梯度功能材料ppt课件
梯度功能材料
31
激光熔覆
• 把材料A放到基底B表面上,用激光将其与B基体中 表面薄层一起熔化,在B表面形成B合金化的A层。 • 重复操作,在B表面产生B含量逐渐减少的梯度。 • 梯度变化可通过控制初始A层的数量、厚度及熔区深 度来获得。
激光熔覆将材料A合金化到材料B制备FGM示意图
32
梯度功能材料的应用
33
• 功能梯度材料作为一个规范化正式概念,于1984年 由日本国立宇航实差达到1000K以上, 普通的金属材料难以满足这种苛刻的使用环境。
12
• 1987年,日本平井敏雄、新野正之和渡边龙三人提出 使金属/陶瓷复合材料的组分、结构和性能呈连续变 化的热防护梯度功能材料的概念。 • 1990年,日本召开第一届梯度功能材料国际研讨会。
自蔓延高温合成
自蔓延合成材料
28
• 燃烧合成FGM中,整体的宏观梯度通常被保留在 样品中,局部发现在FGM内部存在有限的物质传 输,这种传输使初始存在于反应物粉末压块中的 较陡峭的成分分布在反应后被较平缓的梯度所代 替。 • 日本采用连续成型的电磁加压自蔓延技术合成 TiB2/Cu、TiC/Ni等梯度功能材料。
17
• 金属-陶瓷构成的热应力缓和梯度功能材料,对高 温侧壁采用耐热性好的陶瓷材料,低温侧壁使用 导热和强度好的金属材料。
材料从陶瓷过渡到金属的过程中,耐热性逐渐降低,机 械强度逐渐升高。 热应力在材料两端均很小,在材料中部过渡区达到峰值 (比突变界面的应力峰值小得多),
具有缓和热应力的功能。
飞机的左翼上有两条清晰的裂纹
35
• 按照基体/陶瓷比率设计具有梯度的金属基/碳基 复合结构可解决上述问题。
设计梯度热防护功能材料
36
• 日本开发了为小动力火箭燃烧器和热遮蔽材料用的 梯 度 功 能 材 料 , 目 前 已 研 制 出 能 耐 1700℃ 的 ZrO2/Ni梯度功能材料,用作马赫数大于20的并可 重复使用的航天飞机机身材料。
梯度功能材料讲稿
梯度功能材料一、引言许多结构件会遇到各种服役条件,因此,要求材料的性能应随构件中的位置而不同。
例如,民用或军用刀具都只需其刃部坚硬,其它部位需要具有高强度和韧性;一个齿轮轮体必须有好的韧性,而其表面则必须坚硬和耐磨;涡轮叶片的主体必须高强度、高韧性和抗蠕变,而它的外表面必须耐热和抗氧化。
诸如此类,可以发现现在应用的许多材料都是属于这个范畴。
众所周知,构件中材料成分和性能的突然变化常常会导致明显的局部应力集中,无论该应力是内部的还是外加的。
但人们同样知道,如果从一种材料过渡到另一种材料是逐步进行的,这些应力集中就会大大地降低。
为了减少材料的应力集中,提高材料的性能,人们发展了一种新型的功能梯度材料(Functionaily Gradient Materials,简称FGM)。
虽然FGM 产生的时间不长,但很快引起世界各国科学家的极大兴趣和关注。
日本、美国、德国、俄罗斯、英国、法国、瑞士等许多国家相继开展FGM的研究。
其应用已扩展到宇航.核能源、电工材料、光学工程、化学工业、生物医学工程等各个领域中。
二、梯度功能材料的发展梯度功能材料(FGM)是一种集各种组分(如金属、陶瓷、纤维、聚合物等)一体的新型材料,其结构、物性参数和物理、化学、生物等单一或综合性能都呈连续变化,以适应不同环境,实现某一特殊功能。
梯度功能材料其实早就出现在自然界中。
神奇的大自然早制造出多种梯度材料。
例如,竹子是一种典型的梯度功能材料,人类和动物身体中的骨骼也是一种梯度材料,其特点是结构中的最强单元承受最高的应力。
但是,在生命体中的梯度结构与人造梯度结构之间存在很大的差异。
