Is stereotactic radiosurgery a rational treatment

合集下载

立体定向放射外科学名词解释

立体定向放射外科学名词解释

立体定向放射外科学名词解释
立体定向放射外科
立体定向放射外科(Stereotactic Radiosurgery, SRS)是一种使用立体定向技术结合放射疗法的非侵入性治疗方法。

它利用三维坐标系统精确定位和定向照射肿瘤,最大限度地减少对周围正常组织的损伤。

名词解释
立体定向技术
立体定向技术是通过利用图像引导和定位系统,将超声波、磁共振(MRI)或计算机断层扫描(CT)等影像进行三维重建,进而确定目标区域的准确位置。

放射疗法
放射疗法(Radiation Therapy)是一种利用高能辐射杀灭或抑制肿瘤细胞生长的治疗方式。

常用的放射疗法包括外部放射治疗和内部放射治疗。

非侵入性治疗方法
非侵入性治疗方法是指在进行治疗时不需要进行手术或穿刺等侵入性操作的一种治疗方式。

立体定向放射外科属于非侵入性治疗方法,可以减少患者的手术风险和恢复时间。

脑部放疗引起认知功能障碍的预防和治疗

脑部放疗引起认知功能障碍的预防和治疗

•综述.脑部放疗引起认知功能障碍的预防和治疗彭雯硕陈乃耀胡霞张靖宜华北理工大学附属医院血液内科,唐山 063000通信作者:陈乃耀,Email:nychenncmc@【摘要】放射性脑损伤是恶性肿瘤放疗后的严重不良反应,在放疗后期常出现认知功能障碍,严重影响患者的生命质量。

尽管放疗引起的认知功能障碍的机制尚不完全明确,但随着人们对认知功能障碍的关注,越来越多的预防策略应用于临床,包括海马回避的全脑放疗、立体定向放射外科在多发性脑转移患者中的应用以及使用神经保护药物美金刚、多奈哌齐等。

为脑瘤患者选择合适的放疗管理模式,规律进行认知测试,并在适当的时机提供治疗措施对改善患者的生命质量至关重要。

【关键词】放射性脑损伤;认知功能障碍;生活质量基金项目:河北省政府资助临床医学优秀人才培养计划(H2013209253)DOI :10. 3760/cma. j. cn371439-20200810-00010Prevention and treatment of cognitive dysfunction caused by radiotherapy to the brainPeng Wenshuo, Ch^n Naiyao, Hu X ia, Zhang JingyiDepartment o f Hematology ^Affiliated Hospital o f North China University o f Science and Technology, Tangshan063000,ChinaCorresponding author ••Chen Naiyao, Em ail:******************【Abstract】Radiation-induced brain injury is a serious untoward effect of radiotherapy for malignanttumors. Patients received radiotherapy frequently occur cognitive dysfunction which seriously affects the qualityof life. Although the exact mechanisms regarding radiation-induced cognitive dysfunction remain unclear,prevention strategies targeting cognitive dysfunction are increasingly applied to clinical intervention, includingwhole brain radiotherapy with hippocampus avoidance, stereotactic radiosurgery in patients with multiple brainmetastases, and pretreatment with neuroprotective drugs such as memantine and donepezil. In addition,measures including appropriate radiotherapy management models, regular cognitive tests,an(J therapeuticmeasures at the appropriate time are critical to improve the quality of life for brain tumor patients.【Key words】Radiation-induced brain injury; Cognitive dysfunction; Quality of lifeFund program:Hebei Provincial Government Funding Program for the Training of Outstanding ClinicalMedical Personnel ( H2013209253)DOI:10. 3760/cma. j. cn371439-20200810-00010放疗是治疗原发性或转移性脑瘤的重要手段,随着放疗技术的不断进步,患者生存期逐渐延长,常常 出现一系列与放疗相关的不良反应,其中放射性脑损 伤(radiation-induced brain injury,RIBI)是放疗后主要 的神经系统并发症。

