原子吸收分光光度

合集下载

第四章 原子吸收分光光度法

第四章 原子吸收分光光度法

优点:温度高,且可控;试样用量少(μg 或μl级),可直接测固体样; 原子化效率高;灵敏度高。 缺点:精度差,分析速度慢,共存化合物分子吸收,干扰较大。
低温原子化法
汞蒸汽原子化(测汞仪) 试样中汞化合物用还原剂(SnCl2)还原为汞蒸汽,并通过Ar 或N2 将其带入 吸收池进行测定。 Hg2++Sn2+ 氢化物原子化 AsCl3+4NaBH4+HCl+8H2O = AsH3+4NaCl+4HBO2+13H2 主要用于As、Bi、Ge、Sb、Se、Te的测定。 特点: 可将待测物从大量基体中分离出来,检测限比火焰法低1-3个数量级,选 择性好,且干扰小。 Sn4++Hg

3)该法可消除基体效应带来的影响,但不能消除背景吸收。

4)加入标准溶液的浓度应适当,曲线斜率太大或太小都会引起较大误差。

1. 原子吸收光谱法测定元素M,由未知试样溶液得到的吸光度为 0.435,而在9mL 未知液中加入1mL溶液为100mg/L的M标准溶液后,混合溶液在相同条件下测得的 吸光度为0.835。计算未知试样溶液中M的浓度? 2. 采用原子吸收分光光度法分析尿样中的铜,测定结果见下表。试计算样品中铜的含 量?
操作简便、分析速度快 准确度高:火焰法误差<1% ,石墨炉法3%-5%
第二节 原子吸收分光光度法基本原理
一、基本概念
共振吸收线:原子外层电子从基态跃迁至能量最低的激发态所产生的吸收谱线 第一共振线:元素最灵敏线,通常用作元素分析线
二、基态与激发态原子分配
Ni gi e N0 g0
Ax Cx As Ax Cs
2)作图法
1

原子吸收分光光度法

原子吸收分光光度法

消除方法:
可通过配制与试样组成相近的对照品或采用标准加入
法来消除。
光学干扰
原子光谱对分析线的干扰。包括光谱线干扰和非吸收
线干扰。
光谱线干扰: 现象 光谱线干扰是试样中共存元素的吸收线与待测元素的分 析线相近(吸收线重叠)而产生的干扰。
消除方法:
另选波长或用化学方法分离干扰元素。
非吸收线干扰


气体使用之后,必须关掉截止阀和主阀。
当乙炔瓶内压力低于 0.5Mp时必须更换,否则乙炔钢瓶内溶 解物会溢出,进入管道,造成仪器内乙炔气路堵塞,不能点火。

样品舱的光路窗口和空心阴极灯的石英窗会受到灰尘或 指纹的污染。当发现元素灯的噪声变大,分析结果的重 复性变差此时可以使用蘸有甲醇或乙醇水溶液的软的擦 镜纸进行清洗。
并传导给石墨管,使其产生高达3000℃的高温,将置于
管中的被测元素变为基态的原子蒸汽。 保护系统分为气体与冷却水保护。气体使用惰性气体, 保证石墨管在高温的状态下不会被氧化。冷却水保证石 墨炉在开始第二次测试前可以迅速冷却到室温状态。
石墨炉原子化器原子化效率高,灵敏度优于火焰原子
化方法。
石墨炉的加热: 干燥阶段,管加热到约 100℃,样品中的水完全蒸发。 灰化阶段,管加热到 400 ℃ ~ 1000 ℃ ,有机物质 和其他共存物质分解和蒸发。 原子化阶段,加热到 1400 ℃ ~ 3000 ℃ ,留在管中 的金属盐类原子化。

定期的拆下石墨管检查石墨管保护器的情况,确保其内
腔和进样孔区域没有疏松的碳粒子和残留的样品。
四、仪器维护及注意事项

实验用器皿:使用前用10%~20%的硝酸浸泡过夜。 乙炔作为燃烧气,需要检查钢瓶和仪器之间的连接器以防泄 漏,特别是更换钢瓶之后需要使用肥皂水或专用的泄漏检测 器进行检测。