有生命的“FGMs”也是“有智能的”,它们能够感受所处环境的变化(包括局部的应力集中),产生相应的结构修改,而人造梯度材料至少在目前还缺乏这种功能。
人造梯度功能材料并不是新的事物,只不过人们没有意识到而已。
人类制造的钢制器件实质就是一种功能梯度材料。
1900年,美国的伍德用明胶作成了光折射率沿径向连续变化的圆柱棒,称之为梯度折射材料。
梯度功能材料
梯度功能材料梯度功能材料是指具有渐变性质的功能材料,其物理、化学、结构等性能在空间上呈现出渐变变化的特点。
梯度功能材料是近年来发展起来的一种新型材料,它具有各种优异的性能,可以在许多领域发挥重要作用。
首先,梯度功能材料在力学性能方面具有显著的优势。
由于其物理结构和化学成分在空间上的渐变,梯度功能材料可以实现从硬到软、从脆到韧的过渡。
这对于一些领域,如材料设计、结构工程等非常有意义。
例如,在航天航空领域中,梯度功能材料可以用于制造轻巧但又具有很高抗压、抗弯性能的航天器件。
其次,梯度功能材料在热传导方面也具有独特的优势。
相对于传统材料,梯度功能材料可以实现热导率的逐渐变化。
这对于一些需要控制热传导的应用非常重要。
举个例子,梯度功能材料可以应用于热电子学器件中,以实现热管理和能量转换的最优化。
此外,梯度功能材料在生物医学领域也有广泛的应用。
例如,在组织工程和再生医学中,梯度功能材料可以模拟人体组织的力学性能和结构特点,从而更好地促进生物材料与人体组织的相容性和生物交互性。
此外,梯度功能材料还可以用于医学影像学领域,通过改变材料的渐变特性,实现对特定组织的显影效果。
最后,梯度功能材料还具有其他许多应用潜力。
例如,在能源领域,梯度功能材料可以用于提高储能设备的性能,如电池和超级电容器。
在环境领域,梯度功能材料可以用于制造高效的吸附材料,以去除有害气体和废水中的污染物等。
总而言之,梯度功能材料的出现为各领域的科研和工程应用带来了许多机会。
它的独特性能可以被广泛地应用于力学、热传导、生物医学、能源、环境等领域,为材料科学和工程技术的发展提供了新的思路和方法。
随着研究的深入和进一步的应用开发,相信梯度功能材料将发挥更加巨大的作用。
梯度功能材料
报告人:张倩 专 业:动力工程及工程热物理
2015-10-28
目 录
1 2 3 4 概述 梯度折射率材料
热防护梯度功能材料
梯度功能材料的应用
概述
梯度功能材料(functionally gradient materials,缩写 FGM)是两种或多种材料复合成组分和结构呈连续 梯度变化的一种新型复合材料,是应现代航天航空 工业等高技术领域的需要,为满足在极限环境下能 反复地正常工作而发展起来的一种新型功能材料。 随着梯度功能材料的研究和发展,其应用不再局 限于宇航工业,已经扩展到核能源、电子材料、光 学工程、化学工业和生物医学工程等领域。
概述
梯度功能材料的主要特征:
1.材料的组分和结构呈连续梯度变化 2.材料内部没有明显的界面 3.材料的性质也相应呈连续梯度变化
材料组合方式:
1.金属/陶瓷 2.金属/非金属 3.陶瓷/陶瓷 4.陶瓷/非金属 5.非金属/塑料
梯度折射率材料
梯度折射率材料是一种非匀质材料,它的组分和 结构在材料内部按一定规律连续变化,从而使折射 率也相应地持续变化。 无机材料(如:玻璃梯折材料) 梯度折射率材料
热防护梯度功能材料
热防护梯度功能材料的设计
使金属和陶瓷的组分和结构呈连续变化,从而物性 参数也呈连续变化的复合材料。
热防护梯度功能材料
过程:
热力学边界条件
热防护梯度功能材料的设计
选择材料组合体系、制备方法
材料体系物理参数
温度分布模拟和热应力模拟
结果提交材料合成部门
热防护梯度功能材料
热防护梯度功能材料的种类
梯度功能材料的应用
