2019年高考数学课件: 第7章 立体几何初步 第5节 垂直关系学案

合集下载

2019版高考数学一轮复习第7章立体几何7.5直线平面垂直的判定与性质课件理

2019版高考数学一轮复习第7章立体几何7.5直线平面垂直的判定与性质课件理

解析 如果 AB 与 CD 在一个平面内,可以推出 EF 垂 直于该平面,又 BD 在该平面内,所以 BD⊥EF.故要得到 BD⊥EF,只需 AB,CD 在一个平面内即可,只有①③能保 证这一条件.
经典题型冲关
题型 1 直线与平面垂直的判定与性质 角度 1 直线与平面垂直的判定定理
典例 (2016·全国卷Ⅰ)如图,已知正三棱锥 P-ABC 的侧面是直角三角形,PA=6.顶点 P 在平面 ABC 内的正投 影为点 D,D 在平面 PAB 内的正投影为点 E,连接 PE 并延 长交 AB 于点 G.
(3)因为 PA∥平面 BDE,平面 PAC∩平面 BDE=DE, 所以 PA∥DE.
因为 D 为 AC 的中点, 所以 DE=12PA=1,BD=DC= 2. 由(1)知,PA⊥平面 ABC, 所以 DE⊥平面 ABC. 所以三棱锥 E-BCD 的体积 V=16BD·DC·DE=13.
[结论探究] 在典例条件下,证明:平面 PBC⊥平面 PAB.
连接 CG,因为 P 在平面 ABC 内的正投影为 D,所以 D 是正三角形 ABC 的中心,由(1)知,G 是 AB 的中点,所 以 D 在 CG 上,故 CD=23CG.
由题设可得 PC⊥平面 PAB,DE⊥平面 PAB,所以 DE ∥PC,因此 PE=23PG,DE=13PC.
由已知,正三棱锥的侧面是直角三角形且 PA=6,可得 DE=2,PE=2 2.
(2)(2018·辽宁五校联考)假设平面 α∩平面 β=EF,AB ⊥α,CD⊥β,垂足分别为 B,D,如果增加一个条件,就能 推出 BD⊥EF,现有下面四个条件:
①AC⊥α;②AC∥α;③AC 与 BD 在 β 内的射影在同一 条直线上;④AC∥EF.

立体几何垂直关系课件理ppt

立体几何垂直关系课件理ppt
在机械工程中,轴和孔之间的垂直关系对于机器的精度和性能至关重 要。例如,在制造齿轮箱时,需要确保齿轮轴与箱体的垂直关系以确 保齿轮的正常运转。
地理学
在地理学中,地球的自转轴与地球表面的垂直关系导致了昼夜的变化 和季节的更替。此外,在测量和地图制作中,纬度和经度的确定也涉 及到垂直关系。
02
垂直的基本性质
垂直的分类
根据两条直线或平面与直线的垂直关系,可以将垂直分为点 垂直、线垂直和面垂直。
垂直的分类与判别
点垂直
当两个点重合时,可以认为它们是垂直的。在立体几何 中,点垂直的情况较少出现,更多的是线垂直或面垂直 。
线垂直
当两条直线相互垂直时,称为线垂直。线垂直可以通过 两条直线的方向向量来判断,如果它们的方向向量相互 垂直,则这两条直线垂直。
垂直也是高等数学中重要的概念之一,例如在微积分、线性代数等课程中都有广 泛的应用。
垂直在实际问题解决中的应用价值
在工程、建筑、地质等领域中,垂直 关系的应用十分广泛。例如,在建筑 设计中,需要利用垂直关系来计算建
筑物的高度、宽度等参数。
在地球物理学中,通过测量两地之间 的铅垂距离,可以计算出地球的半径
利用平行线的性质证明垂直
总结词
在立体几何中,我们还可以利用平行线的性质来证明垂直关系。当两条直线平行时,它们的夹角为90 度,这可以用来证明垂直关系。
详细描述
首先,我们需要了解平行线的性质,即两条平行线之间的夹角为90度。在立体几何中,我们通常利用 这个原理来证明垂直关系。例如,在矩形ABCD中,当AD平行于BC时,我们可以证明出BC与DC的夹 角为90度,即BC垂直于DC。
垂径定理
垂径定理是垂直于弦的直径平分这条弦,并且平分这条弦 所对的两条弧。

高三数学第一轮复习 第7编 5空间中的垂直关系课件 新人教B版

高三数学第一轮复习 第7编 5空间中的垂直关系课件 新人教B版

返回目录
证明:
AP⊥平面ABC⇒ AP⊥BC
BC⊥AC
AP∩CA=A
AF⊥PC
BC⊥AF ⇒
BC∩PC=C PB⊥面AEF.
}
}
BC⊥面APC
⇒AF 面APC ⊂
AE⊥PB
AF⊥面PBC⇒ AF⊥PB ⇒
AF∩AE=A
}

返回目录
考点3
面面垂直
[2009年高考山东卷]如图7-5-6,在直四棱柱ABCD
线线垂直可由线面垂直的性质推得,直线和平面垂 直,这条直线就垂直于平面内所有直线,这是寻找线线垂 直的重要依据.
返回目录
如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作 AE⊥SB交SB于E,过E作EF⊥SC交SC于F. (1)求证:AF⊥SC; (2)若平面AEF交 SD于G,求证:AG⊥SD.
又CC1∥DD1,FC∩CC1=C,FC ⊂ 平面FCC1, CC1 ⊂ 平面 FCC1,AD∩DD1=D,
AD⊂ 平面ADD1A1,DD1⊂ 平面ADD1A1,
所以平面ADD1A1∥平面FCC1. 又EE1 ⊂ 平面ADD1A1, 所以EE1∥平面FCC1. 故平面D1AC⊥平面BB1C1C. 返回目录
(2)求二面角的大小,一般先作出二面角的平面角.此 题是利用二面角的平面角的定义作出∠CDC′为二面角 A—BD—C的平面角,通过解∠CDC′所在的三角形求得 ∠CDC′.其解题过程为:作∠CDC′→证∠CDC′是二面角 的平面角→计算∠CDC′,简记为“作、证、算”.
返回目录
如图所示,PA⊥平面ABCD,四边形ABCD是矩形, PA=AD=a,M,N分别是AB,PC的中点. (1)求平面PCD与平面ABCD 所成的二面角的大小; (2)求证:平面MND⊥平面PCD.

高考数学大一轮复习-第七章 立体几何 第5课时 垂直关系课件 北师大版

高考数学大一轮复习-第七章 立体几何 第5课时 垂直关系课件  北师大版

解析:易判断①④正确.⑤中△PMN是正三角形且AM=AP =AN,因此三棱锥A-PMN是正三棱锥,故图⑤中l⊥面MNP.同 理可否定③,因为AM≠AP≠AN,也易否定②.
答案:①④⑤
5.将正方形ABCD沿AC折成直二面角后,∠DAB=______. 解析:如图,取AC的中点O,连接DO,BO,则DO⊥AC, BO⊥AC,故∠DOB为二面角的平面角,从而∠DOB=90°.设正 方形边长为1,则DO=BO= 22,所以DB=1,故△ADB为等边三 角形,所以∠DAB=60°. 答案:60°
考点一 直线与平面垂直的判定与性质 [例1] 如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABC- A1B1C1中,AC=AA1=2AB=2,∠BAC=90°,点D是侧棱CC1延 长线上一点,EF是平面ABD与平面A1B1C1的交线.
(1)求证:EF⊥A1C;
(2)当直线BD与平面ABC所成角的正弦值为
(2)如图(2)连接HE. 因为G,H分别为AC,BC的中点, 所以GH∥AB. 由AB⊥BC,得GH⊥BC. 又H为BC的中点, 所以EF∥HC,EF=HC, 因此四边形EFCH是平行四边形.
所以CF∥HE. 又CF⊥BC, 所以HE⊥BC. 又HE,GH 平面EGH, HE∩GH=H, 所以BC⊥平面EGH. 又BC 平面BCD,所以平面BCD⊥平面EGH.
由(1)知PE⊥平面ABC,所以PE为四棱锥P-DFBC的高. 在Rt△PEC中,PE= PC2-EC2= 42-22=2 3, 所以V四棱锥P-DFBC=13S四边形DFBC·PE =13×178x 36-x2×2 3=7, 所以x4-36x2+243=0, 解得x2=9或x2=27. 由于x>0,因此x=3或x=3 3, 可得DF∥GC,DF=GC, 所以四边形DFCG为平行四边形, 则O为CD的中点. 又H为BC的中点, 所以OH∥BD.又OH 平面FGH,BD 所以BD∥平面FGH.

