大功率开关电源的EMC测试分析及正确选择EMI滤波器

合集下载

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

提高设备性能
EMI滤波器可以减少电磁干扰对周围 设备的影响,提高整个系统的性能和 稳定性。
EMI滤波器的分类与特点
分类
EMI滤波器根据不同的应用场景 和需求,可分为有源滤波器和无
源滤波器。
有源滤波器特点
有源滤波器通过放大电路和比较电 路实时检测干扰信号并消除,具有 较高的滤波效果,但成本较高。
无源滤波器特点
评估
通过对EMI滤波器性能的测试数据进行统计和分析,可以评 估其性能是否满足设计要求和标准。
优化建议
根据评估结果,可以提出针对性的优化建议,如改进滤波器 电路设计、选用更高性能的器件等。同时,也可以根据实际 应用场景和需求,对EMI滤波器进行定制化设计和生产。
05
EMI滤波器在开关电源中的应 用案例
01
02
03
插入损耗
滤波器对信号的衰减程度 ,通常用分贝(dB)表示 。
阻抗
滤波器对不同频率信号的 阻抗,通常用欧姆(Ω) 表示。
带宽
滤波器对信号的频率范围 ,通常用赫兹(Hz)表示 。
EMI滤波器的工作原理及作用机理
工作原理
EMI滤波器通过在电路中引入阻抗和感抗,对高频干扰信号进行抑制,从而减 小电磁干扰对电源的影响。
电设备的安全和稳定。
以上案例表明,EMI滤波器在开 关电源中具有广泛的应用,对于 提高电源性能、确保设备安全稳
定运行具有重要作用。
06
未来发展趋势与挑战
新型EMI滤波器技术的研究与发展
新型EMI滤波器技术
随着电子设备对性能和效率的要求不断提高,新型EMI滤波器技术的研究与发展成为重要趋势。这包 括研究新的滤波器结构、材料和设计方法,以提高EMI滤波器的性能和效率。

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用(连载一)1插入损耗和滤波电路的选择在用户选择滤波器时,最关心插入损耗性能。

但是,往往插入损耗相近的滤波器,在实际运用中效果相差甚远。

究其主要原因是,相近插入损耗的滤波器可由不同的电路实现。

这和理论分析是吻合的,因为插入损耗本身是个多解函数。

所以,选择滤波器时首先应选择适合你所用的滤波电路和插入损耗性能。

要做到这一点,就要求了解所使用电源的等效噪声源阻抗和所需要对噪声的抑制能力。

这符合“知己知彼,百战百殆”的客观规律。

那么滤波电路和电源等效噪声之间存在什么样的关系呢?众所周知,EMI滤波器是由L、C构成的低通器件。

为了在阻带内获得最大衰减,滤波器输入端和输出端的阻抗需与之连接的噪声源阻抗相反,即对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)。

对于EMI滤波器,这些原则应用于共模和差模中。

如按此原则选用的滤波器,在实际运用中仍存在效果相差很多的现象,特别发生在重载和满载的情况下。

造成这一问题的主要原因可能是滤波器中的电感器件在重载和满载时,产生饱和现象,致使电感量迅速下降,导致插入损耗性能大大变坏。

其中尤以有差模电感的滤波器为多。

因差模电感要流过电源火线或零线中的全部工作电流,如果差模电感设计不当,电流一大,就很容易饱和。

当然也不排除共模扼流圈,因生产工艺水平较差,两个绕组不对称,造成在重载或满载时产生磁饱和的可能。

图1 共模滤波器模型1.1.2差模滤波电路由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。

AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。

如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条件是它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。

开关电源工频谐波噪声源阻抗是高阻抗,所以与之相对应的滤波器输出端应是低阻抗并联大电容CX2。

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

EMI滤波器的分类
按安装位置分类
可以分为输入EMI滤波器和输出EMI滤波器。输入EMI滤波器安装在电源输入 端,用于抑制电网中的电磁干扰;输出EMI滤波器安装在电源输出端,用于抑 制电源对负载的电磁干扰。
按元件分类
可以分为无源EMI滤波器和有源EMI滤波器。无源EMI滤波器主要由电感和电容 组成,有源EMI滤波器则增加了运算放大器等电子元件。
THANKS
感谢观看
工业控制
如PLC、伺服驱动、传感器等。
汽车电子
如发动机控制、刹车控制等。
案例一:某型号电源的EMI滤波器设计
背景介绍
某型号电源在运行过程中出现了严重 的EMI干扰问题。
设计方案
采用EMI滤波器对电源输出端的干扰 进行抑制。
设计细节
根据电源的输出阻抗特性和干扰频率 ,选择合适的滤波器元件和结构。
实验验证
提高效率
优化电路拓扑结构,以提高电源的效率。例如, 采用同步整流、软开关等技术。
降低电磁干扰
合理设计电路拓扑结构,降低开关电源本身产生 的电磁干扰。
改进元件布局和布线
优化元件布局
合理安排各个元件的位置,以减小它们之间的相互干扰。
合理布线
优化线路布局,减小电流回路的大小和复杂度,以降低线路的电 感和电阻。
样品制作阶段
制作滤波器样品,并进行初步 的测试和验证。
批量生产阶段
在生产线上进行批量生产,并 进行持续的测试和验证。
应用现场阶段
在实际使用现场进行应用和验 证,确保滤波器的性能和效果
符合设计要求。
06
开关电源EMI滤波器应用 与案例分析
应用领域
电力电子设备
如电源、逆变器、变频器等。

