代数与几何难题(含解析)
高等数学 向量代数与空间解析几何题【精选文档】
第五章向量代数与空间解析几何5。
1。
1 向量的概念例1 在平行四边形中,设=a,=b.试用a和b表示向量、、和,这里是平行四边形对角线的交点(图5-8)解由于平行四边形的对角线互相平行,所以a+b==2即-(a+b)=2于是=(a+b)。
因为=-,所以(a+b)。
图5-8又因-a+b==2,所以=(b-a).由于=-,=(a-b).例2 设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的速度均为(常向量)v.设n为垂直于S的单位向量(图5-11(a)),计算单位时间内经过这区域流向n 所指向一侧的液体的质量P(液体得密度为)。
(a)(b)图5-11解该斜柱体的斜高|v |,斜高与地面垂线的夹角为v与n的夹角,所以这柱体的高为|v|cos,体积为A|v|cos=A v·n。
从而,单位时间内经过这区域流向n所指向一侧的液体的质量为P= A v·n.例3 设的三条边分别是a、b、c(图5-15),试用向量运算证明正弦定理证明注意到CB=CA+AB,故有CBCA=(CA+AB) CA=CACA+ABCA=ABCA=AB(CB+BA) =ABCB图5-15于是得到CBCA=ABCA =ABCB从而 |CBCA|=|ABCA| =|ABCB|即ab sin C=cb sin A=ca sin B所以5。
2 点的坐标与向量的坐标例1 已知点A(4,1,7)、B(-3,5,0),在y轴上求一点M,使得|MA|=|MB|。
解因为点在y轴上,故设其坐标为,则由两点间的距离公式,有解得,故所求点为例2 求证以三点为顶点的三角形是一个等腰三角形.解因为所以,即△为等腰三角形。
5.2。
2 向量运算的坐标表示例3 设有点,,求向量的坐标表示式.解由于,而,,于是即例4 已知两点A(4,0,5)和B(7,1,3),求与方向相同的单位向量e。
解因为=–=(7,1,3)-(4,0,5)=(3,1,–2),所以=,于是 e.例5 求解以向量为未知元的线性方程组其中a=(2,1,2),b=(—1,1,-2).解解此方程组得x=2a–3b , y =3a–5b以a,b代入,即得x=2(2,1,2)–3(–1,1,–2)=(7,–1,10)y=3(2,1,2)–5(–1,1,–2)=(11,–2,16)。
初中数学代数式难题汇编含答案解析
初中数学代数式难题汇编含答案解析一、选择题1.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2 【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.4.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.7.下列命题正确的个数有( )①若 x 2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618. A .0 个B .1 个C .2 个D .3 个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x 2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618; 故选C . 【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.8.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差. 【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )A .19cmB .20cmC .21cmD .22cm【答案】B【解析】【分析】 根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误;235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是()A .110B .158C .168D .178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m =12×14−10=158.故选C.13.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则AB 一定是分式B .()2442a a a ÷=C .若将分式xyx y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍D .若35,34m n ==则2532m n -=【答案】C【解析】【分析】根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称AB 是分式.故此选项错误.B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.14.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡【答案】C【解析】【分析】设一年内在该健身俱乐部健身x 次,分别用含x 的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x 次,由题意可知:50≤x≤60则购买A 类会员年卡,需要消费(1500+100x )元;购买B 类会员年卡,需要消费(3000+60x )元;购买C 类会员年卡,需要消费(4000+40x )元;不购买会员卡年卡,需要消费180x 元;当x=50时,购买A 类会员年卡,需要消费1500+100×50=6500元;购买B 类会员年卡,需要消费3000+60×50=6000元;购买C 类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A类会员年卡,需要消费1500+100×60=7500元;购买B类会员年卡,需要消费3000+60×60=6600元;购买C类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C类会员年卡故选C.【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.15.如图,是一个运算程序的示意图,若开始输入x的值为81,则第2018次输出的结果是( )A.3 B.27 C.9 D.1【答案】D【解析】【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27,第2次,13×27=9,第3次,13×9=3,第4次,13×3=1,第5次,1+2=3,第6次,13×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D.【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.16.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.17.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a += 【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.18.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.19.若(x +4)(x ﹣1)=x 2+px +q ,则( )A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.。
向量代数与空间解析几何习题详解
坐标平面所围成; ( 3 ) z = 0, z = a(a > 0) , y = x,x 2 + y 2 = 1 及 x
z x 2 y 2 , z 8 x 2 y2 所围 .
0 在 第 一 卦 限 所 围 成 ;( 4 )
解:(1 )平面 3x 4 y 2z 12 0 与三个坐标平面围成一个在第一卦限的四面体;
,化为 y
1
3 cos t (0 t 2 ) ;
2
99
z 3 sin t
x 1 3 cos
( 2) y 3 sin
(0
z0
2 ).
x a cos 6、 求螺旋线 y a sin 在三个坐标面上的投影曲线的直角坐标方程 .
zb
x2 y2 解:
z0
a2
z y a sin
z x a cos
;
b;
b.
x0
y0
第六章 向量代数与空间解析几何
习 题 6—3
1、 已知 A(1,2,3) , B(2, 1,4) ,求线段 AB 的垂直平分面的方程 .