(全国通用)高考数学一轮复习 第7章 立体几何初步 第5节 直线、平面垂直的判定及其性质教师用书 文

(全国通用)高考数学一轮复习 第7章 立体几何初步 第5节 直线、平面垂直的判定及其性质教师用书 文

第五节直线、平面垂直的判定及其性质————————————————————————————————[考纲传真] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.1.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.2.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.3.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.4.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( )(2)垂直于同一个平面的两平面平行.( )(3)若两条直线与一个平面所成的角相等,则这两条直线平行.( )(4)若两个平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )[答案](1)×(2)×(3)×(4)×2.(教材改编)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥mA[∵l⊥β,l⊂α,∴α⊥β(面面垂直的判定定理),故A正确.]3.(2016·某某高考)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥l B.m∥nC.n⊥l D.m⊥nC[∵α∩β=l,∴l⊂β.∵n⊥β,∴n⊥l.]4.如图7­5­1,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.图7­5­14[∵PA⊥平面ABC,∴PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.由BC⊥AC,且AC∩PA=A,∴BC⊥平面PAC,从而BC⊥PC.因此△ABC,△PBC也是直角三角形.]5.边长为a的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________.a[如图所示,取BD的中点O,连接A′O,CO,则∠A′OC是二面角A′­BD­C的平面角.即∠A′OC=90°,又A′O=CO=22a,∴A′C=a22+a22=a,即折叠后AC的长(A′C)为a.]线面垂直的判定与性质如图7­5­2,在三棱锥A­BCD中,AB⊥平面BCD,CD⊥BD.图7­5­2(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A ­MBC 的体积. [解] (1)证明:因为AB ⊥平面BCD ,CD ⊂平面BCD , 所以AB ⊥CD .2分又因为CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD ,所以CD ⊥平面ABD .5分 (2)由AB ⊥平面BCD ,得AB ⊥BD . 又AB =BD =1,所以S △ABD =12×12=12.8分因为M 是AD 的中点,所以S △ABM =12S △ABD =14.根据(1)知,CD ⊥平面ABD , 则三棱锥C ­ABM 的高h =CD =1, 故V A ­MBC =V C ­ABM =13S △ABM ·h =112.12分[规律方法] 1.证明直线和平面垂直的常用方法有: (1)判定定理;(2)垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α); (3)面面平行的性质(a ⊥α,α∥β⇒a ⊥β); (4)面面垂直的性质.2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.[变式训练1] 如图7­5­3所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且AD =13DB ,点C 为圆O 上一点,且BC =3AC ,PD ⊥平面ABC ,PD =DB . 求证:PA ⊥CD .图7­5­3[证明] 因为AB为圆O的直径,所以AC⊥CB,在Rt△ABC中,由3AC=BC,得∠ABC =30°.3分设AD=1,由3AD=DB,得DB=3,BC=23,由余弦定理得CD2=DB2+BC2-2DB·BC cos 30°=3,所以CD2+DB2=BC2,即CD⊥AO.8分因为PD⊥平面ABC,CD⊂平面ABC,所以PD⊥CD,由PD∩AO=D,得CD⊥平面PAB,又PA⊂平面PAB,所以PA⊥CD.12分面面垂直的判定与性质(2017·某某调研)如图7­5­4,三棱台DEF­ABC中,AB=2DE,G,H分别为AC,BC的中点.图7­5­4(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.[证明](1)如图所示,连接DG,CD,设CD∩GF=M,连接MH.1分在三棱台DEF­ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.3分则M为CD的中点,又H为BC的中点,所以HM∥BD,由于HM⊂平面FGH,BD⊄平面FGH,故BD∥平面FGH.5分(2)连接HE,GE,CD,因为G,H分别为AC,BC的中点,所以GH∥AB.6分由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.10分由于CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H.所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.12分[规律方法] 1.面面垂直的证明的两种思路:(1)用面面垂直的判定定理,即先证明其中一个平面经过另一个平面的一条垂线;(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角,把证明面面垂直的问题转化为证明平面角为直角的问题.2.垂直问题的转化关系:[变式训练2] 如图7­5­5,在三棱锥P­ABC中,平面PAB⊥平面ABC,PA⊥PB,M,N 分别为AB,PA的中点.(1)求证:PB∥平面MNC;(2)若AC=BC,求证:PA⊥平面MNC.图7­5­5[证明](1)因为M,N分别为AB,PA的中点,所以MN∥PB,2分又因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.5分(2)因为PA⊥PB,MN∥PB,所以PA⊥MN.因为AC=BC,AM=BM,所以CM⊥AB.7分因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB.所以CM⊥平面PAB.10分因为PA⊂平面PAB,所以CM⊥PA.又MN∩CM=M,所以PA⊥平面MNC.12分平行与垂直的综合问题☞角度1 多面体中平行与垂直关系的证明(2016·某某高考)如图7­5­6,在直三棱柱ABC­A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.图7­5­6[证明](1)在直三棱柱ABC­A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.3分又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.5分(2)在直三棱柱ABC­A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.7分又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.10分又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.12分[规律方法] 1.三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.2.垂直与平行结合问题,求解时应注意平行、垂直的性质及判定的综合应用.☞角度2 平行垂直中探索开放问题(2017·某某调研)如图7­5­7(1)所示,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F ⊥CD,如图7­5­7(2)所示.(1) (2)图7­5­7(1)求证:A1F⊥BE;(2)线段A1B上是否存在点Q,使A1C⊥平面DEQ?并说明理由.【导学号:31222259】[证明](1)由已知,得AC⊥BC,且DE∥BC.所以DE⊥AC,则DE⊥DC,DE⊥DA1,因为DC∩DA1=D,所以DE⊥平面A1DC.2分由于A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.5分(2)线段A1B上存在点Q,使A1C⊥平面DEQ.6分理由如下:如图,分别取A1C,A1B的中点P,Q,连接PQ,则PQ∥BC.又因为DE∥BC,则DE∥PQ.所以平面DEQ即为平面DEQP.9分由(1)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEQP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.12分[规律方法] 1.对命题条件探索性的主要途径:(1)先猜后证,即先观察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.2.平行(垂直)中点的位置探索性问题:一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.线面角的求法与应用(2016·某某高考)如图7­5­8,在三棱台ABC­DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.图7­5­8(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.[解](1)证明:延长AD,BE,CF相交于一点K,如图所示.1分因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,3分因此,BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.5分(2)因为BF⊥平面ACK,所以∠BDF是直线BD与平面ACFD所成的角.8分在Rt△BFD中,BF=3,DF=32,得cos∠BDF=217,所以直线BD与平面ACFD所成角的余弦值为217.12分[规律方法] 1.利用综合法求空间角的步骤:(1)找:根据图形找出相关的线面角或二面角.(2)证:证明找出的角即为所求的角.(3)算:根据题目中的数据,通过解三角形求出所求角.2.线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.[变式训练3] 如图7­5­9,在四棱锥P­ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.图7­5­9(1)求PB和平面PAD所成的角的大小;(2)证明:AE⊥平面PCD.[解](1)在四棱锥P­ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,故PA⊥AB.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,2分故PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.∴PB和平面PAD所成的角的大小为45°.5分(2)证明:在四棱锥P­ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,故CD⊥PA.由条件CD⊥AC,PA∩AC=A,∴CD⊥平面PAC.7分又AE⊂平面PAC,∴AE⊥CD.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.10分又PC∩CD=C,故AE⊥平面PCD.12分[思想与方法]1.证明线面垂直的方法:(1)线面垂直的定义:a 与α内任一直线都垂直⇒a ⊥α; (2)判定定理1:⎭⎪⎬⎪⎫m ,n ⊂α,m ∩n =A l ⊥m ,l ⊥n⇒l ⊥α;(3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α;(4)面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 2.证明面面垂直的方法.(1)利用定义:两个平面相交,所成的二面角是直二面角; (2)判定定理:a ⊂α,a ⊥β⇒α⊥β. 3.转化思想:垂直关系的转化[易错与防X]1.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.2.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.课时分层训练(四十二)直线、平面垂直的判定及其性质A组基础达标(建议用时:30分钟)一、选择题1.(2017·某某六校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥βC[由线线平行性质的传递性和线面垂直的判定定理,可知C正确.]2.(2017·某某河西模拟)设l是直线,α,β是两个不同的平面,则下列说法正确的是( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥βB[A中,α∥β或α与β相交,不正确.B中,过直线l作平面γ,设α∩γ=l′,则l′∥l,由l⊥β,知l′⊥β,从而α⊥β,B正确.C中,l∥β或l⊂β,C不正确.对于D中,l与β的位置关系不确定.]3.如图7­5­10,在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立...的是( )【导学号:31222260】图7­5­10A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABCD[因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,DF∥BC,所以BC⊥平面PAE,则DF⊥平面PAE,从而平面PDF⊥平面PAE.因此选项B,C均正确.] 4.设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥αC[A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊥α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.]5.如图7­5­11,在三棱锥D­ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是( )图7­5­11A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDEC[因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.]二、填空题6.如图7­5­12所示,在四棱锥P­ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)【导学号:31222261】图7­5­12DM⊥PC(或BM⊥PC等) [由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,有PC⊥平面MBD.又PC⊂平面PCD,∴平面MBD⊥平面PCD.]7.如图7­5­13,在三棱柱ABC­A1B1C1中,各棱长都相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是________.【导学号:31222262】图7­5­13π3[取BC 的中点E ,连接AE ,DE ,则AE ⊥平面BB 1C 1C . 所以∠ADE 为直线AD 与平面BB 1C 1C 所成的角. 设三棱柱的所有棱长为a , 在Rt △AED 中,AE =32a ,DE =a 2. 所以tan ∠ADE =AE DE =3,则∠ADE =π3.故AD 与平面BB 1C 1C 所成的角为π3.]8.(2016·全国卷Ⅱ)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号)②③④ [对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m ⊂α,所以m ,β没有公共点,由线面平行的定义可知m ∥β,故正确.对于④,因为m ∥n ,所以m 与α所成的角和n 与α所成的角相等.因为α∥β,所以n 与α所成的角和n 与β所成的角相等,所以m 与α所成的角和n 与β所成的角相等,故正确.]三、解答题9.(2015·高考)在三棱锥V ­ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点.图7­5­14(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V ­ABC 的体积.[解] (1)证明:因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB .3分又因为VB ⊂/平面MOC ,所以VB ∥平面MOC .5分 (2)证明:因为AC =BC ,O 为AB 的中点,所以OC ⊥AB . 又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC , 所以OC ⊥平面VAB .所以平面MOC ⊥平面VAB .8分(3)在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1.所以等边三角形VAB 的面积S △VAB = 3.9分 又因为OC ⊥平面VAB ,所以三棱锥C ­VAB 的体积等于13OC ·S △VAB =33.又因为三棱锥V ­ABC 的体积与三棱锥C ­VAB 的体积相等,所以三棱锥V ­ABC 的体积为33.12分 10.⊙O 的直径AB =4,点C ,D 为⊙O 上两点,且∠CAB =45°,F 为BC 的中点.沿直径AB 折起,使两个半圆所在平面互相垂直(如图7­5­15②).①② 图7­5­15(1)求证:OF∥平面ACD;(2)在AD上是否存在点E,使得平面OCE⊥平面ACD?若存在,试指出点E的位置;若不存在,请说明理由.[解](1)证明:由∠CAB=45°,知∠COB=90°,1分又因为F为BC的中点,所以∠FOB=45°,因此OF∥AC,3分又AC⊂平面ACD,OF⊄平面ACD,所以OF∥平面ACD.5分(2)存在,E为AD中点,因为OA=OD,所以OE⊥AD.7分又OC⊥AB且两半圆所在平面互相垂直.所以OC⊥平面OAD.9分又AD⊂平面OAD,所以AD⊥OC,由于OE,OC是平面OCE内的两条相交直线,所以AD⊥平面OCE.又AD⊂平面ACD,所以平面OCE⊥平面ACD.12分B组能力提升(建议用时:15分钟)1.(2017·某某某某二模)如图7­5­16,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在△AEF内的射影为O,则下列说法正确的是( )图7­5­16A.O是△AEF的垂心B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心A [由题意可知PA ,PE ,PF 两两垂直, 所以PA ⊥平面PEF ,从而PA ⊥EF ,而PO ⊥平面AEF ,则PO ⊥EF ,因为PO ∩PA =P , 所以EF ⊥平面PAO ,所以EF ⊥AO ,同理可知AE ⊥FO ,AF ⊥EO , 所以O 为△AEF 的垂心.]2.如图7­5­17,在三棱柱ABC ­A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF . 【导学号:31222263】图7­5­17a 或2a [∵B 1D ⊥平面A 1ACC 1,∴CF ⊥B 1D .为了使CF ⊥平面B 1DF ,只要使CF ⊥DF (或CF ⊥B 1F ). 设AF =x ,则CD 2=DF 2+FC 2,∴x 2-3ax +2a 2=0,∴x =a 或x =2a .]3.(2016·某某高考)如图7­5­18,在四棱锥P ­ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .图7­5­18(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (2)证明:平面PAB ⊥平面PBD .[解] (1)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下:连接CM ,因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM .2分 所以四边形AMCB 是平行四边形, 所以CM ∥AB .又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)5分 (2)证明:由已知,PA ⊥AB ,PA ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD ,所以PA ⊥BD .8分因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD , 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB .又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .12分。