开关电源EMI滤波器的设计

开关电源EMI滤波器的设计

开关电源EMI滤波器的设计要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。

1.抗共模干扰的电感器的设计电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。

当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。

因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。

当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。

电路如图1所示。

信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1=L2=M。

由于Rc1和RL串联且Rc1<<RL,则可以不考虑Vg, Vg 被短路可以不考虑Vg的影响。

其中(Is是信号电流,Ig是经地线流回信号源的电流。

由基尔霍夫定律可写出:式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。

由(1)式得知,共模千扰电流Ig随f:fc的比值增大而减小。

当f:fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。

所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。

一般来说,当干扰电压频率f≥5fc时,即Vn:Vg≤0.197,就可认为达到有效抑制地线中心干扰的目的。

2.抗差模干扰的滤波器设计差模干扰的滤波器可以设计成Π型低通滤波器,电路如图2所示。

这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。

开关电源EMC滤波电路的设计

开关电源EMC滤波电路的设计

开关电源EMC滤波电路的设计为了满足电子设备对于电磁干扰的要求,开关电源需要通过EMC(电磁兼容性)滤波电路来减少电磁干扰的发生。

EMC滤波电路的设计是确保开关电源在正常工作时,尽量减少电磁干扰的传播。

EMC滤波电路通常可分为输入滤波和输出滤波两部分。

输入滤波主要用于抑制开关电源输入端的电磁干扰,输出滤波则用于抑制开关电源输出端的电磁干扰。

以下是一个1200字以上的关于开关电源EMC滤波电路设计的详细讨论。

首先,输入滤波电路的设计。

输入滤波电路的目的是通过使用不同类型的滤波器来抑制开关电源输入端的电磁干扰。

常见的输入滤波器包括:L型滤波器、π型滤波器和T型滤波器。

L型滤波器由一个电感和一个电容组成,电感用于抑制高频噪声,电容则用于抑制低频噪声。

设计L型滤波器时,需要根据开关电源的输入功率和频率要求选择电感和电容的数值。

通常情况下,电感的数值应根据输入电流的大小选择,而电容的数值应根据电源的额定电压选择。

π型滤波器是一种更复杂的输入滤波器,由两个电感和两个电容组成。

它的设计目的是在更广泛的频率范围内提供更好的噪声抑制。

π型滤波器与L型滤波器相似,但是通过在输入和输出之间添加一个额外的电感和电容,它可以更有效地抑制高频和低频噪声。

T型滤波器是一种用于高频噪声抑制的输入滤波器,通常用于开关电源中。

它由一个电感和两个电容组成。

T型滤波器与L型滤波器和π型滤波器相比,可以提供更高的噪声抑制。

接下来,是输出滤波电路的设计。

输出滤波电路的目的是降低开关电源输出端的电磁干扰。

常见的输出滤波器包括:LC型滤波器和RC型滤波器。

LC型滤波器由一个电感和一个电容组成。

它的设计目的是通过电感提供频率选择性的电流平滑,从而减少输出端的电磁干扰。

RC型滤波器由一个电阻和一个电容组成。

它主要用于抑制输出端的高频噪声。

在设计EMC滤波电路时,需要考虑开关电源的输入功率、频率和输出功率等参数。

此外,还需要注意滤波器元件的选取和放置,以确保它们能有效地减少电磁干扰的传播。

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究
EMI滤波器工作原理
被动式EMI滤波器主要通过电感和电容的组合来实现干扰的吸收和抑制。而主 动式EMI滤波器则通过在信号线上加入特殊的电子器件来消除干扰。
EMI耗
额定电压是EMI滤波器的重要参数之一,它 表示滤波器可以承受的最大电压值。
插入损耗是指EMI滤波器接入电路后,对信 号传输造成的影响。插入损耗越小,说明滤 波器的性能越好。
群时延
温度系数
群时延是指滤波器对信号传输时间的影响。 群时延越小,说明滤波器的传输速度越快。
温度系数是指EMI滤波器在温度变化时,其 性能变化的程度。温度系数越小,说明滤波 器的稳定性越好。
02
开关电源EMI滤波器设计基 础
EMI滤波器电路拓扑结构
1 2
共模滤波电路
用于减小电源线上共模噪声,包括电阻、电容 和电感等元件。
抑制共模噪声
通过采用共模扼流圈等元件,可以抑制共模噪声,提高滤波 器的性能。
抑制差模噪声
采用差模扼流圈等元件,可以抑制差模噪声,提高滤波器的 性能。
EMI滤波器与整流器的配合设计
整流器与滤波器的配合设计
整流器输出的波形对EMI滤波器的性能有很大影响,因此需要合理设计整流 器与滤波器之间的电路连接方式,以减小整流器对EMI滤波器性能的影响。
2023
《开关电源emi滤波器原理 与设计研究》
目录
• 开关电源EMI滤波器概述 • 开关电源EMI滤波器设计基础 • 开关电源EMI滤波器优化设计 • 开关电源EMI滤波器性能评估 • 开关电源EMI滤波器设计实例 • 结论与展望
01
开关电源EMI滤波器概述
EMI滤波器的定义和作用
EMI滤波器定义
整流器与滤波器的参数匹配