仪器分析 第6章 原子吸收分光光度法

仪器分析 第6章 原子吸收分光光度法

(3)火焰: 提供一定的能量使雾滴蒸发,干燥产生气态。
Mx(试样)==Mx(气态)==M(基态原子)+x(气态) 火焰的温度能使分子游离成基态原子即可,不希望离解成
离子,∴要根据元素的性质来选择不同类型的火焰。
2、非焰原子化法: 火焰原子化法缺点:原子利用率低,气流量较大,原子 化效率低等,而非火焰原子化法可提高原子化效率与灵敏度。 (1)石墨炉原子化法: 石墨管5cm长、4mm径、由于试样在容积很小的石墨管
二、原子在各能的分布
在一定火焰下,待测元素的原子不可能全部处
于基态,当热平衡时,基态与激发态原子数目之比
符合玻尔斥曼分布:
Nj N0

gj g0
exp(
E j E0 KT
)
gj—激发态原子统计数量。 go---基态原子统计数量,g=2J+1 Nj/No~T与火焰的温度有关。
例: 2500K 和 2510K 火焰中钠原子激发态 3 2 P3/2 和基态
2 、 Doppler 变宽,热变宽,由原子无规则运动而产生(由
声波引申而来) 例:火车迎面开来,鸣笛声渐响,频率大
火车离我而去,鸣笛声渐粗,频率小
同样,当火焰中的基态原子背向检测器运动时,被检测到 的频率比静止波原发出的频率低——波长红移; 同样,当火焰中的基态原子向着检测器运动时,被检测到 的频率比静止波源发出的频率高——波长紫移。
应控制,当局外元素源子度小时,主要受Doppler效应控制。
由于谱线变宽将使测定灵敏度下降,吸收效率低。是 原子收中值得注意的问题。
四、吸收定律
经推导:A=KNL=K’C(K 原子总数) 吸收度与被测试样中被测组分的浓度成线性关系。(类 似于L-B要求单色光、稀溶液)原子吸收条件。 条件:

第十三章 原子吸收分光光度法

第十三章 原子吸收分光光度法

第十三章 原子吸收分光光度法原子吸收分光光度法(atomic absorption spectrophotometry, AAS)又称为原子吸收光谱法。

它是本世纪60年代后期迅速发展和广泛应用的一种较新型的仪器分析方法。

1955年澳大利亚物理学家瓦尔西(A.Walsh)在墨尔本展出了由他设计的第一台原子吸收分光光度计。

原子吸收分光光度法是基于物质产生的原子蒸气对特征谱线的吸收,测量原子蒸气对光辐射的吸收,即通过测量基态原子对特征谱线吸收程度,进行定量分析方法。

AAS法同UV法同属于吸收光谱法,因此在基本原理和仪器基本组成等方面有某些相似。

然而UV法研究对象是溶液中化合物的分子吸收,分子吸收的谱带较宽(在几nm以上),为带状吸收光谱,而原子吸收分光光度法研究对象是原子蒸气,气态原子吸收是窄带吸收,即线吸收,线宽仅为千分之几纳米(约为10-3 nm,极窄吸线)。

由于这种区别,致使它们的仪器装置和分析方法都有不同,由图比较,就可以看出二者的主要区别:(1)原子吸收分光光度法采用原子化器代替了吸收池;(2)用空心阴极灯(锐线光源)代替了连续光源;(3)单色器位置放在原子化系统之后。

原子吸收分光光度法具有如下特点:(1)灵敏度高。

火焰原子吸收法灵敏度高达可测到10-6~10-9g/ml,用无火焰原子吸收光谱法可没到10-9mg/ml数量级。

1(2)干扰少,且易于消除。

由于原子吸收光谱法是根据原子蒸气对待测元素特征谱线的吸收来进行分析的。

特别是同族元素,不需预分离,就可以直接测定。

(3)分析速度快。

由于选择性好,化学处理的测定操作简便。

近年来,微机的广泛应用以及智能化仪器的出现,与自动进样器、荧光显示屏的打印机等相配合,可在30分钟内分析50个样品中6元素。

(4)准确度高。

±1~3%误差。

(5)应用范围广。

几乎全部金属元素和一些准金属元素,目前用原子吸收分光光度法可测定元素已达70多种。

缺点:通常每个元素都要有自已的灯作为光源,因而附件多。

原子吸收分光光度法

原子吸收分光光度法
基态←→第一激发态: 跃迁吸收(发射)能量不同——特征谱线 ②共振线是元素的最灵敏线。
各种元素的基态←→第一激发态 最易发生,吸收(发射)最强——最灵敏线
AAS就是利用基态的待测原子蒸气对从光源辐 射的共振线(特征谱线)的吸收来进行定量分析的 。
L
I0ν 原 子 蒸 气