全国版2019版高考数学一轮复习第7章立体几何第5讲直线平面垂直的判定及性质课件

全国版2019版高考数学一轮复习第7章立体几何第5讲直线平面垂直的判定及性质课件
(2)证明线面垂直的关键是证线线垂直,而证明线线垂 直则需借助线面垂直的性质.
考向 面面垂直的判定与性质 例 4 [2017·全国卷Ⅰ]如图,在四棱锥 P-ABCD 中, AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面 PAB⊥平面 PAD; (2)若 PA=PD=AB=DC,∠APD=90°,且四棱锥 P- ABCD 的体积为38,求该四棱锥的侧面积.
2.[2018·浙江模拟]设 m,n 是两条不同的直线,α,β 是两个不同的平面,下列命题正确的是( )
A.若 m⊥n,n∥α,则 m⊥α B.若 m∥β,β⊥α,则 m⊥α C.若 m⊥β,n⊥β,n⊥α,则 m⊥α D.若 m⊥n,n⊥β,β⊥α,则 m⊥α
解析 对于选项 A,B,D,均能举出 m⊥α 的反例; 对于选项 C,若 m⊥β,n⊥β,则 m∥n,又 n⊥α,∴m⊥α. 故选 C.
答题启示 1证明线面垂直的核心是证线线垂直,而 证明线线垂直则需借助线面垂直的性质;2用等体积法求 点到平面距离时,通过换顶点和底面转化为底面积和高易求 的锥体体积是关键.
解 (1)证明:∵ABC-DEF 是直三棱柱, ∴FC⊥平面 ABC,而 AB⊂平面 ABC,∴FC⊥AB.
又∵AB⊥BC,BC∩FC=C. ∴AB⊥平面 BCFE,
又∵EH⊂平面 BCFE,∴AB⊥EH. 由题设知△EFH 与△BCG 均为直角三角形, ∵EF=2=FH,BC=2=CG, ∴∠EHF=45°,∠BGC=45°. 设 BG∩EH=P,则∠GPH=90°,即 EH⊥BG. 又 AB∩BG=B,∴EH⊥平面 ABG. (2)∵AB=BC=2,AB⊥BC, ∴S△ABC=12AB×BC=2.
又 AB⊥AD,BC∩AB=B,AB⊂平面 ABC,BC⊂平面 ABC,