解 :设 M ( x, y, z) 是所求平面上任一点,据题意有 | MA | | MB |,
x 12 y 2 2 z 32
x 2 2 y 12 z 4 2,
化简得所求方程 2x 6 y 2 z 7 0 .这就是所求平面上的点的坐标所满足的方程
6、 设平面过原点及点 (1,1,1) ,且与平面 x y z 8 垂直,求此平面方程 .
解: 设所求平面为 Ax By Cz D 0, 由平面过点 (1,1,1) 知平 A B C D 0, 由
r 平面过原点知 D 0 , Q n {1, 1,1},
A B C 0 A C, B 0 ,所求平面方程为
高等数学第七章向量代数与空间解析几何习题
解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,
∴
MA
=
−
1 2
(a
+
b),
MB
=
−
1 2
(b
−
A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b
−
a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三
而
a⋅b =
a
⋅
b
⋅
cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的
解析几何综合问题(1)(把几何关系转化为代数关系)
解析几何综合问题引例:已知)0(12222>>=+b a by a x 的右焦点为)0,3(2F ,离心率为e ; (1)若e=23,求椭圆的方程; (2)设直线kx y=与椭圆相交于A 、B 两点,M 、N 分别为线段AF 2,BF 2的中点,若坐标原点O 在以直线MN 为直径的圆上,且2322≤<e ,求k 的取值范围例1:椭圆C :1422=+y x ,过点D (0,4)的直线l 与椭圆C 交于两点E 、F ,根据以下条件,尝试把几何关系转化为代数关系:(1)设B (0,41-),若BE=BF ,求直线l 的斜率;(2)A 是椭圆的右顶点,且∠EAF 的角平分线是x 轴,求直线l 的方程;(3)以线段OE 、OF 为邻边作平行四边形OEFP ,其中顶点P 在椭圆C 上,O 为坐标原点,求O 到直线l 距离最小值;(4)若以EF 为直径的圆过原点,求直线l 的斜率;(5)点M 为直线y=21x 与该椭圆在第一象限内的交点,平行于OM 的直线l ,交椭圆于A 、B 两点,求证:直线MA 、MB 与x 轴始终围成一个等腰三角形。
例2:设椭圆C :)0(12222>>=+b a by a x 的左右焦点分别为F 1,F 2,上顶点为A ,过点A 与AF 2垂直的直线交x 轴负半轴于点Q ,且2221=+Q F F F ,若过A 、Q 、F 2三点的圆恰好与直线l :033=--y x 相切,过定点M(0,2)的直线l 1与椭圆C 交于G 、H 两点,(点G 在M 、H 之间)(1)求椭圆方程;(2)设直线l 1的斜率k>0,在x 轴上是否存在点P (m ,0),使得PG 、PH 为邻边的平行四边形是菱形,若存在,求出m 的取值范围,若不存在,请说明理由。
小结:(1)借助几何直观,把几何条件准确代数化,尽量减少变量个数;(2)明确算理,注意量与量的关系;(3)要有坚强的毅力,只要目标明确,坚持比方法重要。
浙教版数学七年级上册专项突破二 与几何相关的代数式问题(含答案)
训练内容
①与长方形、正方形有关的代数式问题(第2,4,5,6, 7,9,10题); ②与数轴、线段或角有关的代数式问题(第1,3,8, 11题).
一、选择题
1.(2021秋·金华市婺城区期末)如图,已知线段AB=a,线段CD
=b,当线段CD在线段AB上运动(点C,D始终在线段AB上)时,
【答案】
m-n 2
抓重点
8.如图,线段AB表示某两地之间的一条东西走向的道路.在点A 的东面5 km处设置第一个广告牌,之后往东每12 km就设置一个广 告牌.一辆汽车从点A的东面3km处出发,沿此道路向东行驶.当 经过第n个广告牌时,此车所行驶的路程为________km.
【解析】 由题意,得(5-3)+12(n-1)=(12n-10)km. 【答案】 (12n-10)
三、解答题
抓重点
10.(2020秋·舟山市定海区期末)如图,用大小不完全相同的5个正 方形和1个长方形(阴影部分)拼成长方形ABCD,其中EF=2 cm, 最小的正方形的边长为x(cm). (1)用含x的代数式表示FG=________cm,DG=________cm. (2)若长方形ABCD的周长为52 cm,求x的值. (3)若FG∶DG=2∶3,求四边形FGDH(阴影部分)的面积.
D. ab-3π2b2
【解析】由题意,得装饰物所占的面积为 πb42=1π6b2,
∴窗户中能射进阳光的面积是 ab-1π6b2.故选 C.
