2019高考数学试题汇编之立体几何(原卷版)
(完整版)2019数学高考试题分类汇编 立体几何

2019年数学高考试题汇编—立体几何1、全国I 理12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68πB .64πC .62πD .6π2、全国III 理8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线3、浙江4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是 A .158B .162C .182D .324、浙江8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β 5、北京理(11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.6、北京理(12)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α. 以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.7、江苏9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 . 8、全国I 文16.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为______ _____.9、全国II 文理16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 10、全国III 理16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.11、浙江17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________,最大值是_______.12、北京理(16)(本小题14分)如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ;(Ⅱ)求二面角F –AE –P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.13、江苏16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .14、全国I 理18.(12分)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.文(2)求点C 到平面C 1DE 的距离.15、全国II 理(一)必考题:共60分。
2019年高考专题:立体几何试题及答案

2019年高考专题:立体几何试题1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .2.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.3.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE .(2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH.从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以117C E =,故417CH =. 从而点C 到平面1C DE 的距离为1717. 4.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==. 作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==.所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=. 5.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)取CG 的中点M ,连结EM ,DM.因为AB ∥DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE ⊥CG .由已知,四边形BCGE 是菱形,且∠EBC =60°得EM ⊥CG ,故CG ⊥平面DEM .因此DM ⊥CG .在Rt △DEM 中,DE =1,EM =3,故DM =2.所以四边形ACGD 的面积为4.6.【2019年高考北京卷文数】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(3)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解析】(1)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥.所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG .则FG ∥AB ,且FG =12AB .因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB .所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形.所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE ,所以CF ∥平面PAE .7.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【解析】(1)连接BD ,易知ACBD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =, 所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点, 所以3DN =.又DN AN ⊥,在Rt AND △中,3sin 3DN DAN AD ∠==. 所以,直线AD 与平面P AC 所成角的正弦值为33. 8.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .【解析】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .9.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3.由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35。
19年高考真题和模拟题分类汇编—理科数学4:立体几何

2019高考真题和模拟题分类汇编:立体几何1.【19年高考浙江卷 4】祖暅是我国南北朝时代的伟大科学家。
他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高。
若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是( ) (A )158 (B )162 (C )182 (D )322.【19年高考全国Ⅱ卷7】设,αβ为两个平面,则//αβ的充要条件是( ) (A )α内有无数条直线与β平行 (B )α内有两条相交直线与β平行 (C ),αβ平行于同一条直线 (D ),αβ垂直于同一平面3.【19年高考全国Ⅲ卷8】如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )(A )BM EN =,且直线,BM EN 是相交直线 (B )BM EN ≠,且直线,BM EN 是相交直线 (C )BM EN =,且直线,BM EN 是异面直线 (D )BM EN ≠,且直线,BM EN 是异面直线4.【19年高考浙江卷 8】设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点 (不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角为γ,则( )(A )βγ<,αγ< (B )βα<,βγ< (C )βα<,γα< (D )αβ<,γβ<5.【19年高考全国Ⅰ卷 12】已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,,E F 分别是,PA PB 的中点,090CEF ∠=,则球O 的体积为( )(A) (B) (C) (D6.【19年高考江苏卷 9】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是________。