开关电源EMI滤波器的正确选择与使用1

开关电源EMI滤波器的正确选择与使用1

开关电源EMI滤波器的正确选择与使用(连载二)2额定电流与环境温度EMI滤波器一般采用高导磁率软磁材料锰锌铁氧体,初始导磁率μi=700~10000,但其居里点温度不高,优质的仅为130℃左右。

导磁率越高,居里点温度越低,典型曲线如图10所示。

除特殊说明外,EMI滤波器说明书给出的额定电流均指室温+25℃的值;同样,给出的典型插入损耗或曲线也均指室温+25℃的值。

随着环境温度的升高,主要由电感导线的损耗、磁芯损耗以及周围环境温度等原因导致温度高于室温,结果难于确保插入损耗的性能,甚至烧坏滤波器。

由于滤波电容的最高工作温度受到限制也是+85℃。

我们应该根据实际可能的最大工作电流和工作环境温度来选择滤波器额定电流。

图10 居里点温度曲线图11额定电流与温度的关系工作电流、额定电流与环境温度之间存在如下关系:式中:Ip——容许的最大工作电流;IR——室温+25℃时的额定电流;Tmax——容许的最高工作温度,+85℃;Ta——环境温度;TH——室温(+25℃)。

也可用曲线表示(参见图11)。

曲线表示Ip/IR∝Ta。

举例说明:+25℃Ip=IR;+45℃Ip=0.816IR;+55℃Ip=0.5IR;+85℃Ip=0.0因此,要根据工作温度来正确选择滤波器的额定电流;或者用改善滤波器的散热条件(工作环境)来确保滤波器的安全使用。

这样,滤波器务必安装在有散热作用的机架、机壳上,切忌安装在绝缘材料上。

3耐压、泄漏电流与安全3.1耐压与安全由于EMI滤波器安装在AC电网的输入端,所以除了承受开关电源(滤波器的负载)产生的尖峰脉冲干扰电压外,还要承受来自电网的浪涌电压(电流),特别是浪涌电压,其持续时间长(ms级),能量大(2000伏浪涌电压是经常出现的)。

这些干扰电压由滤波器的Cx、Cy承受。

因此,要求使用专为EMI滤波器设计的Cx、Cy。

目前,据了解,因内尚没有这类电容器生产厂家。

电容Cx或Cy被浪涌电压击穿产生的后果,是Cx被击穿短路,相当于AC电网被短路,至少造成设备停止工作;Cy击穿短路,相当于将AC电网的电压加到设备的外壳,它直接威胁人身安全的同时,波及所有与金属外壳为参考地的电路安全,往往导致某些电路的烧毁。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。

EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。

EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。

EMI滤波器的原理是基于电流和电压的相位关系来实现的。

开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。

EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。

设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。

根据具体的应用环境和要求,选择合适的滤波器工作频率范围。

2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。

常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。

3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。

过渡区域越宽,滤波器的性能越好。

过渡区域的宽度需要根据具体要求进行设计。

4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。

在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。

设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。

常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。

其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。

总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。

通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用于抑制开关电源产生的电磁干扰(EMI)的一种电路。

开关电源工作时,因为开关元件的开闭引起的瞬态电流和电压变化,会在电源线上产生高频噪声干扰,通过电磁辐射和传导的方式传播到其他电路中,对其他设备和系统产生干扰。

EMI滤波器的设计旨在通过选择合适的滤波器拓扑结构、滤波器元件和参数,以及合理布局和连接方式,来有效地抑制开关电源产生的高频噪声。

EMI滤波器的原理是通过串联和并联等方式构成一个低通滤波器,将开关电源的高频噪声滤除,使其只能在设定的频率范围内传递,从而减少对其他设备和系统的干扰。

EMI滤波器的设计研究需考虑以下几个方面:1.滤波器拓扑结构选择:常见的EMI滤波器拓扑结构包括LC滤波器、RC滤波器和LCL滤波器等。

不同的拓扑结构适用于不同的滤波需求,需根据实际应用场景选择适合的拓扑结构。

2.滤波器元件选择:滤波器中的元件包括电感、电容和电阻等。

选择合适的元件需要考虑元件的频率响应特性、阻抗特性、容值和功率等参数。

3.滤波器参数优化:滤波器的参数优化可以通过频率响应曲线和阻抗匹配等方法进行,以确保滤波器在设计频率范围内能够有效地滤除高频噪声。

4.布局和连接方式设计:合理的布局和连接方式可以减少电磁辐射和传导的路径,从而进一步提高滤波器的性能。

此外,还需对滤波器进行实验验证,通过在实际电路中的应用来评估滤波器的性能和有效性。

总之,开关电源EMI滤波器的原理和设计研究是为了抑制开关电源的高频噪声干扰,需要对滤波器的拓扑结构、元件选择、参数优化以及布局和连接方式进行综合考虑和设计,以提高滤波器的性能和效果。