脊柱转移肿瘤治疗决策系统的研究进展

脊柱转移肿瘤治疗决策系统的研究进展

488重庆医学2022年3月第51卷第5期㊃综述㊃d o i:10.3969/j.i s s n.1671-8348.2022.05.035网络首发h t t p s://k n s.c n k i.n e t/k c m s/d e t a i l/50.1097.R.20220124.1906.013.h t m l(2022-01-25)脊柱转移肿瘤治疗决策系统的研究进展*钟远鸣1,赵庆瑞2综述,叶伟权2,邱伟2审校(1.广西中医药大学第一附属医院,南宁530001;2.广西中医药大学研究生院,南宁530001)[摘要]骨骼是晚期恶性肿瘤常见的侵犯部位,其中脊柱转移肿瘤由于其独特的解剖位置,往往容易压迫脊髓㊁神经等组织而产生严重的并发症㊂既往主要依据T o k u h a s h i㊁T o m i t a等经典预后评分系统对脊柱转移瘤患者进行预后评估,但上述系统未能从靶向治疗及其他一些新兴的治疗方式中获益,准确性逐渐降低㊂近年来立体定向放射外科手术(S R S)㊁微创外科技术(M I S)及生物治疗等不断发展,脊柱转移瘤患者的预后情况进一步改善,B a r t e l s㊁B o l l e n㊁L e i等现代预后评分系统应运而生,它们的出现提高了预后评估有效性,但仅依靠预期生存时间仍不能直接进行临床决策㊂N OM S及其他基于治疗原则的决策系统综合考虑了患者肿瘤学㊁脊柱稳定性㊁全身系统情况等多个方面制订治疗方案,应用广泛㊂该文简要综述脊柱转移性肿瘤评分决策系统的发展历史及研究进展,讨论其优缺点并对未来制订新型决策系统提出建议㊂[关键词]脊柱转移肿瘤;预后评估;决策系统;放射治疗;手术治疗;综述[中图法分类号] R738.1[文献标识码] A[文章编号]1671-8348(2022)05-0884-06A d v a n c e s i n d e c i s i o n-m a k i n g s y s t e m f o r t h e t r e a t m e n t o fs p i n a l m e t a s t a t i c t u m o r s*Z H O N G Y u a n m i n g1,Z HA O Q i n g r u i2,Y E W e i q u a n2,Q I U W e i2(1.t h e F i r s t A f f i l i a t e d H o s p i t a l o f G u a n g x i U n i v e r s i t y,N a n n i n g,G u a n g x i530001,C h i n a;2.S c h o o l o fG r a d u a t e S t u d i e s,G u a n g x i U n i v e r s i t y o f C h i n e s e M e d i c i n e,N a n n i n g,G u a n g x i530001,C h i n a)[A b s t r a c t] B o n e i s a c o mm o n i n v a s i o n s i t e o f a d v a n c e d m a l i g n a n t t u m o r s.B e c a u s e o f i t s u n i q u e a n a t o m-i c a l p o s i t i o n,t h e s p i n a l m e t a s t a t i c t u m o r s a r e o f t e n e a s y t o o p p r e s s t h e s p i n a l c o r d,n e r v e s a n d o t h e r t i s s u e s a n d p r o d u c e s e r i o u s c o m p l i c a t i o n s.I n t h e p a s t,T o k u h a s h i,T o m i t a a n d o t h e r c l a s s i c a l s c o r i n g s y s t e m s w e r e m a i n l y u s e d t o e v a l u a t e t h e p r o g n o s i s o f t h e p a t i e n t s w i t h s p i n a l m e t a s t a t i c t u m o r s.B u t t h e y f a i l e d t o b e n e f i t f r o m s o m e e m e r g i n g t r e a t m e n t m e t h o d s,a n d t h e i r a c c u r a c y g r a d u a l l y d e c r e a s e d.I n r e c e n t y e a r s,w i t h t h e c o n-t i n u o u s d e v e l o p m e n t o f m i n i m a l l y i n v a s i v e s u r g e r y(M I S),s t e r e o t a c t i c r a d i o s u r g e r y(S R S)a n d b i o t h e r a p y, t h e p r o g n o s i s o f t h e p a t i e n t s w i t h s p i n a l m e t a s t a s e s h a s b e e n f u r t h e r i m p r o v e d.M o d e r n s c o r i n g s y s t e m s s u c h a s B a r t e l s,B o l l e n a n d L e i e m e r g e a s t h e t i m e s r e q u i r e,w h i c h h a v e i m p r o v e d t h e e f f e c t i v e n e s s o f t h e p r o g n o s i s e v a l u a t i o n.H o w e v e r,t h e e x p e c t e d s u r v i v a l t i m e a l o n e i s s t i l l n o t a d i r e c t b a s i s f o r c l i n i c a l d e c i s i o n-m a k i n g. N OM S a n d o t h e r d e c i s i o n s y s t e m s b a s e d o n t r e a t m e n t p r i n c i p l e s c o m p r e h e n s i v e l y c o n s i d e r m u l t i p l e a s p e c t s s u c h a s p a t i e n t s'o n c o l o g y,s p i n a l s t a b i l i t y a n d s y s t e m i c c o n d i t i o n s t o f o r m u l a t e t r e a t m e n t p l a n s,w h i c h a r e w i d e l y u s e d.T h i s p a p e r b r i e f l y r e v i e w s t h e d e v e l o p m e n t h i s t o r y a n d r e s e a r c h p r o g r e s s o f t h e s c o r i n g d e c i s i o n s y s t e m f o r s p i n a l m e t a s t a t i c t u m o r s,d i s c u s s e s t h e i r a d v a n t a g e s a n d d i s a d v a n t a g e s,a n d p u t s f o r w a r d s o m e s u g-g e s t i o n s f o r t h e d e v e l o p m e n t o f a n e w d e c i s i o n s y s t e m i n t h e f u t u r e.[K e y w o r d s] s p i n a l m e t a s t a t i c t u m o r;p r o g n o s t i c a s s e s s m e n t;d e c i s i o n s y s t e m;r a d i o t h e r a p y;o p e r a t i v e t r e a t m e n t;r e v i e w s脊柱是恶性肿瘤转移最常见的部位之一,仅次于肺和肝,它影响着约70%的晚期癌症患者[1-3]㊂在对*基金项目:国家自然科学基金项目(81760874);广西壮族自治区重点研发计划(桂科A B20159018);广西中医药大学2021年研究生教育创新计划项目(Y C X J2021048)㊂作者简介:钟远鸣(1963-),博士生导师,教授,主任医师,博士,主要从事脊柱脊髓疾病的诊治研究㊂晚期癌症患者尸检的研究中,乳腺癌和前列腺癌被发现是主要的原发类型,其发生脊柱转移概率高达70%~90%[4-5]㊂疼痛往往是脊柱转移患者最先出现的临床症状,夜间尤为明显㊂随着病情的进展,约有10%~20%患者会因为脊髓或马尾神经受压而出现更严重的神经系统症状,例如顽固性疼痛㊁感觉异常㊁性功能障碍㊁大小便失禁㊁瘫痪等,进而导致生活质量严重下降[6-8]㊂脊柱转移性肿瘤的治疗目标主要是控制肿瘤进展,保持脊柱稳定性,保护神经功能,减轻疼痛,从而改善生活质量,并最终延长患者生存期[9-10]㊂为了给脊柱转移患者提供适当的治疗选择,已经有多种决策系统在文献中被提出,例如T o k u h a s h i㊁T o m i-t a评分系统等㊂随着诸如立体定向放射外科(s t e r-e o t a c t i c r a d i o s u r g e r y,S R S)㊁微创外科手术技术(s t e-r e o t a c t i c r a d i o s u r g e r y,M I S)及生物治疗等方法的不断发展,有关脊柱转移瘤患者的临床治疗方案选择已经发生了改变㊂本篇综述主要介绍脊柱转移肿瘤治疗决策系统的发展历史及研究进展,分析其优缺点并对新型决策系统的制订提出建议㊂1脊柱转移肿瘤的预后评分系统当为脊柱转移瘤患者选择适当的治疗方案时,准确地预计患者剩余生存时间有着重要的意义㊂许多学者通过研究提出了一些评分系统,如T o k u h a s h i㊁B a u e r㊁T o m i t a㊁V a n d e r L i n d e n评分等㊂尽管每个系统包含的预后评价因素各不相同,但大多数系统都包含了原发肿瘤组织学和内脏转移情况,这两个因素也被认为是与肿瘤预后最具相关性的[11-12]㊂1.1经典预后评分系统T O K UH A S H I等于1990年将卡式功能评分(K P S)㊁脊髓外骨转移病灶数量㊁椎体转移病灶数量㊁重要脏器转移情况㊁肿瘤原发灶部位及脊髓麻痹程度纳为评价因素提出了一种对脊柱转移瘤患者进行术前评估的预后评分系统㊂随后B a u e r㊁T o m i t a㊁V a n d e r L i n d e n评分也相继被提出并被临床医师应用㊂这些经典预后评分系统常用来评估脊柱转移瘤患者的预计生存时间及生存率,对治疗具有一定意义㊂但近期越来越多的研究报告发现,经典预后评分系统评估患者预后的准确性在逐渐降低,特别是对预后较差的原发癌,如肺癌[13-15]㊂其中的原因在于这些评分系统是在20世纪90年代设计的,而大多数抗癌药物(如靶向疗法)是从2005年开始使用[16-17]㊂经典评分系统并未把前沿的治疗方案纳入考虑范畴,导致准确性下降㊂因此,迫切需要新的预后评分系统㊂1.2不断更新发展的现代预后评分系统为了获得更加准确的预后评估,部分经典预后评分系统进行了更新,新的预后评分系统也不断被提出㊂有研究者发现一些实验室检查指标,如血红蛋白㊁清蛋白等,对患者的预后评估有着一定指导意义[18-21]㊂此外,在一些新系统中,患者之前接受的全身治疗(如化疗㊁免疫治疗㊁激素治疗等)也被建议作为影响预后的独立因素[21-22]㊂K A T A G I R I等[22]首次将患者的既往化疗情况纳为预后影响因素,通过随访350例患者并对其进行C o x风险分析,提出了K a t a g i r i评分系统㊂2014年该系统进行了修订,新增C反应蛋白㊁乳酸脱氢酶㊁清蛋白㊁血清钙㊁血小板计数和总胆红素6个实验室指标作为评价因素,并根据肿瘤原发灶生长速度进行了更准确地分类[23]㊂T O K UH A S H I等[24]在2005年对之前提出的评分系统进行了修订,新系统仍由之前的6个评价因素构成,但增加了肿瘤原发灶这一因素的积分权重㊂2017年则再次修订了之前的评分系统,剔除了椎体外骨转移灶数量因素,并将肿瘤原发灶分级由6级改为5级[25]㊂2007年,B A R T E L S等[26]通过对219例接受非手术治疗患者的回顾性研究提出了一个新的预后评价系统,其主要由5个变量构成:性别㊁原发灶㊁原发肿瘤是否有效治疗㊁是否有颈椎转移和K P S㊂2011年,B A R T E L S等[27]对原评分系统进行了修订,并使其可以通过互联网在线访问,该系统被应用于荷兰的脊柱转移瘤临床治疗指南[28]㊂L E I T HN E R等[29]研究发现病理性骨折对脊柱转移瘤患者预后影响较小,其通过对69例患者的8个预后因素进行评价,制订了病理性骨折这一因素,提出了更简单的改良B a u e r评分㊂R A D E S等[30-31]发现长程放射治疗对脊柱转移瘤局部控制效果更佳,其2008年在对1852例接受放射治疗的转移性脊髓压迫症患者进行多变量生存分析的基础上,提出了一个新的评分系统用于评估患者6个月的生存率,为患者选择更适合的放疗方案㊂2013年,B A L A I N等[32]通过199例脊柱转移瘤患者的前瞻性研究数据比较了修订的T o k u h a s h i, T o m i t a和修订的B a u e r评分3个系统预测生存率的能力,并基于这些系统中最有价值的评价因素,提出了O S R I系统㊂O S R I系统主要包括原发肿瘤病理学(p r i m a r y t u m o r p a t h o l o g y,P T P)和患者一般情况(g e n e r a l c o n d i t i o n,G C)两个因素,通过公式O S R I= P T P+(2-G C)计算得分,简单有效㊂2014年,B O L L E N等[33]回顾性研究了1043例脊柱转移瘤患者的临床特征数据,通过统计分析,选588重庆医学2022年3月第51卷第5期取了原发肿瘤临床表现,内脏或脑转移情况及患者K P S作为预后评估因素,提出了一个新的评分系统㊂2018年,C HO I等[34]对国际多中心1469例患者进行了一项前瞻性研究,发现相比T o k u h a s h i㊁B a u e r㊁T o-m i t a㊁V a n d e r L i n d e n㊁R a d e s系统,B o l l e n评分系统更具准确性㊂2015年,G HO R I等[35]在修订的B a u e r评分的基础上增加了清蛋白和患者完整的活动功能2个评价因素,提出了新英格兰脊柱转移评分(N e w E n g l a n d s p i n a l m e t a s t a s i s s c o r e,N E S M S),该评分系统重视患者的基本健康状况,对外科医生的手术决策具有重要意义㊂2016年,L E I等[16]回顾性研究了206例行脊髓减压和脊柱稳定手术治疗的转移性脊髓压迫症(m e-t a s t a t i c s p i n a l c o r d c o m p r e s s i o n,M S C C)患者,通过分析其不同特征(如年龄㊁原发肿瘤生长速度㊁椎体转移数量等)对术后生存时间的影响,选取患者是否具有行走能力及是否有内脏转移等5个评价因素,建立了一个新的评分系统,以帮助外科医生判断是否适合手术治疗㊂2016年,骨骼肿瘤研究小组(s k e l e t a l o n c o l o g y r e s e a r c h g r o u p,S O R G)通过对649例患者的回顾性研究,提出了S O R G经典算法㊁列线图和增强算法㊂在该研究中,S O R G列线图被认为是最直观的,已经有学者进行了外部验证,发现其能够准确预测患者3个月和12个月的存活率,并帮助临床医生制订手术策略[36]㊂2019年,S O R G使用机器学习算法开发了一种新的脊柱转移肿瘤预后模型,为预后评估增加了部分实验室检查评价标准,进一步完善了S O R G生存预测工具,在对该模型后续进行的外部验证中发现,其对患者3个月的生存率预测准确率更高[37-39]㊂1.3小结与经典预后评分系统相比,现代预后评分系统具有以下优点㊂首先,这些评分是在2005以后开发的,因此,它们的设计者大都考虑了2005年开始逐渐广泛使用的抗癌药物对肿瘤患者生存期的影响㊂其次,现代预后评分系统纳入的研究对象更多,可以带来更好的统计能力㊂最后,现代预后评分系统相对方便记忆和实践应用㊂如O S R I是两个项目的简单加法,即O S R I=P T P+(2-G C);B a r t e l s系统可以通过网络访问线上计算患者的预后生存期㊂新提出或修订的现代预后评分系统提升了脊柱转移瘤患者预后评估的准确性,但仍存在一定不足㊂预期寿命仅仅是影响治疗选择的一个重要因素,并不能直接为脊柱转移瘤患者制订最优的治疗方案㊂还应考虑患者的症状,如病理性骨折和脊柱不稳定导致的神经功能缺损或疼痛等因素,最终的治疗方案应由肿瘤科㊁放射科和脊柱外科医师多学科合作共同做出㊂与此同时,个人的治疗意愿也需要被尊重㊂2基于治疗原则的决策系统为了弥补这类积分形式的预后评分系统无法直接指导具体治疗方案的缺陷,一些学者提出了基于肿瘤治疗原则的决策系统㊂这类系统基于快速发展的治疗方式(包括生物治疗㊁放射外科和微创手术等)的整合,在考虑患者预期生存率的同时根据患者各方面的不同情况给出治疗建议㊂2.1 N OM S决策系统B I L S K Y等[40]在2006年首次提出了N OM S系统,该系统是在大量文献和专家共识的指导下,采用循证医学方法开发的㊂N OM S决策系统包括了神经病学㊁肿瘤学㊁机械稳定性和全身系统性情况4个因素,是一种整合了包括S R S和M I S等在内的新型多模式疗法[41]㊂在N OM S决策系统中,对于高级硬膜外脊髓压迫或脊柱不稳定的放射抗性肿瘤患者,如果系统性评估可以耐受手术,建议手术治疗㊂对于放射敏感性肿瘤患者,无论脊髓压迫程度如何,都可行体外放射治疗㊂对于无明显脊髓压迫的放射抗性肿瘤患者,建议行S R S治疗控制肿瘤发展,若存在压迫,则可行 分离手术 后行S R S治疗㊂2.2 L MN O P决策系统P A T O N等[42]2011年引入了L MN O P决策系统,其在N OM S决策系统基础上增加了2个新的考虑因素:(1)肿瘤侵犯的脊柱水平及椎体范围[前柱和(或)后柱];(2)患者对先前治疗(放疗㊁化疗等)的反应㊂该系统更全面地考虑了脊柱受累的程度及患者之前所接受系统性治疗的效果,使N OM S决策的系统性评价部分更加明确㊂2.3 MN O P决策系统N OM S和L MN O P决策系统虽然考虑了影响脊柱转移瘤患者治疗方案的各个因素,但忽略了全身系统治疗的重要性㊂2017年,S P R A T T等[43]创建了MN O P决策系统,该系统把评估脊柱转移瘤患者的一般情况㊁全身疾病负荷和全身治疗方案有效性放在首位,然后评估其机械稳定性㊁神经功能状态㊁肿瘤病学,从而为患者制订最佳的治疗方案㊂2.4 MO S S决策系统2018年MA R C O等提出了MO S S决策系统,该系统与N OM S决策系统评价原则相似,全身疾病情况和个人治疗意愿被认为是评估转移瘤及指导治疗方案的首要因素㊂MA R C O等偏向于使用放疗㊁化疗688重庆医学2022年3月第51卷第5期或靶向治疗等无创干预手段,没有重视外科手术㊂事实上,椎体成形术及其他微创术式既可以改善患者的疼痛及功能障碍,又不会影响后续的放疗及化疗[44-46]㊂3总结与展望本篇综述讨论了脊柱转移瘤预后评分系统和基于治疗原则的决策系统㊂其中预后评分系统为选择治疗方案提供了一定的依据,但仅依靠预期生存时间并不能直接进行临床决策㊂同时,该类系统是相对静态的,它们包含了原发肿瘤类型㊁肿瘤扩散程度等评价因素,但这些因素仅能反映当前阶段对肿瘤的认识,随着日后医疗水平和治疗技术发展仍可能需要更新才能保证其预后评价的效能㊂基于治疗原则的决策系统是动态的,是一种治疗脊柱转移瘤的临床思路,医师通过评估神经病学㊁肿瘤学㊁机械稳定性和全身系统性情况4个方面为患者制订最适合的治疗方案㊂该类系统没有固定的得分限制,能够纳入不断发展的治疗手段,为医师临床决策提供良好的指导㊂癌症生物学和治疗模式的进步使脊柱转移肿瘤决策系统的发展成为必要㊂笔者认为建立新型的决策系统应考虑使用多中心或跨国数据库,总结更新肿瘤组织学数据,将预后评分系统与基于治疗原则的决策系统相结合㊂综上所述,脊柱转移性肿瘤患者的治疗决策是复杂的,并不能仅依靠预后评分,N OM S及其他基于治疗原则的决策系统也是不错的选择㊂多学科医师共同协作㊁多种治疗手段综合应用是脊柱转移性肿瘤的发展趋势,个性化治疗方案才能为患者带来最大的收益㊂参考文献[1]H A N X X,T A O F,WA N G G W,e t a l.E f f e c to f c o m b i n e d t r e a t m e n t i n c l u d i n g s u r g e r y a n dp o s t o p e r a t i v e a d j u v a n t t h e r a p y o n s p i n a l m e t a s-t a s e s o f T o m i t a t y p e7[J].C l i n N e u r o l N e u r o-s u r g,2019,181:112-118.[2]Z H A N G H R,Q I A O R Q,Y A N G X G,e t a l.Am u l t i c e n t e r,d e s c r i p t i v e e p i d e m i o l o g i c s u r v e y o f t h e c l i n i c a l f e a t u r e s o f s p i n a l m e t a s t a t i c d i s e a s ei n C h i n a[J].N e u r o l R e s,2020,42(9):749-759.[3]C O N T I A,A C K E R G,K L I G E A,e t a l.D e c i s i o nm a k i n g i n p a t i e n t s w i t h m e t a s t a t i c s p i n e.T h e r o l e o f m i n i m a l l y i n v a s i v e t r e a t m e n t m o d a l i t i e s[J].F r o n t O n c o l,2019,9:915.[4]L E E C S,J U N G C H.M e t a s t a t i c s p i n a l t u m o r[J].A s i a n S p i n e J,2012,6(1):71-87. [5]Z HU A N G Y,L I N J,Y A N G H.S p i n a l m e t a s t a-s i s[J].J N e u r o s u r g S p i n e,2013,18(6):665.[6]R O S E R S,M A H A R A J M M,T A Y L O R M A,e ta l.V e r t eb r ec t o m y i n m e t a s t a t i c s p i n a l t u m o u r s:a 10y e a r,s i n g l e-c e n t r e r e v i e w o f o u t c o m e s a nd s u r-v i v a l[J].J C l i n Ne u r o s c i,2019,68:218-223. [7]G U O Y,HU A N G A T,F U J B.P e r s p e c t i v e s o n s p i n a l p r e c a u t i o n s i n p a t i e n t s w h o h a v e c a n c e ra n d s p i n a l m e t a s t a s i s[J].P h y s T h e r,2020,100(3):554-563.[8]K A N D A Y,K A K U T A N I K,S A K A I Y,e t a l.P r o s p e c t i v e c o h o r t s t u d y o f s u r g i c a l o u t c o m e f o r s p i n a l m e t a s t a s e s i n p a t i e n t s a g e d70y e a r s o r o l d e r[J].B o n e J o i n t J,2020,102(12):1709-1716.