2019高考数学立体几何真题汇总(一题不拉)

目录小题 .................................................................................................................................................................1 试卷不分文理中的解答: .......................................................................................................................8 文科解答: ................................................................................................................................................ 11 理科解答: (16)小题(2019•新课标Ⅱ文7)设α,β为两个平面,则//αβ的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解答】解:对于A ,α内有无数条直线与β平行,αβI 或//αβ; 对于B ,α内有两条相交直线与β平行,//αβ; 对于C ,α,β平行于同一条直线,αβI 或//αβ; 对于D ,α,β垂直于同一平面,αβI 或//αβ. 故选:B .(2019•新课标Ⅱ理7)设α,β为两个平面,则//αβ的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解答】解:对于A ,α内有无数条直线与β平行,αβI 或//αβ; 对于B ,α内有两条相交直线与β平行,//αβ; 对于C ,α,β平行于同一条直线,αβI 或//αβ; 对于D ,α,β垂直于同一平面,αβI 或//αβ. 故选:B .(2019•北京理12文13)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l m ⊥;②//m α;③l α⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:若 ,则 . 【解答】解:由l ,m 是平面α外的两条不同直线,知:由线面平行的判定定理得:若lα⊥,l m⊥,则//mα.故答案为:若lα⊥,l m⊥,则//mα.(2019•新课标Ⅲ理8文9)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD ⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解答】解:∵点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,∴BM⊂平面BDE,EN⊂平面BDE,∵BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,∴直线BM,EN是相交直线,设DE=a,则BD=√2a,BE=√34a2+54a2=√2a,∴BM=√72a,EN=√34a2+14a2=a,∴BM≠EN,故选:B.(2019•新课标Ⅰ文16)已知90ACB∠=︒,P为平面ABC外一点,2PC=,点P到ACB∠两边AC,BC P到平面ABC的距离为.【解答】解:90ACB ∠=︒,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边AC ,BC 的距离均为3,过点P 作PD AC ⊥,交AC 于D ,作PE BC ⊥,交BC 于E ,过P 作PO ⊥平面ABC ,交平面ABC于O ,连结OD ,OC ,则3PD PE ==,∴由题意得222(3)1CD CE OD OE ====-=,22312PO PD OD ∴=-=-=.P ∴到平面ABC 的距离为2.故答案为:2.(2019•北京理11文12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积1422(24)24402V =⨯⨯++⨯⨯=.故答案为:40.(2019•浙江4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:)cm ,则该柱体的体积(单位:3)cm 是( )A .158B .162C .182D .324【解答】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即()()114632632722ABCDE S =+⨯++⨯=五边形,高为6,则该柱体的体积是276162V =⨯=. 故选:B .(2019•上海14)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A .1B .2C .4D .8【解答】解:如图,则21142133V ππ=⨯⨯=,22121233V ππ=⨯⨯=,∴两个圆锥的体积之比为43223ππ=. 故选:B .(2019•江苏9)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 .【解答】解:Q 长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,∴11111120ABCD A B C D V AB BC DD -=⨯⨯=,∴三棱锥E BCD -的体积:13E BCD BCD V S CE -∆=⨯⨯1132BC DC CE =⨯⨯⨯⨯ 1112AB BC DD =⨯⨯⨯ 10=.故答案为:10.(2019•新课标Ⅲ文理16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD ﹣A 1B 1C 1D 1挖去四棱锥O ﹣EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm .3D 打印所用原料密度为0.9g /cm 3.不考虑打印损耗,制作该模型所需原料的质量为 g .【解答】解:该模型为长方体ABCD ﹣A 1B 1C 1D 1,挖去四棱锥O ﹣EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm ,∴该模型体积为: V ABCD−A 1B 1C 1D 1−V O ﹣EFGH=6×6×4−13×(4×6−4×12×3×2)×3=144﹣12=132(cm 3),∵3D 打印所用原料密度为0.9g /cm 3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g ). 故答案为:118.8.(2019•天津理11文12)已知四棱锥的底面是边长为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于12; 由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:21()124v sh ππ==⨯=;故答案为:4π(2019•新课标Ⅱ文理16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .【解答】解:该半正多面体共有888226+++=个面,设其棱长为x ,则1x =,解得1x =.故答案为:261.(2019•新课标Ⅰ理12)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( ) A .86πB .46πC .26πD .6π【解答】解:如图,由PA PB PC ==,ABC ∆是边长为2的正三角形,可知三棱锥P ABC -为正三棱锥,则顶点P 在底面的射影O 为底面三角形的中心,连接BO 并延长,交AC 于G ,则AC BG ⊥,又PO AC ⊥,POBG O =I,可得AC ⊥平面PBG ,则PB AC ⊥,E Q ,F 分别是PA ,AB 的中点,//EF PB ∴,又90CEF ∠=︒,即EF CE ⊥,PB CE ∴⊥,得PB ⊥平面PAC ,∴正三棱锥P ABC -的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为2226D PA PB PC =++=.半径为6,则球O 的体积为346()63ππ⨯=. 故选:D .(2019•浙江8)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<【解答】解:方法一、如图G 为AC 的中点,V 在底面的射影为O ,则P 在底面上的射影D 在线段AO 上,作DE AC ⊥于E ,易得//PE VG ,过P 作//PF AC 于F ,过D 作//DH AC ,交BG 于H ,则BPF α=∠,PBD β=∠,PED γ=∠,则cos cos PF EG DH BDPB PB PB PBαβ===<=,可得βα<;tan tan PD PDED BDγβ=>=,可得βγ<,方法二、由最小值定理可得βα<,记V AC B --的平面角为γ'(显然)γγ'=,由三正弦定理可得βγγ'<=;方法三、(特殊图形法)设三棱锥V ABC -为棱长为2的正四面体,P为VA 的中点,易得1cos α==可得sin α=,sin β==,sin 3γ==,当23AP =时,由余弦定理可得PB =281628cos α+-==,sin α=,可得αγ<,故C 错误.故选:B .试卷不分文理中的解答:(2019•江苏16)如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =. 求证:(1)11//A B 平面1DEC ; (2)1BE C E ⊥.【解答】证明:(1)Q 在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,//DE AB ∴,11//AB A B ,11//DE A B ∴,DE ⊂Q 平面1DEC ,11A B ⊂/平面1DEC ,11//A B ∴平面1DEC .解:(2)Q 在直三棱柱111ABC A B C -中,E 是AC 的中点,AB BC =.1BE AA ∴⊥,BE AC ⊥,又1AA AC A =I ,BE ∴⊥平面11ACC A ,1C E ⊂Q 平面11ACC A ,1BE C E ∴⊥.(2019•上海17)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.【解答】解:(1)依题意:1AA ⊥平面ABCD ,连接AC ,则1A C 与平面ABCD 所成夹角为1ACA ∠,15AA =Q ,5AC ==,∴△1ACA 为等腰三角形,14ACA π∴∠=,∴直线1A C 和平面ABCD 的夹角为4π,(2)(空间向量),如图建立坐标系, 则(0A ,0,0),(3C ,0,0),1(0A ,0,5),(3M ,0,2),∴(3AC =u u u r ,4,0),1(3A C =u u u u r,4,5)-,(0MC =u u u u r ,4.2)-,设平面1A MC 的法向量(n x =r ,y ,)z ,由3450420n AC x y z n MC y z ⎧=+-=⎪⎨=-=⎪⎩u u u r r g u u u u rr g ,可得(2n =r ,1,2),∴点A 到平面1A MC的距离||10||3AC n d n ===u u u r rg r . (2019•浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点. (Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.【解答】方法一:证明:(Ⅰ)连结1A E ,11A A AC =Q ,E 是AC 的中点,1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC ,平面11A ACC ⋂平面ABC AC =,1A E ∴⊥平面ABC ,1A E BC ∴⊥,1//A F AB Q ,90ABC ∠=︒,1BC A F ∴⊥,BC ∴⊥平面1A EF ,EF BC ∴⊥.解:(Ⅱ)取BC 中点G ,连结EG 、GF ,则1EGFA 是平行四边形,由于1A E ⊥平面ABC ,故1A E EG ⊥,∴平行四边形1EGFA 是矩形,由(Ⅰ)得BC ⊥平面1EGFA ,则平面1A BC ⊥平面1EGFA ,EF ∴在平面1A BC 上的射影在直线1A G 上,连结1A G ,交EF 于O ,则EOG ∠是直线EF 与平面1A BC 所成角(或其补角),不妨设4AC =,则在Rt △1A EG中,1A E =,EG ,O Q 是1A G的中点,故12AG EO OG ==,2223cos 25EO OG EG EOG EO OG +-∴∠==⨯⨯,∴直线EF 与平面1A BC 所成角的余弦值为35.方法二:证明:(Ⅰ)连结1A E ,11A A AC =Q ,E 是AC 的中点,1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC ,平面11A ACC ⋂平面ABC AC =,1A E ∴⊥平面ABC ,如图,以E 为原点,在平面ABC 中,过E 作AC 的垂线为x 轴,EC ,1EA 所在直线分别为y ,z 轴,建立空间直角坐标系,设4AC =,则1(0A ,0,,B,1B,32F ,(0C ,2,0),32EF =u u u r,(BC =u u u r ,由0EF BC =u u u r u u u r g ,得EF BC ⊥.解:(Ⅱ)设直线EF 与平面1A BC 所成角为θ,由(Ⅰ)得(BC =u u u r ,1(0A C =u u u u r,2,-,设平面1A BC 的法向量(n x =r ,y ,)z,则100BC n y AC n y ⎧=+=⎪⎨==⎪⎩u u u r rg u u u u r rg ,取1x =,得n =r ,||4sin 5||||EF n EF n θ∴==u u u r rg u u ur r g ,∴直线EF 与平面1A BC35=.文科解答:(2019•北京文18)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若60ABC ∠=︒,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得//CF 平面PAE ?说明理由.【解答】证明:(Ⅰ)Q 四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,BD PA ∴⊥,BD AC ⊥,PA AC A =Q I ,BD ∴⊥平面PAC .(Ⅱ)Q 在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点,60ABC ∠=︒,AB AE ∴⊥,PA AE ⊥,PA AB A =Q I ,AE ∴⊥平面PAB ,AE ⊂Q 平面PAE ,∴平面PAB ⊥平面PAE .