原子吸收示意图
3、定量分析依据

原子跃迁激发, 自发返回基态
发射特征谱线
与惰性气体原 子碰撞使之电

惰性气体阳离子 撞击阴极
空心阴极灯的优缺点
✓ 发射的光强度高且稳定,谱线宽度窄。 ✓ 采用不同的待测元素作为阴极材料,可制作相对应待
测元素的空心阴极灯,目前有60多种。 ✓ 多种元素空心阴极灯,易产生干扰,发射强度低于单
元素灯,使用尚不普遍。
优点:重现性好,易于操作。 缺点:原子化效率低,灵敏度不高,仅有10%的试液被原子 化,而约90%的试液由废液管排出。一般不直接测定固体样 品。
2、石墨炉原子化装置
(1)结构: 外气路中Ar气体沿石墨管外壁流动,冷却保护石墨管;
内气路中Ar气体由管两端流向管中心,从中心孔流出,用来 保护原子不被氧化,同时排除干燥和灰化过程中产生的蒸汽 。
助燃气入 口
排液口
火焰 燃烧器
混合室
混合室
(3)燃烧器:使燃气在助燃气的作用下形成稳定的高温火焰 ,使待测元素原子化。
(4)火焰:提供一定的能量,产生大量基态原子。
燃烧器
火焰
雾化器
燃气入口
燃烧器
毛细管
撞击球
混合室
助燃气入 口
排液口
混合室
常用的火焰:
空气-乙炔火焰和氧化亚氮-乙炔火焰两种。前者最高使 用温度约为2600K,是用途最广的一种火焰,能测定35种 以上的元素。

原子吸收分光光度

原子吸收分光光度

原子吸收分光光度一、前言原子吸收分光光度法(Atomic Absorption Spectrophotometry,AAS)是一种常用的分析技术,广泛应用于环境、食品、医药、冶金等领域。