【答案】 C
抓重点
3.(2020秋·金华市金东区期末)如图,三角尺MON的
直角顶点O在直线AB 上,OC是∠MOB的平分线.若
∠AOM的度数为y,∠NOC的度数为x,则y用含x的代
空间解析几何与向量代数三
高等数学( B )—向量代数与空间解析几何练习题及解答1、 已知 M 11,2,3 , M 2 0,1, 2 ,M 1M 2 的坐标式? M 1M 2 ?与 M 1M 2 平行的单位向量?方向余弦?[解]:1) M 1M 20 1,1 2, 2 31,1,5M 1M 2 21 222)1 5 273) cosx 2 x 1 1,cosy 2 y 1 1,cosz 2 z 1 5M 1M 227 M 1M 227M 1M 2274)与 M 1M 2 平行的单位向量为:cos ,cos ,cos1 , 1 , 5 。
272727x 1y z 1 x y 1z 2 2、 设直线n4与直线1平行,求 n,m 。
2m3[解 ] : s 12,n,4 , s 2 m,1,3 ,因为两直线平行,r m 1 n 1 p 1 2 n 4 4 3 所以 l 1 / /l 2s 1 / / s 2s 1s 2。
m 2n 2 p 2n, m2m 1 333Ax y 2z 1 与平面: 3x y z3垂直,求 A 。
、 已知平面:[解 ] : n 1A,1, 2 , n 2 3, 1,1 ,因为两平面垂直,所以12n 1 n 2 n 1 n 2 0 A 1 A 2 B 1B 2 C 1C 2 0 A 3 1 1 210 A14、 已知平面x 1 y z 1 : x By 3z 1 0 与直线4垂直,求 B , m 。
m6[ 解 ]: n 1,B, 3 , s m,4,6 ,因为垂直,所以有n/ / s n s 0m4 6 。
1BB2, m 235、 求由 a 1,2,3 , b 1,2,4 为邻边组成的平行四边形的面积。
[ 解] :由两向量叉积的几何意义知:以a ,b 为邻边组成的平行四边行的面积S a bi j k86, 43,222,7,4a b 123,因为124故 S a b22269 。
7426、求以A x1, y1, z1, B x2, y2, z2, C x3 , y3, z3为顶点的三角形面积。
高中数学练习题代数与几何
高中数学练习题代数与几何高中数学练习题:代数与几何一、代数题1. 已知多项式函数 f(x) = 3x^3 - 2x^2 + 5x - 7,求 f(x) 在 x = 2 处的函数值。
解析:将 x = 2 代入 f(x) 中即可得到函数值。
2. 若 a + b = 8,ab = 15,求 a^2 + b^2 的值。
解析:根据二次方程的求根公式,我们可以得到 a 和 b 的值,然后再计算 a^2 + b^2。
3. 已知集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求 A 与 B 的交集、并集以及差集。
解析:根据集合的定义和运算规则,可以求得 A 与 B 的交集、并集以及差集。
二、几何题1. 在平面直角坐标系中,过点 A(2, 6) 和点 B(-4, -3) 的直线 k 的方程是什么?解析:使用两点式求得直线 k 的方程。
2. 已知等边三角形 ABC 的边长为 6cm,求三角形的高、面积以及内切圆半径。
解析:根据等边三角形的性质,可以求得三角形的高、面积以及内切圆半径。
3. 已知平面图形 ABCD 是一个正方形,AB 的边长为 5cm。
点 E、F、G 分别是 AB、BC、CD 上的点,且 AE = BF = CG。
求三角形 EFG 的面积。
解析:根据正方形的性质,可以求得三角形 EFG 的面积。
三、综合题已知函数 f(x) = x^3 - 4x^2 + 5x + 2,考察其在数轴上的特征点。
解析:通过求导、求值等方式,可以确定函数 f(x) 的驻点、拐点以及零点等特征点。
综上所述,本篇文章涵盖了高中数学代数与几何方面的练习题,包括代数题和几何题。
通过解析各题目,我们可以了解到问题的解法和相关概念。
这些题目旨在帮助高中生巩固数学知识,提高解题能力。
八上数学代数题难题及解析
2019--2020人教版数学八年级代数经典集锦---一题多解在初中几何的证明和求解中,需要培养学生严密推理论证能力、灵动转化变换思维等方面素养,而在初中代数的计算过程中,需要培养学生多角度、多维度思考问题,掌握整体与局部、特例分析等全方位能力,从而寻求结果,下面以一道经典例题的不同解法,展开思维训练。