EMI电源滤波器设计与测试

EMI电源滤波器设计与测试

EMI电源滤波器设计与测试引言:随着电子设备的广泛应用,电源滤波器的重要性日益突出。

由于电子设备会产生较大的电磁干扰(EMI),这些干扰信号会传播到电源网络中,可能会干扰其他设备的正常运行。

因此,正确设计和测试EMI电源滤波器对于电子设备的稳定运行至关重要。

一、EMI电源滤波器的设计1.确定滤波器的类型:常见的滤波器类型有低通滤波器、带通滤波器和带阻滤波器。

根据特定应用的需求,选择合适的滤波器类型。

2.确定滤波器的频率范围:根据所需的高频抑制能力,选择适当的频率范围。

一般来说,电源干扰的频率范围为100kHz至100MHz。

3.确定滤波器的元件:根据所选滤波器类型和频率范围,选择适当的元件。

常见的元件包括电容器、电感器和阻抗。

4.设计滤波器电路:根据所选元件的电感值和电容值,使用传统的电路设计方法设计滤波器电路。

5.进行仿真和优化:使用电路仿真软件,对设计的滤波器电路进行仿真和优化。

通过调整元件值,使得滤波器在所选频率范围内具有最佳的抑制效果。

6.制作和组装滤波器:根据设计的滤波器电路,制作电路板并组装滤波器。

二、EMI电源滤波器的测试完成滤波器设计后,需要进行测试以确保其设计和性能的有效性。

以下是几个常见的EMI电源滤波器测试方法:1.静态电源测试:在电源线输入端与滤波器间,使用功率分配器和示波器测试静态电源特性。

测试过程中,记录电源线的电压和电流波形,评估滤波器阻尼和节能能力。

2.功率线谐波测试:使用功率线谐波测量仪器,测试滤波器是否能够有效抑制功率线谐波干扰信号。

测试过程中,记录功率线的谐波波形,并与滤波器前后的谐波波形进行比较。

3.射频干扰测试:使用射频信号发生器和射频频谱分析仪,测试滤波器是否能够有效抑制射频干扰信号。

测试过程中,调整射频信号的频率和幅度,记录射频信号在滤波器前后的幅度和频谱。

4.整体性能测试:测试滤波器的整体性能,包括频率响应、损耗和抑制能力等。

测试过程中,使用信号发生器和示波器记录输入和输出信号,并计算滤波器的传递函数、损耗和抑制程度。

EMI滤波器的应用及选择指南

EMI滤波器的应用及选择指南

EMI滤波器的应用及选择指南一、EMI滤波器的电路结构形式(右图所示):1、C型滤波器C型滤波器由三端电容和穿心电容构成,适合于抑制高频。

C型滤波器两端均可视为低阻抗,接高阻抗源和负载。

2、L型滤波器由一个电感器和一个电容器组成。

这种滤波器可以提供高的输入阻抗,也可提供低的输入阻抗,取决于电路的安装方向。

LT电路适用于高阻抗负载,低阻抗源的情况。

LB电路适用于低阻抗负载,高阻抗源的情况。

3、π型滤波器π型滤波器由一个电感器两个电容器构成。

它的输入端和输出端都呈低阻抗性,因为元件比L型或C型多,故抑制性能要好的多。

但在开关电路中有时会出现“振铃”现象。

4、带瞬变抑制器的π型滤波器这种π型滤波器在其输入端增加了一个瞬变抑制器,它具有较好的高频抑制性能,同时可以防止电压尖峰。

5、T型滤波器这种滤波器包括两个电感器和一个电容器,它的两端都是高阻抗,其插入损耗性能和π型滤波器相似。

但它不易出现“振铃”现象,可用在开关电路中。

6、双T型滤波器(多级滤波器)多级滤波器是为源和负载都为低阻抗的电路设计的高性能滤波器,它们也可用在要求高插入损耗的其他情况。

在滤波器的输入端用一个电感器,有利于与美军标MIL-STD-461D(国军标GJB-151A)的测试装置匹配。

二、各种滤波电路的衰减特性:不同的滤波电路有着不同的滤波特性(见右图)。

一般而言,C 型电路的滤波衰减曲线较平坦,没有明显的拐点,适用于大多数电子设备;L 型电路Pi 型电路和T 型电路的滤波衰减曲线较C 型电路拐点明显,适用于抑制的干扰信号与有用信号频率接近的的场合。

但当工作频率为方波时,要注意这些电路的感性和容性器件的量值要选用恰当,避免一味追求滤波衰减性能,而把有用信号的波形部分衰减,导致设备工作反而不正常。

各种滤波电路滤波特性图一、 E MI 感性和容性器件的选择:滤波电容EMI 滤波器所用电容一般为穿芯式陶瓷电容,穿芯式的结构可有效防止高频信号在输入输出端之间直接耦合,且寄生电感小自谐振频率较高,这种同轴性的、低通高阻的设计组合,在1GHz 的频率范围内,可以提供高效的EMI 抑制。