[9]N A S S E R R,N A K H L A J,E C H T M,e t a l.M i n-i m a l l y i n v a s i v e s e p a r a t i o n s u r g e r y w i t h i n t r a o p-e r a t i v e s t e r e o t a c t i c g u i d a n c e:a f e a s i b i l i t y s t u d y[J].W o r l d N e u r o s u r g,2018,109:68-76.[10]P A U L I N O P N,O G I N K P T,G R O O T O Q,e ta l.C o m p l i c a t i o n s a n d r e o p e r a t i o n s a f t e r s u r g e r y f o r647p a t i e n t s w i t h s p i n e m e t a s t a t i c d i s e a s e[J].S p i n e J,2019,19(1):144-156.[11]B O L L E N L,D I J K S T R A S,B A R T E L S R,e t a l.C l i n i c a l m a n a g e m e n t o f s p i n a l m e t a s t a s e s-t h eD u t c h n a t i o n a l g u i d e l i n e[J].E u r J C a n c e r, 2018,104:81-90.[12]N A T E R A,T E T R E A U L T L A,K O P J A R B,e ta l.P r e d i c t i v e f a c t o r s o f s u r v i v a l i n a s u r g i c a l s e-r i e s o f m e t a s t a t i c e p i d u r a l s p i n a l c o r d c o m p r e s-s i o n a n d c o m p l e t e e x t e r n a l v a l i d a t i o n o f8m u l t-i v a r i a t e m o d e l s o f s u r v i v a l i n a p r o s p e c t i v eN o r t h A m e r i c a n m u l t i c e n t e r s t u d y[J].C a n c e r, 2018,124(17):3536-3550.[13]B A R Z I L A I O,F I S H E R C G,B I L S K Y M H.S t a t e o f t h e a r t t r e a t m e n t o f s p i n a l m e t a s t a t i cd i se a s e[J].N e u r o s u r g e r y,2018,82(6):757-769.[14]A L P A N T A K I K,I O A N N I D I S A,R A P T I S K,e t a l.S u r g e r yf o r s p i n a l m e t a s t a t i c t u m o r s:p r o g n o s t i c a t i o n s y s t e m s i n c l i n i c a l p r a c t i c e(R e v i e w)[J].M o l C l i n O n c o l,2020,12(5):788重庆医学2022年3月第51卷第5期399-402.[15]弓伊宁,胡锦心,韦峰,等.T o m i t a评分及改良T o k u h a s h i评分对脊柱转移瘤手术患者生存期预测的准确性[J].中国脊柱脊髓杂志,2021,31(2):97-102.[16]L E I M,L I J,L I U Y,e t a l.W h o a r e t h e b e s tc a nd i d a te sf o r d e c o m p r e s s i v e s u rg e r y a n d s p i n es t a b i l i z a t i o n i n p a t i e n t s w i t h m e t a s t a t i c s p i n a lc o rd c o m p re s s i o n A n e w s c o r i n g s y s t e m[J].S p i n e(P h i l a P a1976),2016,41(18):1469-1476.[17]C U I Y,L E I M,P A N Y,e t a l.S c o r i n g a l g o r i t h m sf o r p r e d i c t i ng s u r v i v a l p r o g n o s i s i n p a t i e n t s w i t hm e t a s t a t i c s p i n a l d i s e a s e:t h e c u r r e n t s t a t u s a n d f u-t u r e d i r e c t i o n s[J].C l i n S p i n e S u r g,2020,33(8): 296-306.[18]HU S S A I N A K,C H E U N G Z B,V I G K S,e ta l.H y p o a lb u m i n e m i a a s a n i n d e p e n d e n t r i s kf a c t o r f o r p e r i o p e r a t i v e c o m p l i c a t i o n s f o l l o w i n gs u r g i c a l d e c o m p r e s s i o n o f s p i n a l m e t a s t a s e s[J].G l o b a l S p i n e J,2019,9(3):321-330. [19]S W I T L Y K M D,K O N G S G A R R D U,S K J E L D A LS,e t a l.P r o g n o s t i c f a c t o r s i n p a t i e n t s w i t h s y m p-t o m a t i c s p i n a l m e t a s t a s e s a n d n o r m a l n e u r o l o g i c a lf u n c t i o n[J].C l i n O n c o l(R C o l l R a d i o l),2015,27(4):213-221.[20]L U N D X,X U L N,WA N G F,e t a l.P r o g n o s t i cd i f fe r e n c e s i n p a t i e n t s w i t h s o l i t a r y a n d m u l t i-p l e s p i n a l m e t a s t a s e s[J].O r t h o p S u r g,2019,11(3):443-450.[21]P A U L I N E P N,J A N S S E N S J,V A N D I J K E,e t a l.D e v e l o p m e n t of a p r og n o s t i c s u r v i v a l a l-g o r i t h m f o r p a t i e n t s w i t h m e t a s t a t i c s p i n e d i s-e a s e[J].J B o n e J o i n t S u r g A m,2016,98(21): 1767-1776.[22]K A T A G I R I H,T A K A H A S H I M,WA K A I K,e t a l.P r o g n o s t i cf a c t o r s a n d a s c o r i ng s y s t e mf o r p a t i e n t s w i t h s k e l e t a l m e t a s t a s i s[J].J B o n e J o i n t S u rg B r,2005,87(5):698-703. [23]K A T A G I R I H,O K A D A R,T A K A G I T,e t a l.N e w p r o g n o s t i c f a c t o r s a n d s c o r i n g s y s t e m f o rp a t i e n t s w i t h s k e l e t a l m e t a s t a s i s[J].C a n c e rM e d,2014,3(5):1359-1367.[24]T O K UH A S H I Y,MA T S U Z A K U H,O D A H,e t a l.A r e v i s e d s c o r i n g s y s t e mf o r p r e o p e r a t i v ee v a l u a t i o n of m e t a s t a t i c s p i n e t u m o r p r og n o s i s[J].S p i n e(P h i l a P a1976),2005,30(19):2186-2191.[25]M O R G E N S S,F R U E G A A R D S,G E H R C H E N M,e t a l.A r e v i s i o n of t h e T o k u h a s h i r e v i s e d s c o r e i m-p r o v e s t h e p r o g n o s t i c a b i l i t y i n p a t i e n t s w i t h m e t a-s t a t i c s p i n a l c o r d c o m p r e s s i o n[J].J C a n c e r R e s C l i nO n c o l,2018,144(1):33-38.[26]B A R T E L S R H,F E U T H T,V A N D M R,e ta l.D e v e l o p m e n t o f a m o d e l w i t h w h i c h t o p r e-d i c t t he l if e e x p e c t a n c y o f p a t i e n t s w i t h s p i n a le p i d u r a l m e t a s t a s i s[J].C a n c e r,2007,110(9):2042-2049.[27]B A R T E L S R H,F E U T H T,R A D E S D,e t a l.E x t e r n a l v a l i d a t i o n o f a m o d e l t o p r e d i c t t h e s u r v i v a l o f p a t i e n t s p r e s e n t i n g w i t h a s p i n a l e p i d u r a l m e t a s t a s i s[J].C a n c e r M e t a s t a s i s R e v, 2011,30(2):153-159.[28]G R O E N E N K,V A N D L Y M,B R O UW E R T,e t a l.T h e D u t c h n a t i o n a l g u i d e l i n e o n m e t a s t a-s e s a n d h e m a t o l o g i c a l m a l i g n a n c i e s l o c a l i z e dw i t h i n t h e s p i n e:a m u l t i d i s c i p l i n a r y c o l l a b o r a-t i o n t o w a r d s t i m e l y a n d p r o a c t i v e m a n a g e m e n t[J].C a n c e r T r e a t R e v,2018,69:29-38. [29]L E I T H N E R A,R A D L R,G R U B E R G,e t a l.P r e d i c t i v e v a l u e o f s e v e n p r e o p e r a t i v e p r o g n o s-t i c s c o r i n g s y s t e m s f o r s p i n a l m e t a s t a s e s[J].E u r S p i n e J,2008,17(11):1488-1495.[30]R A D E S D,D U N S T J,S C H I L D S E.T h e f i r s ts c o r e p r e d i c t i n g o v e r a l l s u r v i v a l i n p a t i e n t sw i t h m e t a s t a t i c s p i n a l c o r d c o m p r e s s i o n[J].C a n c e r,2008,112(1):157-161.[31]R A D E S D,F E H L A U E R F,S C HU L T E R,e ta l.P r o g n o s t i c f a c t o r s f o r l o c a l c o n t r o l a n d s u r-v i v a l a f t e r r a d i o t h e r a p y o f m e t a s t a t i c s p i n a lc o rd c o m p re s s i o n[J].J C l i n O n c o l,2006,24(21):3388-3393.[32]B A L A I N B,J A I S WA L A,T R I V E D I J M,e t a l.T h e o s w e s t r y r i s k i n d e x:a n a i d i n t h e t r e a t-m e n t o f m e t a s t a t i c d i s e a s e o f t h e s p i n e[J].B o n e J o i n t J,2013,95(2):210-216.[33]B O L L E N L,V A N D L Y M,P O N D A A G W,e ta l.P r o g n o s t i c f a c t o r s a s s o c i a t e d w i t h s u r v i v a l i n p a t i e n t s w i t h s y m p t o m a t i c s p i n a lb o n e m e-t a s t a s e s:a r e t r o s p ec t i v e c o h o r t s t ud y o f1043888重庆医学2022年3月第51卷第5期p a t i e n t s[J].N e u r o O n c o l,2014,16(7):991-998.[34]C HO I D,R I C C I A R D I F,A R T S M,e t a l.P r e-d i c t i o n a c c u r a c y o f c o mm o n p r o g n o s t i c s c o r i n gs y s t e m s f o r m e t a s t a t i c s p i n e d i s e a s e:r e s u l t s o fa p r o s p e c t i v e i n t e r n a t i o n a l m u l t i c e n t r e s t u d y o f1469p a t i e n t s[J].S p i n e(P h i l a P a1976),2018, 43(23):1678-1684.[35]G H O R I A K,L E O N A R D D A,S C H O E N F E L D A J,e t a l.M o d e l i n g1-y e a r s u r v i v a l a f t e r s u r g e r y o n t h e m e t a s t a t i c s p i n e[J].S p i n e J,2015,15(11): 2345-2350.[36]P A U L I N O P N,M C L A U G H L I N L,J A N S S E NS J,e t a l.T h e S O R G n o m o g r a m a c c u r a t e l y p r e-d i c t s3-a n d12-m o n t h s s u r v i v a l f o r o pe r a b l e s p i n e m e t a s t a t i c d i s e a s e:e x t e r n a l v a l i d a t i o n[J].J S u r g O n c o l,2017,115(8):1019-1027.[37]K A R H A D E A V,A HM E D A K,P E N N I N G-T O N Z,e t a l.E x t e r n a l v a l i d a t i o n o f t h e S O R G90-d a y a n d1-y e a r m a c h i n e l e a r n i n g a l g o r i t h m sf o r s u r v i v a l i n s p i n a l m e t a s t a t i c d i s e a s e[J].S p i n e J,2020,20(1):14-21.[38]B O N G E R S M,K A R H A D E A V,V I L L A V I E J A J,e t a l.D o e s t h e S O R G a l g o r i t h m g e n e r a l i z e t o a c o n t e m p o r a r y c o h o r t of p a t i e n t s w i t h s p i n a l m e t a s-t a s e s o n e x t e r n a l v a l i d a t i o n[J].S p i n e J,2020,20(10):1646-1652.[39]K A R C H A D E A V,T H I O Q,O G I N K P T,e t a l.P r e d i c t i n g90-d a y a n d1-y e a r m o r t a l i t y i n s p i n a lm e t a s t a t i c d i s e a s e:d e v e l o p m e n t a n d i n t e r n a lv a l i d a t i o n[J].N e u r o s u r g e r y,2019,85(4): E671-681.[40]B I L S K Y M,S M I T H M.S u r g i c a l a p p r o a c h t oe p i d u r a l s p i n a l c o r d c o m p r e s s i o n[J].H e m a t o lO n c o l C l i n N o r t h A m,2006,20(6):1307-1317.[41]L A U F E R I,R U B I N D G,L I S E,e t a l.T h e N O M Sf r a m e w o r k:a p p r o a c h t o t h e t r e a t m e n t o f s p i n a lm e t a s t a t i c t u m o r s[J].O n c o l o g i s t,2013,18(6): 744-751.[42]P A T O N G R,F R A N G O U E,F O U R N E Y D R.C o n t e m p o r a r y t r e a t m e n t s t r a t e g y f o r s p i n a lm e t a s t a s i s:t h e"L MN O P"s y s t e m[J].C a n JN e u r o l S c i,2011,38(3):396-403.[43]S P R A T T D E,B E E L E R W H,D E M F Y,e ta l.A n i n t e g r a t e d m u l t i d i s c i p l i n a r y a l g o r i t h m f o r t h e m a n a g e m e n t o f s p i n a l m e t a s t a s e s:a n i n-t e r n a t i o n a l s p i n e o n c o l o g y c o n s o r t i u m r e p o r t[J].L a n c e t O n c o l,2017,18(12):e720-730.[44]A S Y U R N,A V A N Z I O.B a l l o o n k y p h o p l a s t yi n t h e t r e a t m e n t o f n e o p l a s t i c s p i n e l e s i o n s:as y s t e m a t i c r e v i e w[J].G l o b a l S p i n e J,2019,9(3):348-356.[45]T E K I N S B,K A R S L I B,B U Y U K B E B E C I O,e ta l.H o w d o v e r t eb r o p l a s t y a n d k y p h o p l a s t y a f-f ec t t h e q u a l i t y o f l i f e o f p a t i e n t s w i t h m u l t i p l em y e l o m a s p i n a l m e t a s t a s i s[J].E u r J O r t h o pS u r g T r a u m a t o l,2020,30(8):1447-1451.[46]A F A T H I M,MA N S O U R I N,F A R A H K,e ta l.U s e o f c e m e n t-a u g m e n t e d p e r c u t a n e o u s p e-d i c u l a r s c re w s i n t h e m a n a g e m e n t of m u l t i f o c a lt u m o r a l s p i n a l f r a c t u r e s[J].A s i a n S p i n e J,2019,13(2):305-312.(收稿日期:2021-08-11修回日期:2021-11-22)(上接第883页)[27]G A R E T Z S L,M I T C H E L L R B,P A R K E R PD,e t a l.Q u a l i t y o f l i f e a n d o b s t r u c t i v e s l e e pa p n e a s y m p t o m s a f t e r p e d i a t r i c a d e n o t o n s i l l e c-t o m y[J].P e d i a t r i c s,2015,135(2):e477-486.[28]R A N A M,A U G U S T J,L E V I J,e t a l.A l t e r n a-t i v e a p p r o a c h e s t o a d e n o t o n s i l l e c t o m y a n d c o n-t i n u o u s p o s i t i v e a i r w a y p r e s s u r e(C P A P)f o rt h e m a n a g e m e n t o f p e d i a t r i c o b s t r u c t i v e s l e e p a p n e a(O S A):a r e v i e w[J].S l e e p D i s o r d,2020, 2020:7987208.[29]Z H A N G C,L V J,Z HO U J,e t a l.T h e e f f e c t o fC P A P t r e a t m e n t o n E E G o f O S A S p a t i e n t s[J].S l e e p B r e a t h,2015,19(4):1121-1124.(收稿日期:2021-09-02修回日期:2021-11-28)988重庆医学2022年3月第51卷第5期。