高考数学第七章立体几何第五节直线平面垂直的判定及其性质教案高三全册数学教案

高考数学第七章立体几何第五节直线平面垂直的判定及其性质教案高三全册数学教案

第五节直线、平面垂直的判定及其性质1.直线与平面垂直(1)直线和平面垂直的定义:直线l与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a,b⊂αa∩b=Ol⊥al⊥b⇒l⊥α性质定理垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b2.平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l⊂βl⊥α⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α(1)线面角平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角,当一条直线垂直于平面时,规定它们所成的角是直角.(2)二面角以二面角的公共直线上任意一点为端点,在两个面内分别作垂直于公共直线的两条射线,这两条射线所成的角叫做二面角的平面角.[小题体验]1.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m C.若l∥β,则α∥β D.若α∥β,则l∥m解析:选A ∵l⊥β,l⊂α,∴α⊥β(面面垂直的判定定理),故A正确.2.(2019·嘉兴质检)已知两个平面垂直,给出下列命题:①一个平面内的已知直线必垂直于另一个平面内的任意一条直线;②一个平面内的已知直线必垂直于另一个平面内的无数条直线;③一个平面内的任一条直线必垂直于另一个平面.其中错误命题的序号是( )A.①② B.①③C.②③ D.①②③解析:选B 在①中,根据平面与平面垂直的性质定理以及直线与平面垂直的性质定理可知,只有当这个平面的已知直线垂直于交线时,这条直线才垂直于此平面内的任意一条直线,故①错误;在②中,根据平面与平面垂直的性质定理可知,另一个平面内与交线垂直的直线有无数条,这些直线都与已知直线垂直,故②正确;在③中,根据平面与平面垂直的性质定理可知,只有这个平面内的直线垂直于交线时,它才垂直于另一个平面,故③错误.故选B.3.(教材习题改编)PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有________对.解析:由于PD⊥平面ABCD,故平面PAD⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD, 平面PBC⊥平面PDC,共7对.答案:71.证明线面垂直时,易忽视面内两条线为相交线这一条件.2.面面垂直的判定定理中,直线在面内且垂直于另一平面易忽视.3.面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目套用造成失误.[小题纠偏]1.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为( )A.b⊂α B.b∥αC.b⊂α或b∥α D.b与α相交解析:选C 因为a⊥b,a⊥α,所以可知b⊂α或b⊄α,当b⊄α时,有b∥α.2.(教材习题改编)设m,n表示两条不同的直线,α,β表示两个不同的平面,下列命题为真命题的是( )A.若m⊥α,α⊥β,则m∥βB.若m∥α,m⊥β,则α⊥βC.若m⊥n,m⊥α,则n∥αD.若m∥α,n∥β,α⊥β,则m⊥n解析:选B 对于A,m可以在β内,故A错;对于C,n可以在α内,故C错误;对于D,m与n可以平行,故D错.考点一直线与平面垂直的判定与性质题点多变型考点——多角探明[锁定考向]直线与平面垂直的判定与性质是每年高考的必考内容,题型多为解答题,难度适中,属中档题.常见的命题角度有(1)证明直线与平面垂直;(2)利用线面垂直的性质证明线线垂直.[题点全练]角度一:证明直线与平面垂直1.如图所示,在四棱锥P ­ABCD 中,AB ⊥平面PAD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点,且DF =12AB ,PH 为△PAD中AD 边上的高.求证:(1)PH ⊥平面ABCD ; (2)EF ⊥平面PAB .证明:(1)因为AB ⊥平面PAD ,PH ⊂平面PAD ,所以PH ⊥AB . 因为PH 为△PAD 中AD 边上的高,所以PH ⊥AD .因为AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以PH ⊥平面ABCD .(2)如图,取PA 的中点M ,连接MD ,ME .因为E 是PB 的中点, 所以ME 綊12AB .又因为DF 綊12AB ,所以ME 綊DF ,所以四边形MEFD 是平行四边形,所以EF ∥MD . 因为PD =AD ,所以MD ⊥PA . 因为AB ⊥平面PAD ,所以MD ⊥AB . 因为PA ∩AB =A ,所以MD ⊥平面PAB , 所以EF ⊥平面PAB .角度二:利用线面垂直的性质证明线线垂直2.如图,在直三棱柱ABC­A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明:(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC­A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC⊂平面B1AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.[通法在握]判定直线和平面垂直的4种方法(1)利用判定定理;(2)利用判定定理的推论(a∥b,a⊥α⇒b⊥α);(3)利用面面平行的性质(a⊥α,α∥β⇒a⊥β);(4)利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.[演练冲关]1.(2018·长兴中学适应性考试)设α,β,γ是不同的平面,m,n是不同的直线,则由下列条件能得出m⊥β的是( ) A.n⊥α,n⊥β,m⊥αB.α∩γ=m,α⊥γ,β⊥γC.m⊥n,n⊂β D.α⊥β,α∩β=n,m⊥n解析:选A 由垂直于同一直线的两个平面平行可知α∥β.因为m⊥α,所以m⊥β.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC.D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)由于AB=BC,则BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质重点保分型考点——师生共研[典例引领]如图,在四棱锥P­ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以四边形ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,且四边形ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD,又AD∩PA=A,所以CD⊥平面PAD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF,所以CD⊥EF.又因为CD⊥BE,EF∩BE=E,所以CD⊥平面BEF.又CD⊂平面PCD,所以平面BEF⊥平面PCD.[由题悟法]1.证明面面垂直的2种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决.2.三种垂直关系的转化线线垂直判定性质线面垂直判定性质面面垂直[即时应用](2018·杭州七校联考)如图,斜三棱柱ABC­A1B1C1的所有棱长均为a,侧面B1C1CB⊥底面ABC,O是BC的中点,且AC1⊥BC.(1)求证:AC1⊥A1B;(2)求直线B1A与平面AOC1所成角的正切值.解:(1)证明:连接A 1C,因为四边形ACC1A1是菱形,所以AC1⊥A1C.又AC1⊥BC,A1C∩BC=C,所以AC1⊥平面A1BC,又A1B⊂平面A1BC,所以AC1⊥A1B.(2)因为AO是正三角形ABC的中线,所以BC⊥AO.又AC1⊥BC,AO∩AC1=A,所以BC⊥平面AOC1.所以B1C1⊥平面AOC1,所以∠B1AC1就是所求的线面角.所以BC⊥C1O,又因为侧面B1C1CB⊥底面ABC,侧面B1C1CB∩底面ABC=BC,所以C1O⊥底面ABC.因为C1O=AO=32a,所以AC1=62a.所以在Rt△AB1C1中,tan∠B1AC1=a6a2=63.故直线B1A与平面AOC1所成角的正切值为6 3 .考点三空间角的综合问题重点保分型考点——师生共研[典例引领]1.如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′­CD­B的平面角为α,则( ) A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤α D.∠A′CB≥α解析:选B∵A′C和BC都不与CD垂直,∴∠A′CB≠α,故C,D错误.当CA=CB时,容易证明∠A′DB=α.不妨取一个特殊的三角形,如Rt△ABC,令斜边AB=4,AC=2,BC=23,如图所示,则CD=AD=BD=2,∠BDC=120°,设沿直线CD将△ACD折成△A′CD,使平面A′CD⊥平面BCD,则α=90°.取CD中点H,连接A′H,BH,则A′H⊥CD,∴A′H⊥平面BCD,且A′H=3,DH=1.在△BDH中,由余弦定理可得BH=7.在Rt△A′HB中,由勾股定理可得A′B=10.在△A′DB中,∵A′D2+BD2-A′B2=-2<0,可知cos∠A′DB<0,∴∠A′DB为钝角,故排除A.综上可知答案为B.2.(2018·温州5月高三测试)如图,斜三棱柱ABC­A1B1C1,∠BAC=90°,AB=2AC,B1C⊥A1C1,且△A1B1C为等边三角形.(1)求证:平面A1B1C⊥平面ABC;(2)求直线BB1与平面ABC所成角的正弦值.解:(1)证明:∵AC∥A1C1,B1C⊥A1C1,∴AC⊥B1C,∵∠BAC=90°,∴AC⊥BA,∴AC⊥B1A1.又∵B1A1∩B1C=B1,∴AC⊥平面A1B1C,∵AC⊂平面ABC,∴平面A1B1C⊥平面ABC.(2)∵平面A1B1C⊥平面ABC,∴平面A1B1C⊥平面A1B1C1.取A1B1的中点D,∵△A1B1C为等边三角形,∴CD⊥平面A1B1C1,∴CD⊥平面ABC.取AB的中点E,连接DE 则BB 1∥DE ,∴∠DEC 为直线BB 1与平面ABC 所成角的平面角.令AB =2AC =2,∵AC ⊥平面A 1B 1C ,∴∠ACA 1=90°,∴AA 1=5,即DE =5,∵△A 1B 1C 为等边三角形,∴DC =3,∴sin ∠DEC =DC DE =155, ∴直线BB 1与平面ABC 所成角的正弦值为155. [由题悟法]1.立体几何中动态问题的关键点对于立体几何中的动态问题,关键是抓住变化过程中不变的位置关系和数量关系,事实上动静是相对的,以静制动是处理立体几何中动态元素的良策.2.求直线与平面所成角的步骤(1)一作:即在斜线上选取恰当的点向平面引垂线,在这一步上确定垂足的位置是关键;(2)二证:即证明所找到的角为直线与平面所成的角,其证明的主要依据是直线与平面所成角的定义;(3)三求:一般借助于解三角形的知识求解.[即时应用]1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,点O 为线段BD 的中点,设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( ) A.⎣⎢⎢⎡⎦⎥⎥⎤33,1 B.⎣⎢⎢⎡⎦⎥⎥⎤63,1 C.⎣⎢⎢⎡⎦⎥⎥⎤63,223 D.⎣⎢⎢⎡⎦⎥⎥⎤223,1 解析:选B 连接A 1O ,PA 1,易知∠POA 1就是直线OP 与平面A 1BD 所成的角(或其补角).设正方体的棱长为2,则A 1O = 6.当P 点与C 点重合时,PO =2,A 1P =23,则cos ∠A 1OP =6+2-122×6×2=-33,此时∠A 1OP 为钝角,所以sin α=1-cos 2α=63;当P 点与C 1点重合时,PO =A 1O =6,A 1P =22,则cos ∠A 1OP =6+6-82×6×6=13,此时∠A 1OP 为锐角,所以sin α=1-cos 2α=223;在∠A 1OP 从钝角到锐角逐渐变化的过程中,CC 1上一定存在一点P ,使得∠A 1OP =90°,此时sinα=1.又因为63<223,所以sin α的取值范围是⎣⎢⎢⎡⎦⎥⎥⎤63,1,故选B.2.(2018·温州模拟)在四面体ABCD 中,二面角A ­BC ­D 为60°,点P 为直线BC 上一动点,记直线PA 与平面BCD 所成角为θ,则( )A.θ的最大值为60°B.θ的最小值为60°C.θ的最大值为30°D.θ的最小值为30°解析:选A 过A作AM⊥BC,AO⊥平面BCD,垂足为O,连接OM,则∠AMO为二面角A­BC­D的平面角,∴∠AMO=60°,在直线BC上任取一点P,连接OP,AP,则∠APO为直线AP与平面BCD所成的角,即∠APO=θ,∵AP≥AM,AM·sin 60°=AO,AP·sin θ=AO,∴sin θ≤sin 60°,即θ的最大值为60°.故选A.3.(2018·宁波五校联考)如图,边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′,连接EF,A′B.(1)求证:A′D⊥EF;(2)求直线A′D与平面EFD所成角的正弦值.解:(1)证明:在正方形ABCD中,有AD⊥AE,CD⊥CF,则A′D⊥A′E,A′D⊥A′F, 又A′E∩A′F=A′,∴A′D⊥平面A′EF,又EF⊂平面A′EF,∴A′D⊥EF.(2)连接BD交EF于点G,连接A′G∵在正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点, ∴BE =BF ,DE =DF ,∴点G 为EF 的中点, 且BD ⊥EF .∵正方形ABCD 的边长为2,∴A ′E =A ′F =1,∴A ′G ⊥EF ,EF ⊥平面A ′GD ,∴A ′在面EFD 的射影在BD 上,则∠A ′DG 直线A ′D 与平面EFD 所成角,由(1)可得A ′D ⊥A ′G,∴△A ′DG 为直角三角形∵正方形ABCD 的边长为2,∴BD =22,EF =2, ∴BG =22,DG =22-22=322, 又A ′D =2,∴A ′G =DG 2-A ′D 2 =92-4=22, ∴sin ∠A ′DG =A ′G DG =22322=13, ∴直线A ′D 与平面EFD 所成角的正弦值为13. 一抓基础,多练小题做到眼疾手快1.设α,β为两个不同的平面,直线l ⊂α,则“l ⊥β”是“α⊥β”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 依题意,由l⊥β,l⊂α可以推出α⊥β;反过来,由α⊥β,l⊂α不能推出l⊥β.因此“l⊥β”是“α⊥β”成立的充分不必要条件,故选A.2.(2018·东阳模拟)下列命题中错误的是( )A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α⊥平面β,过α内任意一点作交线的垂线,那么此垂线必垂直于βD.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β解析:选C 由平面与平面垂直的性质可知,若该垂线不在平面α内,则此垂线与平面β不一定垂直.故排除C.3.(2019·绍兴一中模拟)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m∥n,n⊂α,则m∥α.其中正确命题的序号是( )A.①③B.①④C.②③ D.②④解析:选A 对于①,若α∥β,α∥γ,根据面面平行的性质容易得到β∥γ,故①正确;对于②,若α⊥β,m∥α,则m与β可能平行、相交或m ⊂β,故②错误;对于③,若m⊥α,m∥β,则可以在β内找到一条直线n与m平行,所以n⊥α,故α⊥β,故③正确;对于④,若m∥n,n⊂α,则m与α可能平行或m⊂α,故④错误.故选A.4.已知在空间四边形ABCD中,AD⊥BC,AD⊥BD,且△BCD是锐角三角形,则必有( )A.平面ABD⊥平面ADC B.平面ABD⊥平面ABCC.平面ADC⊥平面BDC D.平面ABC⊥平面BDC解析:选C ∵AD⊥BC,AD⊥BD,BC∩BD=B,∴AD⊥平面BDC,又AD⊂平面ADC,∴平面ADC⊥平面BDC.5.一平面垂直于另一平面的一条平行线,则这两个平面的位置关系是________.解析:由线面平行的性质定理知,该面必有一直线与已知直线平行.再根据“两平行线中一条垂直于一平面,另一条也垂直于该平面”得出两个平面垂直相交.答案:垂直相交二保高考,全练题型做到高考达标1.(2018·青岛质检)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是( )A.a⊥α,b∥β,α⊥β B.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥β D.a⊂α,b∥β,α⊥β解析:选C 对于C项,由α∥β,a⊂α可得a∥β,又b ⊥β,得a⊥b,故选C.2.如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P­ABC中直角三角形的个数为( ) A.4 B.3C.2 D.1解析:选A 由PA⊥平面ABC可得△PAC,△PAB是直角三角形,且PA⊥BC.又∠ABC=90°,所以△ABC是直角三角形,且BC ⊥平面PAB,所以BC⊥PB,即△PBC为直角三角形,故四面体P­ABC 中共有4个直角三角形.3.(2018·湖州模拟)设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β”的平面α,β( ) A.不存在 B.有且只有一对C.有且只有两对 D.有无数对解析:选D 过直线a 的平面α有无数个,当平面α与直线b 平行时,两直线的公垂线与b 确定的平面β⊥α,当平面α与b 相交时,过交点作平面α的垂线与b 确定的平面β⊥α.故选D.4.(2018·吉林实验中学测试)设a ,b ,c 是空间的三条直线,α,β是空间的两个平面,则下列命题中,逆命题不成立的是( )A .当c ⊥α时,若c ⊥β,则α∥βB .当b ⊂α时,若b ⊥β,则α⊥βC .当b ⊂α,且c 是a 在α内的射影时,若b ⊥c ,则a ⊥bD .