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

02
EMI滤波器的工作原 理
EMI滤波器的电路组成
EMI滤波器通常由电感、电容和电阻等元件组成,根据需要还可以加入铁氧体磁 珠、二极管等其他元件。其中,电感和电容的作用是阻止特定频率的电磁波通过 ,而电阻则可以吸收电磁波的能量。
EMI滤波器的电路设计需要根据开关电源的工作频率、电磁干扰的频率和幅度、 以及所需的滤波效果等因素来确定元件的参数和电路结构。
利用仿真软件对所设计 的滤波器电路进行仿真 验证,确保其性能指标 符合要求。
将所设计的滤波器电路 制作成样品,并进行测 试,确保其实际性能符 合设计要求。
参数选择与Leabharlann 算确定插入损耗插入损耗是指滤波器插入前后信 号电平的差值,是衡量滤波器性 能的重要指标之一。插入损耗的 计算方法包括频域法和时域法等
EMI滤波器的频带宽度表示其 能够抑制的电磁波频率范围。 频带越窄,表示滤波器对电磁 波的抑制效果越集中;频带越 宽,表示滤波器对电磁波的抑 制效果越广泛。
EMI滤波器的耐压等级表示其 能够承受的最大电压。在选择 滤波器时,需要根据开关电源 的最大输出电压来确定耐压等 级。
03
EMI滤波器的设计方 法
方法
根据电源的特性,选择合 适的EMI滤波器器件,包 括电容器、电感器、二极 管等,进行电路设计。
结果
通过优化设计,有效地降 低了电源的电磁干扰,提 高了电源的稳定性和可靠 性。
案例二
1 2 3
背景
某复杂电路板在运行过程中出现了信号失真和噪 声干扰问题,需要进行EMI滤波器优化设计。
方法
对电路板进行电磁兼容性分析,找出电磁干扰的 主要来源,选择合适的EMI滤波器器件和电路拓 扑结构,进行优化设计。
VS

开关电源emi滤波器原理与设计

开关电源emi滤波器原理与设计

1. 传导发射测试:测量开关电源EMI滤波器在电源线上 的传导发射电平。
3. 插入损耗测试:测量滤波器插入前后信号的衰减量, 反映滤波器的抑制能力。
测试结果分析与改进建议
结果分析
根据测试数据,分析开关电源EMI滤波器的性能,包括传导发射、辐射发射和 插入损耗等指标。
改进建议
根据分析结果,提出针对性的改进措施和建议,如优化滤波器电路设计、改进 元件参数等,以提高滤波器的性能。
05
开关电源EMI滤波器应用案例 分析
应用场景与案例选择
应用场景
开关电源广泛应用于各种电子设备中,如计算机、通信设备、家电等。在这些设 备中,EMI(电磁干扰)问题常常成为影响设备性能和稳定性的重要因素。
案例选择
为了更好地说明开关电源EMI滤波器的应用,本文选择了两个具有代表性的案例 进行分析,分别是计算机电源供应系统(PSU)和电动汽车充电桩。
03
开关电源EMI滤波器元件选择 与布局
元件选择的原则与技巧
元件选择的原则 选择低ESR(等效串联电阻)电容 选择低DCR(直流电阻)电感
元件选择的原则与技巧
选择低电阻、低电感的PCB(印刷电路板) 元件选择的技巧
根据EMI滤波器的性能要求,选择适当的元件值和类型
元件选择的原则与技巧
考虑元件的可靠性、耐温性能和寿命
考虑元件的成本和可获得性
元件布局的要点与注意事项
元件布局的要点 合理安排输入和输出线,避免平行布线
尽量减小电感器和电容器的距离
元件布局的要点与注意事项
输入和输出线应远离 PCB边缘
避免在PCB上形成大 的环路
元件布局的注意事项
元件布局的要点与注意事项
避免使用过长的元件引脚

开关电源EMI滤波器的设计

开关电源EMI滤波器的设计

Y = C/2C y
L=L Y 1
L 和 C 即为滤波器实际使用的数值,C 取值与方法一的


取值范围相同。至于差模等效电路的参数可以取经验值或使
用方法一计算。
在使用上述两种方法计算电路参数时应注意,要保证
EMI 电源滤波器的谐振频率低于开关电源的工作频率。
在进行 EMI电源滤波器的设计中,还有选取磁芯和电容,
2,它与滤波器的阶数有关。滤波器的阶数可以简单的看作是
电感和电容的个数之和。
这里需要注意的是,根据上述方法计算出来的截止频率
f 并不一定满足实际使用需要,因为有可能f 的值和电网的


频率非常接近,导致大量没有滤掉的谐波从电网进入开关电
源或从开关电源进入电网,影响整个电源系统的稳定或改变
电网电压的波形。所以这里的截止频率应大于15倍的电网频
率,这样对电源系统和电网的影响就小了。计算出滤波器设
计阻抗和截止频率后就可以不再考虑源阻抗和负载阻抗的问
题了。
EMI 电源滤波器电路的共模扼流圈电感 L 和共模电容 C y
的计算方法是
L1=Rd/(2πf0) C = 1/(2 π f0Rd) 这时计算出来的电容值并不满足漏电流的要求,因此用
计算出的 C 除以 2 倍的满足漏电流要求的电容值 Cy,得到计 算电感值所需的倍数 Y,实际所需的电感值计算如下
(收稿日期:2006.07.05)
电气时代 2006 年第 9 期 | 133
2
34
12 18 24
56 30 36
1)所需损耗值I /dB及与之相对应的起始频率f /Hz。 L
2)损耗裕量 L /dB。 M
3)滤波器每倍频程的损耗值 L/dB,它与滤波器电路形式