1、已知:x y = - 2,则x 2-2xy-3y 2x 2-6xy-7y 2 = .解法一: 令x=2,y=-1, 则x 2-2xy-3y 2=22-2*2*(-1)-3*(-1)2=4+4-3=5,X 2-6xy-7y 2=22-6*2*(-1)-7*(-1)2=4+12-7=9, 所以,原式=59 .李老师点评: 本解法是最简单却学生最不容易想到的解法。
原式看起来很复杂,x,y 只给出了比例关系,没有给出具体数值,那么取特例也是满足题设要求的,所以,当没有寻找到更好的解决办法时,可以取特殊值进行计算。
解法二:由已知比例x y = - 2变形有:x=-2y ┅┅① 将①带入原式有:x 2-2xy-3y 2=(-2y)2-2*(-2y)*y-3y 2=5y 2, X 2-6xy-7y 2=(-2y)2-6*(-2y)*y-7y 2=9y 2, x 2-2xy-3y 2x 2-6xy-7y 2 =59 .李老师点评:本解法使用了带入消元法进行解题,带入消元法是解决含有未知数类求值问题最基本的解题方法之一。
解法三: ∵x y = - 2, ∴x≠0,y≠0 则将原式分子和分母同时除以y 2得到:x 2-2xy-3y 2x 2-6xy-7y2== 59=李老师点评: 本解法是一种技巧型解法,首先通过观察x,y 的取值情况以及原式中分子分母所含式子,我们会发现:x,y 都不等于0,同时分子分母其实每一项都是二次项(将x,y 都看作未知数),所以分子分母同时除以y2,便可以轻松的将原式化成已知条件中的样子,从而得解。
高等代数与解析几何习题答案
习题习题设A是一个"阶下三角矩阵。
证明:(1)如果A的对角线元素吗H勺(门=1,2,…/),则A必可对角化;(2)如果A的对角线元素a ll=a22=-=a ll…f且A不是对角阵,则A不可对角化。
证明:(1)因为A是一个〃阶下三角矩阵,所以A的特征多项式为I 2E - A 1= (2 - ! )(2 - «22)■ • (2 - 6/wj),又因心工勺(/, j = 1,2, •••,/?),所以人有" 个不同的特征值,即4有"个线性无关的特征向量,以这〃个线性无关的特征向量为列构成一个可逆阵P,则有厂虫卩为对角阵,故A必可对角化。
(2)假设A可对角化,即存在对角阵〃= 人. ,使得A与B相似,进而A与3有相同的特征值人,人,…人。
又因为矩阵A的特征多项式为Ixtf —A1=(几_°]])“ ,所以= ■ ■ ■ = A lt =, 从|([J / 、如B=如=如丘,于是对于任意非退化矩阵x ,都有、% >X"BX =X%EX =gE = B,而A不是对角阵,必有厂曲=3",与假设矛盾,所以A 不可对角化。
习题设“维线性空间V的线性变换”有$个不同的特征值入,易,…,入,匕是人的特征子空间(心1,2,…,s)。
证明:(1)叫+岭+…+匕是直和;(2)a可对角化的充要条件是V = %㊉匕㊉…㊉匕。
证明:(1)取岭+£+・•・ +匕的零向量0,写成分解式有a x +a 2 + -- + a x =0,其中 q e V ; J = 1,2,…,s 。
现用 6b[…,b分别作用分解式两边,可得印+色+…+ % = 0人 © + + ・・• + A s a s = 0 常匕+石么+・・・+町匕=0写成矩阵形式为‘1人( 、1(4S ,…心):J 人f 1由于人,人,…,人是互不相同的,所以矩阵3= 1零,即矩阵B 是可逆的,进而有(卬,色,aJBB" = (0,0,…,0)B" = (0,0,…,0), (a 「勺,…)=(0,0,…,0)。
大学线性代数与解析几何习题
→齐次线性方程组Ax=0只有零解
AB=0→B的列向量是齐次线性方程组Ax=0的解→B=0
或:A可逆,即A-1存在→根据AB=0→A-1A B= A-10→B= A-1
三、空间解析几何部分
(一)填空题
1.已知 ,则 .
提示:a0=a/|a|
2.设 则 =.
提示:|a×b|=|a||b|sin→cos→a.b=|a||b|cos
2.
(A) (B)
(C) (D)
提示:|AB|=|A||B|=|BA|
3.设 阶矩阵 ,若矩阵 的秩为 ,则 必为
()
提示:参见书本及作业上的例子。
4.
提示:参见前面的内容。
5. ()
提示:(AB)2=I→ABAB=I→A(BAB)=I→A-1=BAB
(AB)2=I→ABAB=I→(ABA)B=I→B-1=ABA
4.设 ,则 .
提示:对矩阵A施行初等行变换,非零行的行数即为矩阵A的秩。
5.设 ,则当 满足条件时, 可逆.