2003年美赛题(B)

2003年美赛题(B)

PROBLEM B: Gamma Knife Treatment PlanningStereotactic radiosurgery (立体定向放射外科)delivers a single high dose of (大剂量)ionizing radiation(电离辐射)to a radiographically (放射照相的)well-defined(边界清晰的), small intracranial (颅内)3D brain tumor(脑肿瘤)without delivering any significant fraction of the prescribed dose to the surrounding brain tissue(周围的脑组织). Three modalities(形式)are commonly used in this area; they are the gamma knife unit(伽马刀单元), heavy charged particle beams(高能粒子束), and external high-energy photon beams(外部高能光子束)from linear accelerators(直线加速器).The gamma knife unit delivers a single high dose of ionizing radiation emanating (放射)from 201 cobalt-60 unit sources through a heavy helmet(沉重的钢盔). All 201 beams simultaneously同时intersect 交叉at the isocenter等深点, resulting in a spherical球形的(approximately近似) dose剂量distribution at分布在the effective dose levels有效剂量领域. Irradiating照射the isocenter 等中心点to deliver dose is termed a “shot.” Shots can be represented as different spheres球体. Four interchangeable outer collimator helmets四个可交替的外部瞄准仪头盔with beam channel diameters射线直径of 4, 8, 14, and 18 mm are available for irradiating 照射different size volumes体积. For a target volume目标体积larger than one shot, multiple shots can be used to cover the entire target. In practice, most target volumes are treated with 1 to 15 shots. The target volume is a bounded有界限的, three-dimensional digital image三维立体的数字图像that usually consists of millions of points.The goal of radiosurgery放射外科is to deplete tumor cells消除肿瘤细胞while preserving normal structures保留正常的构造. Since there are physical limitations体力限制and biological uncertainties生物学的不确定性involved in this therapy process治疗方法, a treatment plan needs to account for all those limitations and uncertainties. In general, an optimal treatment plan is designed to meet the following requirements.一项手术计划需要满足以下要求1.Minimize the dose gradient across the target volume. 使穿透目标体积的辐射量最小2.Match specified isodose contours to the target volumes. 目标体积应满足规定的等剂量线3.Match specified dose-volume constraints of the target and critical organ.考虑对目标肿瘤和关键器官的规定辐射量4.Minimize the integral dose to the entire volume of normal tissues ororgans. 使正常组织和器官受到的辐射量最小5.Constrain dose to specified normal tissue points below tolerance doses.使正常组织所受辐射量低于耐受剂量6.Minimize the maximum dose to critical volumes. 使临界体积的最大辐射量最小化In gamma unit treatment planning, we have the following constraints: 伽马刀治疗包括以下过程1.Prohibit shots from protruding outside the target. 不能使辐射照射到目标外边2.Prohibit shots from overlapping (to avoid hot spots). 避免辐射重叠3.Cover the target volume with effective dosage as much as possible. But atleast 90% of the target volume must be covered by shots. 至少要杀死90% 的肿瘤e as few shots as possible. 尽可能少的照射Your tasks are to formulate起草the optimal treatment planning for a gamma knife unit as a sphere-packing球状填充problem, and propose an algorithm 提出一种算法to find a solution. While designing your algorithm, you must keep in mind that your algorithm must be reasonably efficient.立体定位放射外科, 用单一高剂量离子化射束在X光机精确界定下照射颅内的一个小的3D 脑瘤, 与此同时, 并没有处方剂量的任何显著份额伤及周边的脑组织. 在这个领域中,一般有三种形式的射束可以采用,分别是Gamma刀单元, 带电重粒子射束, 以及来自直线加速器的外用高能光子束. Gamma刀单元具备的单一高剂量离子化射束, 是201个钴-60单位源通过厚重的盔状物发射出来的。

射波刀治疗小细胞肺癌脑转移的疗效分析

射波刀治疗小细胞肺癌脑转移的疗效分析

射波刀治疗小细胞肺癌脑转移的疗效分析赵军华;邱鸣寒;袁智勇【摘要】目的:探讨射波刀立体定向放射外科(SRS)治疗小细胞肺癌(SCLC)脑转移(BM)的有效性及安全性.方法:回顾性分析2006年7月-2015年12月期间SRS治疗的28例SCLC脑转移的患者资料,其中包括全脑放疗(WBRT)与SRS联合治疗13例,SRS挽救性治疗15例.分析总生存时间(OS)、颅内局部控制率(LC)及颅内无远处转移生存(DMFS)情况.结果:中位随访时间为13个月,中位生存期为12个月,1年、2年的OS分别为50.0%、22.2%;1年、2年的LC分别为85.4%、76.8%;6个月、1年、2年的DMFS为73.9%、66.1%、38.2%.治疗后1.5月内,1~2级急性毒副反应发生率为10%,未见3级及3级以上急性毒副反应.结论:SRS治疗SCLC脑转移患者可取得较好的生存率,并且不良反应少,是安全有效的方法.【期刊名称】《天津医科大学学报》【年(卷),期】2019(025)004【总页数】5页(P346-350)【关键词】小细胞肺癌;脑转移瘤;全脑放疗;射波刀立体定向放射外科;生存【作者】赵军华;邱鸣寒;袁智勇【作者单位】天津医科大学肿瘤医院放疗科射波刀中心,国家肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心,天津300060;天津市人民医院肿瘤内科,天津300121;天津医科大学肿瘤医院放疗科射波刀中心,国家肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心,天津300060【正文语种】中文【中图分类】R730.55肺癌是最常见的恶性肿瘤之一,其中小细胞肺癌(small cell lung cancer,SCLC)约占 15%~20%。

颅内是SCLC的主要转移部位。

局限期SCLC的脑转移发生率约为49%,广泛期则高达65%[1] 。

脑预防照射(Prophylactic cranial irradiation,PCI)可降低局限期 SCLC 脑转移(brain metastases,BM)的发生率,延长其生存[2] ,已成为其标准的治疗方法。

Acoustic neuroma听觉神经瘤

Acoustic neuroma听觉神经瘤

As the tumor grows, it can encroach on the adjacent brainstem. This may create headaches, difficulty walking and damage to cranial nerves. Cranial nerves are neurologic structures hat originate from the brain performing certain motor or sensory functions.
Late symptoms are pain, numbness or weakness in the face. With increasing size, progressive symptoms include nausea, vomiting and even coma, respiratory depression and death.
"Loss of hearing in the operated ear is the most common adverse consequence and can be a serious handicap. These patients have difficulty in even modestly noisy environments and do not have directional hearing", the NIH panel reported.
The Consensus report stated "all cases of vestibular schwannomas are thought to result from the functional loss of a tumor suppressor gene which has been localized to the long arm of chromosome 22. In at least 95% of patients, however, the disease is unilateral and the majority of these cases are sporadic, resulting from somatic mutation that are not associated with an increased risk for other tumors in either the individual or close relatives."

限制类医疗技术目录

限制类医疗技术目录

国家级限制类医疗技术目录一、造血于细胞移植治疗血液系统疾病技术二、同种胰岛移植技术三、同种异体运动系统结构性组织移植技术四、同种异体角膜移植技术五、同种异体皮肤移植技术六、性别重置技术七、质子和重离子加速器放射治疗技术八、放射性粒子植入治疗技术九、肿瘤消融治疗技术十、肿瘤深部热疗和全身热疗技术室辅助技木十二、人工智能辅助治疗技木十三、人工智能辅助诊断技术十四、颅颌面畸形颅面外科矫治技术十五、口腔面部肿瘤颅颌联合根治技术河南省限制类医疗技术目录(2019年版)一、心血管疾病介入诊疗技术二、神经血管介入诊疗技术(一)颅内动脉瘤血管内治疗术(二)急性缺血性卒中血管内取栓术(三)颅内动脉粥样硬化狭窄支架成形术(四)脑脊髓血管形血管内治疗术三、外周血管介入诊疗技术一)主动脉瘤腔内修复术二)主动脉夹层腔内修复术四、综合介入诊疗技术一)经皮穿刺胆汁引流术二)经皮穿刺肿瘤物理消融术(射频/微波/激光/冷冻)三)肿瘤栓塞术五、人工髋关节置换诊疗技术六、人工膝关节置换诊疗技术七、口腔种植诊疗技术八、血液净化技术九、肿瘤放射治疗技术(一)立体定向放射外科技术( Stereotactic Radiosurgery SRS)(二)立体定向体部放疗技术( Stereotactic Body Radiatio Therapy, SBRT)(三)三维腔内和组织间插植近距离后装放疗技术十、激光角膜屈光手术)飞秒激光辅助准分子激光角膜原位磨镶术(二)飞秒激光小切口角膜基质透镜取出术十一、内镜诊疗技术(一)妇科内镜1.腹腔镜下卵巢癌全面分期手术2.腹腔镜下卯巢癌肿瘤细胞减灭术(二)呼吸内镜1.气管和支气管痿封堵术2.经支气管镜光动力治疗技术3.支气管镜肺减容术4.支气管镜电磁导航活检术(三)普通外科内镜腹腔镜下肝切除术2.腹腔镜下胆囊癌根治术3.腹腔镜下胰十二指肠切除术4.腹腔镜下胃癌根治术5.腹腔镜下结直肠癌根治术6.甲状腺腔镜下甲状腺切除术(四)泌尿外科内镜1.孤立肾经皮肾镜术2.腹腔镜根治性前列腺切除术(五)胸外科内镜1.胸腔镜下袖式支气管成形术2.胸腔镜下解剖性肺段切除术3.胸腔镜下复合肺叶切除术(六)关节镜1.关节镜下膝关节交叉初带翻修术2.关节镜下软骨移植修复术(七)脊柱内镜1.经皮内镜下经椎间孔入路椎间盘切除、椎间植骨融合术2.经皮内镜下经颈椎前路椎间盘减压术3.经皮内镜下经颈椎前路椎间孔狭窄扩大成形术4.经皮内镜下经颈椎后路椎间孔狭窄扩大成形术5.经皮内镜下脊柱翻修术(八)消化内镜1.经胃腹膜活检术2.经胃腹腔淋巴结活检术3.经胃肝囊肿开窗术(九)小儿外科内镜1.腹腔镜下肝叶切除术2.腹腔镜下胰腺部分切除术3.腹腔镜下肾上腺全切或次全切除术(十)儿科呼吸内镜1.经支气管镜热消融技术(包括电烧蚀、激光、氩等离子体凝固、微波等技术)2.经支气管镜冷冻切除术3.气管/支气管内支架植入术4.气管和支气管瘘封堵术5.气道球囊扩张术(十一)儿科消化内镜1.经口内镜下环形肌切开术2.内镜下逆行胰胆管造影术3.内镜下乳头括约肌切开术4.内镜下胆管括约肌切开术5.内镜下胰管括约肌切开术(十二)鼻科内镜1.鼻内镜下经鼻前颅底肿瘤切除术2.鼻内镜下斜坡肿瘤切除手术3.鼻内镜下鞍旁肿物切除术4.鼻内镜下泪前隐窝入路侧颅底手术5.鼻内镜下鼻颅眶沟通肿瘤切除术(十三)咽喉科内镜1.支撑喉镜下CO2激光下咽癌切除术2.显徼镜支撑喉镜下难治性呼吸道乳头瘤切除术3.复杂食道镜下食道异物取出术(注:可编辑下载,若有不当之处,请指正,谢谢!)。