开关电源EMI滤波器设计与验证

开关电源EMI滤波器设计与验证

开关电源EMI滤波器设计与验证作者:孟晶杨勇熊立来源:《现代电子技术》2014年第12期摘要:开关电源已广泛应用于电力电子设备中,作为一种EMI源,在设计电源电路中需前置EMI滤波器抑制传导干扰。

CE102作为检测电源线传导干扰的一项电磁兼容性试验,成为电子设备尤其是军用电子设备的必测项目,测试超标即意味着设计的失败。

设计了一个EMI 滤波器,通过CE102测试和分析发现并解决设计存在的问题,并通过整改后的试验验证,证明设计的有效性。

关键词:开关电源; EMI滤波器;电磁兼容性; CE102中图分类号: TN710⁃34 文献标识码: A 文章编号: 1004⁃373X(2014)12⁃0137⁃03Abstract: Switching power supply, as a electromagnetic interference (EMI) source, is widely used in power electronic equipments. The EMI filter should be prepositioned in power circuit design to suppress the conducted EMI. CE102 is taken as a project of EMC tests to detect the conducted interference of power⁃line. It is a necessary measuring project of electronic equipments,especially for military electronic equipments. It means that the design of the power system fails if the interference exceeds the standard. An EMI filter was designed to find and solve the problems of the design by CE102 test and analysis. The effectiveness of the design was proved by CE102 after the test validation.Keywords: switchingpower supply; EMI filter; EMC; CE1020 引言随着开关电源的迅速发展和广泛应用,它们引起的电磁泄露和电磁辐射问题越来越严重。

设计开关电源的EMI滤波器

设计开关电源的EMI滤波器

开关电源应用最为广泛,但EMI最为严重。

开关电源EMI主要来源:其一:在整流环节中,由于滤波电容器容量很大,整流管仅在交流电压峰值附近导通,此时电容器流经较大的充电尖峰电流,产生了丰富的谐量分量;其二:由于DC/DC变换器开关频率在几十KHZ至几百KHZ之间,开关管电流含有丰富的谐波分量,而且是开关电源主要电磁干扰源。

由于开关电源EMI主要是传导干扰,采用滤波器来抑制是最主要的手段。

EMI滤波器设计与一般信号滤波器设计完全不同,必须采取特殊设计方法。

本文采用完全有别于信号滤波器的设计方法,采用“三点频率法”设计了双级LC滤波器,滤波器效果令人满意。

1 滤波器设计双级LC网络插入开关电源电路中的位置如图1所示。

图1 LC网络在开关电源电路中的位置假定直流电源侧为低阻抗电压源Us,DC/DC变换器输入端为高阻抗电流源i(t)。

那么LC滤波器只能选择“ Γ”型结构,最简单的双“ Γ”型LC网络如图2所示。

其频域传递函数为图2 双级LC网络由于LC网络谐振时,会产生很大的电流(电压)峰值,这个网络有3个频率点的谐振峰值是必须限制,否则,会产生更大的EMI。

限制这3个频率点的峰值是设计这个滤波器的主要指导思想。

这3个频率点分别是:由于LC网络谐振时,会产生很大的电流(压)峰值,这个网络有3个频率点的谐振峰值是必须限制,否则,会产生更大的EMI。

限制这3个频率点的峰值是设计这个滤波器的主要指导思想。

这3个频率点分别是:第一级滤波器的谐振频率:第二级滤波器的谐振频率:第3个频率点就是DC/DC 变换器的开关频率f。

下面具体讨论滤波器设计方法,即选取LC 网络中元件参数的方法。

由上面3个式子,3个频率点对应的传递函数的幅值分别为:元件参数选取方法讨论如下:为了限制1 f 点的谐振峰值,要求插入衰减20logH1=20logC1/C2<0,即C1/C2<0。

根据经验,它们的比值范围为C1/C2=0.1~0.5 (7)为了限制f2点的谐振峰值,同理选取L1/L2=0.1~0.5 (8)为了限制f 点的谐振峰值,要求20logH3=-20~-150dB,即H3=0.1~0.5 (9)元件参数选取步骤归纳如下:(1)由(7)~(9)式确定了比值,这样只有二个参数是独立的;(2)由于滤波器负载侧(开关电流i(t)侧)谐波分量较大,C2应选一个大容量电容器;(3)由(1)、(2)步结果代入(9)式,就可以确定另一个独立参数。