解:(Ⅲ)棱PB 上是存在中点F ,使得//CF 平面PAE .理由如下:取AB 中点G ,连结GF ,CG ,Q 在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点,//CG AE ∴,//FG PA ,CG FG G =Q I ,AE PA A =I ,∴平面//CFG 平面PAE ,CF ⊂Q 平面CFG ,//CF ∴平面PAE .(2019•新课标Ⅰ文19)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求点C 到平面1C DE 的距离.【解答】解法一:证明:(1)连结1B C ,ME ,M Q ,E 分别是1BB ,BC 的中点,1//ME B C ∴,又N 为1A D 的中点,112ND A D ∴=,由题设知11//A B DC =,11//B C A D =∴,//ME ND =∴,∴四边形MNDE 是平行四边形,//MN ED ,又MN ⊂/平面1C DE ,//MN ∴平面1C DE .解:(2)过C 作1C E 的垂线,垂足为H ,由已知可得DE BC ⊥,1DE C C ⊥,DE ∴⊥平面1C CE ,故DE CH ⊥,CH ∴⊥平面1C DE ,故CH 的长即为C 到时平面1C DE 的距离,由已知可得1CE =,14CC =,1C E ∴,故CH =,∴点C 到平面1C DE(2019•新课标Ⅱ文17)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.(1)证明:BE ⊥平面11EB C ;(2)若1AE A E =,3AB =,求四棱锥11E BB C C -的体积.【解答】解:(1)证明:由长方体1111ABCD A B C D -,可知11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,11B C BE ∴⊥,1BE EC ⊥Q ,1111B C EC C =I ,BE ∴⊥平面11EB C ;(2)由(1)知190BEB ∠=︒,由题设可知Rt ABE Rt ∆≅△11A B E ,1145AEB A EB ∴∠=∠=︒,3AE AB ∴==,126AA AE ==,Q 在长方体1111ABCD A B C D -中,1//AA 平面11BB C C ,1E AA ∈,AB ⊥平面11BB C C ,E ∴到平面11BB C C 的距离3d AB ==,∴四棱锥11E BB C C-的体积1363183V =⨯⨯⨯=.(2019•新课标Ⅲ文19)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【解答】解:(1)证明:由已知可得AD ∥BE ,CG ∥BE ,即有AD ∥CG ,则AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面;由四边形ABED 为矩形,可得AB ⊥BE ,由△ABC 为直角三角形,可得AB ⊥BC ,又BC ∩BE =B ,可得AB ⊥平面BCGE ,AB ⊂平面ABC ,可得平面ABC ⊥平面BCGE ;(2)连接BG ,AG ,由AB ⊥平面BCGE ,可得AB ⊥BG ,在△BCG 中,BC =CG =2,∠BCG =120°,可得BG =2BC sin60°=2√3,可得AG =√AB 2+BG 2=√13,在△ACG 中,AC =√5,CG =2,AG =√13,可得cos ∠ACG =2×2×5=5,即有sin ∠ACG =5,则平行四边形ACGD 的面积为2×√5×2√5=4.(2019•天津文17)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD ∆为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =. (Ⅰ)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.【解答】证明:(Ⅰ)连结BD ,由题意得AC BD H =I ,BH DH =,又由BG PG =,得//GH PD ,GH ⊂/Q 平面PAD ,PD ⊂平面PAD ,//GH ∴平面PAD .(Ⅱ)取棱PC 中点N ,连结DN ,依题意得DN PC ⊥,又Q 平面PAC ⊥平面PCD ,平面PAC ⋂平面PCD PC =,DN ∴⊥平面PAC ,又PA ⊂平面PAC ,DN PA ∴⊥,又PA CD ⊥,CD DN D =I ,PA ∴⊥平面PCD .解:(Ⅲ)连结AN ,由(Ⅱ)中DN ⊥平面PAC ,知DAN ∠是直线AD 与平面PAC 所成角,PCD ∆Q 是等边三角形,2CD =,且N 为PC 中点,DN ∴=又DN AN ⊥,在Rt AND∆中,sin DN DAN DA ∠==∴直线AD 与平面PAC .理科解答:(2019•天津理17)如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(Ⅰ)求证://BF 平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.【解答】(Ⅰ)证明:以A 为坐标原点,分别以AB u u u r ,AD u u u r ,AE u u u r所在直线为x ,y ,z 轴建立空间直角坐标系,可得(0A ,0,0),(1B ,0,0),(1C ,2,0),(0D ,1,0),(0E ,0,2).设(0)CF h h =>,则(1F ,2,)h .则(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r ,可得0BF AB =u u u r u u u rg .又Q 直线BF ⊂/平面ADE ,//BF ∴平面ADE ;(Ⅱ)解:依题意,(1,1,0)BD =-u u u r ,(1,0,2)BE =-u u u r ,(1,2,2)CE =--u u u r.设(,,)n x y z =r 为平面BDE 的法向量,则020n BD x y n BE x z ⎧=-+=⎪⎨=-+=⎪⎩u u u r r g u u u rr g ,令1z =,得(2,2,1)n =r . 4cos ,9||||CE n CE n CE n ∴<>==-u u u r ru u u r g r u u ur r g . ∴直线CE 与平面BDE 所成角的正弦值为49; (Ⅲ)解:设(,,)m x y z =r 为平面BDF 的法向量,则020m BD x y m BF y hz ⎧=-+=⎪⎨=+=⎪⎩u u u r r g u u u rr g ,取1y =,可得2(1,1,)m h=-r,由题意,2|4|||1|cos ,|||||3m n m n m n -<>===r rg r r r r g ,解得87h =. 经检验,符合题意.∴线段CF 的长为87.(2019•北京理16)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,//AD BC ,2PA AD CD ===,3BC =.E 为PD 的中点,点F 在PC 上,且13PF PC =. (Ⅰ)求证:CD ⊥平面PAD ; (Ⅱ)求二面角F AE P --的余弦值; (Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【解答】证明:(Ⅰ)PA ⊥Q 平面ABCD ,PA CD ∴⊥,AD CD ⊥Q ,PA AD A =I ,CD ∴⊥平面PAD .