当b ⊂α,且c ⊄α时,若c ∥α,则b ∥c解析:选B A 的逆命题为:当c ⊥α时,若α∥β,则c ⊥β.由线面垂直的性质知c ⊥β,故A 正确;B 的逆命题为:当b ⊂α时,若α⊥β,则b ⊥β,显然错误,故B 错误;C 的逆命题为:当b ⊂α,且c 是a 在α内的射影时,若a ⊥b ,则b ⊥c .由三垂线逆定理知b ⊥c ,故C 正确;D 的逆命题为:当b ⊂α,且c ⊄α时,若b ∥c ,则c ∥α.由线面平行判定定理可得c ∥α,故D 正确.5.(2019·杭州模拟)在三棱锥P ­ABC 中,PA ⊥底面ABC ,∠BAC =120°,AB =AC =1,PA =2,则直线PA 与平面PBC 所成角的正弦值为( )A.255B.223C.55D.13解析:选D ∵PA ⊥底面ABC ,∴PA ⊥AB ,PA ⊥AC ,即∠PAB =∠PAC =90°,又∵AB =AC ,PA =PA ,∴△PAB ≌△PAC ,∴PB =PC .取BC 的中点D ,连接AD ,PD ,∴PD ⊥BC ,AD ⊥BC ,又∵PD ∩AD =D ,∴BC ⊥平面PAD ,∵BC ⊂平面PBC ,∴平面PAD ⊥平面PBC ,过A 作AO ⊥PD 于O ,易得AO ⊥平面PBC ,∴∠APD 就是直线PA 与平面PBC 所成的角.在Rt △PAD 中,AD =12,PA =2,则PD =PA 2+AD 2=32,则sin ∠APD =AD PD =13.故选D.6.如图,已知∠BAC =90°,PC ⊥平面ABC ,则在△ABC ,△PAC 的边所在的直线中,与PC 垂直的直线有____________;与AP 垂直的直线有________.解析:∵PC ⊥平面ABC , ∴PC 垂直于直线AB ,BC ,AC . ∵AB ⊥AC ,AB ⊥PC ,AC ∩PC =C , ∴AB ⊥平面PAC , 又∵AP ⊂平面PAC ,∴AB ⊥AP ,与AP 垂直的直线是AB . 答案:AB ,BC ,AC AB7.如图所示,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)解析:连接AC ,BD ,则AC ⊥BD , ∵PA ⊥底面ABCD ,∴PA ⊥BD . 又PA ∩AC =A ,∴BD ⊥平面PAC , ∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD . 而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD . 答案:DM ⊥PC (或BM ⊥PC )8.如图,直三棱柱ABC ­A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.解析:设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF ,所以AB 1⊥DF .由已知可以得A 1B 1=2,设Rt△AA 1B 1斜边AB 1上的高为h ,则DE =12h .又2×2=h ×22+22,所以h =233,DE =33.在Rt△DB 1E 中,B 1E = ⎝⎛⎭⎪⎪⎫222-⎝ ⎛⎭⎪⎪⎫332=66.由面积相等得66×x2+⎝ ⎛⎭⎪⎪⎫222=22x ,得x =12.即线段B 1F 的长为12.答案:129.(2019·杭州十校联考)如图,已知四棱锥S ­ABCD 是由直角梯形ABCS 沿着CD 折叠而成的,其中SD =DA =AB =BC =1,AD ∥BC ,AB ⊥AD ,且二面角S ­CD ­A 的大小为120°.(1)求证:平面ASD ⊥平面ABCD ;(2)设侧棱SC 和底面ABCD 所成的角为θ,求θ的正弦值. 解:(1)证明:由题意可知CD ⊥SD ,CD ⊥AD . ∵AD ∩SD =D ,∴CD ⊥平面ASD .又∵CD ⊂平面ABCD ,∴平面ASD ⊥平面ABCD .(2)如图,过点S 作SH ⊥AD ,交AD 的延长线于点H ,连接CH . ∵平面ASD ⊥平面ABCD , 平面ASD ∩平面ABCD =AD , ∴SH ⊥平面ABCD ,∴∠SCH 为侧棱SC 和底面ABCD 所成的角, 即∠SCH =θ.由(1)可知∠ADS 为二面角S ­CD ­A 的平面角, 则∠ADS =120°.在Rt △SHD 中,∠SDH =180°-∠ADS =180°-120°=60°,SD =1,则SH =SD sin 60°=32.在Rt △SDC 中,∠SDC =90°,SD =CD =1,∴SC = 2.在Rt △SHC 中,sin θ=SH SC =322=64,即θ的正弦值为64.10.如图,在斜三棱柱ABC ­A 1B 1C 1中,侧面A 1ACC 1是菱形,∠A 1AC =60°.在底面ABC 中,∠BAC =90°,M 为BC 的中点,过A 1,B 1,M 三点的平面交AC 于点N .(1)求证:A 1N ⊥AC ;(2)若B 1M ⊥BC ,求直线B 1C 与平面A 1B 1MN 所成角的大小. 解:(1)证明:由题意,因为平面ABC ∥平面A 1B 1C 1,平面A 1B 1MN ∩平面ABC =MN ,平面A 1B 1MN ∩平面A 1B 1C 1=A 1B 1,所以MN ∥A 1B 1.因为AB ∥A 1B 1,所以MN ∥AB . 又M 为BC 的中点, 所以N 为AC 的中点.又四边形A 1ACC 1是菱形,∠A 1AC =60°, 所以A 1N ⊥AC .(2)由(1)知,AC ⊥A 1N .因为∠BAC =90°,所以AB ⊥AC . 又MN ∥AB ,所以AC ⊥MN .因为MN ∩A 1N =N ,MN ⊂平面A 1B 1MN ,A 1N ⊂平面A 1B 1MN , 所以AC ⊥平面A 1B 1MN .连接B 1N ,则∠CB 1N 即为直线B 1C 与平面A 1B 1MN 所成的角. 设A 1A =2a ,则CN =a ,因为B 1M ⊥BC ,M 为BC 的中点,所以B 1B =B 1C =2a ,在△B 1NC 中,sin ∠CB 1N =CN B 1C =a 2a =12,所以∠CB 1N =30°,故直线B 1C 与平面A 1B 1MN 所成角的大小为30°. 三上台阶,自主选做志在冲刺名校1.(2018·杭州高三检测)已知三棱锥S ­ABC 的底面ABC 为正三角形,SA <SB <SC ,平面SBC ,SCA ,SAB 与平面ABC 所成的锐二面角分别为α1,α2,α3,则( )A .α1<α2B .α1>α2C .α2<α3D .α2>α3解析:选A 如图①,作SO ⊥平面ABC ,垂足为O ,连接AO ,BO ,CO .由SA <SB <SC ,得OA <OB <OC .过点O 分别向BC ,AC ,AB 作垂线,垂足记为D ,E ,F ,连接SD ,SE ,SF ,则tan α1=SOOD ,tan α2=SO OE ,tan α3=SOOF.由于OA <OB <OC ,且△ABC 为正三角形,故点O 所在区域如图②中阴影部分(不包括边界)所示,其中G 为△ABC 的重心.由图②可得OE <OD ,OF 与OE 的大小不确定,所以tan α2>tan α1,tan α2与tan α3的大小不确定,又α1,α2,α3均为锐角,所以α2>α1,α2与α3的大小不确定.故选A.2.(2019·台州三区联考)如图,已知菱形ABCD 的对角线AC ,BD 相交于点O ,将菱形ABCD 沿对角线AC 折起,使得平面ACD ⊥平面ABC ,若点N 是BD 上的动点,当线段ON 最短时,二面角N ­AC ­B 的余弦值为( )A .0 B.12 C.22D.32解析:选C 易知OB =OD ,所以当N 为BD 的中点时,线段ON 最短,因为AC ⊥OB ,AC ⊥OD ,OB ∩OD =O ,所以AC ⊥平面BOD ,所以ON ⊥AC ,又OB ⊥AC ,所以∠BON 即为二面角N ­AC ­B 的平面角.因为平面ACD ⊥平面ABC ,OD ⊥AC ,所以OD ⊥OB ,所以△BOD 为等腰直角三角形,所以∠BON =45°,所以二面角N ­AC ­B 的余弦值为22. 3.如图,在四棱锥P ­ABCD 中,底面ABCD 是平行四边形,∠BCD =135°,侧面PAB ⊥底面ABCD ,∠BAP =90°,AB =AC =PA =4,E 为BC 的中点,点M 在线段PD 上.(1)若ME ∥平面PAB ,确定M 的位置并说明理由;(2)若直线EM 与平面PBC 所成的角和直线EM 与平面ABCD 所成的角相等,求PMPD的值.解:(1)当M 为PD 的中点时,EM ∥平面PAB . 理由如下:因为M 为PD 的中点, 设F 为AD 的中点,连接EF ,MF .所以MF ∥PA .又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以MF ∥平面PAB .同理,可得EF ∥平面PAB .又因为MF ∩EF =F ,MF ⊂平面MEF ,EF ⊂平面MEF , 所以平面MEF ∥平面PAB .又因为ME ⊂平面MEF ,所以ME ∥平面PAB . (2)设PM =a ,因为平面PAB ⊥平面ABCD , 平面PAB ∩平面ABCD =AB ,∠BAP =90°, 所以PA ⊥平面ABCD ,又AB =AC =AP =4,∠BCD =135°, 所以AB ⊥AC ,BC =AD =42,PD =43, 过点M 作MF ⊥AD 于点F , 则MF ⊥平面ABCD ,连接EF , 则EF 为ME 在平面ABCD 上的射影,所以∠MEF 为ME 与平面ABCD 所成的角α. 在Rt △PAD 中,PD =43,MF =43-a3,得sin α=MF ME =12-3a3ME.又设ME 与平面PBC 所成的角为β,过点M 作MN ⊥PA 于点N ,则MN ∥平面PBC ,∴M ,N 到平面PBC 的距离相等,设为d ,由V N ­PBC =V C ­PBN ,得S △PBC ×d =S △PBN ×4,即34×(42)2×d =12×a 3×4×4,解得d =a 3,所以sin β=d ME =a3ME.由sin α=sin β,得12-3a =a ,解得a =63-6,∴PM PD =3-32. 命题点一 空间几何体的三视图及表面积与体积 1.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8解析:选 C 由几何体的三视图可知,该几何体是一个底面为直角梯形,高为2的直四棱柱,直角梯形的两底边长分别为1,2,高为2,∴该几何体的体积为V =12×(2+1)×2×2=6.2.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .2解析:选B 先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.∵ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.3.(2018·北京高考)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C 由三视图得到空间几何体的直观图如图所示, 则PA ⊥平面ABCD ,四边形ABCD 为直角梯形,PA =AB =AD =2,BC =1,所以PA ⊥AD ,PA ⊥AB ,PA ⊥BC . 又BC ⊥AB ,AB ∩PA =A , 所以BC ⊥平面PAB . 所以BC ⊥PB .在△PCD 中,PD =22,PC =3,CD =5, 所以△PCD 为锐角三角形.所以侧面中的直角三角形为△PAB ,△PAD ,△PBC ,共3个. 4.(2017·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .10解析:选D 如图,把三棱锥A ­BCD 放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD 为直角三角形,直角边分别为5和3,三棱锥A ­BCD 的高为4,故该三棱锥的体积V =13×12×5×3×4=10.5.(2018·天津高考)已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M ­EFGH 的体积为______.解析:连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =12AC ,因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =12AC ,所以EH∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形,又点M 到平面EHGF 的距离为12,所以四棱锥M ­EFGH 的体积为13×⎝ ⎛⎭⎪⎪⎫222×12=112.答案:1126.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图,∵SA 与底面成45°角,∴△SAO 为等腰直角三角形. 设OA =r ,则SO =r ,SA =SB =2r . 在△SAB 中,cos ∠ASB =78,∴sin ∠ASB =158, ∴S △SAB =12SA ·SB ·sin∠ASB=12×(2r )2×158=515, 解得r =210,∴SA =2r =45,即母线长l =45, ∴S 圆锥侧=πrl =π×210×45=402π. 答案:402π命题点二 组合体的“切”“接”问题1.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ­ABC 体积的最大值为( )A .12 3B .183C .24 3D .543解析:选B 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D ­ABC 高的最大值为2+4=6,所以三棱锥D ­ABC 体积的最大值为13×93×6=18 3.2.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π23.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.答案:32命题点三 直线、平面平行与垂直的判定与性质 1.(2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且CD 为直径, 所以DM ⊥MC .又BC ∩MC =C ,所以DM ⊥平面BMC .因为DM ⊂平面AMD ,所以平面AMD ⊥平面BMC .(2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连接AC 交BD 于O .因为四边形ABCD 为矩形, 所以O 为AC 的中点. 连接OP ,因为P 为AM 中点,所以MC ∥OP . 又MC ⊄平面PBD ,OP ⊂平面PBD , 所以MC ∥平面PBD .2.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为PA =PC =AC =4,O 为AC 的中点,所以PO ⊥AC ,且PO =2 3. 连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)如图,作CH ⊥OM ,垂足为H , 又由(1)可得PO ⊥CH ,且PO ∩OM =O , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离. 由题设可知OC =12AC =2,MC =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin∠ACB OM =455.所以点C 到平面POM 的距离为455.3.(2018·北京高考)如图,在四棱锥P ­ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .证明:(1)因为PA =PD ,E 为AD 的中点, 所以PE ⊥AD .因为底面ABCD 为矩形, 所以BC ∥AD ,所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD ,所以AB ⊥平面PAD ,因为PD ⊂平面PAD ,所以AB ⊥PD . 又因为PA ⊥PD ,AB ∩PA =A , 所以PD ⊥平面PAB . 因为PD ⊂平面PCD , 所以平面PAB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC .因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形. 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .4.(2018·江苏高考)在平行六面体ABCD ­A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.证明:(1)在平行六面体ABCD­A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD­A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.命题点四空间角度问题1.(2018·全国卷Ⅱ)在正方体ABCD­A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为( )A.22B.32C.52D.72解析:选C 如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角为∠EAB 或其补角.在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.2.(2018·全国卷Ⅰ)在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .62C .8 2D .83解析:选C 如图,连接AC 1,BC 1,AC .∵AB ⊥平面BB 1C 1C , ∴∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角,∴∠AC 1B =30°.又AB =BC =2,在Rt △ABC 1中,AC 1=2sin 30°=4.在Rt △ACC 1中,CC 1=AC 21-AC 2=42-22+22=22,∴V 长方体=AB ·BC ·CC 1=2×2×22=8 2.3.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32。