2.作梯度折射光学材料
梯度折射率透镜
大大减小组件总数 和非球面组件总数、 简化结构
梯度功能材料
梯度功能材料梯度功能材料State:1. 此⽂在是从中英⽂⽂献中的“简单总结”,没列出相应的参考⽂献2. 是为允诺⼀位朋友⽽做,也可以算作⾃⼰的读书⼩笔记,仅此⽽已背景梯度功能材料( Functionally Gradient Materials ,简称FGM)是由于航空航天技术的发展⽽提出的新概念。
航天飞机在⼤⽓层中长时间飞⾏,机头尖端和发动机燃烧室内壁的温度⾼达2100 K 以上,因此材料必须承受很⼤的⾼温以及内外的温度差别,服役的环境很恶劣。
1984 年,⽇本学者Masyuhi NINO,Toshio HIRA,和Ryuzo WATANBE等⼈⾸先提出了FGM 的概念,其设计思想⼀是采⽤耐热性及隔热性的陶瓷材料以适应⼏千度⾼温⽓体的环境,⼆是采⽤热传导和机械强度⾼的⾦属材料,通过控制材料的组成、组织和显微⽓孔率,使之沿厚度⽅向连续变化,即可得到陶瓷⾦属的FGM。
所谓梯度功能材料(FGM), 即在材料制备过程中,使组成、结构及孔隙率等要素在材料的某个⽅向上连续变化或阶梯变化, 从⽽使材料的性质和功能也呈连续变化或阶梯变化的⼀种⾮均质复合材料。
功能梯度材料的研究开发最早始于1987 年⽇本科学技术厅的⼀项“关于开发缓和热应⼒的功能梯度材料的基础技术研究”计划。
该项⽬于1992 年完成,随后将⼯作重⼼转向模拟件的试制及其在超⾼温、⾼温度梯度落差及⾼温燃⽓⾼速冲刷等条件下的实际性能测试评价上,并于1993 年开始研究具有梯度结构的能量转换材料。
第⼀届国际FGM 研讨会于1990 年在⽇本仙台召开,之后每两年举办⼀届。
中国于2002 年在北京主办过第七届FGM国际研讨会。
特点功能梯度材料的关键特点是控制界⾯的成分和组织连续变化,使材料的热应⼒⼤为缓和。
从材料的组成⽅式看,功能梯度材料可分为⾦属/陶瓷、⾦属/⾮⾦属、陶瓷/陶瓷、陶瓷/⾮⾦属和⾮⾦属/聚合物等多种结合⽅式。
从组成变化可划分为:功能梯度整体型(组成从⼀侧到另⼀侧呈梯度渐变的结构材料),功能梯度涂覆型(在基体材料上形成组成渐变的涂层)和功能梯度连接型(粘结两个基体间的接缝呈梯度变化)。
梯度功能材料
3
• 构件中 材料成分和性能的突然变化常常会导致明显的 构件中材料成分和性能的突然变化常常会导致明显的 材料成分和性能的突然变化 局部应力集中。 局部应力集中 。 如果一种材料过渡到另一种材料是逐 步进行的,这些应力集中就会大大地降低。 步进行的,这些应力集中就会大大地降低。 • 为减少材料的应力集中 , 提高材料性能 , 人们发展了 为减少材料的应力集中,提高材料性能, 新型的梯度功能材料 简称FGM) 。 梯度功能材料(简称 新型的梯度功能材料 简称 • 日本、美国、德国、俄罗斯、英国、法国、瑞士等许 日本、 美国、 德国、 俄罗斯、 英国、 法国、 多国家都开展FGM的研究,其应用已扩展到宇航、能 的研究, 多国家都开展 的研究 其应用已扩展到宇航、 交通、光学、化学、生物医学工程等各领域。 源、交通、光学、化学、生物医学工程等各领域。
梯度功能材料快速成型
Functionaily Gradient Materials
1
主要内容
什么是梯度功能材料 梯度功能材料的制备 梯度功能材料的应用
2
• 许多结构件会遇到各种使用条件 , 因此要求材料的性能应随构件 中的位置而不同。 中的位置而不同。 • 刀具只需刃部坚硬 , 其它部位需 刀具只需刃部坚硬, 要具有高强度和韧性; 要具有高强度和韧性;
PVD镀膜器件 镀膜器件
10
等离子喷涂法