解:(Ⅱ)以A 为原点,在平面ABCD 内过A 作CD 的平行线为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,(0A ,0,0),(0E ,1,1),2(3F ,23,4)3,(0P ,0,2),(2B ,1-,0),(0AE =u u u r ,1,1),224(,,)333AF =u u u r ,平面AEP 的法向量(1n =r ,0,0),设平面AEF的法向量(m x =r ,y ,)z ,则02240333m AE y z m AF x y z ⎧=+=⎪⎨=++=⎪⎩u u u r r g u u u r r g ,取1x =,得(1m =r ,1,1)-,设二面角F AE P --的平面角为θ,则||cos ||||m n m n θ==r rg r r g∴二面角F AE P --. (Ⅲ)直线AG 在平面AEF 内,理由如下:Q 点G 在PB 上,且23PG PB =.4(3G ∴,23-,2)3,∴4(3AG =u u u r ,23-,2)3,Q 平面AEF 的法向量(1m =r ,1,1)-,4220333m AG =--=u u ur r g ,故直线AG 在平面AEF 内.(2019•新课标Ⅲ理19)图1是由矩形ADEB 、Rt △ABC 和菱形BFGC组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B ﹣CG ﹣A 的大小.【解答】证明:(1)由已知得AD ∥BE ,CG ∥BE ,∴AD ∥CG ,∴AD ,CG 确定一个平面,∴A ,C ,G ,D 四点共面,由已知得AB ⊥BE ,AB ⊥BC ,∴AB ⊥面BCGE ,∵AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE .解:(2)作EH ⊥BC ,垂足为H ,∵EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,∴EH ⊥平面ABC ,由已知,菱形BCGE 的边长为2,∠EBC =60°,∴BH =1,EH =√3,以H 为坐标原点,HC →的方向为x 轴正方向,建立如图所求的空间直角坐标系H ﹣xyz ,则A (﹣1,1,0),C (1,0,0),G (2,0,√3 ),CG →=(1,0,√3),AC →=(2,﹣1,0),设平面ACGD 的法向量n →=(x ,y ,z ),则{CG →⋅n →=x +√3z =0AC →⋅n →=2x −y =0,取x =3,得n →=(3,6,−√3),又平面BCGE 的法向量为m →=(0,1,0),∴cos <n →,m →>=n →⋅m→|n →|⋅|m →|=√32,∴二面角B ﹣CG ﹣A 的大小为30°.(2019•新课标Ⅱ理17)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.(1)证明:BE ⊥平面11EB C ;(2)若1AE A E =,求二面角1B EC C --的正弦值.【解答】证明:(1)长方体1111ABCD A B C D -中,11B C ⊥平面11ABA B ,11B C BE ∴⊥,1BE EC ⊥Q ,BE ∴⊥平面11EB C .解:(2)以C 为坐标原点,建立如图所示的空间直角坐标系,设11AE A E ==,BE ⊥Q 平面11EB C ,1BE EB ∴⊥,1AB ∴=,则(1E ,1,1),(1A ,1,0),1(0B ,1,2),1(0C ,0,2),(0C ,0,0),1BC EB ⊥Q ,1EB ∴⊥面EBC ,故取平面EBC 的法向量为1(1m EB ==-u u u r r ,0,1),设平面1ECC 的法向量(n x =r ,y ,)z ,由100n CC n CE ⎧=⎪⎨=⎪⎩u u u ur r gu u u rr g ,得00z x y z =⎧⎨++=⎩,取1x =,得(1n =r ,1-,0),1cos ,||||2m n m n m n ∴<>==-r rg r rr r g ,∴二面角1B EC C --.(2019•新课标Ⅰ理18)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1理)证明://MN 平面1C DE ; (2理)求二面角1A MA N --的正弦值.【解答】(1理)证明:如图,过N 作NH AD ⊥,则1//NH AA ,且112NH AA =,又1//MB AA ,112MB AA =,∴四边形NMBH 为平行四边形,则//NM BH ,由1//NH AA ,N 为1A D 中点,得H 为AD 中点,而E 为BC 中点,//BE DH ∴,BE DH =,则四边形BEDH 为平行四边形,则//BH DE ,//NM DE ∴,NM ⊂/Q 平面1C DE ,DE ⊂平面1C DE ,//MN ∴平面1C DE ; (2理)解:以D 为坐标原点,以垂直于DC 得直线为x 轴,以DC 所在直线为y 轴,以1DD 所在直线为z轴建立空间直角坐标系,则N 12-,2),M 1,2),1A ,1-,4),3,0)2NM =u u u u r,11,2)2NA =-u u u u r ,设平面1A MN 的一个法向量为(,,)m x y z =r,由13021202m NM y m NA y z ⎧=+=⎪⎪⎨⎪-+=⎪⎩u u u u r r g u u u u r r g,取x =1,1)m =--r ,又平面1MAA 的一个法向量为(1,0,0)n =r,cos ,||||m n m n m n ∴<>===r rg r rr r g .∴二面角1A MA N --.。
专题18 立体几何综合-2019年高考理数母题题源系列(全国Ⅰ专版)(原卷版)

专题18 立体几何综合【母题来源一】【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(2)10 5.【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=P DC,可得B1C=P A1D,故ME=P ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r ,1(13,2)A M =--u u u u r ,1(1,0,2)A N =--u u u u r ,(0,3,0)MN =-u u u u r.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r m m ,所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n 所以3020q p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --的正弦值为105. 【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型. 【母题来源二】【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【答案】(1)见解析;(2)3. 【解析】方法一:(1)由已知可得,BF ⊥PF ,BF ⊥EF , 所以BF ⊥平面PEF . 又BF ⊂平面ABFD , 所以平面PEF ⊥平面ABFD .(2)在平面DEF 中,过P 作PH ⊥EF 于点H ,连接DH ,如图,由于EF 为平面ABCD 和平面PEF 的交线,PH ⊥EF , 则PH ⊥平面ABFD ,故PH ⊥DH . 则DP 与平面ABFD 所成的角为PDH ∠. 在三棱锥P -DEF 中,可以利用等体积法求PH . 因为DE ∥BF 且PF ⊥BF ,所以PF ⊥DE , 又△≌△PDF CDF ,所以∠FPD =∠FCD =90°,所以PF ⊥PD ,由于DE ∩PD =D ,则PF ⊥平面PDE , 故13F PDE PDE V PF S -=⋅△, 因为BF ∥DA 且BF ⊥平面PEF , 所以DA ⊥平面PEF , 所以DE ⊥EP .设正方形的边长为2a ,则PD =2a ,DE =a ,在△PDE 中,PE =,所以2PDE S =△,故36F PDE V a -=, 又2122DEF S a a a =⋅=△,所以23F PDE V PH a -==,所以在△PHD 中,sin 4PH PDH PD ∠==,故DP 与平面ABFD 方法二:(1)由已知可得,BF ⊥PF ,BF ⊥EF , 所以BF ⊥平面PEF . 