高考数学一轮复习第七章立体几何第五节垂直关系课件文北师大版

高考数学一轮复习第七章立体几何第五节垂直关系课件文北师大版

[解析] 由 PA⊥平面 ABC,BC 平面 ABC,可得 PA⊥BC,又 AB 是圆 O 的直 径,C 是圆 O 上一点,则有 BC⊥AC,又 PA∩AC=A,所以 BC⊥平面 PAC,又 AF 平面 PAC,所以 BC⊥AF,故③正确;因为 AF⊥PC,PC∩BC=C,所以
AF⊥平面 PBC,又 PB 平面 PBC,所以 AF⊥PB,故①正确;因为 AE⊥PB,
(3)平面与平面垂直的判定定理与性质定理:
文字语言
图形语言
一个平面过另一个平面的 判定
__垂__线____,则这两个平面
定理 垂直
两个平面垂直,则一个平 性质
面内垂直于___交__线____的
定理 直线与另一个平面垂直
符号语言
l⊥α lβ
⇒α⊥β
α⊥β αl⊥l∩aββ=a⇒l⊥α
1.判定定理的理解 若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
(2)如图所示,在四棱锥 P-ABCD 中,底面 ABCD 是∠DAB=60°且边长为 a 的菱 形,侧面 PAD 为正三角形,其所在平面垂直于底面 ABCD,若 G 为 AD 的中点.
①求证:BG⊥平面 PAD; ②求证:AD⊥PB; ③若 E 为 BC 边的中点,能否在棱 PC 上找到一点 F,使平面 DEF⊥平PE⊥AC,PF⊥BC. 又 PE=PF= 3,所以 OE=OF, 所以 CO 为∠ACB 的平分线, 即∠ACO=45°. 在 Rt△PEC 中,PC=2,PE= 3,所以 CE=1, 所以 OE=1,所以 PO= PE2-OE2= ( 3)2-12= 2. [答案] 2
2.(基础点:线面垂直性质)已知直线 a,b 和平面 α,且 a⊥b,a⊥α,则 b 与 α 的位置关系为( )

高三数学一轮复习 第7章 第5课时 直线、平面垂直的判定与性质课件 文 新人教版

高三数学一轮复习 第7章 第5课时 直线、平面垂直的判定与性质课件 文 新人教版

13
教材梳理 基础自测
二、平面与平面垂直
[自测 5] 设平面 α 与平面 β 相交于直线 m,直线 a 在平面 α 内,直线 b
在平面 β 内,且 b⊥m,则“α⊥β”是“a⊥b”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
A
1
14
教材梳理 基础自测
三、线面角、二面角
高三总复习.数学(文)
第七章 立体几何 第5课时 直线、平面垂直的判定与性质

考点一 直线与平面垂直的判定与性质

考点二 平面与平面垂直的判定与性质
考点三 空间垂直关系的探索
规范答题•系列
应考迷津•展示
1
1
考纲·展示
1.以命题形式,判定“直线、平面垂直的判定和性质”运用是否正确. 2.以常见的几何体为背景,进行线线垂直,线面垂直,面面垂直的转化与 应用. 3.借助于线面垂直求线面角. 4.借助于面面垂直研究二面角.
与此平面垂直
符号语言
a,b⊂α
a∩b=O l⊥a l⊥b
⇒l⊥α
1
4
教材梳理 基础自测
一、直线与平面垂直
①垂直于同一个 平面的两条直线 平行 性质 ②如果两个平面 定理 同垂直于一条直 线,那么这两个 平面平行
1
a⊥α b⊥α
⇒a∥b
ll⊥⊥βα⇒α∥β
5
教材梳理 基础自测
一、直线与平面垂直
A.a⊥b,且 a 与 b 相交
B.a⊥b,且 a 与 b 不相交
C.a⊥b
D.a 与 b 不一定垂直
C
1
7
教材梳理 基础自测

高三数学(理)一轮复习(课件)第七章 立体几何7-5

高三数学(理)一轮复习(课件)第七章 立体几何7-5

因为 SA=SB,所以△SAB 为等腰三角形, 所以 SE⊥AB。 又 SE∩DE=E,所以 AB⊥平面 SDE。 又 SD⊂平面 SDE,所以 AB⊥SD。 在△SAC 中,SA=SC,D 为 AC 的中点, 所以 SD⊥AC。 又 AC∩AB=A,所以 SD⊥平面 ABC。 (2)由于 AB=BC,则 BD⊥AC, 由(1)可知,SD⊥平面 ABC,又 BD⊂平面 ABC, 所以 SD⊥BD, 又 SD∩AC=D,所以 BD⊥平面 SAC。
1.证明面面垂直的常用方法:(1)利用面面垂直的定义;(2)利用面面 垂直的判定定理,转化为从现有直线中(或作辅助线)寻找平面的垂线,即 证明线面垂直。
2.两个平面垂直问题,通常是通过“线线垂直→线面垂直→面面垂 直”的过程来实现的。
【变式训练】 (2019·唐山市摸底考试)如图,在四棱锥 P-ABCD 中, PC⊥底面 ABCD,ABCD 是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD =2,E 是 PB 的中点。
考点三 开放型问题 【例 3】如图所示,在直四棱柱 ABCD-A1B1C1D1 中,DB=BC, DB⊥AC,点 M 是棱 BB1 上一点。
(1)求证:B1D1∥平面 A1BD。 (2)求证:MD⊥AC。 (3)试确定点 M 的位置,使得平面 DMC1⊥平面 CC1D1D。
解 (1)证明:由直四棱柱,得 BB1∥DD1,且 BB1=DD1,
(1)如图,连接 OA,OB,OC,OP,在 Rt△POA,Rt△POB 和 Rt△POC 中,PA=PB=PC,所以 OA=OB=OC,即 O 为△ABC 的外心。
(2)如图,延长 AO,BO,CO 分别交 BC,AC,AB 于 H,D,G。因为 PC⊥PA,PB⊥PC,PA∩PB=P,所以 PC⊥平面 PAB,又 AB⊂平面 PAB, 所以 PC⊥AB,因为 AB⊥PO,PO∩PC=P,所以 AB⊥平面 PGC,又 CG ⊂平面 PGC,所以 AB⊥CG,即 CG 为△ABC 边 AB 上的高。同理可证 BD, AH 分别为△ABC 边 AC,BC 上的高,即 O 为△ABC 的垂心。