• 等离子体喷涂能同时熔化难熔相和金属,通过控制 等离子体喷涂能同时熔化难熔相和金属, 两种粉末的相对供给速率来预先设置混合比率。 两种粉末的相对供给速率来预先设置混合比率。 • 使用粉末作为喷涂材料,以氦气、氩气等气体为载 使用粉末作为喷涂材料,以氦气、 吹入高温等离子体射流。 体,吹入高温等离子体射流。等离子体射流把能量 传递给颗粒,粉末被熔融后进一步加速, 传递给颗粒,粉末被熔融后进一步加速,高速冲撞 在基材表面形成涂层。 在基材表面形成涂层。高速使颗粒撞到固体基底上 时变得相当扁平,使涂层具有相对低的孔隙率。 时变得相当扁平,使涂层具有相对低的孔隙率。
梯度功能材料
• 人们发现,无论是使用传统的金属材料,还是 使用传统的陶瓷一金属(或合金)复合材料,虽 然可以耐高温冲击,但由于陶瓷和金属间存在 明显的界面,界面两侧材料(陶瓷和金属)的热 膨胀系数不同,高低温冲击时在界面处会产生
很大的热应力,使材料裂缝、剥落、失效。因
为高的热应力循环问题,一般材料难以满足这
种苛刻的使用环境,所以设想两侧分别用陶瓷
和金属,在中间加入梯度过渡层,以减少和克 服结合部位的性能不匹配因素
• 于是在1984年,有日本学者新野正之 (M.Niino),平井敏雄(T.Hirai),渡边龙三(R. Watanabe)首先提出梯度功能材料 (Functionally Gradient Materials,简称FGM)
的概念,该概念就是从金属侧逐步过渡到陶瓷
早提出了功能梯度材料的概念,并在金属一陶
瓷复合刀具的研究中开始了这方面的工作。随
后,武汉工业大学、上海硅酸盐研究所、沈阳
金属所、天津大学、哈尔滨工业大学、北京科
技大学、华中理工大学、西北工业大学等单位
在材料设计、合成工艺和评估等方面作了大量 的工作,取得了可喜的成果。
• 从梯度功能的思想出发,通过金属、陶 瓷、塑料等不同物质的功能复合。梯度 功能材料在航天事业、核能源、电子、 光学、化学、电磁学、生物医学乃至日 常生活领域,都有极高的使用价值和巨 大的应用前景。
在频繁的热冲击与温差负荷环境下长期反复工 作.
梯度功能材料的表征
• 广义的梯度功能材料(FGM)的定义是:根 据具体材料要求,选择两种具有不同性 能的材料,通过连续地改变这两种材料 的组成和结构,使界面消失,从而得到 物性和功能相应于组成和结构的变化而 缓慢变化的非均质材料,又称为功能梯 度材料,渐变功能材料等。
梯度功能材料技术介绍
THANKS
感谢观看
应用领域
01
02
03
航空航天
梯度功能材料在航空航天 领域中广泛应用于制造高 性能的航空器和航天器。
汽车工业
在汽车工业中,梯度功能 材料被用于制造高性能的 汽车零部件,提高汽车的 安全性和可靠性。
医疗器械
在医疗器械领域,梯度功 能材料被用于制造高性能 的医疗设备和器械,提高 医疗效果和安全性。
03
航天器结构
在航天器中,梯度功能材料用于制造 结构件,如卫星天线和太阳能电池板 ,以抵抗空间环境中的极端条件。
在汽车工业领域的应用
发动机部件
梯度功能材料用于制造汽车发动机部件,如气缸套和活塞环,以提高发动机效率和耐久性。
轻量化设计
在汽车设计中,梯度功能材料用于制造轻量化零部件,如刹车盘和轮毂,以提高燃油经济性和车辆性 能。
梯度功能材料在力学、热学、光学和生物医学等领域展现出优异的性能,为解决传统材料面临的挑战 提供了新的解决方案。
通过先进的制备技术和结构设计,实现了梯度功能材料性能的可调控性,为个性化需求提供了广阔的应 用前景。
梯度功能材料在能源、环保和可持续发展等领域具有巨大的潜力,为推动社会进步和经济发展做出了重 要贡献。
其他制备方法