本文将从原子吸收分光光度法的基本原理、仪器设备、样品处理方法和应用范围等方面进行详细介绍。

二、基本原理1. 原子吸收现象当一个物质被加热到足够高的温度时,其原子会处于激发状态。

当激发态的原子回到基态时,会放出一定波长的电磁辐射。

这个过程称为自发辐射。

另外,如果一个物质被放在一个外部电磁场中,它会吸收与其自身特有的能级结构相符合的电磁辐射。

这个过程称为激发态吸收。

2. 原子能级结构每个元素都有自己特有的原子能级结构。

在低温下,一个元素的原子处于基态,并且只有最低能级被占据。

当元素被加热到足够高温度时,它们会进入激发状态,并占据更高的能级。

这些激发态的原子可以通过自发辐射或激发态吸收的方式返回基态。

3. 原子吸收分光光度法原子吸收分光光度法是一种测量物质中某种元素浓度的方法。

在原子吸收分光光度法中,一个元素的原子被加热到足够高温度,使其进入激发状态。

然后,样品中该元素的原子会吸收一个特定波长的电磁辐射。

这个波长与该元素自身特有的能级结构相对应。

通过测量样品溶液中电磁辐射强度的变化,可以确定样品中该元素的浓度。

三、仪器设备1. 气体放电灯气体放电灯是原子吸收分光光度法中最重要的部件之一。

它是一个玻璃管,内部填充有某种气体和待测元素的化合物。

当气体放电灯被加热时,其中填充物会被激发,并且会产生一定波长范围内的辐射。

2. 光谱仪在原子吸收分光光度法中,光谱仪用于分离出气体放电灯产生的辐射。

光谱仪包括一个凹面反射镜和一个光栅。

凹面反射镜用于聚焦辐射,而光栅则将辐射分散成不同波长的成分。

3. 检测器检测器用于测量样品溶液中电磁辐射的强度。

常见的检测器包括光电倍增管和半导体探测器等。

四、样品处理方法1. 预处理在原子吸收分光光度法中,样品通常需要经过一定的预处理。

第十三章原子吸收分光光度法

第十三章原子吸收分光光度法

2021/2/4
9
(一)原子吸收线的轮廓和变宽
一束不同频率强度为I0的平行光通过厚度 为l的原子蒸气,一部分光被吸收,透过光的强 度I服从吸收定律
I = I0 exp(-kl) 式中k是基态原子对频率为的光的吸收系数。
2021/2/4
10
• 不同元素原子吸收不同频率的光,透过光强度 对吸收光频率作图,如下图:
I I0
0 I与 的关系
由图可知,在频率0处透过光强度最小, 即吸收最大。
2021/2/4
11
• 若将吸收系数对频率作图,所得曲线为吸收线 轮廓。
• 峰值吸收系数:吸收系数的极大值。 • 半宽度:是中心频率的吸收系数一半处谱线轮
廓上两点之间的频率差。 • 原子吸收线的特点是由吸收线的频率、半宽度
和强度来表征的。
通常要求燃烧器的原子化程度高、火焰稳定、吸 收光程长、噪声小等。燃烧器有单缝和三缝两种。 燃烧器的缝长和缝宽,应根据所用燃料确定。目 前,单缝燃烧器应用最广。
2021/2/4
24
2.非非火焰火原焰子原化器子常化用器的是石墨炉原子化器。石墨炉原
子化法的过程是将试样注入石墨管中间位置,用大电 流通过石墨管以产生高达2000 ~ 3000℃的高温,使试 样经过干燥、蒸发和原子化。 石墨炉的基本结构包括:石墨管(杯)、炉体(保护 气系统)、电源等三部分组成。 分析过程:干燥、灰化、原子化和净化等四个阶段,即 完成一次分析过程。
分为:火焰原子化器 、非火焰原子化器。
2021/2/4
20
1. 火焰原子化法
组成:火焰原子化法中,常用的是预混合型原 子化器,它是由雾化器、雾化室和燃烧器三部 分组成。 原理:火焰原子化法是将液体试样经喷雾器形 成雾粒,这些雾粒在雾化室中与气体(燃气与 助燃气)均匀混合,除去大液滴后,再进入燃 烧器形成火焰,试液在火焰中产生原子蒸气。

六章节原子吸收分光光度法

六章节原子吸收分光光度法
吸收强度与频率的关系及谱线轮廓。可见谱线是有宽度的。
K0
K0/2 I0
I K
0
I~ (吸收强度与频率的关系)
吸收线轮廓
K~ (谱 线0 轮廓) 吸收系数轮廓
图中:
K—吸收系数;K0—最大吸收系数; 0,0—中心频率或波长
(由原子能级决定);
,—谱线轮廓半宽度(K0/2处的宽度);
第六章 原子吸收分光光度法
A∝ c
第六章 原子吸收分光光度法
锐线光源:能发射出半宽 度很窄的谱线的光源。其 发射线的半宽度比吸收谱 线的半宽度小得多,约为 吸收谱线宽度的1/5。
第六章 原子吸收分光光度法
第二节原子吸收光谱仪器及其组成
AAS仪器由光源、原子化系统(类似样品容器)、分光系统及检测 系统。
原子化器 空心阴极灯
六章节原子吸收分光光度法
第六章 原子吸收分光光度法
第六章 原子吸收分光光度法
概述:原子吸收分光光度法(atomic absorption spectro-photometry, AAS)
1.AAS概念:通过测量样品蒸气中基态原子对特征谱 线吸收程度建立的定量分析方法
2.AAS的发展:20世纪50年代提出由walsh创立 。 3. AAS与UV-Vis的比较:
缺点:原子化效率低、用样量多。
第六章 原子吸收分光光度法
2.结构:组成:雾化器、雾化室、燃烧器。 (1)雾化器:试样雾化。要求:喷雾稳定/雾滴
小、雾化效率高。 原理:影响雾滴形成因素:样液物理性质、助燃气
压力、流速等 (2)雾化室:雾滴、燃气、助燃气混合;雾滴排除
,减小记忆。 (3)燃烧器:形成火焰,试液燃烧、蒸发、原子化 3.火焰状态:贫燃、化学计量性、富燃。