高考一轮复习第7章立体几何第5讲直线平面垂直的判定与性质

高考一轮复习第7章立体几何第5讲直线平面垂直的判定与性质

第五讲 直线、平面垂直的判定与性质知识梳理·双基自测 知识梳理知识点一 直线与平面垂直 (1)直线与平面垂直①定义:若直线l 与平面α内的_任意__一条直线都垂直,则直线l 与平面α垂直.②判定定理:一条直线与一个平面内的两条_相交__直线都垂直,则该直线与此平面垂直(线线垂直⇒线面垂直).即:a ⊂α,_b ⊂α__,l ⊥a ,l ⊥b ,a∩b=P ⇒l ⊥α.③性质定理:垂直于同一个平面的两条直线_平行__.即:a ⊥α,b ⊥α⇒_a ∥b__. (2)直线与平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的_锐角__,叫做这条斜线和这个平面所成的角. 若直线与平面平行或直线在平面内,直线与平面所成角为_0__,若直线与平面垂直,直线与平面所成角为_π2__.②线面角θ的范围:θ∈⎣⎢⎡⎦⎥⎤0,π2.知识点二 平面与平面垂直 (1)二面角的有关概念①二面角:从一条直线出发的_两个半平面__所组成的图形叫做二面角.②二面角的平面角:以二面角的棱上任意一点为端点,在两个半平面内分别作与棱_垂直__的射线,则两射线所成的角叫做二面角的平面角.③二面角θ的范围:θ∈[0,π]. (2)平面与平面垂直①定义:两个平面相交,如果它们所成的二面角是_直二面角__,就说这两个平面互相垂直. ②判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.即:a ⊂α,a ⊥β⇒_α⊥β__. ③性质定理:两个平面垂直,则一个平面内垂直于_交线__的直线与另一个平面垂直.即:α⊥β,a ⊂α,α∩β=b ,a ⊥b ⇒_a ⊥β__.重要结论1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.2.若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).3.垂直于同一条直线的两个平面平行.4.一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.(×)(2)垂直于同一个平面的两平面平行.( ×)(3)若直线a⊥α,b⊥α,则a∥b.( √)(4)若α⊥β,a⊥β,则a∥α.(×)(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √)(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(×)题组二走进教材2.(多选题)(必修2P73T1)下列命题中正确的是( ABC )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β[解析] 对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.题组三走向高考3.(2017·课标全国Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( C )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC[解析] ∵A1B1⊥平面BCC1B1,BC1⊂平面BCC1B1,∴A1B1⊥BC1,又BC1⊥B1C,且B1C∩A1B1=B1,∴BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,∴BC1⊥A1E.故选C.4.(2019·北京)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_若l⊥α,l⊥m,则m∥α.(或若l⊥α,m∥α,则l⊥m)__.[解析] 由l,m是平面α外的两条不同直线,及线面平行的判定定理得:若l⊥α,l⊥m,则m∥α,若l⊥α,m∥α,则由线面垂直的性质和线面平行的性质得l⊥m,∴若l⊥α,m∥α,则l⊥m,故答案为:若l⊥α,l⊥m,则m∥α.(或若l⊥α,m∥α,则l⊥m).5.(2020·全国Ⅱ(节选))如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F.[证明] ∵M,N分别为BC,B1C1的中点,∴MN∥BB1又AA1∥BB1,∴MN∥AA1在等边△ABC中,M为BC中点,则BC⊥AM.又∵侧面BB1C1C为矩形,∴BC⊥BB1∵MN∥BB1,MN⊥BC由MN∩AM=M,MN,AM⊂平面A1AMN∴BC⊥平面A1AMN又∵B1C1∥BC,且B1C1⊄平面ABC,BC⊂平面ABC,∴B1C1∥平面ABC又∵B1C1⊂平面EB1C1F,且平面EB1C1F∩平面ABC=EF∴B1C1∥EF,∴EF∥BC又∵BC⊥平面A1AMN∴EF⊥平面A1AMN∵EF⊂平面EB1C1F∴平面EB1C1F⊥平面A1AMN.考点突破·互动探究考点一空间垂直关系的基本问题——自主练透例1 (1)(2021·河北保定七校联考)设m,n是两条不同的直线,α,β是两个不同的平面,p:m⊥n,若p是q的必要条件,则q可能是( B )A.q:m⊥α,n∥β,α⊥βB.q:m⊂α,n⊥β,α∥βC.q:m⊥α,n⊥β,α∥βD.q:m⊂α,n∥β,α⊥β(2)(2019·陕西汉中质检一)已知l ,m 表示两条不同的直线,α,β表示两个不同的平面,l ⊥α,m ⊂β,则有下面四个命题:①若α∥β,则l ⊥m ,②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β.其中所有正确的命题是( A )A .①③B .①④C .②③D .①②③④(3)(多选题)(2021·四川成都诊断改编)已知α,β是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则下列说法错误的是( ABD )A .若m ∥α,n ∥β,且α∥β,则m ∥nB .若m ∥α,n ∥β,且α⊥β,则m ∥nC .若m ⊥α,n ∥β,且α∥β,则m ⊥nD .若m ⊥α,n ∥β,且α⊥β,则m ⊥n[解析] (1)由题知q 能推出p :m ⊥n.对A ,当m ∥n 时仍然可以有m ⊥α,n ∥β,α⊥β.故A 错误.对B ,n ⊥β,α∥β,则n ⊥α,又m ⊂α,则m ⊥n.故B 正确.对C ,m ⊥α,α∥β则m ⊥β,又n ⊥β,故m ∥n.故C 错误.对D ,当α⊥β且相交于m 时,若n ∥m ,也满足m ⊂α,n ∥β.故D 错误.⎭⎬⎫⎭⎪⎬⎪⎫2l ⊥α α∥β⇒l ⊥βm ⊂β⇒l ⊥m ,①对;⎭⎬⎫⎭⎪⎬⎪⎫l ∥m l ⊥α⇒m ⊥α m ⊂β⇒α⊥β,③对;由图可知②④错.故选A .(3)由m ∥α,n ∥β,且α∥β,得m ∥n 或m 与n 相交,或m 与n 异面,故A 错误;由m ∥α,n ∥β,且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故B 错误;由m ⊥α,α∥β,得m ⊥β,又n ∥β,则m ⊥n ,故C 正确;由m ⊥α,n ∥β且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故D 错误,故选A 、B 、D .名师点拨解决空间中线面、面面垂直的问题有以下三种方法:(1)依据相关定理得出结论.(2)结合符合题意的模型(如构造正方体、长方体)作出判断,或借助笔、纸、桌面进行演示,注意能平移或旋转的线,让其动动再判断.(3)否定命题时只需举一个反例即可.〔变式训练1〕(1)(2021·东北三省三校模拟)已知α,β是不重合的平面,m ,n 是不重合的直线,则m ⊥α的一个充分条件是( C )A .m ⊥n ,n ⊂αB .m ∥β,α⊥βC .n ⊥α,n ⊥β,m ⊥βD .α∩β=n ,α⊥β,m ⊥n(2)(2021·福建福州调研)已知两条直线m ,n 和两个平面α,β,下列命题正确的是( A ) A .若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β B .若m ∥α,n ∥β,且m ∥n ,则α∥β C .若m ⊥α,n ∥β,且m ⊥n ,则α⊥β D .若m ⊥α,n ∥β,且m ∥n ,则α∥β[解析] (1)对于答案A :m ⊥n ,n ⊂α,得出m 与α是相交的或是垂直的,或m ⊂α,故A 错;答案B :m ∥β,α⊥β,得出m 与α是相交的、平行的都可,故B 错;答案C :n ⊥α,n ⊥β,得出α∥β,再m ⊥β得出m ⊥α,故C 正确.⎭⎪⎬⎪⎫2m ⊥αm ⊥n⇒n ⊂α或n ∥α.若n ⊂α,又n ⊥β,∴α⊥β;若n ∥α,则存在l ⊂α且l ∥n ,又n ⊥β,∴l ⊥β,∴α⊥β,故A 正确;事实上,在B 中条件下,α、β可能相交;在C 中条件下,α、β可能平行;在D 的条件下,α⊥β,故选A .考点二 直线与平面垂直的判定与性质——多维探究角度1 线、面垂直的判定例2 如图所示,已知PA ⊥矩形ABCD 所在平面,M ,N 分别是AB ,PC 的中点.(1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN ⊥平面PCD . [证明] 解法一:(1)连接AC ,AN ,BN ,∵PA ⊥平面ABCD ,∴PA ⊥AC ,在Rt △PAC 中,N 为PC 中点. ∴AN =12PC .∵PA ⊥平面ABCD ,∴PA ⊥BC . 又BC ⊥AB ,PA∩AB=A , ∴BC ⊥平面PAB ,∴BC ⊥PB .从而在Rt △PBC 中,BN 为斜边PC 上的中线, ∴BN =12PC .∴AN =BN ,∴△ABN 为等腰三角形. 又M 为底边AB 的中点,∴MN ⊥AB ,又AB ∥CD ,∴MN ⊥CD . (2)∵PA ⊥平面ABCD ,∴PA ⊥AD . 又∠PDA =45°,∴AP =AD .∵四边形ABCD 为矩形,∴AD =BC ,∴PA =BC . 连接PM ,CM ,又∵M 为AB 的中点,∴AM =BM. 而∠PAM =∠CBM =90°,∴Rt △PAM ≌Rt △CBM. ∴PM =CM ,又N 为PC 的中点,∴MN ⊥PC . 由①知MN ⊥CD ,PC∩CD=C ,∴MN ⊥平面PCD . 解法二:∵PA ⊥平面ABCD , ∴PA ⊥AD ,PA ⊥AB ,又AB ⊥AD ,∴PA 、AB 、AD 两两垂直,如图建立空间直角坐标系,不妨设C(a ,b,0),P(0,0,c),则D(0,b,0),M ⎝ ⎛⎭⎪⎫a 2,0,0,N ⎝ ⎛⎭⎪⎫a 2,b 2,c 2, (1)由MN →=⎝ ⎛⎭⎪⎫0,b 2,c 2,CD →=(-a,0,0),∴MN →·CD →=0,∴MN ⊥CD . (2)∵∠PDA =45°,∴b =c , 又PC →=(a ,b ,-b),∴MN →·PC →=⎝ ⎛⎭⎪⎫0,b 2,b 2·(a,b ,-b)=0,∴MN ⊥PC ,又MN ⊥CD , ∴MN ⊥平面PCD . 角度2 线、面垂直的性质例3 (2021·河北“五个一联盟”联考,节选)如图,在三棱柱ABC -A 1B 1C 1中,B 1C 1⊥平面AA 1C 1C ,D 是AA 1的中点,△ACD 是边长为1的等边三角形.证明:CD ⊥B 1D .[证明] ∵△ACD 是边长为1的等边三角形, ∴∠ADC =60°,∠DA 1C 1=120°. ∵D 是AA 1的中点,△ACD 的边长为1, ∴AD =A 1D =A 1C 1=1,即△A 1C 1D 是等腰三角形, ∴∠A 1DC 1=30°,从而∠CDC 1=90°,即CD ⊥C 1D . ∵B 1C 1⊥平面AA 1C 1C ,且CD ⊂平面AA 1C 1C , ∴B 1C 1⊥CD .∵B 1C 1∩C 1D =C 1,B 1C 1⊂平面B 1C 1D ,C 1D ⊂平面B 1C 1D , ∴CD ⊥平面B 1C 1D .∵B 1D ⊂平面B 1C 1D ,∴CD ⊥B 1D .名师点拨1.证明线线垂直的常用方法 (1)利用特殊图形中的垂直关系. (2)利用等腰三角形底边中线的性质. (3)利用勾股定理的逆定理. (4)利用直线与平面垂直的性质. (5)向量法:a ⊥b ⇔a·b=0. 2.证明线面垂直的常用方法(1)利用判定定理,它是最常用的思路.(2)利用线面垂直的性质:若两平行线之一垂直于平面,则另一条线必垂直于该平面. (3)利用面面垂直的性质:①两平面互相垂直,在一个平面内垂直于交线的直线垂直于另一平面.②若两相交平面都垂直于第三个平面,则它们的交线垂直于第三个平面. (4)向量法:证明直线的方向向量与平面的法向量平行. 〔变式训练2〕(1)(角度1)(2020·河南六市一模)在如图所示的几何体中,ABC -A 1B 1C 1为三棱柱,且AA 1⊥平面ABC ,四边形ABCD 为平行四边形,AD =2CD .∠ADC =60°,若AA 1=AC ,求证:AC 1⊥平面A 1B 1CD .(2)(角度2)(2021·湖南炎德英才大联考,节选)如图,圆柱OQ 的上,下底面圆的圆心分别为Q ,O ,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的下底面圆周上,G 是DP 的中点,圆柱OQ 的底面圆的直径AB =4,母线AD =AP =2 3.求证:AG ⊥BD .[证明] (1)证法1:∵AD =2CD ,∠ADC = 60°, ∴DC ⊥AC ,又AA 1⊥平面ABC ,∴AA 1⊥DC . ∴DC ⊥平面AA 1C 1C ,又AC 1⊂平面AA 1C 1C , ∴DC ⊥AC 1,∵AA 1=AC ,∴四边形AA 1C 1C 为菱形,∴AC 1⊥A 1C , 而DC∩A 1C =C ,∴AC 1⊥平面A 1B 1CD . 证法2:∵AD =2CD ,∠ADC =60°,∴∠ACD =90°,则CD ,CA ,CC 1两两垂直.如图,建立空间直角坐标系C -xyz.不妨设CD =1,则C(0,0,0),D(1,0,0),A(0,3,0),C 1(0,0,3),A 1(0,3,3). ∴AC 1→=(0,-3,3),CD →=(1,0,0),CA 1→=(0,3,3).易得AC 1→·CD →=0,AC 1→·CA 1→=0.∴AC 1⊥CD ,AC 1⊥CA 1,又∵CD∩CA 1=C , ∴AC 1⊥平面A 1B 1CD .(2)证法1:∵AD =AP ,又G 是DP 的中点, ∴AG ⊥DP.①∵AB 为圆O 的直径,∴AP ⊥BP ,易知DA ⊥底面ABP ,∴DA ⊥BP ,而AD∩AP=A , ∴BP ⊥平面ADP ,又AG ⊂平面ADP ,∴BP ⊥AG ,②∴由①②可知:AG ⊥平面BDP ,又BD ⊂平面BDP , ∴AG ⊥BD .证法2:∵AB 为⊙O 的直径,∴PA ⊥PB ,如图建立空间直角坐标系,由题意知P(0,0,0),A(0,23,0),B(2,0,0),D(0,23,23),G(0,3,3), ∴AG →=(0,-3,3),BD →=(-2,23,23), ∴AG →·BD →=0,即AG ⊥BD .考点三 两个平面垂直的判定与性质——师生共研例4 (2020·四川成都二诊)如图,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6,E ,F 分别为BB 1,AC 的中点.(1)求证:平面A 1EC ⊥平面ACC 1A 1; (2)求几何体AA 1EBC 的体积.[解析] (1)证明:如图,连接AC 1交A 1C 于点O ,连接OE ,OF ,在正三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1为矩形,所以OA =OC 1.又因为F 为AC 的中点, 所以OF ∥CC 1且OF =12CC 1.因为E 为BB 1的中点,所以BE ∥CC 1且BE =12CC 1.所以BE ∥OF 且BE =OF.所以四边形BEOF 是平行四边形,所以BF ∥OE. 因为AB =CB ,F 为AC 的中点, 所以BF ⊥AC ,所以OE ⊥AC .因为AA 1⊥底面ABC ,所以AA 1⊥BF ,所以OE ⊥AA 1. 又AA 1,AC ⊂平面ACC 1A 1,且AA 1∩AC=A , 所以OE ⊥平面ACC 1A 1.因为OE ⊂平面A 1EC ,所以平面A 1EC ⊥平面ACC 1A 1. (2)四棱锥A 1-EB 1C 1C 的高为h =4sin 60°=23, 底面为直角梯形,面积为S =12×(3+6)×4=18,得VA 1-EB 1C 1C =13×23×18=123,故几何体AA 1EBC 的体积为VAA 1EBC =VABC -A 1B 1C 1-VA 1-EB 1C 1C =12×4×4×32×6-123=12 3.例5 (2021·黑龙江大庆市质检)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA =PD =2,四边形ABCD 是边长为2的菱形,∠DAB =60°,E 是AD 的中点.(1)求证:BE ⊥平面PAD ; (2)求点E 到平面PAB 的距离.[解析] (1)连接BD ,在△PAD 中,PA =PD =2,E 是AD 的中点, ∴PE ⊥AD ,∵平面PAD ⊥平面ABCD ,平面PAD∩平面ABCD =AD , ∴PE ⊥平面ABCD ,∴PE ⊥BE ,又∵四边形ABCD 是边长为2的菱形,∠DAB =60°, ∴△ABD 为等边三角形, ∴BE ⊥AD ,又∵PE∩AD=E ,PE ⊂平面PAD ,AD ⊂平面PAD , ∴BE ⊥平面PAD .(2)在△PAB 中,PA =AB =2,PB =6,则S △PAB =152, 在△ABE 中,AB =2,AE =1,BE =3,则S △ABE =32, 由PE ⊥面ABCD ,PE =3,得 V P -ABE =13×3×12×1×3=12,由V P -ABE =V E -PAB ,设点E 到平面PAB 的距离为h , 则13×152×h=13×32×3,则h =155, 即点E 到平面PAB 的距离为155.名师点拨(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)在已知面面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(3)〔变式训练3〕(1)(2020·湖南娄底模拟)如图所示,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠DAB =π3,侧面PAD是等边三角形,且平面PAD ⊥平面ABCD ,E 为棱PC 上一点,若平面EBD ⊥平面ABCD ,则PE EC =_12__.(2)(2021·云南玉海一中期中)已知三棱锥P -ABC(如图1)的展开图如图2,其中四边形ABCD 为边长等于2的正方形,△ABE 和△BCF 均为正三角形.证明:平面PAC ⊥平面ABC .[解析] (1)取AD 的中点O ,连接OC 交BD 于F 点,连接EF ,∵△PAD 是等边三角形,∴PO ⊥AD ,∵OD ∥BC ,BC =2OD ,∴FC =2OF. 又∵平面PAD ⊥平面ABCD ,PO ⊥AD , ∴PO ⊥平面ABCD ,又∵平面BDE ⊥平面ABCD ,∴PO ∥平面BDE. ∴OP ∥EF ,∴PE EC =OF FC =12.故答案为:12.(2)证明:如图取AC 的中点O ,连接BO ,PO.由题意可知PA =PB =PC =2,∴PO =1,AO=BO=CO=1,∵在△PAC中,PA=PC,O为AC的中点,∴PO⊥AC.∵在△POB中,PO=1,OB=1,PB=2,∴PO2+OB2=PB2,∴PO⊥OB.∵AC∩OB=O,AC,OB⊂平面ABC,∴PO⊥平面ABC,∵PO⊂平面PAC,∴平面PAC⊥平面ABC.名师讲坛·素养提升立体几何中的轨迹问题例6 (多选题)(2021·山东青岛模拟)在如图所示的棱长为1的正方体ABCD-A1B1C1D1中,点P 在侧面BCC1B1所在的平面上运动,则下列命题中正确的为( ABD )A.若点P总满足PA⊥BD1,则动点P的轨迹是一条直线B.若点P到点A的距离为2,则动点P的轨迹是一个周长为2π的圆C.若点P到直线AB的距离与到点C的距离之和为1,则动点P的轨迹是椭圆D.若点P到直线AD与直线CC1的距离相等,则动点P的轨迹是双曲线[解析] A.∵PA⊥BD1,∴P在过A且与BD1垂直的平面ACB1上,又P∈平面BCC1B,∴P的轨迹是平面ACB1与平面BCC1B1的交线B1C,故A正确;B.点P的轨迹是以A为球心,半径为2的球面与平面BCC1B1的交线,即点P的轨迹为小圆,设小圆的半径为r,球心A到平面BCC1B1的距离为1,则r=22-1=1,所以小圆周长l=2πr=2π,故B正确;C.点P到直线AB的距离就是点P到点B的距离,即平面BCC1B1内的点P满足|PB|+|PC|=1=|BC|,即满足条件的点P的轨迹就是线段BC,不是椭圆,故C不正确;D.如图,过P分别作PM⊥BC于点M,PE⊥CC1于点E,则PM⊥平面ABCD,所以PM⊥AD,过M作MN⊥AD,连接PN,PM∩MN=M,所以AD⊥平面PMN,所以PN⊥AD,如图建立平面直角坐标系,设P(x,y),PM=y,则PN2=1+y2,PE2=(1-x)2,即1+y2=(1-x)2,整理为:(x-1)2-y2=1,则动点P的轨迹是双曲线,故D正确.故选ABD.[引申](1)本例中,若点P到直线AB的距离与到直线CC1的距离相等,则点P的轨迹为_以B为焦点、CC1为准线的抛物线__.(2)本例中,若点P到直线AB的距离与到直线AD的距离相等,则点P的轨迹为_与BC距离为1的两条平行线__.名师点拨立体几何中的轨迹面是常转化为两面的交线,或在某面内建立坐标系通过求轨迹方程求解.〔变式训练4〕(2021·安徽蚌埠质检)平面α的一条斜线AP交平面α于P点,过定点A的直线l与AP垂直,且交平面α于M点,则M点的轨迹是( A )A.一条直线B.一个圆C.两条平行直线D.两个同心圆[解析] 由题意知M在过A且与PA垂直的平面β内,∴点M的轨迹为平面α与β的交线,故选A.。

