 平均电压2/反正U U U -=,利用逐差法计算出灵敏度/K U B =∆∆。

7) 采用最小二乘法拟合,计算磁阻传感器的灵敏度(选做)。

2.测量地磁场的水平分量//B ,地磁场的磁感应强度总B ,地磁场的垂直分量⊥B 和磁倾角β
1) 将亥姆霍兹线圈与直流电源的连线拆去。

2) 将磁阻传感器平行固定在转盘上,调节底板上螺丝使转盘水平(用水准仪调节水平)。

将传感器管脚指向地理正北,把转盘刻度调节到角度o
0=θ。

3) 水平旋转转盘,找到传感器输出电压最大方向,这个方向就是地磁场磁感应强度的水平分量B//的方向。

记录此时传感器输出的最大电压U 1,再旋转转盘,记录传感器输出的最小电压U 2。

测量6组数据。

由K U U K U B 2//21////-=≡。

计算出当地地磁场水平分量B//。

4) 使装置沿着地磁磁感应强度水平分量B//方向放置(把转盘刻度调节到角度o 0=θ,调节底板使磁阻传感器输出最大电压),同时调节底板上螺丝使转盘水平(用水准仪调节水
平)。

将带有磁阻传感器的转盘平面调整为铅直,此时转盘面为地磁子午面方向。

转动转盘角度,分别记下传感器输出最大电压和最小电压时转盘指示值1β和2β,同时记录此最大读数
1U '和最小读数2
U '。

测量6组数据值,求其平均值。

5) 将磁阻传感器平行固定在转盘上,调节底板上螺丝使转盘水平(用水准仪调节水平)。

将传感器管脚指向地理正南,把转盘刻度调节到角度o 0=θ。

6) 重复步骤3)、4),比较传感器管脚指向地理正北、正南两组测量结果。

7) 由磁倾角2/)(21βββ+=计算β 值。

8) 计算出当地地磁场的磁感应强度K U U K U B 2//21
'-'=≡总总。

9) 计算地磁场的垂直分量sin B B β⊥=总。

【实验注意事项】
1. 实验仪器周围的一定范围内不应存在铁磁金属物体。

2. 测量地磁场水平分量,须将转盘调节至水平;测地磁场总B 和磁倾角β时,须将转盘面处于地磁子午面方向。

3. 测磁倾角β时,应记录不同β时,传感器输出电压 U ,应取10组β值,应测出输出电压总U 变化很小β的范围,然后求其平均值。

这是因为测量时,偏差
1,
U Cos U U 998.01==' 总总
变化很小,偏差 4,总总总U Cos U U 998.04=='' ,所以在偏差
1至
4范围总U 变化极小。

实验时应测出 U 变化很小β角的范围,然后求得平均值β。

【实验数据处理】
1..根据实验要求自拟实验内容1、2各项数据记录表格。

2.. 利用逐差法计算出灵敏度/K U B =∆∆。

3. 采用最小二乘法拟合,计算磁阻传感器的灵敏度(选做)。

4. 由K U U K U B 2//21////-=≡。

计算出当地地磁场水平分量B//。

5.由磁倾角2/)(21βββ+=计算β 值。

6.计算出当地地磁场的磁感应强度K U U K U B 2//21
'-'=≡总总。

7.计算地磁场的垂直分量sin B B β⊥=总。

【思考题】
1. 在测磁阻传感器灵敏度时,为什么要测正向输出电压和反向两次?
2. 如果在测量地磁场时,在磁阻传感器周围较近处,放一个铁钉,对测量结果将产生什么影响?
3. 为何坡莫合金磁阻传感器遇到较强磁场时,其灵敏度会降低?用什么方法来恢复其原来的灵敏度?
附录1
地磁场
地球本身具有磁性,所以地球和近地空间之间存在着磁场,叫做地磁场。

地磁场的强度和方向随地点(甚至随时间)而异。

地磁场的北极、南极分别在地理南极、北极附近,彼此并不重合,如图6-8-4所示,而且两者间的偏差随时间不断地在缓慢变化。

地磁轴与地球自转轴并不重合,有0
11交角。

在一个不太大的范围内,地磁场基本上是均匀的,可用三个参量来表示地磁场的方向和大小(如图6-8-5所示):
1) 磁偏角α,地球表面任一点的地磁场矢量所在垂直平面(图6-8-5中//B 与Z 构成的平面,称地磁子午面),与地理子午面(图6-8-5中X 、Z 构成的平面)之间的夹角。

2) 磁倾角β,地磁场矢量B 与水平面(即图6-8-5的矢量B
和OX 与OY 构成平面的夹
角)之间的夹角。

3) 水平分量//B ,地磁场矢量B
在水平面上的投影。

测量地磁场的这三个参量,就可确定某一地点地磁场
矢量的方向和大小。

当然这三个
附录2
我国一些城市的地磁参量(地磁要素)
7 / 7。

相关文档
最新文档