EMI电源滤波器设计与测试

EMI电源滤波器设计与测试

EMI电源滤波器设计与测试
EMI(电磁干扰)电源滤波器是用于减少电源中的噪声和电磁干扰的一种装置。

在电源系统中,由于电源设备的运行,会产生电磁干扰并向电源线路传播。

这些干扰信号可能会影响其他设备的正常运行,因此需要采取措施来减少这些干扰。

首先,需要确定滤波器的频率范围。

根据要滤除的干扰信号的频率范围,可以选择适当的滤波器类型。

常见的滤波器类型包括:低通滤波器、带通滤波器和带阻滤波器。

其次,需要选择合适的滤波器参数。

滤波器参数包括:滤波器的截止频率、阻抗特性和衰减特性等。

这些参数的选择需要根据具体的应用需求和电源系统的特点来确定。

然后,需要进行EMI电源滤波器的设计。

可以使用模拟电路设计软件进行电路设计和模拟仿真,以验证滤波器的性能。

设计时需要考虑电容和电感的选择、滤波器电路的布局和组成部分之间的连接方式等。

设计完成后,需要进行EMI电源滤波器的测试。

测试可以使用仪器设备来进行,如频谱分析仪、信号发生器和示波器等。

测试时需要验证滤波器的频率响应、衰减特性和滤波效果等。

在测试中,可以通过调整滤波器参数和组成部分,进一步优化滤波器的性能。

如果测试结果不理想,可以尝试采取其他设计方法或更换滤波器元件。

总之,EMI电源滤波器的设计与测试是一项复杂的工作,需要综合考虑多个因素。

通过合理的设计和精确的测试,可以实现对电源中噪声和电磁干扰的有效滤除,提高电源系统的稳定性和可靠性。

电源EMI滤波器的技术参数及其选用

电源EMI滤波器的技术参数及其选用

电源EMI滤波器的技术参数及其选用摘要:介绍了电源中的EMI(Electro Magnetic Interference)干扰,电源EMI滤波器的技术原理;重点讨论了它的技术参数和选用时注意事项;典型滤波器的应用分析。

关键词:电磁干扰插入损耗阻抗搭配测试 1 引言近几年来,随着电磁兼容工作的开展,电源滤波器技术应用得越来越广泛。

为了对电源EMI技术有更深入的理解,尤其它的技术原理、选用时关注的技术参数和注意事项,以及滤波效果分析等。

结合工作,对电源EMI滤波器选用进行深一步探讨。

2 概述在电子设备供电电源上,存在有各种各样的外来干扰信号。

很多电子设备本身,在完成其功能同时,也产生了形形色色的EMI信号,以及人为和大自然的EMI信号。

这些EMI信号,通过传导和辐射的方式,影响着该环境里运行的电子设备。

2.1电源EMI电磁干扰(美)IBM公司的一项研究表明:一台普通计算机装置每月都会遭受120多次电源干扰,且电源问题是造成美国45%以上的计算机装置丢失数据和发生故障的根本原因。

其中脉冲干扰占39.5%,振荡瞬变占49%,这两项共占88.5%,是电源受到干扰的主要成分。

电网中的负载切换、电网切换或其他各种故障都会使电网发生瞬变过程产生脉冲噪声,它通常也称瞬变噪声,其波形是一系列的单个脉冲或脉冲束。

针对以上电网瞬变电压的干扰,如何提高设备(产品)对EMI的抗扰度,采取有效可靠的措施之一就是EMI滤波器。

众所周知,屏蔽是控制EMI信号辐射危害的最好帮手。

在对付EMI信号的传导干扰和某些辐射传导干扰方面,电源EMI滤波器是极有效的器件。

几乎所有的电子设备都要求助于它来控制其运行时产生的EMI信号,因而得到非常广泛的应用。

电源EMI滤波器,又称为电磁干扰滤波器、电网滤波器、电网噪声滤波器等等,或统称为EMI滤波器。

它是一种低通滤波器,把直流、50Hz或400Hz 的电源功率毫无衰减地传输到设备上,大大衰减经电源传入的EMI信号,保护设备免受其害;同时,又能有效地控制设备本身产生的EMI信号,防止它进入电网,污染电磁环境,危害其他设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大功率开关电源的EMC测试分析及正确选择
EMI滤波器
开关电源具有体积小、重量轻、效率高等优点,广泛应用于各个领域。

由于开关电源固有的特点,自身产生的各种噪声却形成一个很强的电磁干扰源。

所产生的干扰随着输出功率的增大而明显地增强,使整个电网的谐波污染状况愈加严重。

对电子设备的正常运行构成了潜在的威胁,因此解决开关电源的电磁干扰是减小电网污染的必要手段,本文对一台15kW开关电源的EMC测试,分析其测试结果,并介绍如何合理地正确选择EMI滤波器,以达到理想的抑制效果。

1 开关电源产生电磁干扰的机理
图1为所测的15kW开关电源的传导骚扰值,由图中可以看出在0、15~15MHz大范围超差。

这是因为开关电源所产生的干扰噪声所为。

开关电源所产生的干扰噪声分为差模噪声和共模噪声。

图1未加任何抑制措施所测得的传导骚扰
1.1共模噪声
共模噪声是由共模电流,IcM所产生,其特征是以相同幅度、相同相位往返于任一电源线(L、N)与地线之间的噪声电流所产生。

图2为典型的开关电源共模噪声发射路径的电原理图。

图2 共模噪声电原理图
由于开关电源的频率较高,在开关变压器原、副边及开关管外壳及其散热器(如接地)之间存在分布电容。

当开关管由导通切换到关断状态时,开关变压器分布电容(漏感等)存储的能量会与开关管集电极与地之问的分布电容进行能量交换,产生衰减振荡,导致开关管集电极与发射极之间的电压迅速上升。