又BF ⊂平面ABFD , 所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF u u u r的方向为y 轴正方向,||BF uuu r 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=3. 又PF=1,EF=2,故PE⊥PF.可得33,22PH EH==.则3333(0,0,0),(0,0,),(1,,0),(1,,),22H P D DP--=u u u r3(0,0,)HP=u u u r为平面ABFD的法向量.设DP与平面ABFD所成角为θ,则334sin||4||||3HP DPHP DPθ⋅===u u u r u u u ru u u r u u u r.所以DP与平面ABFD所成角的正弦值为3.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.【母题来源三】【2017年高考全国Ⅰ卷理数】如图,在四棱锥P−ABCD中,AB//CD,且90BAP CDP∠=∠=o. (1)证明:平面P AB⊥平面P AD;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值. 【答案】(1)见解析;(2)3-. 【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD , 从而AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F , 由(1)可知,AB ⊥平面PAD , 故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得22A ,2(0,0,2P ,22B ,2(2C -. 所以22(PC =u u u r ,2,0,0)CB =u u u r ,22)PA =u u u r ,(0,1,0)AB =u u u r .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即220,20,x y z x ⎧+-=⎪⎨⎪=⎩可取(0,1,2)=--n . 设(,,)x y z =m 是平面PAB 的法向量,则0,0,PAAB⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u rmm即220,220.xzy⎧-=⎪⎨⎪=⎩可取(1,0,1)=m.则3cos,||||3⋅==-<>n mn mn m,所以二面角A PB C--的余弦值为3-.【思路点拨】(1)根据题设条件可以得出AB⊥AP,CD⊥PD.而AB//CD,就可证明出AB⊥平面P AD,进而证明出平面P AB⊥平面P AD.(2)先找出AD中点,找出相互垂直的线,建立以F为坐标原点,FAu u u r的方向为x轴正方向,||ABuuu r为单位长的空间直角坐标系,列出所需要的点的坐标,设(,,)x y z=n是平面PCB的法向量,(,,)x y z=m是平面PAB的法向量,根据垂直关系,求出(0,1,2)=--n和(1,0,1)=m,利用数量积公式可求出二面角的平面角.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.【命题意图】高考对本部分内容的考查以能力为主,重点考查线面关系、面面关系、线面角及二面角的求解,考查数形结合的思想,空间想象能力及运算求解能力等.【命题规律】高考对该部分内容的考查主要有两种形式:一是利用立体几何的知识证明线面关系、面面关系;二是考查学生利用空间向量解决立体几何的能力,考查空间向量的坐标运算,以及平面的法向量等,难度属于中等偏上,解题时应熟练掌握空间向量的坐标表示和坐标运算,把空间立体几何问题转化为空间向量问题.【答题模板】运用空间向量坐标运算求空间角的一般步骤: (1)建立恰当的空间直角坐标系; (2)求出相关点的坐标; (3)写出向量坐标;(4)结合公式进行论证、计算; (5)转化为几何结论. 【方法总结】1.直线与平面、平面与平面的平行与垂直的向量判定方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行:l ∥α⇔a ⊥μ⇔a·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0; (2)线面垂直:l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2; (3)面面平行:α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3; (4)面面垂直:α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.注意:用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外. 2.利用向量求异面直线所成的角把角的求解转化为向量运算,“转化”是求异面直线所成角的关键,一般地,异面直线AC ,BD 的夹角β的余弦值为cos β=||||AC BD AC BD ⋅⋅uuu r uu u ruuur uu u r . 注意:两条异面直线所成的角α不一定是两直线的方向向量的夹角β,即cos α=|cos β|. 3.利用向量求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.注意:直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 3,b 3,c 3),直线l 与平面α的夹角为π20θθ⎛⎫≤≤⎪⎝⎭,则||sin |cos ,|||||θ⋅==〈〉a a a μμμ.4.利用向量求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.注意:两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.设平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4),平面α,β的夹角为θ(0≤θ≤π),则|||cos ||cos ,|||||θ⋅==〈〉v v v μμμ.5.用向量解决探索性问题的方法(1)确定点在线段上的位置时,通常利用向量共线来求.(2)确定点在平面内的位置时,充分利用平面向量基本定理表示出有关向量的坐标而不是直接设出点的坐标.(3)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.1.【陕西省汉中市2019届高三全真模拟考试数学】如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,∥EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ;(2)若二面角D AP C --的余弦值为6,求PF 的长度.2.【广东省肇庆市2019届高中毕业班第三次统一检测数学】如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1∥CB 平面1A EF ;(2)若CA CB ⊥,平面CAB ⊥平面11ABB A ,求二面角1F A E A --的余弦值.3.【湖南省师范大学附属中学2019届高三考前演练(五)】在五边形AEBCD 中,BC CD ⊥,∥CD AB ,22AB CD BC ==,AE BE ⊥,AE BE =(如图).将△ABE 沿AB 折起,使平面ABE ⊥平面ABCD ,线段AB 的中点为O (如图).(1)求证:平面ABE ⊥平面DOE ;(2)求平面EAB 与平面ECD 所成的锐二面角的大小.4.