原子吸收分光光度法

原子吸收分光光度法
原子吸收光谱:基态原子,窄带原子光谱,必须使用锐线光源。 紫外可见:光源→单色器→比色皿。 原子吸收:光源→原子化器→单色器。
第一节 原子吸收分光光度法的基本原理
n M LJ
主量子数 (价电子所处电子层)
总角量子数 (电子的轨道形状,相应的符号: S、P、D等)
内量子数(光谱支项)
火焰原子化法 (flame atomization)
由化学火焰提供能量,使被测元素原子化。常用的是预混合型原子化器,它包括雾化器、雾化室和燃烧器三部分。
雾化器(nebulizer) 将试液雾化。并使雾滴均匀化。雾滴越小,火焰中生成的基态原子就越多。 雾化室的作用,一是使较大雾粒沉降,凝聚从废液口排除;二是使雾粒与燃气,助燃气均匀混合形成气溶胶,再进入火焰原子化;三是起缓冲稳定混合气气压的作用,以便使燃烧气产生稳定的火焰。 燃烧器(burner)的作用是产生火焰,使进入火焰的试样气溶胶蒸发和原子化,常用的是单缝燃烧器。
01
试样在处理、转移、蒸发和原子化过程中,由于试样物理特性的变化引起吸光度下降。
现象:
02
可通过控制试液与标准溶液的组成尽量一致的方法来抑制。
消除方法:
原子光谱对分析线的干扰。包括光谱线干扰和非吸收线干扰。 现象 光谱线干扰是试样中共存元素的吸收线与待测元素的分析线相近(吸收线重叠)而产生的干扰。 消除方法: 另选波长或用化学方法分离干扰元素。
外推作图法
cx+0, cx+cs , cx +2cs , cx +3cs , cx +4cs…… 分别测得吸光度为:A0,A1,A2,A3,A4……。 如将直线外推至与横坐标相交,此时浓度cx即为试样中被测元素的浓度。
相同点: 两种方法都遵循朗伯-比耳定律。

原子吸收分光光度法

原子吸收分光光度法
是中心频率位置,吸收系数极大值一半处,谱线轮廓上 两点之间频率或波长的距离。
谱线具有一定的宽度,主要有两方面的因素:一类 是由原子性质所决定的,例如,自然宽度;另一类是外 界影响所引起的,例如,热变宽、碰撞变宽等。
整理课件
5
第一节 基本原理
• 二、原子吸收光谱的测量 1,积分吸收 在吸收线轮廓内,吸收系数的积分称为积分吸 收系数,简称为积分吸收,它表示吸收的全部能 量。若能测定积分吸收,则可求出原子浓度。但 是,测定谱线宽度仅为10-3nm的积分吸收,需要分 辨率非常高的色散仪器。
最强共振线都低于 600 nm, Ni / N0值绝大部分在10-3以下, 激发态和基态原子数之比小于千分之一,激发态原子数可以
忽略。因此。基态原子数N0可以近似等于总原子数N。
一、原子吸收光谱轮廓
原子吸收光谱线有一定宽度。一束不同频率强度为I0的
整理课件
3
第一节 基本原理
平行光通过厚度为l的原子蒸气,一部分光被吸收,透过
(一)火焰原子化器
火焰原子化法中,常用的是预混合型原子化器,它是由雾化器、 雾化室和燃烧器三部分组成。用火焰使试样原子化是目前广泛应用 的一种方式。它是将液体试样经喷雾器形成雾粒,这些雾粒在雾化 室中与气体(燃气与助燃气)均匀混合,除去大液滴后,再进入燃 烧器形成火焰。此时,试液在火焰中产生原子蒸气。
整理课件
13
第二节 原子吸收分光光度计
(二)非火焰原子化器
非火焰原子化器常用的是石墨炉原子化器。 石墨炉原子化法的过程是将试样注入石墨管中间 位置,用大电流通过石墨管以产生高达2000 ~ 3000℃的高温使试样经过干燥、蒸发和原子化。
与火焰原子化法相比,石墨炉原子化法主要 具有如下特点:

原子吸收分光光度法

原子吸收分光光度法

原子吸收分光光度法原子吸收分光光度法是化学分析中常用的一种技术手段,用于测定物质中某种特定元素的含量。

它利用分光光度计测量样品溶液中特定元素在特定波长下吸收的光的强度,从而计算出该元素的浓度。

下面将介绍原子吸收分光光度法的基本原理、仪器设备以及实验步骤。

基本原理:原子吸收分光光度法基于化学元素的特性:元素在特定波长下可吸收辐射能,其吸光度与元素浓度呈线性关系。

该方法通过将待测元素转化为原子态,并根据原子态对特定波长的光吸收的特征来确定元素的含量。

仪器设备:1.分光光度计:用于测量样品溶液对特定波长光的吸收强度,因此需要选择适当的波长设置。

2.电源:用于为设备供电。

3.空气或氢气源:提供燃料和燃烧的气体。

4.分析样品:待测元素所在的样品溶液。

实验步骤:1.选择合适的波长:根据待测元素的特性和吸收峰的位置,选择适当的波长设置在分光光度计上。

2.预备样品:将待测样品加入溶剂中,使其制备成溶液。

3.校准仪器:用已知浓度的标准样品溶液进行校准,确定仪器的灵敏度和线性范围。

4.调整光路:调节分光光度计的光路和基线,确保测量的准确性和稳定性。

5.测量样品溶液:用分光光度计将待测样品溶液放入样品池中,测量样品溶液对特定波长光的吸收强度。

6.计算浓度:通过样品溶液对光的吸收强度和校准曲线,计算出待测元素的浓度。

原子吸收分光光度法的优点:1.高灵敏度:该方法可以测量样品中极小浓度的元素,通常可达到ppb(10的负9次方)或更低的浓度级别。

2.高选择性:通过选择适当的波长进行测量,可以减少其他物质对测量结果的影响,提高分析的准确性和精确性。

3.广泛应用:原子吸收分光光度法广泛应用于环境监测、冶金、食品安全、生物医学等领域,能够分析多种元素的含量。

需要注意的是,进行原子吸收分光光度法实验时需要注意保持实验环境的洁净、准确校准仪器,以及严格按照实验步骤操作,以确保实验结果的准确性和重现性。

总而言之,原子吸收分光光度法是一种常用且可靠的测定物质中某种特定元素含量的方法,其基本原理、仪器设备以及实验步骤都需要严格控制与操作,以保证准确性和重现性。

原子吸收分光 光度法

原子吸收分光 光度法

一、 原子吸收分光光度法的特点
❖ 特点:
1. 灵敏度高,检出限低,10-10~10-14g; 2 .准确度高,1%~5%; 3. 选择性高,一般情况下共存元素不干扰; 4. 仪器简单价格低廉 ; 5 .分析速度快,仪器简单价格低廉; 6 应用范围广,可测定70多个元素,常用于微量
试样分析。
一、 原子吸收分光光度法的特点
园林构图的基本规律
❖ 节奏与韵律
所谓韵律与节奏即是某些组成因素作有规律的重复 ,在重复中又组织变化。韵律与节奏能赋予园林以 生气活跃感,表现出情趣和速度感。重复是获得韵 律的必要条件,但只有简单的重复则易感单调,故 在韵律中又要有节奏上的变化。
园林构图中的韵律与节奏方式:简单韵律 、交替韵 律 、渐变韵律、起伏韵律、拟态韵律、交错韵律
产生共振吸收线(简称共振线) 吸收光谱
激发态-基态 发射出一定频率的辐射。
产生共振发射线(也简称共振线) 发射光谱
(2)元素的特征谱线
❖ 各种元素的原子结构和外层电子排布不同 基态第一激发态:
❖ 跃迁吸收能量不同——具有特征性。 ❖ 各种元素的基态第一激发态 ❖ 最易发生,吸收最强,最灵敏线。特征谱线。 ❖ 利用原子蒸气对特征谱线的吸收可以进行定量分析
❖ 园林中的景
是指在园林绿地中,自然或经人工创造的,以能引 起人的美感为特征的一种供作游憩观赏的空间环境 。
❖杭州西湖十景(断桥残雪、苏堤春晓、平湖秋月、三潭 映月、柳浪闻莺、雷峰夕照、曲院风荷、双峰插云、花 港观鱼、南屏晚钟)、燕京八景、圆明园四十景、避暑
赏景的方式
❖ 动态观赏——游
注重景观的体量、轮廓和天际线,沿途重点景物 应有适当的视距,注意景物的连续性、节奏性和 整体性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