医疗机构医院放射治疗设备放射防护要求

医疗机构医院放射治疗设备放射防护要求

医疗机构医院放射治疗设备放射防护要求1 范围本标准规定了放射治疗的放射防护要求,包括放射治疗设备、场所、设备操作和相关检测涉及的放射防护要求。

本标准适用于医用电子加速器、钴-60治疗机、X射线治疗机、中子放射源及γ放射源后装治疗机、γ刀、陀螺刀等放射治疗设备。

Cyber knife、螺旋断层治疗机、质子重离子放射治疗设备等新型放射治疗设备参照执行。

本标准不适用于放射性敷贴治疗的放射防护要求。

2 规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GBZ/T 201.1 放射治疗机房辐射屏蔽规范第1部分:一般原则GBZ/T 201.2 放射治疗机房的辐射屏蔽规范第2部分:电子直线加速器放射治疗机房GBZ/T 201.3 放射治疗机房的辐射屏蔽规范第3部分:γ射线源放射治疗机房GBZ/T 201.4 放射治疗机房的辐射屏蔽规范第4部分:锎-252中子后装放射治疗机房3 术语和定义3.1 正常治疗距离 normal treatment distance;NTD对于加速器的电子辐照,规定为沿着有用线束轴,从电子窗到电子束限束器末端或某一规定平面的距离;对于加速器的X射线辐照,规定为沿着有用线束轴,从靶的前表面到等中心的距离;对γ射束治疗设备规定为沿辐射束轴从辐射源到等中心的距离;对没有等中心的设备,则是到某一规定平面的距离。

3.2 等中心 isocentre同中心 isocentre放射学设备中,各种运动的基准轴线围绕一个公共中心点运动,辐射束从以此为中心的最小球体内通过,此点即为等中心。

3.3 主/次剂量监测组合 primary/secondary dose monitoring combination一种双道剂量监测系统的组合。

其中一道作为主剂量监测系统,另一道作为次剂量监测系统。

3.4 立体定向放射治疗 stereotactic radiosurgery利用专门设备通过立体定向、定位技术实现小照射野聚焦式的放射治疗。

脑立体手术英语

脑立体手术英语

脑立体手术英语Here is the English essay on the topic of "Stereotactic Brain Surgery" with a word count of over 600 words:Stereotactic brain surgery has revolutionized the field of neurosurgery, offering a precise and minimally invasive approach to treating a wide range of neurological disorders. This advanced surgical technique utilizes 3D imaging and computer-guided technology to precisely target specific areas of the brain, allowing surgeons to access and address complex brain structures with unprecedented accuracy.The term "stereotactic" refers to the use of a three-dimensional coordinate system to locate and operate on a specific target within the brain. This technique involves the creation of a frame of reference, which is typically a rigid structure that is attached to the patient's head. Using this frame, surgeons can accurately map the patient's brain and identify the precise location of the targeted area, ensuring that the surgical intervention is carried out with the utmost precision.One of the primary advantages of stereotactic brain surgery is itsability to treat conditions that were previously considered inoperable or too risky for traditional open cranial surgery. These include brain tumors, Parkinson's disease, essential tremor, obsessive-compulsive disorder, and chronic pain syndromes, among others. By accessing the brain through a small incision and using specialized instruments, surgeons can minimize the physical trauma to the patient, resulting in faster recovery times and reduced risk of complications.The stereotactic brain surgery process typically begins with the acquisition of detailed neuroimaging scans, such as magnetic resonance imaging (MRI) or computed tomography (CT) scans. These images are then integrated into a 3D computerized model of the patient's brain, which allows the surgical team to plan the procedure with meticulous precision. During the surgery, the patient's head is securely fixed within the stereotactic frame, ensuring that the brain remains stationary and the surgical instruments can be accurately positioned.One of the most remarkable advancements in stereotactic brain surgery is the use of intraoperative imaging techniques, such as real-time MRI or CT scanning. These technologies allow the surgical team to continuously monitor the progress of the procedure and make adjustments as needed, further enhancing the precision and safety of the operation.In the case of brain tumors, stereotactic surgery can be used to either remove the tumor or to deliver targeted radiation therapy, known as stereotactic radiosurgery. This approach is particularly effective for small, deep-seated tumors that may be difficult to access through traditional open surgery. By focusing the radiation beam on the tumor while sparing the surrounding healthy brain tissue, stereotactic radiosurgery can effectively treat the lesion while minimizing the risk of collateral damage.For movement disorders like Parkinson's disease and essential tremor, stereotactic brain surgery can be used to target specific regions of the brain responsible for the abnormal neurological symptoms. By precisely stimulating or lesioning these areas, surgeons can often achieve significant improvements in the patient's motor function and quality of life.In the field of psychiatric disorders, such as obsessive-compulsive disorder, stereotactic surgery has shown promise in addressing treatment-resistant cases. By targeting specific areas of the brain involved in the pathophysiology of these conditions, surgeons can potentially alleviate the debilitating symptoms and improve the patient's overall well-being.The success of stereotactic brain surgery is largely dependent on the expertise and experience of the surgical team, as well as the carefulplanning and execution of the procedure. Patients undergoing this type of surgery are typically evaluated by a multidisciplinary team of neurosurgeons, neurologists, radiologists, and other specialists to ensure that the treatment plan is tailored to their individual needs.Overall, stereotactic brain surgery has transformed the way neurosurgeons approach complex neurological and psychiatric disorders. By leveraging advanced imaging technologies and computer-guided techniques, this minimally invasive approach has the potential to improve patient outcomes, reduce surgical risks, and expand the range of treatable conditions. As the field of stereotactic neurosurgery continues to evolve, it is likely that we will witness even more remarkable advancements in the years to come.。

脑立体定向技术发展和趋势

脑立体定向技术发展和趋势

脑立体定向技术发展和趋势
第26页
最早机器人只是一个简单机械臂,它只能在手术 者操纵下完成极其有限工作,无法自行去完成一个 完整手术。伴随影像技术发展,一些尤其设计计算 机软件能够将图像重建,而且将机器人与计算机工 作站相连,由机器人去完成计算机工作站预先设计 好手术程序。
脑立体定向技术发展和趋势
第27页
脑立体定向技术发展和趋势
第32页
四.立体定向放射外科——新方法
立 体 定 向 放 射 外 科 ( Stereotactic Radiosurgery.SRS)是指应用立体定向技术将大剂 量高能射线准确地(一次或分次)汇聚于某一不足靶 点组织,使靶点受到不可逆毁损。它既不一样于常规 外科手术,也不一样于常见放疗与间质放疗—即伽玛 刀, X刀。
脑立体定向技术发展和趋势
第3页
1986年Robert又创造了无框架立体定向 系统——又称神经外科导航系统。当前又出 现功效性磁共振(fMRI),术中磁共振(iMRI), 术中CT(iCT)与神经外科导航技术,极大地 丰富了神经外科技术伎俩。
脑立体定向技术发展和趋势
第4页
到了二十一世纪,神经外科进展不再是单纯停留 在切除病灶,还要考虑到脑功效缺失改进和修复。 二十一世纪传统神经外科将是立体定向和功效性神 经外科微创时代。 二十一世纪立体定向和功效性 神经外科发展方向是什么呢?
脑立体定向技术发展和趋势
第18页
脑立体定向技术发展和趋势
第19页
详细来说:就是利用计算机对大量数据信息高速 处理和控制能力,对CT、MRI等图信息进行多维重 建,为外科医师提供给手术时了解病变部位、手术 径路和肿瘤切除范围等进行手术模拟、手术导航、 手术定位、制订手术计划,使手术方案客观、准确、 直观在显示器上实时显象。

X射线对人体的损伤是因为它的(

X射线对人体的损伤是因为它的(

第一章概述一、选择题1.X射线对人体的损伤是因为它的()。

A.物理效应B.化学效应C.穿透作用D.生物效应2.物质受X射线照射时,使核外电子脱离原轨道,这种作用叫()。

A.穿透作用B.电离作用C.荧光作用D.反射作用3.X射线是一种波长极短,能量很大的()。

A.电波B.磁波C.机械波D.电磁波4.X射线透视和摄影的物理基础是()。

A.穿透作用B.电离作用C.荧光作用D.反射作用5.1895年11月8日,()物理学家伦琴在做真空高压放电实验时,发现X射线。

A.英国B.德国C.美国D.法国6.(),德国物理学家伦琴在做真空高压放电实验时,发现X射线。

A.1895年11月1日B.1901年12月1日C.1895年11月8日D.1901年12月10日7.X射线机分类标准中,中型机管电流应在()之间。

A.100~200mAB.100~300mAC.100~400mAD.100~500mA8.X线于哪年被发现()A.1840年B.1895年C.1901年D.1905年9.X线被谁发现()A.伦琴B.居里C.居里夫人D.牛顿10.以下哪个设备的空间分辨力最高()A.X线机B.CTC.MRID.B超11.CT由哪国人首次研制成功()A.日本人B.印度人C.英国人D.德国人12.CT是哪年问世的()A.1960年B.1963年C.1972年D.1978年13.关于MRI,以下哪项是错误的()A.对软组织效果好B.无辐射C.任何剖面成像D.无禁忌14.下列属于X射线化学效应的是()。

A.荧光作用B.感光作用C.电离作用D.热作用15.伦琴首次获得诺贝尔物理学奖是()年A.1897B.1899C.1901D.1903E.190516.世界上第一只X线管是在()年由德国西门子公司研制成的。

A.1895B.1896C.1897D.1898E.189917.世界上第一台颅脑X-CT设备是在()年研制成功。

A.1972B.1973C.1974D.1975E.197618.X-CT设备的密度分辨力比传统X线设备高()倍。

脑外名词解释考试

脑外名词解释考试

1颅腔容纳着脑组织、脑脊液和血液三种内容物,当儿童颅缝闭合后或成人,颅腔的容积是固定不变的,约为1400—1500ml。

颅腔内的上述三种内容物,使颅内保持一定的压力,称为颅内压(intracranial pressure,ICP)。

2颅内压增高(increased intracranial pressure)是神经外科常见临床病理综合征,是颅脑损伤、脑肿瘤、脑出血、脑积水和颅内炎症等所共有征象,由于上述疾病使颅腔内容物体积增加,导致颅内压持续在2.0kPa(200mmH20)以上,从而引起的相应的综合征,称为颅内压增高。