【河南省百校联盟2019届高三考前仿真试卷数学】如图,在几何体1111ACD A B C D -中,四边形11ADD A ,11CDD C 为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(1)证明:11B C ⊥平面1CC E ;(2)求直线11B C 与平面1B CE 所成角的正弦值.5.【安徽省1号卷A10联盟2019届高考最后一卷数学】如图,在四棱锥S ABCD -中,△BCD 为等边三角形,,120AD AB SD SB BAD ===∠=︒.(1)若点,M N 分别是线段,SC CD 的中点,求证:平面∥BMN 平面SAD ;(2)若二面角S BD C --为直二面角,求直线AC 与平面SCD 所成角的正弦值.6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评数学】如图,三棱柱111ABC A B C -中,平面11ACC A ⊥平面ABC ,12AA AC CB ==,90ACB ∠=︒.(1)求证:平面11AB C ⊥平面11A B C ;(2)若1A A 与平面ABC 所成的线面角为60︒,求二面角11C AB C --的余弦值.7.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)数学】已知正方形的边长为4,,E F 分别为,AD BC的中点,以EF为棱将正方形ABCD折成如图所示的60︒的二面角,点M在线段AB上.A D E三点所确定平面的交点为O,试确定点O的位置,(1)若M为AB的中点,且直线MF,由,,OD平面EMC;并证明直线∥--(2)是否存在点M,使得直线DE与平面EMC所成的角为60︒;若存在,求此时二面角M EC F 的余弦值,若不存在,说明理由.。
2019年高考数学(理)真题和模拟题分项汇编专题04 立体几何-含解析

2019年高考数学(理)真题和模拟题分项汇编专题04 立体几何1.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥, PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==344π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12E F P B x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D \为AC 的中点,1cos 2AD EAC PA x∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,,,PA PB PC ∴===又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==2R ∴=,34433V R ∴=π==,故选D.2.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.。
2019年高考真题理科数学解析汇编:立体几何26页word文档

第 1 页2019年高考真题理科数学解析汇编:立体几何一、选择题1 .(2019年高考(新课标理))已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ( )A.6BC.3 D22 .(2019年高考(新课标理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .183 .(2019年高考(浙江理))已知矩形ABCD ,AB =1,BC 将∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中, A .存在某个位置,使得直线AC 与直线BD 垂直 B .存在某个位置,使得直线AB 与直线CD 垂直 C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直4 .(2019年高考(重庆理))设四面体的六条棱的长分别为a ,且长为a 异面,则a 的取值范围是 ( )A .B .C .D .5 .(2019年高考(四川理))如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为 ( )A .arccos4R B .4Rπ C .arccos3R D .3Rπ 6 .(2019年高考(四川理))下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行7 .(2019年高考(上海春))已知空间三条直线.l m n 、、若l 与m 异面,且l 与n 异面,则 [答]第 2 页( )A .m 与n 异面.B .m 与n 相交.C .m 与n 平行.D .m 与n 异面、相交、平行均有可能.8 .(2019年高考(陕西理))如图,在空间直角坐标系中有直三棱柱111A B C A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( )ABCD .359 .(2019年高考(江西理))如图,已知正四棱锥S-ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图像大致为10.(2019年高考(湖南理))某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是11.(2019年高考(湖北理))我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d的一个近似公式d ≈人们还用过一些类似的近似公式. 根据π =3.14159判断,下列近似公式中最精确的一个是( )[来源:shulihua]A.d ≈ B.d ≈C.d ≈D .(一)必考题(11—14题)12.(2019年高考(湖北理))已知某几何体的三视图如图所示,则该几何体的体积为A .8π3B .3πC .10π3D .6π13.(2019年高考(广东理))(立体几何)某几何体的三视图如图1所示,它的体积为 ( )A .12πB .45πC .57πD .81π14.(2019年高考(福建理))一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 ( )A 图1B C D 侧视图正视图俯视图第 3 页A .球B .三棱柱C .正方形D .圆柱15.(2019年高考(大纲理))已知正四棱柱1111ABCD A B C D -中,12,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为 ( )A .2BCD .116.(2019年高考(北京理))某三棱锥的三视图如图所示,该三棱锥的表面积是 ( )A.28+B.30+C.56+D .60125+17.(2019年高考(安徽理))设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分不必要条件二、填空题18.(2019年高考(天津理))―个几何体的三视图如图所示(单位:m ),则该几何体的体积为______3m .19.(2019年高考(浙江理))已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.20.(2019年高考(四川理))如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________.21.(2019年高考(上海理))如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2。
2019年高考数学分类汇编:立体几何

训练一:2019年高考文科数学新课标Ⅰ卷第16题:已知090=∠ACB ,P 为平面ABC 外一点,2=PC ,点P 到ACB ∠两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为 。