这个按开关频率工作的脉冲束电流经集电极与地之问的分布电容返回任一电源线,而产牛共模噪声。

1.2差模噪声
差模噪声是由差模电流IDM昕产生,其特征是往返于相线和零线之间且相位相反的噪声电流所产生。

1.2.1差模输入传导噪声
图3为典型的开关电源差模输入传导噪声的电原理图。

其一是当开关电源的开关管由关断切换到导通时,回路电容C 通过开关管放电形成浪涌电流,它在回路阻抗上产生的电压就是差模噪声。

图3差模输入传导噪声电原理图
其二是工频差模脉动噪声,它是由整流滤波电容c 在整流电压上升与下降期问的充放电过程中而产生的脉动电流与放电电流,也含有大量谐波成分构成差模噪声。

以上两种差模噪声都返回到输入端的交流电网,所以称为输入传导噪声,它不仅污染电网,还给其它接人电网的电子、电气设备造成危害,还直接导致输入功率因数的下降。

1.2.2 差模输出传导噪声
第三种差模噪声是输出传导噪声,它是整流输出部分二极管由正偏转为反偏时,反向电流与二极管结电容、分布电感产生尖峰电压而造成的差模噪声,图4为典型的半波整流滤波电路:
图4 差模输出传导噪声电原理图
2 EMI滤波器的正确选择
EMI滤波器是以工频为导通对象的反射式低通滤波器,插入损耗和阻抗特性是重要技术指标。

EMI滤波器在正常工作时处于失配状态,因为在实际应用中,它无法实现匹配。

如滤波器输入端阻抗(电网阻抗)是随着用电量的大小而改变的。

滤波器输出端的阻抗。

(电源阻抗)是随着负载的大小而改变的。

要想获得最佳的EMI抑制效果,必须根据滤波器的两端所要连接的源端阻抗特性和负载阻抗特性来选择EMI滤波器的电路结构和参数,即遵循输入、输出端阻抗失配原则。

一般选用方法是:
(1)低的源阻抗和低的负载阻抗:选取(T)n滤波器结构;(2)高的源阻抗和高的负载阻抗:选取(π )n“滤波器结构;(3)低的源阻抗和高的负载阻抗:选取(LC)n“滤波器结构;(4)高的源阻抗和低的负载阻抗:选取(CL)滤波器结构。

若不能满足阻抗失配的原则,就会影响滤波器的插损性能,严重时甚至引起谐振,在某些频点处出现干扰放大现象,所以,阻抗失配连接原则是应用EMI滤波器必须遵循的原则。

针对图l所测得的传导骚扰值,可以看出在0.15~15MHz范围内严重超差,最大值超过限值近40dB,而且尖峰较为密集。

说明电源所产生的浪涌电压和浪涌电流较大,即电源的du /dt、di/dt很大,也就是产生的_F扰能量很大。

开关电源共模噪声等效电路呈高阻抗容性,而差模等效电路高、低阻抗同时存在。

针对这种情况,EMI滤波器的电路结构选为二级共模电感和一个单独的差模电感型式,这样既可以滤除共模噪声,又可以滤除差模噪声。

插入损耗为40dB,所测得的传导骚扰值如图5所示。

图5加EMI滤波器后所测的传导骚扰
由图5可以看出,传导骚扰值在某些频段处还有超差,效果不十分理想,这是因为,传导接受机所测得的传导骚扰值是个综合参数,它无法判断出在0.15—15MHz频率范围内,共模干扰和差模干扰孰重孰轻,一般讲:在0.15~0.5MHz低端差模干扰分量很大,在0.5~5MHz共模干扰和差模干扰同时存在,在5~30MHz之间共模分量较大。

原因之二是由于滤波器的电感和电容元件都受其分布参数的影响,频率愈高所受的影响愈大。

滤波器内部电感、电容的装配工艺、接地质量也会对插入损耗产生很大的影响。

原因之三是,由于滤波器电感会受到电流浪涌的影响,它工作的峰值电流比额定电流要大一倍左右,在重载和满载时,差模电感容易产生磁饱和现象,致使电感量迅速下降,导致插入损耗性能变坏。

3 较为理想的解决办法
针对以上情况,在EMI滤波器前端再串接一个一定值的电感,在交流电路中电感的数值X= wL=2πrfL,电感就是一个电抗器,所以此电感也称为进线电抗器。

由X =2πrfL可知,它的感抗与频率成正比,对于低频电流可以畅通无阻地通过进线电抗器,对于高频电流进线电抗器呈高阻抗、高压降。

因此,进线电抗器可作为电流的低通(高阻)滤波器。

并且,开关电源所产生的谐波电压大部分都降在了进线电抗器上。

所以,串接进线电抗器不但使传导骚扰值整体下降了,还使电压谐波得到了改善。

当电感值选为6mH时,其抑制效果如图6所示。

所以对已定型的大功率开关电源,选择进线电抗器+EMI滤波器,不失为解决其电磁骚扰的比较理想的方法。

图6进线电抗器+EMI滤波器后所测的传导骚扰
4 结语
大功率开关电源产生电磁干扰是一个复杂的问题,电源产生电磁干扰以传导干扰的危害尤为严重。

根据电磁干扰产生的机理,正确选择EMI滤波器是有效抑制传导干扰的关键所在,其目的就是有效地抑制开关电源对电网的传导干扰,又可以降低从电网引入的传导干扰,使
开关电源的电磁兼容性达到国家标准规定的限值要求。

相关文档
最新文档