提示:矩阵A的行列式detA≠0时,矩阵可逆。
(二)选择题
1.设 阶矩阵 ,则必有()
(A) (B) (C) (D)
提示:A的逆矩阵为BC
2. ()
提示:P的列为齐次线性方程组Qx=0的解,P非零,Qx=0有非零解,故Q的行列式detQ=0
2.设向量 ( )
提示:Prjba=|a|cos,|a|=3→cos→cosa.b)/(|a||b|)
3. ( )
提示:向量平行,对应坐标分量成比例。
4.设向量 且 ( )
提示:向量混合积的计算方法。
5. ( )
提示:根据向量乘法运算律展开,并考察向量积的方向特性。
《几何与代数》 科学出版社 习题解析第二章
第二章 矩阵
习题解析
则 A ( E B)
n
0 0 1 2 0 0 , B3 B4 Bn 0(n 3) B 0
n(n 1) n 2 2 n E n B B B 2!
n 1
第二章 矩阵
习题解析
1 n 6(4) 设 A 1 ,计算 A . 0 1 0 解 设 A E B, B 0 1 0 n n
(r) P,Q可逆,A m n
=PE
(r) m nQ.
7 max r A , r B r A, B r A r B
6) r(A) r(B) r(AB) r(A) + r(B)
5) If AB 0, then r A r B n.
单位矩阵
第二章 矩阵
§2.1 矩阵的代数运算
• 矩阵乘法交换率一般不成立 (AB)k Ak Bk (A+B)2 A2 + B2+2AB (A+B)(AB) A2B2 矩阵乘积可交换的情况: 1. 方阵 AkAl=AlAk 2. 对角矩阵 = 3. (a Em) Am×n = Am×n (a En) AA* A* A A E 5. AA1 A1 A E 4. • 矩阵乘法消去率一般不成立. AB O A O or B O • 但是,消去率在A可逆时成立. AB O, A 0 B O
T T
T
第二章 矩阵
习题解析
9.
已知3级方阵A按列分块为A (1 , 2 , 3 ),
且 A 5, 若B (1 2 2 ,31 4 3 ,5 2 ),求 B .
最新线性代数与解析几何试题(附解析)-中国科技大学
中 国 科 学 技 术 大 学 2005—2006学年第2学期考试试卷考试科目:线性代数 得分: 学生所在系:姓名:学号:一、判断题(30分,每小题6分)。
判断下列命题是否正确,并简要说明理由。
1. 三维空间向量c b,a,共面的充要条件是0det =⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅c c b c a c c b b b a b c a b a a a 。
2. 设A 为n 阶实正交方阵,I 为n 阶单位阵,则I A 2-为可逆方阵。
3. 设n m ⨯阶非零实矩阵A 和B 满足0='B A ,则A 的行向量线性相关,并且B 的行向量也线性相关。
4. 设)(R M n 是n 阶实方阵全体按矩阵的加法与数乘运算构成的线性空间,则满足0tr =A 的n 阶实方阵A 的全体构成)(R M n 的子空间。
5. 设B A ,为方阵,且⎪⎪⎭⎫⎝⎛B A 是实正定对称方阵,则B A ,也是实正定对称方阵。
二、计算题(62分)。
1. (15分)b a ,为何值时,下列线性方程组有解?当有解时,求出该方程组的通解。
⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 54321543254321543213345362232312.3. (15分)设n 阶实方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=2112112O O A n ,求n A det 和14-A 。
4. (17分)设V 是由所有2阶实方阵构成的实线性空间。
在定义内积Y X Y X '=tr ),(后,V 成为一个欧氏空间。
现定义V 上的变换X X X '+ : A 。
(1)证明: A 是一个线性变换;(2)求 A 在基⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1000,0100,0010,0001下的表示矩阵;(3)求 A 的所有特征值与特征向量;(4)求V 的一组标准正交基,使得 A 在此基下的表示矩阵为对角阵。
中国科学技术大学2020年线性代数与解析几何考研试题及解答
E −b 01
Ab bT 1
E0
A − bbT 0
=
,
−bT 1
01
E0 −bTA−1 1
Ab bT 1
E −A−1b
A
0
=
.
01
0 1 − bTA−1b
于是可以得到 1 − bTA−1b > 0.
充分性. 根据上面的两个矩阵等式可得结论.
2
3. 我不认可这道题, 因为二次型是指多项式, 而不是矩阵.
4. 常规题目, 把基放在一起找出最大线性无关组的个数得维数.
5. A 的特征多项式为 x(x − 2)2, 由于可对角化, 最小多项式为一次因式的乘积并且要包含所 有的特征值, 于是最小多项式为 x(x − 2). 因此 A(A − 2E) = 0, 解得 a = −1.
2. (15分) 设 A 是 n 阶复方阵且不可对角化, 试证明存在非零矩阵 B, 使得 AB = BA 且 Bn = 0.
3. (20 分) 在 M2(C) 上定义线性变换 A : X → AX, A = 1 2 , 求 A 的特征值和特征向 01
量, Jordan 标准型.
4. (20分) 给定行向量集合 S : (具体表达式不详), 试求它的极大线性无关组并给出证明.
二. 1. 与 2017 年解答题第一题没有多大区别, 按照那里的做法去做就行了.