3体积压力反应(volume-pressure response, VPR):体积/压力关系曲线反应。

颅内压力与体积之间的关系不是线性关系而是类似指数关系,这种关系可以说明一些临床现象,如当颅内占位性病变时,随着病变的缓慢增长,可以长期不出现颅内压增高症状,一旦由于颅内压代偿功能失调,则病情将迅速发展,往往在短期内即出现颅内高压危象或脑疝;如原有的颅内压增高已超过临界点,释放少量脑脊液即可使颅内压明显下降,若颅内压增高处于代偿的范围之内(临界点以下),释放少量脑脊液仅仅引起微小的压力下降,这一现象称为VPR4库欣(Cushing)反应:颅内压急剧增高时,病人出现血压升高(全身血管加压反应)、心跳和脉搏缓慢、呼吸节律紊乱及体温升高等各项生命体征发生变化。

多见于急性颅内压增高病例。

5神经源性肺水肿:急性颅内压增高,由于下丘脑、延髓受压导致a-肾上腺素能神经活性增强,血压反应性增高,左心室负荷过重,左心房及肺静脉压增高,肺毛细血管压力增高,液体外渗,引起肺水肿,病人表现为呼吸急促,痰鸣,并有大量泡沫状血性痰液。

6脑疝:当颅内某分腔有占位性病变时,该分腔的压力大于邻近分腔的压力,脑组织从高压力区向低压力区移位,导致脑组织、血管及颅神经等重要结构受压和移位,有时被挤入硬脑膜的间隙或孔道中,从而出现一系列严重临床症状和体征,称为脑疝(brain hernia)。

非小细胞肺癌“寡转移”的概念及治疗策略

非小细胞肺癌“寡转移”的概念及治疗策略

非小细胞肺癌“寡转移”的概念及治疗策略康晓征;陈克能【摘要】非小细胞肺癌是发病率及致死率最高的恶性肿瘤之一.约20%-50%会发生远处转移,最常见的转移部位为脑、骨,肝及肾上腺.寡转移状态是一段肿瘤生物侵袭性较温和的时期,存在于局限性原发灶与广泛性转移之间的过渡阶段,转移瘤数目自限并且转移器官具有特异性.“寡转移”来源于微转移,肿瘤细胞已具有器官特异性,但尚不具备全身播散的遗传倾向.治疗寡转移状态的关键是局部控制,需要兼顾预防远处转移,治疗隐匿性转移灶、治疗寡转移灶和全身治疗结束后清除残留癌灶四个方面.本文旨在对“寡转移”概念在非小细胞肺癌常见转移脏器治疗中的应用作一综述.%Non-small cell lung cancer (NSCLC) ranks among the most prevalent malignancies and is the major cause of cancer-related deaths worldwide. Nearly 2096-50% will accompany by metastatic disease and the most common ex-trapulmonary sites of distant metastases are the brain, bone, liver and adrenal gland. The oligometastatic state is a biologically mild tumor stage and a intermediate state in which spread may be limited to specific organs and metastases might be present in limited numbers. Oligometastases are thought to arise from micrometastases, which have been dormant for a period of time. Local control may be an crucial component of a curative therapeutic strategy in the following four clinical schemes: to prohibit metastases; to cure occult metastatic disease; to remedy oligometastases; and to deracinate any residual lesion after systemic therapy. This review aims to outline the concept of the oligometastatic NSCLC and its strategies of treatment.【期刊名称】《中国肺癌杂志》【年(卷),期】2012(015)004【总页数】4页(P242-245)【关键词】肺肿瘤;肿瘤转移;治疗;放疗【作者】康晓征;陈克能【作者单位】100142 北京,北京大学肿瘤医院暨北京市肿瘤防治研究所胸一科,恶性肿瘤发病机制及转化研究教育部重点实验室;100142 北京,北京大学肿瘤医院暨北京市肿瘤防治研究所胸一科,恶性肿瘤发病机制及转化研究教育部重点实验室【正文语种】中文【中图分类】R734.2非小细胞肺癌(non-small cell lung cancer, NSCLC)是当今世界范围内发病率及致死率最高的恶性肿瘤之一。

2022复发性子宫内膜癌的治疗全文

2022复发性子宫内膜癌的治疗全文

2022复发性子宫内膜癌的治疗(全文)子宫内膜癌(endometrial cancer)是妇科常见的恶性肿瘤,早期诊断率达70% ,如果治疗规范则总体预后较好。

尽管如此,仍有7% ~ 15%的早期(I ~ U期)子宫内膜癌患者出现肿瘤复发。

另外,晚期(IΠ ~ IVA期)子宫内膜癌患者,即使接受了系统规范治疗,5年内无疾病复发率也仅58%~59%°而一旦肿瘤复发,治疗便较为棘手。

复发性子宫内膜癌指接受初始治疗后出现的局部或者广泛复发转移。

大多数复发发生在初始治疗的3年内,其中局限于盆腔的子宫内膜癌复发患者5年生存率为55% , 远处转移者仅为17%o复发性子宫内膜癌的治疗选择需基于复发的部位及数量、初始治疗情况、患者一般情况以及肿瘤病理类型,以及相关分子指标等情况制定,复发性子宫内膜癌强烈建议启动多学科诊疗模式(multidisciplinary treatment, MDT )讨论。

治疗的方式包括化疗、放疗、手术治疗、免疫检查点抑制剂治疗、内分泌治疗和分子靶向治疗等。

随着近年来对于子宫内膜癌分子分型的优化和深入理解,更多的治疗选择进入视野,个体化的精准医疗正广泛开展。

本文将阐述复发性子宫内膜癌的治疗及基于子宫内膜癌分子检测及分型的治疗选择。

1子宫内膜癌分子分型最新进展经典Bokhman分型根据病理分型和预后,分为:I型雌激素依赖型;∏ 型非雌激素依赖型。

该分型较简单,对患者复发风险分层不够精准,对后续治疗作用有限。

2013年美国癌症基因组图谱提出新的癌症基因组图谱(the cancer genome atlas z TCGA )分子分型:依据多组学特征和预后的关联性分为4个亚型:POLE超突变型:约占7% ;微卫星不稳定型(microsatellite instability , MSI) /高突变型:约占28% ;低拷贝数型(copy number low ) /微卫星稳定型(microsatellite stable , MSS ):约占39% ;类浆液样型(serous-like )/高拷贝数型copy number high : 约占26%o分子分型对预测患者的预后和复发风险具有重要意义,其中POLE超突变型预后最好,而高拷贝数型预后最差。

三维立体定向放射治疗.

三维立体定向放射治疗.

肿瘤放射治疗学备课笔记(讲稿)内容教师班级时间第八章三维立体定向放射治疗目前国内外广泛使用的常规放射治疗技术是使用单一或多个照射野从一个或多个方向照射,在病人体内形成一个形状规则的三维立体高剂量区来包含在三维形状上实际是不规则的病变,这必然会较多地包及肿瘤周围的正常组织。

因此,常规外照射存在的主要问题是正常组织损伤和肿瘤未控或复发。

为了避免造成这些正常组织的过度损伤,照射剂量的提高势必受到限制,因而使得肿瘤得不到足够量的照射而造成局部未控或复发。

这从放射物理和放疗技术的角度上,是肿瘤放射治疗的效果长期得不到进一步提高的主要原因之一。

为了解决这个问题,推出了三维立体定向放射治疗。

三维立体定向放射治疗包括立体定向放射外科(stereotactic radiosurgery , SRS主要包括γ刀、X刀)、立体定向放射治疗(stereotactic radiotherapy,SRT)技术、三维适形放疗(3 Dimensional Conformal Radiation Therapy , 3DCRT )、调强适形放疗( Intensity Modulated Radiation Therapy , IMRT )、四维调强适形放疗等。

三维立体定向放射治疗历史:1951年Leksell教授首先提出立体定向放射外科的构想,利用立体定向技术,使用大剂量聚焦的γ射线束一次性摧毁需治疗的病灶。

1959年日本Takahashi提出了适形放射治疗的概念及原理(称原体照射)。

1977年美国Bjangard, Kijewski等提出了调强放射治疗的原理。

上个世纪80年代末、90年代初,由于计算机及影像技术的高速发展促进了精确放疗设备的开发,如美、德等国相继开发了商用的X刀系统,瑞典开发了第三代γ刀系统。

1994年,Spirou等人提出了使用动态多叶准直器(DMLC)来实现IMRT,而Bortfeld 和 Boyer 则首先进行了多个静态野的实验(SMLC),发展至今已出现各种束流强度算法及各种调强方式,并在全身各部位肿瘤进行了临床实验,获较佳效果。

美国数学建模比赛历年试题

美国数学建模比赛历年试题

2003 MCM ProblemsPROBLEM A: The Stunt PersonAn exciting action scene in a movie is going to be filmed, and you are the stunt coordinator! A stunt person on a motorcycle will jump over an elephant and land in a pile of cardboard boxes to cushion their fall. You need to protect the stunt person, and also use relatively few cardboard boxes (lower cost, not seen by camera, etc.).Your job is to:•determine what size boxes to use•determine how many boxes to use•determine how the boxes will be stacked•determine if any modifications to the boxes would help•generalize to different bined weights (stunt person & motorcycle) and different jump heightsNote that, in "Tomorrow Never Dies", the James Bond character on a motorcycle jumps over a helicopter.PROBLEM B: Gamma Knife Treatment PlanningStereotactic radiosurgery delivers a single high dose of ionizing radiation to a radiographicallywell-defined, small intracranial 3D brain tumor without delivering any significant fraction of the prescribed dose to the surrounding brain tissue. Three modalities are monly used in this area; they are the gamma knife unit, heavy charged particle beams, and external high-energy photon beams from linear accelerators.The gamma knife unit delivers a single high dose of ionizing radiation emanating from 201 cobalt-60 unit sources through a heavy helmet. All 201 beams simultaneously intersect at the isocenter, resulting in a spherical (approximately) dose distribution at the effective dose levels. Irradiating the isocenter to deliver dose is termed a “shot.” Shots can be represented as different spheres. Four interchangeable outer collimator helmets with beam channel diameters of 4, 8, 14, and 18 mm are available for irradiating different size volumes. For a target volume larger than one shot, multiple shots can be used to cover the entire target. In practice, most target volumes are treated with 1 to 15 shots. The target volume is a bounded, three-dimensional digital image that usually consists of millions of points.The goal of radiosurgery is to deplete tumor cells while preserving normal structures. Since there are physical limitations and biological uncertainties involved in this therapy process, a treatment plan needs to account for all those limitations and uncertainties. In general, an optimal treatment plan is designed to meet the following requirements.1.Minimize the dose gradient across the target volume.2.Match specified isodose contours to the target volumes.3.Match specified dose-volume constraints of the target and critical organ.4.Minimize the integral dose to the entire volume of normal tissues or organs.5.Constrain dose to specified normal tissue points below tolerance doses.6.Minimize the maximum dose to critical volumes.In gamma unit treatment planning, we have the following constraints:1.Prohibit shots from protruding outside the target.2.Prohibit shots from overlapping (to avoid hot spots).3.Cover the target volume with effective dosage as much as possible. But at least 90% of thetarget volume must be covered by shots.e as few shots as possible.Your tasks are to formulate the optimal treatment planning for a gamma knife unit as a sphere-packing problem, and propose an algorithm to find a solution. While designing your algorithm, you must keep in mind that your algorithm must be reasonably efficient.2002 Contest ProblemsProblem AAuthors: Tjalling YpmaTitle: Wind and WatersprayAn ornamental fountain in a large open plaza surrounded by buildings squirts water high into the air. On gusty days, the wind blows spray from the fountain onto passersby. The water-flow from the fountain is controlled by a mechanism linked to an anemometer (which measures wind speed and direction) located on top of an adjacent building. The objective of this control is to provide passersby with an acceptable balance between an attractive spectacle and a soaking: The harder the wind blows, the lower the water volume and height to which the water is squirted, hence the less spray falls outside the pool area.Your task is to devise an algorithm which uses data provided by the anemometer to adjust the water-flow from the fountain as the wind conditions change.Problem BAuthors: Bill Fox and Rich WestTitle: Airline OverbookingYou're all packed and ready to go on a trip to visit your best friend in New York City. After you check in at the ticket counter, the airline clerk announces that your flight has been overbooked. Passengers need to check in immediately to determine if they still have a seat.Historically, airlines know that only a certain percentage of passengers who have made reservations on a particular flight will actually take that flight. Consequently, most airlines overbook-that is, they take more reservations than the capacity of the aircraft. Occasionally, more passengers will want to take a flight than the capacity of the plane leading to one or more passengers being bumped and thus unable to take the flight for which they had reservations.Airlines deal with bumped passengers in various ways. Some are given nothing, some are booked on later flights on other airlines, and some are given some kind of cash or airline ticket incentive.Consider the overbooking issue in light of the current situation:Less flights by airlines from point A to point BHeightened security at and around airportsPassengers' fearLoss of billions of dollars in revenue by airlines to dateBuild a mathematical model that examines the effects that different overbooking schemes have on the revenue received by an airline pany in order to find an optimal overbooking strategy, i.e., the number of people by which an airline should overbook a particular flight so that the pany's revenue is maximized. Insure that your model reflects the issues above, and consider alternatives for handling "bumped" passengers. Additionally, write a short memorandum to the airline's CEO summarizing your findings and analysis.MCM2000Problem A Air traffic ControlTo improve safety and reduce air traffic controller workload, the Federal Aviation Agency (FAA) is considering adding software to the air traffic control system that would automatically detect potential aircraft flight path conflicts and alert the controller. To that end, an analyst at the FAA r traffic control system that would automatically detect potential aircraft flight path conflicts and alert the controller. To that end, an analyst at the FAA has posed the following problemsRequirement A: Given two airplanes flying in space, when should the air traffic controller ld the air traffic controller consider the objects to be too close and to require intervention?Requirement B: An airspace sector is the section of three-dimensional airspace that one air traffic controller controls. Given any airspace sector, how we measure how plex it is from an air traffic workload perspective? To what extent is plexity determined by the number of we measure how plex it is from an air traffic workload perspective? To what extent is plexity determined by the number of aircraft simultaneously passing through that sector (1) at any one instant? (2) During any given interval of time? (3) During particular time of day? How does the number of potential conflicts arising during those periods affect plexity?Does the presence of additional software tools to automatically predict conflicts and alert the controller reduce or add to this plexity?In addition to the guidelines for your report, write a summary (no more than two pages) that the FAA analyst can present to Jane Garvey, the FAA Administrator, to defend your conclusionsProblem B Radio Channel AssignmentsWe seek to model the assignment of radio channels to a symmetric network of transmitter locations over a large planar area, so as to avoid interference. One basic approach is to partition the region into regular hexagons in a grid (honeyb-style), as shown in Figure 1, where a transmitter is located at the center of each hexagon.An interval of the frequency spectrum is to be allotted for transmitter frequencies. The interval will be divided into regularly spaced channels, which we represent by integers 1, 2, 3, ... . Each transmitter will be assigned one positive integer channel. The same channel can be used at many locations, provided that interference from nearby transmitters is avoided. Our goal is to minimize the width of the interval in the frequency spectrum that is needed to assign channels subject to some constraints. This is achieved with the concept of a span. The span is the minimum, over all assignments satisfying the constraints, of the largest channel used at any location. It is not required that every channel smaller than the span be used in an assignment that attains the span.Let s be the length of a side of one of the hexagons. We concentrate on the case that there are two levels of interferenceRequirement A: There are several constraints on frequency assignments. First, no two transmitters within distance of each other can be given the same channel. Second, due to spectral spreading, transmitters within distance 2s of each other must not be given the same or adjacent channels: Their channels must differ by at least 2. Under these constraints, what can we say about the span in,Requirement B: Repeat Requirement A, assuming the grid in the example spreads arbitrarily far in all directions.Requirement C: Repeat Requirements A and B, except assume now more generally that channels for transmitters within distance differ by at least some given integer k, while those at distance at most must still differ by at least one. What can we say about the span and about efficient strategies for designing assignments, as a function of k?Requirement D: Consider generalizations of the problem, such as several levels of interference or irregular transmitter placements. What other factors may be important to consider?Requirement E: Write an article (no more than 2 pages) for the local newspaper explaining your findingsMCM2000问题A 空间交通管制为加强安全并减少空中交通指挥员的工作量,联邦航空局(FAA)考虑对空中交通管制系统添加软件,以便自动探测飞行器飞行路线可能的冲突,并提醒指挥员。