• 其他制备方法包括电泳沉积法、喷涂法、溶胶-凝胶 法等。这些方法在梯度功能材料的制备中也有一定 的应用,但相对于上述三种方法而言,其应用范围 和效果有限。
04
梯度功能材料的应用案例
在航空航天领域的应用
航空发动机叶片
梯度功能材料用于制造航空发动机叶 片,能够承受极高的温度和压力,提 高发动机性能和效率。
气相沉积法
气相沉积法是一种利用气态物质在基材上沉积成膜的制备方 法。在梯度功能材料的制备中,可以通过调节沉积过程中的 各种参数,如温度、压力、反应气体流量等,使不同材料在 不同位置以不同的速率沉积,从而形成梯度结构。
功能材料 梯度功能材料
神州号
杨利为
聂海胜、 聂海胜、费俊龙
背景: 背景:航空方面
每秒3.2公里,10倍音速 每秒3.2公里,10倍音速 3.2公里
W:T=3680K, 19.3; MO:T=2890K,10.2
设计
氧化物陶瓷熔点均在2000K以上, 氧化物陶瓷熔点均在2000K以上,密 2000K以上 度:Al2O3=4.0;TiB2=4.5;SiC= Al2O3=4.0;TiB2=4.5;SiC= 3.12等 3.12等 虚线-压应力区; 虚线-压应力区;0-无应力区 比较发现: 比较发现: 成分突变会导致应力集中( 1. 成分突变会导致应力集中(解决 不好,哥伦比亚号坠毁,见图) 不好,哥伦比亚号坠毁,见图)
功能梯度材料
一、主要内容: 1.功能梯度材料概述 2.功能梯度材料制备 3.功能梯度材料应用 二、要求: 1.了解功能梯度材料的产生背景及其定义; 2.了解功能梯度材料的特点及其分类; 3.了解功能梯度材料的常用制备工艺; 4.功能梯度材料的应用重点和难点: 三、难点:功能梯度材料的制备原理
功能梯度材料概述 功能梯度材料 (Functionally Graded Materials,以下简称 以下简称FGM) 以下简称 ) 的概念是由日本材料学家 新野正之、 新野正之、平井敏雄和渡 边龙三等于1987年提出。 年提出。 边龙三等于 年提出 FGM就是为了适应新材料 就是为了适应新材料 在高技术领域的需要,满足 在高技术领域的需要 满足 在极 限温度环境(超高温、大温度落差 下不断反复正常工作而开发 限温度环境 超高温、大温度落差)下不断反复正常工作而开发 超高温 的一种新型复合材料。如图所示, 的一种新型复合材料。如图所示,在金属底层与热障工作层之 间引入成分过渡层,消除涂层中的宏观界面, 间引入成分过渡层,消除涂层中的宏观界面,合成一种非均一 的复合材料,其机械、物理、化学特性是连续变化的, 的复合材料,其机械、物理、化学特性是连续变化的,没有突 缓和了涂层中的热应力等, 出,缓和了涂层中的热应力等,成为可以应用于高温环境的新 一代功能材料。 一代功能材料。
储氢料和梯度功能材料
航空母舰甲板
汽车工业
• 为对柴油机或汽油机活塞头进行热保护,需在钢基底 上喷涂厚度大于2mm的ZrO2 涂层。如果直接在金属 上覆盖陶瓷,在构件投入使用前就会导致界面脱层。 • 通过覆盖一些陶瓷含量不断增加的金属-陶瓷复合梯 度涂层,可保证涂层力学完整性,保护活塞。
柴油机活塞头
汽油机活塞头
• 核反应堆内壁温度高达数千K,其内壁材料采用单纯 双层结构,热传导不好,孔洞较多,热应力下有剥 离倾向。 • 采用金属/陶瓷结合的梯度材料,能消除热传递及热 膨胀引起的应力,解决界面问题,可替代目前不锈 钢/陶瓷复合材料。
•ZrO2-CrNi合金FGM横截 面,白色的陶瓷粉末与黑 色的合金粉末含量呈连续 性梯度变化,没有明显的 界面,
•
1987年,日本平井敏雄、新野正之和渡边龙三人提出使 金属和陶瓷复合材料的组分、结构和性能呈连续变化的热防 护梯度功能材料的概念。 1990年,日本召开第一届梯度功能材料国际研讨会。