2. 由 Jordan 标准型的理论知道, 存在可逆矩阵 P, 使得 P −1AP = J, 其中 J 为 A 的 Jordan 标准型, 记 J0 为把 J 的对角线上元素全换为零所得的矩阵. 那么, 由于 A 不可对角化, 则 J0 = 0. 又由于 J J0 = J0J, 故取 B = P J0P −1 即可.
北京大学1999年高等代数与解析几何试题及解答
因此 V1 ∩ V2 = {0}.
∀α ∈ V, 可设 α = x1α1 + x2α2 + · · · + xnαn, 那么
() ∑n
( ∑n
) ∑n
α=
xi (α1 + α2 + · · · + αn) +
xi − xj αi ∈ V1 + V2.
i=1
i=1
j=1
综合上面两点得 V = V1 ⊕ V2. (3) 设 A αi = αpi, 1 ⩽ i ⩽ n. 其中 p1, p2, . . . , pn 为 1, 2, . . . , n 的一个重排, 则
x + 48
=
y+
95 2
=z+
35 .
8
7
2
注 丘维声的《解析几何》第三版第 69 页习题 2.3 第 10 题的 (3).
二. (1) 因为点 (1, 0, 0), (0, 1, 0), (0, 0, 1) 在 S 上, 故 a11 = a22 = a33 = 0.
(2) 作正交坐标变换
−−−→ Q1Q2 = (23 + 5s − 2t, −12 + 4s − 3t, s − t),
由
−−−→ Q1Q2
//
⃗v
得
23 + 5s − 2t −12 + 4s − 3t s − t
=
=
8
7
1
=⇒
s
=
−
82 3
t
=
−
35 2
95 35 =⇒ Q1(−48, − 2 , − 2 )
新初中数学代数式难题汇编含答案解析(2)
新初中数学代数式难题汇编含答案解析(2)一、选择题1.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )A .-1B .1C .2D .-2【答案】C【解析】分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.2.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.3.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、22和33不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .4.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.5.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】 根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.6.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.7.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【解析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.8.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.7 B.12 C.13 D.25【答案】C【解析】【分析】设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab =12,求出a2+b2即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,即2ab=12,所以a2+b2=13,即正方形A,B的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.11.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【答案】A【解析】分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,故选:A .【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.13.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.14.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.15.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.16.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+,∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.17.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.18.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.19.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.如图,是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A.abπB.2abπC.3abπD.4abπ【答案】B【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.。
代数式难题汇编含答案解析
代数式难题汇编含答案解析一、选择题1.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .2.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.3.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=-【答案】D【解析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.4.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.5.观察下列图形:()它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为() A.20B.21C.22D.23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.【详解】解:设第n个图形共有a n(n为正整数)个五角星,∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.6.下列运算正确的是()A.x3+x5=x8 B.(y+1)(y-1)=y2-1 C.a10÷a2=a5 D.(-a2b)3=a6b3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5,无法计算,故此选项错误;B、(y+1)(y-1)=y2-1,正确;C、a10÷a2=a8,故此选项错误;D、(-a2b)3=-a6b3,故此选项错误.故选:B.本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.7.