肿瘤放射治疗常用英文缩写

肿瘤放射治疗常用英文缩写

肿瘤放射治疗常用英文缩写RTRadiotherapy,Radiation Therapy放疗,放射治疗放射治疗是利用放射线治疗肿瘤的一种方法,是当今治疗肿瘤的三大手段之一。

据统计,大约有60~70%恶性肿瘤患者需要接受放射治疗。

有些恶性肿瘤通过放疗可以得到根治,并可能获得同类同期肿瘤的手术治疗的疗效,且可保存所在的器官及其功能。

IMRTIntensity Modulated Radiation Therapy调强放射治疗调强放射治疗和以往放射治疗技术不同,它通过调节各个方向照射野的野内射线的强度产生非均匀照射野,达到肿瘤的高剂量三维适形分布和危及器官的低剂量分布,从而提高肿瘤的照射剂量,尽可能地减少危及器官和正常组织的受量,最终提高肿瘤局部的控制率,改善肿瘤患者的生存质量。

MLCMultiLeaf Collimator多叶准直器,多叶光栅MLC最初设计主要是用于替代射野挡铅,后来发展成了IMRT的基础,控制叶片运动可实现静态MLC和动态MLC调强。

QA & QCQuality Assurance & Quality Control质量保证和质量控制放射治疗的QA是指经过周密计划而采取的一系列必要的措施,保证放射治疗的整个服务过程中的各个环节按国际标准准确安全的执行。

这个简单的定义意味着质量保证有两个重要内容:质量评定,即按一定标准度量和评价整个治疗过程中的服务质量和治疗效果;质量控制,即采取必要的措施保证QA的执行,并不断修改服务过程中的某些环节,达到新的QA级水平。

--摘自胡逸民主编《肿瘤放射物理学》p612。

AAPMAmerican Association of Physicists in Medicine美国医学物理学家协会AAPM FACT SHEETThe AAPM:A scientific, educational, and professional organization of more than 4,700 medical physicists. Headquarters are located at the American Center for Physics inCollege Park, MD, with a staff of 20, Annual budget is over $5M. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings.Medical Physics:An applied branch of physics concerned with the application of the concepts and methods of physics to the diagnosis and treatment of human disease. It is allied with medical electronics, bioengineering, and health physics.Medical Physicists:Most have an MS or Ph.D. in medical physics, physics, radiation biology, or a related discipline, and training in clinical medical physics. Clinical training may be obtained through a residency traineeship or a postdoctoral program of one or two years in a hospital. Clinical medical physicists are employed in medical schools, hospitals or clinics, or are in private practice. These physicists divide their time between clinical service and consultation, research and development, and teaching. Some medical physicists work in industrial or research positions, and have no clinical responsibilities.Medical Physicist's Role:Medical physicists contribute to the effectiveness of radiological imaging procedures by assuring radiation safety and helping to develop improved imaging techniques (e.g., mammography CT, MR, ultrasound). They contribute to development of therapeutic techniques (e.g., prostate implants, stereotactic radiosurgery), collaborate with radiation oncologists to design treatment plans, and monitor equipment and procedures to insure that cancer patients receive the prescribed dose of radiation to the correct location.Medical physicists are responsible for ensuring that imaging and treatment facilities meet the rules and regulations of the Nuclear Regulatory Commission and various State Health Departments.Medical Physicist Credentials:The American Board of Radiology certifies medical physicists, as does the American Board of Medical Physics. Medical physicists contribute to the education and certification of radiologists and radiation oncologists. Many are members of physician organizations such as the American College of Radiology, the Radiological Society of North America, and the American Society for Therapeutic Radiology and Oncology.Salaries for clinical medical physicists are derived from technical payments to hospitals and sharing of physicians' professional reimbursement, or through fee-for-service in private practice.-------From /org/aapm_fact_sheet.htmlSADSource to Axis Distance源轴距放射源到机架旋转或机器等中心的距离。

SRS、SRT、3D-CRT、IMRT

SRS、SRT、3D-CRT、IMRT

SRS、SRT、3D-CRT、IMRT一、立体定向放射手术(stereotactic radiosurgery ,SRS):该概念由瑞典神经外科学家Lars Leksell于1951年最早提出,主要用于治疗颅内良、恶性病变。

其特征是多个小野三维集束单次大剂量照射。

所谓立体定向放射手术,即用多个小野三维集束单次大剂量照射颅内不能手术的,诸如脑动静脉畸形(AVM)病等良性病变。

由于多个小野集束定向照射,周围正常组织受量很小,射线对病变起到类似于手术的作用,故名X (γ)刀。

γ—刀(γ-knife):最早由瑞典Elekta公司研制,使用201个钴—60源集束照射。

X —刀(X —knife):由美国同道提出,几乎在Elekta γ刀装置临床安装使用的同时及稍后,用直线加速器的6-15MV X线非共面多弧度等中心旋转实现多个小野三维集束照射病变,起到与γ刀一样的作用,故称为X-刀(X—Knife)。

γ—刀、X-刀分别为瑞典Elekta公司钴-60γ刀装置和美国Radionics公司X 刀装置的商品注册名。

它们的学名称为X(γ)线立体定向放射手术(stereotactic radiosurgery),简称为SRS.X(γ)线SRT(SRS)治疗过程:X(γ)线SRT(SRS)治疗一般要经过病变定位、计划设计和治疗三个过程.1、定位:利用立体定向装置(stereotaxy)、CT、磁共振和X线数字减影等先进影像设备及三维重建技术,确定病变和邻近重要器官的空间准确位置和范围,这个过程叫作三维空间定位,也叫立体定向.2、计划设计:定位后利用三维治疗计划系统,确定X(γ)SRT(SRS)的线束方向,精确地计算出一个优化分割病变和邻近重要器官间的剂量分布计划,使射线对病变实施“手术”式照射.3、治疗:X(γ)线SRT(SRS)治疗既可严格保护临近重要器官,又可使病变得到大剂量的破坏性照射,起到不开颅也能准确、安全去病的目的,很受患者和神经外科医师们的欢迎。

放疗常用英文词汇(1)

放疗常用英文词汇(1)