本题解答:如下图所示:假设:⊥PO 平面ABC ,OD 、⊂OE 平面OD PO ABC ⊥⇒,OE PO ⊥。
22223PO PO PD OD OD PO -=-=⇒⊥,22223PO PO PE OE OE PO -=-=⇒⊥ OE OD OE OD =⇒=⇒22。
⊥PO 平面ABC ,AC ,⊂BC 平面AC PO ABC ⊥⇒,BC PO ⊥。
AC PO ⊥,AC PD ⊥,PO 、⊂PD 平面⊥⇒AC PDO 平面PDO ,⊂OD 平面OD AC PDO ⊥⇒。
BC PO ⊥,BC PE ⊥,PO 、⊂PE 平面⊥⇒BC PEO 平面PEO ,⊂OE 平面OE BC PEO ⊥⇒。
OD AC ⊥,OE BC ⊥,⇒=∠090ACB 四边形CEOD 是矩形,⇒=OE OD 四边形CEOD 是正方形。
在COD Rt ∆中:2222222633PO PO PO CD OD CO -=-+-=+=。
⊥PO 平面ABC ,⊂OC 平面222222226=-+⇒=+⇒⊥⇒PO PO PC OC PO OC PO ABC⇒=⇒=⇒222PO PO P 到平面ABC 的距离为2。
训练二:2019年高考文科数学新课标Ⅰ卷第19题:如图,直四棱柱1111D C B A ABCD -的底面是菱形,41=AA ,2=AB ,060=∠BAD ,E ,M ,N 分别是BC ,1BB ,D A 1的中点。
(Ⅰ)证明://MN 平面DE C 1; (Ⅱ)求点C 到平面DE C 1的距离。
本题解答:(Ⅰ)证明:连接ME 和C B 1。
M 是1BB 的中点,E 是BC 的中点ME ⇒是C BB 1∆的中位线C B ME 1//⇒,C B ME 121=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题04 立体几何
1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则
A.BM=EN,且直线BM,EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是
A.158 B.162
C.182 D.324
4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ
B .β<α,β<γ
C .β<α,γ<α
D .α<β,γ<β
5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,
BC P 到平面ABC 的距离为___________.
6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长
方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)
7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方
体1111ABCD A B C D 挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3
,不考虑打印损耗,制作该模型所需原料的质量为___________g.
8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网
格纸上小正方形的边长为1,那么该几何体的体积为__________.
9.【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:
①l ⊥m ;②m ∥α;③l ⊥α.
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
10.【2019若圆柱的一个
底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.
11.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD
的体积是 ▲ .
12.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,
E ,M ,N 分别是BC ,BB 1,A 1D 的中点.
(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.
13.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1
上,BE ⊥EC 1.
(1)证明:BE ⊥平面EB 1C 1;
(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C 的体积.
14.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,
∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的四边形ACGD的面积.
-中,PA⊥平面ABCD,底部ABCD为菱形,E 15.【2019年高考北京卷文数】如图,在四棱锥P ABCD
为CD的中点.
(1)求证:BD⊥平面PAC;
(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
16.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等
边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.
(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;
(3)求直线AD 与平面PAC 所成角的正弦值.
17.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .
求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .
18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,
11
30,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;
(2)求直线EF 与平面A 1BC 所成角的余弦值.
19.【云南省昆明市2019届高三高考5月模拟数学试题】已知直线l ⊥平面α,直线m ∥平面β,若αβ⊥,
则下列结论正确的是 A .l β∥或l β⊄ B .//l m C .m α⊥
D .l m ⊥
20.【陕西省2019届高三年级第三次联考数学试题】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,
1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为
A B .
34
C .4
D .
54
21.【四川省宜宾市2019届高三第三次诊断性考试数学试题】如图,边长为2的正方形ABCD 中,,E F 分别是,BC CD 的中点,现在沿,AE AF 及EF 把这个正方形折成一个四面体,使,,B C D 三点重合,重合后的点记为P ,则四面体P AEF -的高为
A .
1
3 B .
23
C .34
D .1
22.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在三棱锥P ABC -中,平面PAB ⊥
平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.
23.【河南省洛阳市2019年高三第三次统一考试(5月)数学试题】在四棱柱1111ABCD A B C D -中,四边
形ABCD 是平行四边形,1A A ⊥平面ABCD , 60BAD ∠=︒,12,1,AB BC AA ===,E 为11
A B 中点.
(1)求证:平面1A BD ⊥平面1A AD ; (2)求多面体1A E ABCD -的体积.。