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n 个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.9.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.10.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】 本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.11.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.12.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .13.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型办卡费用(元) 每次收费(元) A 类1500 100 B 类3000 60 C 类 4000 40例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡【答案】C【解析】【分析】设一年内在该健身俱乐部健身x 次,分别用含x 的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x 次,由题意可知:50≤x≤60则购买A 类会员年卡,需要消费(1500+100x )元;购买B 类会员年卡,需要消费(3000+60x )元;购买C 类会员年卡,需要消费(4000+40x )元;不购买会员卡年卡,需要消费180x 元;当x=50时,购买A 类会员年卡,需要消费1500+100×50=6500元;购买B 类会员年卡,需要消费3000+60×50=6000元;购买C 类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A 类会员年卡,需要消费1500+100×60=7500元;购买B 类会员年卡,需要消费3000+60×60=6600元;购买C 类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C 类会员年卡故选C .【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.14.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.15.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.16.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.17.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n个图形棋子的个数的表达式是解题的关键.18.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.19.若x+y=3+22,x﹣y=3﹣22,则22-的值为()x yA.42B.1 C.6 D.3﹣22【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=3+22,x﹣y=3﹣22,∴22()()(322)(322)-=+-=+-=1.x y x y x y故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm,宽为5cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于()A.19cm B.20cm C.21cm D.22cm【答案】B【解析】【分析】根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.。
线性代数与解析几何习题讲解
解:反对称矩阵的元素满足:aij aji i, j 1, 2,L , n
则 aii aii i 1, 2,L , n 得 aii 0 i 1, 2,L , n 即主对角线元素a11, a22 ,L , ann全为0。
13 设有n阶行列式D |aij|, 若其元素满足aij =-a ji ,则 称为反对称行列式。试证明:
r2r1 x 2 y
r 3r1
0
0
y x y
0
y
0 (x 2 y)(x y)2
x y
2.证明下列等式:
a bx a b a x
(1)
c dy c d c y
解:根据二阶行列式的定义: a bx
a(d y) c(b x) c dy
ad bc ay cx
ab ax
cd cy
2.证明下列等式: 0b a ab
11 利用行列式的性质计算下列行列式:
x xKx a
0 0Ka x
(6)M M
MM
0 aK0 x
a 0K0 x
解:当a 0时,若n 1,原式 x;
若n 2,原式 x a x2 ax
若n 3,原式=0
当a 0时,
cn
x a
c1
x cn
x a
c
2
M
xK
原式 0 cn
x a
cn1
0
K
(1735246) 1 2 3 4 5 6 +7
031 2110 8
1735246是偶排列,此时,i 3, j 4 i 4, j 3时,1745236是奇排列,不符合要求。
5. 如果排列i1i2 L in的逆序数为m,求排列inin1L i2i1 的逆序数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数与几何难题一、选择题1、如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于( ).A .B .C .D .二、解答题2、如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.3、已知抛物线y=a+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴。
(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由。
4、已知抛物线.(1)求证:无论m为任何实数,抛物线与x轴总有两个交点;(2)若A(n-3,n2+2)、B(-n+1,n2+2)是抛物线上的两个不同点,求抛物线的解析式和n的值;,且(3)若反比例函数的图象与(2)中的抛物线在第一象限内的交点的横坐标为x满足2<x<3,求k的取值范围.5、如图,抛物线y=a+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由。
6、如图,第一角限内的点A在反比例函数y=的图象上,第四象限内的点B 在反比例函数y=图象上,且OA⊥OB,∠OAB=60度,则K值为__________7、如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,D是抛物线上一点,其坐标为(,-),B点坐标为(1,0).(1)求抛物线的解析式;(2)经过A、B、D三点的圆交AC于F,交直线y=x+3于点E.试判断△BEF的形状,并加以证明.代数与几何难题的答案和解析一、选择题1、答案:C试题分析:先过点A向BC引垂线,构造出直角三角形,再利用三角函数的定义解答即可。