3D- CRT 3dimensional comformal radiation therapy 三维适形放射治疗ABC active breath control 主动呼吸控制技术ABMT autologous bone marrow transplantation 自体骨髓移植AF accelerated fractionation 加速分割AHF accelerated hyperfractionation 加速超分割ART adaptive radiotherapy 适应性照射AT Ataxia Talangiectasia 毛细血管扩张性共济失调BD basal dose 基准剂量BED biologically effective dose 生物等效剂量BEV beam eye view 射束方向视图BMI body mass index 身体质量指数BOLD blood—oxygen-level-dependent 血氧水平依赖法BRMs biological response modifiers 生物反应调节剂BTV biological target volume 生物靶区CBHART concomitant boost hyperfractionated accelerated radiation therapy 同时小野加量加速超分割放疗CCG Children’s Cancer Group 儿童癌症研究组织CDK cyclin-dependent kinase 细胞周期依赖性蛋白激酶CF conventional fractionation 常规分割CHART continuous hyperfractionated accelerated radiation therapy 连续加速超分割放疗CI coverage index 靶区覆盖指数CIN cerbical intraepithelial neoplasia 宫颈上皮内瘤变CLDR continuous low dose rate radiotherapy 抵剂量率持续照射CML cutaneous malignant lymphoma 皮肤恶性淋巴瘤CPV coach’s preview 床角预览视图CT computed tomography 计算机体层显影CTV clinical target volume 临床靶区CUP carcinoma of unknown primary 原发灶不明的转移癌DDCs dermal dendritic cells 真皮内树突状细胞DFS disease free survival 无瘤生存DMF dose modifying factor 剂量修饰因子DPC DNA protein cross—linking DNA—蛋白质交联DRF dose reduction factor 剂量减少系数DRR digitally reconstructed radiography 数字重建图像DSA digital subtractive angiography 数字减影血管造影DSB double strand break 双链断裂DVH dose volume histograms 剂量—体积直方图EBF electron backscatter factor 电子反向散射因子ECM extracellular matrix 细胞外基质EGFR epithelial growth factor receptor 表皮生长因子受体EHART escalating hyperfractionated accelerated radiation gherapy 逐步递量加速超分割放疗EI external volume index 靶外体积指数EPID electronic portal imaging device 电子射野影像系统EUD dffective uniform dose 等效均一剂量18F-FDG 18F—fluorodeoxyglucose 氟代脱氧葡萄糖FCCL follicular center cell lymphoma 滤泡中心性淋巴瘤FDF fractionation—dosage factor 分次剂量因子FHDR fractionated high dose rate brachytherapy 高剂量率分次近距离治疗FL—HCC fibrolamellar hepatocellular carcinoma 纤维板层样肝细胞肝癌FNH focal nodular hyperplasia 局灶性结节增生FSRT fractionated stereotactic radiotherapy 分次立体定向放射治疗FSU functional subunits 功能亚单元GCT germ cell tumor生殖细胞瘤GTV gross tumor volume 肿瘤靶区或肉眼靶区HA hepatocellular adenoma 肝细胞腺瘤HC hyperthermia and chemotherapy 热疗加化疗HCC hepatocellular carcinoma肝细胞肝癌HD hyperdose sleeve超剂量区HF hyperfractionation超分割HI relative dose homogeneity index靶区剂量均匀性指数HR hyperthermia and radiation 热疗加放疗HRC hyperthermia and radiochemotherapy 热疗加放化疗HVL half value layer 半价层IC immunocytoma 免疫细胞瘤ICR interval cytoreductive or intervening cytoreduction 间隔细胞减灭术ICRU International Commission on Radiation units and Measurements 国际辐射单位与测量委员会IGART image guided adaptive radiotherapy 影像学引导的适应性照射IGRT image guided radiotherapy影像学引导的放射治疗IM internal margin 内边界IMAT intensity modulated arc therapy 弧形调强技术IMRT intensity modulated radiation therapy 调强放射治疗IM-WPRT intensity—modulated whole pelvic radiotherapy 全盆调强放射治疗IPSID immunoproliferative small intestinal disease 免疫增值性小肠病ISO international Organization for Standardization 国际标准化组织ITV internal target volume 内靶区IV irradiation volume 照射靶区KCs keratinocytes表皮胶原细胞LCHART late-course hyperfractionated accelerated radiation therapy 后程加速超分割放疗LCs Langerhans cells 朗罕氏细胞LD lethal damage 致死损伤LENT late effective normal tissues正常晚反应组织LET linear energy transfer 线性能量传递LH local hyperthermia 局部加温LI labeling index 标记指数LLS linear least squares线性最小二乘法LQ linear quadratic model LQ 模型或线性二次模型MCD mean central dose 平均中心剂量MIMiC multivaane intensity modulation compensator多叶调强补偿器MLC multileaf collimator 多叶准直器MRI magnetic resonance imaging磁共振成像MTD minimum target dose 最小靶剂量MTH mild temperature hyperthermia 温和加温MU monitor unit 机器跳数NCCN National Comprehensive Cancer Network美国综合癌症工作者NED no evidence of disease无疾病证据NF neurofibromatosis神经纤维瘤病NHL non—Hodgkin Lymphoma 非霍奇金淋巴瘤NSCLC non—small cell lung cancer非小细胞肺癌NSD nominal standard dose名义标准剂量NSGCT nonseminomatous germ cell tumor非精原细胞性生殖细胞瘤NTCP normal tissue complication probability正常组织并发症概率OAR off axial ratio离轴比OAR organ at risk敏感器官OER oxygen enhancement ratio氧增强比OI overdose volume index超剂量体积指数OPM ocult primary malignancy隐匿原发灶OUF output factor射野输出因子PCI propylactic cranial irradiation预防性全脑照射PCML primary cutaneous malignant lymphoma 原发性皮肤恶性淋巴瘤PDD percentage depth dose百分深度剂量PDRR pulsed dose rate brachytherapy 脉冲剂量率近距离治疗PET positron emission tomography 正电子发射断层扫描PF protection factor 防护系数PLD potential lethal damage 潜在致死损伤PNAd peripheral node addressin 外周淋巴结地址素PNETs primitive neuroectodermal tumor 原始神经外胚层肿瘤POA pancreatic oncofetal antigen 胰腺癌胚抗原PSA prostate specific antigen 前列腺特异抗原PT precision radiotherapy 精确放疗PTCA percutaneous transluminal coronary angioplasty经皮腔内冠状动脉成型术PTV planning target volume 计划靶区PUC probability of uncomplicated control 无并发症控制概率PUFA polyunsaturated fatty acid 多不饱和脂肪酸QA/QC quality assurance/quality control 质量保证/质量控制QOL quality of life 生活质量QP quadratic programming二次规划法RBE relative biological effectiveness相对生物效应RD reference dose参考剂量REV room's eye view 治疗室内视图RH regional hyperthermia区域加温SAD source axis distance源轴距SALT skin associated lymphoid tissue皮肤相关淋巴样组织SAR scatter air ratio散射空气比SCHART split-course hyperfractionated accelerated radiation therapy分段加速超分割放疗SCLC small cell lung cancer 小细胞肺癌SER sensitization enhancement ratio增敏比SI sum index加权综合指数SIB simultaneously integrated boosting大野照射及小野追加剂量照射SIOP International Society for Paediatric Oncology国际儿童肿瘤研究组织SIS skin immune system皮肤免疫系统SLD sublethal damage亚致死损伤SLN sentinel lymph node哨位淋巴结SLNB sentinel lymph node biopsy哨位淋巴结活检技术SM set-up margin摆位边界SMR scatter maximum ratio散射最大剂量比SOBP spread out Bragg peak扩展布拉格峰SPECT single photo emmision computerized tomography单光子发射型计算机扫描SPR scatter phantom ratio散射体模比SRS stereotactic radiosurgery立体定向放射外科SRT stereotactic radiation therapy立体定向放射治疗SSB single strand break单链断裂SSD source skin distance源皮距STD source tumor distance源瘤距SVCS superior vena cave syndrome上腔静脉综合征SVD singular value decomposition奇异值分解法TAA tumor associated antigen肿瘤相关抗原TAE transcatheter arterial embolization经导管动脉栓塞术TAR tissue air ratio组织空气比TCD tumor control dose肿瘤控制剂量TCP tumor control probability肿瘤控制概率TER thermal enhancement ratio热增强比TGF therapeutic gain factor治疗增益系数(因子)TLD thermoluminescence dosimeters热释光剂量计TMR tissue maximum ratio组织最大剂量比Tpot potertial doubling time潜在倍增时间TPR tissue phantom ratio组织体模比TPS treatment planning system 治疗计划系统TR therapeutic ratio治疗比TSEI total skin electron irradiation电子线全身照射TV treatment volume治疗靶区TVR treatment volume ratio治疗体积比UDS unscheduled DNA synthesis程序外DNA合成UICC International Union Against Cancer国际抗癌联盟VEGF vascular endothelial growth factor血管内皮生长因子WBH whole body huperthermia全身加温5 放射肿瘤学(放射治疗学)5.1 放射肿瘤学 radiation oncology原先称放射治疗学,专门研究肿瘤放射治疗的分支学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 该研究与既往研究进行比较,首选SRS治疗与 WBRT失败后姑息SRS治疗可能更好,但没有统 计学意义,可能与接受姑息SRS治疗患者做出正 确选择延迟了脑转移 时间而并非死于全身疾病 • DS-GPA、Rade’s生存评分系统对SCLC转移患者 预测生存期过低,与本研究不符;可能前两项研 究均为姑息治疗 • 高KPS评分和单个肿瘤为独立预后因素,对于预 后好的患者合适治疗更为重要
SRS后的进一步治疗及随访评估
• 临床上每2-3月复查MRI增强扫描,若发现远地部 位转移再行SRS • 若发现粟粒样转移或软脑膜转移建议行WBRT • 局部复发定位为肿瘤直径增大20%以上,不管是 否为真复发或晚期放射损伤 • 外科手术用于有神经症状并且对一般治疗抗拒的 局部进展或放射性坏死 • NCI-CTCAE 3.0评价毒副反应 • 大于2月未随诊患者通过其家属获取临床资料 • 神经学死亡定义为CNS转移(包括:肿瘤复发及 癌性脑膜炎)导致的死亡
• SRS后8月左右可能出现局控失败,需要再次 SRS治疗,目前难于鉴别真复发 • WBRT治疗后局部失败率更高原因不明,但可能 为肿瘤细胞辐射抗性提高、周围脑组织更易出现 放射损伤 • 建议边缘剂量≥20Gy,提高局控
• 接近一半患者首次SRS后出现远地转移,其中 43%转移患者行再次SRS,有效控制肿瘤并且毒 性小 • 复发后行再次SRS治疗可减低神经学死亡率,但 OS与既往研究相似 • 但该研究为回顾性分析,选择偏移不可避免 • PCI使用原因并未阐述,而且并未对SRS与WBRT 进行比较,PCI仍为标准治疗,SRS对SCLC脑转 移患者的有效性仍需进一步证实
• SCLC脑转移患者通常SRS在WBRT治疗失败后 使用 • 随着脑转移诊断与治疗手段进步,SRS可治疗20 个或者更多数量的脑转移病灶 • SRS放疗剂量学优势使其在PCI或WBRT治疗前或 治疗失败后仍可安全应用,并且减少晚期神经毒 性 • 一项日本研究显示对于10个以内的脑转移,可首 先采用SRS • 但对于SCLS由于其播散转移特性,SRS可能不 适用
2015-07-15
BMC Cancer (2015)15:95,Shoji Yomo
• • • • •
研究背景 研究方法 研究结果 讨论 结论
背景介绍
• 约50%的SCLC患者2年内发生脑转移 • PCI提高了OS;虽然SCLC对放疗敏感,但出现 颅内复发或进展患者并非少见 • SRS成为更易接受的治疗手段 • 对于一部分患者为减少潜在的远期神经毒性, WBRT已非脑转移的首先治疗手段 • SCLC播散性转移可能,SRS似乎并不是好的治 疗选择;目前SRS+WBRT与SRS比较研究数据仍 较少,且样本量少
Is stereotactic radiosurgery a rational treatment option for brain metastases from small cell lung cancer? A retrospective analysis of 70 consecutive patients SRS对SCLC脑转移患者是否为合理治疗手段? 一项对连续70例患者回顾性分析
研究结果
• • • •
首次SRS共计292肿瘤病灶 中位PTV体积0.6ml,中位总PTV体积4.4ml 中位脑转移数位2个 处方剂量12-22Gy,其中7例大肿瘤患者行2期 SRS • 评估存活8人,62人死亡(其中50人死于原发病 灶进展)
• 共计60例患者219/292病灶获得影像学随访数据 • 33例患者发生远地脑转移 • SRS后23个病灶发生局部复发或放射性损伤,中 位时间8.2月 • 2期SRS治疗后大部分患者(6/7)大肿块退缩, 症状缓解;其中一例脑干部位肿瘤局部治疗失败, 在SRS后12个月神经学死亡
讨论
• 随着患者生存率和MST提高;长期控制CNS转移 肿瘤不但能提高OS,还可提高患者生活治疗 • SCLC患者脑转移率更高,诊断后2年内出现脑转 移累计风险49%-65% • PCI可减低脑转移风险成为标准治疗,但也会带 来脑白质病变增加;并且50%患者仍可能出现脑 转移,特别是全身其他部位病变进展时可能出现 脑转移,没有证据显示PCI能预防新出现脑转移 病灶
结论
• 该研究是目前为止最大的对SCLC脑转移患者 SRS有效性进行分析的一则回顾性研究 • 该研究显示SRS单独使用或WBR害小的治疗 手段 • 继续放射治疗可能减少神经学死亡率 • SRS局控可接受,但50%患者脑转移可能需要再 次姑息治疗
SRS治疗技术
• 病人镇静状态下局部麻醉采用头部框架固定 • MRI T1增强、T2及增强CT图像以层厚2mm扫描 全脑,并制定γ刀SRS治疗计划 • 对于先前行WBRT患者姑息SRS治疗,靶区仅包 括复发或新发病灶 • 考虑SCLC肿瘤浸润性生长边界外扩1-2mm • 2期SRS治疗:分2次给予总剂量20-30Gy,两次 间隔时间为3-4周
• 远地转移或局部复发患者30例接受再次SRS, SRS期升至5,平均每人SRS治疗病灶升至72个 • 8例粟粒样转移及软脑膜播散,患者接受WBRT, 距SRS中位时间为9.8月 • 有1例患者行微创手术切除复发肿瘤,距SRS治疗 后15月 • 所有患者均未出现III度以上毒副反应,3例患者由 于晚期放射损伤需口服激素和高压氧治疗
统计分析
• Kaplan-Meier 乘积极限法计算OS • Gray’s 检验计算神经学、非神经学死亡率、局部 控制率及远处失败率等 • Cox and Fine-Gray比例风险模型分别预测OS、 无神经学死亡生存率及肿瘤控制率相关预后因素 • DS-GPA和Rades’s生存评估系统分别进行验证
研究方法
• • • • 病人人群特征 放疗指证和技术 SRS后的治疗及随访评估 统计分析
患者临床特征
SRS适应症
• 由原医疗机构认定患者适合SRS治疗 • 原则上SRS用于≤10个脑转移病变治疗 • 首次SRS治疗前行MRI检查,若颅神经、脑室室 管膜层及皮质表面异常强化,建议WBRT • 姑息性SRS治疗对脑转移数目没有限制 • 外科手术原则上用于体积≥10ml对皮质类固醇激 素抗拒有占位效应的肿瘤
相关文档
最新文档