TiC-TI3SIC2材料制备
激光熔覆
• 把材料A放到基底B表面上,用激光将其与B基体中 表面薄层一起熔化,在B表面形成B合金化的A层。 • 重复操作,在B表面产生B含量逐渐减少的梯度。 • 梯度变化可通过控制初始A层的数量、厚度及熔区深 度来获得。
激光熔覆将材料A合金化到材料B制备FGM示意图
2)组成变化上分:
(1)梯度功能整体型(从一侧到另一侧组成梯度变
化) (2)梯度功能涂履型(涂层的组成梯度变化) (3)梯度功能连接型(粘接接缝的组成梯度变化) 3)功能上分: (1)热防护梯度功能材料 (2)折射率梯度功能材料
梯度功能材料的制备方法
• 梯度功能材料的制备技术和方法,综合了超细、 超微细粉、均质或非均质复合材树等微观结构控 制技术和生产技术。 化学气相沉积法(CVD)
梯度功能材料
SHS法是前苏联科学家Merzhanov等在1967年
研究Ti和B的然烧反应时,发现的一种合成材
料的新技术。其原理是利用外部能量加热局
部粉体引燃化学反应,此后化学反应在自身
放热的支持下,自动持续地蔓延下去,最后
合成新的化合物。
SHS法具有产物纯度高、效率高、成本低、工
艺相对简单的特点。
自蔓延高温合成法(SHS)
光学材料
4.5
介电和压电材料
单体介电材料的介电常数一般随温度而激剧
变化,而利用不同成分组成的FGM介电材料的介电常数比较稳定,受温度Fra bibliotek影响较小。
用FGM层取代有机物黏接,可以得到可靠性好、
寿命长的梯度功能材料型压电陶瓷驱动器。
5.FGM的研究发展方向
5.1
存在的问题
(1)梯度材料设计的数据库(包括材料体系、 物性参数、材料制备和性能评价等)还需要 补充、收集、归纳、整理和完善;
3.梯度功能材料的特点
3.1根据材料的组合方式
FGM可分为金属/合金,金属/ 非金属,非 金属/陶瓷、金属/陶瓷、陶瓷/陶瓷等多 种组合方式,因此可以获得多种特殊功能的 材料。
3.2材料的组成的变化
(1)梯度功能涂覆型,即在基体材料上形成 组成渐变的涂层。 (2)梯度功能连接型,即是粘接在两个基体 间的接缝组成呈梯度变化。 (3)梯度功能整体型,即是材料的组成从一 侧向另一侧呈梯度渐变的结构材料
1.2.2 梯度功能材料分类
(1) 根据材料的组合方式,FGM分为金属/陶 瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式
的材料;
(2)根据不同的梯度性质变化,FGM分为密
《梯度功能材料》课件
• 梯度功能材料的概述 • 梯度功能材料的制备方法 • 梯度功能材料的性能研究 • 梯度功能材料的发展趋势与展望 • 案例分析:梯度功能材料在航空
航天领域的应用
目录
01
梯度功能材料的概述
定义与特性
定义
梯度功能材料(Gradient Function Materials,GFM)是一种新型材料 ,其性能在空间上呈连续变化,从而 在材料内部实现了一种特殊的梯度结 构。
航空航天
用于制造高性能的航空发动机和 航天器部件,提高其耐高温、抗 腐蚀和减轻重量的性能。
生物医疗
用于制造人工关节、牙科种植体 等医疗器械,提高其生物相容性 和耐久性。
能源环保
用于制造高效能电池、燃料电池 等能源器件,提高其能量密度和 使用寿命。同时,在环保领域可 用于治理污染和修复生态。
02
梯度功能材料的制备方法
总结词
高强度、低密度、抗辐射
详细描述
卫星结构材料需要承受发射过程中的巨大应力和振动,同时在轨运行时还要承受太空中 的各种恶劣环境,如高真空、强辐射等。梯度功能材料通过优化材料成分和结构,实现 了高强度、低密度和抗辐射等多重性能的完美结合,为卫星结构提供了更加可靠和高效