THANK YOU
3.检测系统
主要由检测器、放大器、对数变换器、显示记录装置组成。 1. 检测器 -------- 将单色器分出的光信号转变成电信号。 如:光电倍增管等。
2. 放大器------将光电倍 增管输出的较弱信号,经 电子线路进一步放大。 3. 对数变换器------光强 度与吸光度之间的转换。 4. 显记录配置新仪器配置: 原子吸收计算机工作站
参考文献:
[1] 李雯,杜秀月.原子吸收光谱法及其应用[J].盐湖研究,2003 ,11(4):67-72. [2] 董亦斌,束嘉秀,王素萍. 催化动力学——火焰原子吸收 原理及应用[J].昆明理工大学生化学院化工 系,2005,34(2):69 -71. [3] 甘杰、王盛才、罗岳平. 石墨炉原子吸收光谱法测定农产 品中痕量铍 [J]. 环境监测管理与技术.2009(06)
ቤተ መጻሕፍቲ ባይዱ
2.原子化系统
2. 无火焰原子化装置 目前广泛使用的是电热高温石墨炉原子化法。 为防止石墨的高温氧化作用,减少记忆效应,保护已热解 的原子蒸气不在被氧化,可及时排泄分析过程中的烟雾,因此 在石墨炉加热过程中(除原子化阶段内内气路停气之外)需要 有足量(1~2升/分)的惰性气体作保护。通常使用的惰性气体 主要是氩气、氮气。整个炉体有水冷却保护装置,如水温为20 0 C时,水的流量1~2升/分,炉子切断电源停止加热,在20~3 0秒内,即可冷却到室温。 石墨炉原子化过程一般 需要经四步程序升温完成 a. 干燥; b. 灰化;c. 高温原子化; d. 净化 (高温除残)。
双光束原子吸收分光光度计
单光束原子吸收分光光度计流程
1、光源(空心阴极灯)
原理:施加适当电压时,电子将从空心阴极内壁流向阳极,与充入 的惰性气体碰撞而使之电离,产生正电荷,其在电场作用下,向阴 极内壁猛烈轰击;使阴极表面的金属原子溅射出来,溅射出来的金 属原子再与电子、惰性气体原子及离子发生碰撞而被激发,于是阴 极内辉光中便出现了阴极物质和内充惰性气体的光谱。
原子吸收光谱分析
同组人:朱家瑶 曲瑞 宋家华
1、原子吸收线和原子发射线
A 产生吸收光谱 B 产生发射光谱 E0 基态能级 E1、E2、E3、激发态能级 电子从基态跃迁到能量最 低的激发态(称为第一激发态) 时要吸收一定频率的光,这种 谱线称为共振吸收线;当它再 跃迁回基态时,则发射出同样 频率的光(谱线),这种谱线称 为共振发射线(它们都简称共 振线)。
2.原子化系统
(一)火焰原子化器(Flame atomizer) 火焰原子化法中,常用的是预混合型原子化器它是由雾化器 (nebulizer)、雾化室(spray chamber)和燃烧器(burner)三部分 组成。用火焰使试样原子化是目前广泛应用的一种方式。它是将 液体试样经喷雾器形成雾粒,这些雾粒在雾化室中与气体(燃气 与助燃气)均匀混合,除去大液滴后,再进入燃烧器形成火焰。 此时,试液在火焰中产生原子蒸气。
E3 E2
E1 A B E0
2、谱线轮廓与谱线变宽
L
L
L
以Kv与 作图: 表征吸收线轮廓(峰)的参数: 中心频率0(峰值频率) :最 大吸收系数对应的频率; 半 宽 度:Δ。
二. 原子吸收分光光度计
原子吸收光谱仪又称原子 吸收分光光度计,由光源 (radiation source)、原 子化器(atomizer)、单色 器 (monochromator)和检测 器(detector)等四部分组 成。
相关文档
最新文档