解:过点A向BC引垂线,与BC的延长线交于点D.在Rt△ABD中,AD=2,BD=4,∴AB==2,sin∠ABC==,故选:C.二、解答题2、答案:试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2-1,BH=2-1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC-∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,-1),于是可根据待定系数法求出直线AC的解析式为y=x-1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t,=•t•(-t+1),再进行配方得到S=-t-1),则MN=-t+1,根据三角形面积公式得到S△CMN(t-)2+(0<t<2),最后根据二次函数的最值问题求解.试题解析:(1)把A(2,1)代入y=得k=2×1=2;(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=得a=2,∴B点坐标为(1,2),∴AH=2-1,BH=2-1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC-∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,-1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,-1)代入得,解,∴直线AC的解析式为y=x-1;(3)设M点坐标为(t,)(0<t<2),∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,t-1),∴MN=-(t-1)=-t+1,=•t•(-t+1)∴S△CMN=-t2+t+=-(t-)2+(0<t<2),∵a=-<0,∴当t=时,S有最大值,最大值为.3、答案:(1)y=-+2x+3(2)P(1,2)(3)M(1,),(1,- ),(1,1),(1,0)试题分析:(1)由于已知抛物线与x轴的交点坐标,则可设交点式y=a(x+1)(x-3),然后把C(0,3)代入求出a即可;(2)连结BC交l于P,如图,利用轴对称-最短路线问题得到此时△PAC的周长最小,再利用待定系数法求出直线BC的解析式为y=-x+3,然后计算出自变量为1时的函数值即可得到P点坐标;(3)设M(1,m),△MAC为等腰三角形,分①MA=MC;②MA=AC;③MC=AC,讨论求解。
解:(1)设抛物线解析式为y=a(x+1)(x-3),把C(0,3)代入得,a•1•(-3)=3,解得a=-1,∴抛物线解析式为y=-(x+1)(x-3)=-+2x+3;(2)连结BC交l于P,如图,∵点A与点B关于直线l对称,∴PA=PB,∴PC+PA=CB,∴此时△PAC的周长最小,设直线BC的解析式为y=kx+b,把C(0,3),B(3,0)代入得,,解得 k=-1, b=3,∴直线BC的解析式为y=-x+3,当x=1时,y=-1+3=2,∴点P的坐标为(1,2)(3)抛物线的对称轴为:x=-=1,设M(1,m),已知A(-1,0)、C(0,3),则:=+4,=-6m+10,=10;①若MA=MC,则=,得:+4=-6m+10,得:m=1;②若MA=AC,则=,得:+4=10,得:m=± 6 ;③若MC=AC,则=,得:-6m+10=10,得:m=0,m=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点的坐标为 M(1,),(1,- ),(1,1),(1,0)4、答案:试题分析:(1)根据原式等于0,利用根的判别式△>0即可得出答案;(2)首先利用抛物线上两个不同点A(n-3,n2+2)、B(-n+1,n2+2)的纵坐标相同,得出点A和点B 关于抛物线的对称轴对称,则,进而求出m的值,即可得出二次函数解析式,即可得出n的值;(3)根据当2<x<3时,对于,y随着x的增大而增大,再利用x=2和3时y的值得出k 的取值范围.试题解析:(1)证明:令.得=m2-2m+4=(m-1)2+3.∵不论m为任何实数,都有(m-1)2+3>0,即△>0.∴不论m为任何实数,抛物线与x轴总有两个交点..(2)抛物线的对称轴为:x=m-3,∵抛物线上两个不同点A(n-3,n2+2)、B(-n+1,n2+2)的纵坐标相同,∴点A和点B关于抛物线的对称轴对称,则.∴m=2.∴抛物线的解析式为.∵A(n-3,n2+2)在抛物线上,∴.化简,得n2+4n+4=0.∴n=-2.(3)当2<x<3时,对于,y随着x的增大而增大,对于,y随着x的增大而减小.=2时,由反比例函数图象在二次函数图象上方,所以当x得>,解得:k>5.当x=3时,由二次函数图象在反比例函数图象上方,得>,解得k<18.所以k的取值范围为:5<k<18.5、答案:(1)y=-2x-3,M(1,-4)(2)1:2(3)(2,-3)或(1+,3)或(1-,3)试题分析:(1)有抛物线与x轴交于点A(-1,0),B(3,0)两点,则可设抛物线解析式为y=a(x+1)(x-3).由与y轴交于点C(0,-3),则代入易得解析式,顶点易知;(2)求△BCM面积与△ABC面积的比,由两三角形不为同高或同底,所以考虑求解求出两三角形面积再作比即可。
因为=+-,=•AB•OC,则结论易得;(3)由四边形为平行四边形,则对边PQ、AC平行且相等,过Q点作x轴的垂线易得Q到x轴的距离=OC=3,又(1)得抛物线解析式,代入即得Q点横坐标,则Q点可求。
解:(1)设抛物线解析式为y=a(x+1)(x-3),∵抛物线过点(0,-3),∴-3=a(0+1)(0-3),∴a=1,∴抛物线解析式为y=(x+1)(x-3)=-2x-3,∵y=-2x-3=-4,∴M(1,-4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵=+-=•(3+4)•1+•2×4-•3•3=+-=3,=•AB•OC=•4•3=6,∴:=3:6=1:2.(3)存在,理由如下:①如图2,当Q在x轴下方时,作QE⊥x轴于E,∵四边形ACQP为平行四边形,∴PQ平行且相等AC,∴△PEQ≌△AOC,∴EQ=OC=3,∴-3=x2-2x-3,解得 x=2或x=0(与C点重合,舍去),∴Q(2,-3).②如图3,当Q在x轴上方时,作QF⊥x轴于F,∵四边形ACPQ为平行四边形,∴QP平行且相等AC,∴△PFQ≌△AOC,∴FQ=OC=3,∴3=-2x-3,解得x=1+或x=1-,∴Q(1+,3)或(1-,3).综上所述,Q点为(2,-3)或(1+,3)或(1-,3).6、答案:-6试题分析:作AC⊥y轴于C,BD⊥y轴于D,如图,根据反比例函数图象上点的坐标特征解答,然后利用比例性质先求出ab的值再计算k的值。
解:作AC⊥y轴于C,BD⊥y轴于D,如图,设A(a,),B(b,)∵∠AOB=90°,∴∠AOC+∠DOB=90°,而∠AOC+∠OAC=90°,∴∠OAC=∠DOB,∴Rt△OAC∽Rt△BOD∴==∵在Rt△AOB中,tan∠OAB=tan60°==∴ab=2∴k=-ab=×2=-6答案为:-67、答案:试题分析:(1)将D、B的坐标代入抛物线的解析式中即可求出二次函数的解析式.(2)先根据抛物线的解析式求出A、P的坐标,然后根据角度判定△BEF的形状.试题解析:(1)根据题意有:,解得:,∴抛物线的解析式为y=x2+2x-3.(2)△BEF为等腰直角三角形.证明:如图,当y=0时,x2+2x-3=0,解得x1=-3,x2=1.∴A点坐标为(-3,0).∵直线y=x+3,当x=0时,y=3,当y=0时,x=-3,∴直线y=x+3经过点A(-3,0),交y轴于点P(0,3).∴OA=OP,∴∠OAP=45°.当x=0时,y=x2+2x-3=-3,∴点C的坐标为(0,-3).∴OA=OC,∴∠OAC=45°.∴∠EAF=90°,∴∠EBF=90°.∵∠FEB=∠OAC=45°,∴∠EFB=45°,∴BE=BF.∴△BEF为等腰直角三角形.。