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图1­1­1)表示的集合是( )图1­1­1A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图1­2­1(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图2­1­1所示,所给图像是函数图像的有( )图2­1­1A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 垂直关系
[考纲传真] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.
(对应学生用书第104页) [基础知识填充] 1.直线与平面垂直 (1)直线和平面垂直的定义
如果一条直线l 与平面α内的任何直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理
⎭⎪⎬⎪⎫l ⊥a
l ⊥b
a ∩
b =O a α
b α
⇒l ⊥α
2.平面与平面垂直 (1)平面与平面垂直的定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
(2)判定定理与性质定理

⎪⎬⎪
⎫l ⊥αl β⇒α⊥β

⎪⎬⎪
⎫α⊥β
α∩β=a
l ⊥a l β
⇒l ⊥α
[知识拓展]
1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. 2.一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直. 3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面. [基本能力自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( ) (2)垂直于同一个平面的两平面平行.( )
(3)若两条直线与一个平面所成的角相等,则这两条直线平行.( )
(4)若两个平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( ) [答案] (1)× (2)× (3)× (4)×
2.(教材改编)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α,m β.( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥β
D .若α∥β,则l ∥m
A[∵l⊥β,lα,∴α⊥β(面面垂直的判定定理),故A正确.]
3.(2016·浙江高考)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )
A.m∥l B.m∥n
C.n⊥l D.m⊥n
C[∵α∩β=l,∴lβ.
∵n⊥β,∴n⊥l.]
4.如图7­5­1,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________. 【导学号:00090253】
图7­5­1
4[∵PA⊥平面ABC,
∴PA⊥AB,PA⊥AC,PA⊥BC,
则△PAB,△PAC为直角三角形.
由BC⊥AC,且AC∩PA=A,
∴BC⊥平面PAC,从而BC⊥PC.
因此△ABC,△PBC也是直角三角形.]
5.边长为a的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________.a[如图所示,取BD的中点O,连接A′O,CO,
则∠A′OC是二面角A′­BD­C的平面角.。

相关文档
最新文档