的材料选择。
感谢观看
THANKS
01
通过优化材料组成和结构设计,开发具有优异性能的复合材料
,以满足各种工程应用的需求。
智能材料
02
研究和发展能够感知外部刺激并作出响应的材料,如形状记忆
合金、压电陶瓷等,用于制造智能传感器和执行器。
多功能材料
03
探索和开发具有多种功能的材料,如导电、导热、磁性、光学
等,以实现单一材料的多重应用。
《梯度功能材料》课件
《梯度功能材料》PPT课 件
# 梯度功能材料
梯度功能材料是指在空间尺度上存在成分分布或结构演变的材料,具有多种 功能。本课件将介 - 重要性和应用领域
功能梯度材料的制备方法
- 梯度功能材料的基础介绍 - 制备方法 - 反应温度和时间 - 成品的性能
功能梯度材料的分类
- 按功能分 - 电学、磁学、光学等 - 按材料类型分 - 金属、聚合物等
功能梯度材料的应用
- 矫顽应力、有源隔振、节能环保等 - 生物医学、航天航空等
相关研究进展
- 国内外研究动态 - 特别是在新兴应用领域上的发展和应用现状
结语
- 功能梯度材料的前景 - 推广应用的支持和发展前景
梯度功能材料
梯度功能材料
梯度功能材料是一种具有非均匀性能分布的材料,其性能随着空间位置的变化而变化。
这种材料在各种工程领域中具有广泛的应用,包括电子器件、能源存储、传感器等。
梯度功能材料的设计和制备对于提高材料的性能和实现特定功能具有重要意义。
首先,梯度功能材料的设计需要充分考虑材料的性能需求和实际应用场景。
在电子器件中,需要设计具有不同导电性能的材料,以实现对电子流的精确控制。
在能源存储领域,需要设计具有不同电化学性能的材料,以提高电池的能量密度和循环寿命。
因此,梯度功能材料的设计需要结合具体的应用需求,确定材料的性能分布和变化规律。
其次,梯度功能材料的制备需要选择合适的制备方法和工艺参数。
常见的制备方法包括溶液法、气相沉积、激光烧结等。
这些方法可以实现对材料成分、结构和形貌的精确控制,从而实现材料性能的梯度分布。
在制备过程中,需要合理选择工艺参数,如温度、压力、溶剂浓度等,以实现对材料性能的精确调控。
最后,梯度功能材料的应用需要充分考虑材料的性能稳定性和可靠性。
在实际应用中,梯度功能材料可能会受到温度、湿度、光照等环境因素的影响,从而导致材料性能的变化。
因此,需要对梯度功能材料进行性能评估和稳定性测试,以确保其在不同环境条件下的可靠性和稳定性。
综上所述,梯度功能材料的设计、制备和应用是一个复杂而又具有挑战性的过程。
通过合理设计和精密制备,梯度功能材料可以实现对材料性能的精确调控,从而实现特定功能和应用需求。
随着材料科学和工程技术的不断发展,梯度功能材料将在更多领域展现出其巨大的应用潜力。
金属-陶瓷梯度功能材料
金属-陶瓷梯度功能材料是一种结合金属和陶瓷两种材料特性的复合材料。
它通过逐渐变化成分或结构的方式,实现材料性能的梯度变化,从而在不同区域具有不同的功能和性能。
金属-陶瓷梯度功能材料的特点包括:
梯度结构:材料在宏观上呈现出逐渐变化的组织结构,可以是成分的梯度变化,也可以是微观结构的梯度变化。
这种梯度结构可以实现不同区域之间的适应性和平衡性。
多功能性:金属-陶瓷梯度功能材料融合了金属和陶瓷两种材料的特性,同时具有金属的导电性、强度和韧性以及陶瓷的高温耐性、硬度和耐磨性。
因此,它可以在不同的应用领域发挥多种功能。
梯度性能调控:通过调控梯度结构的设计和制备,可以实现对材料性能的精确调控。
例如,在陶瓷-金属界面附近增加金属含量,可以提高材料的韧性和抗裂性能。
应变适应性:金属-陶瓷梯度功能材料的梯度结构可以提供良好的应变适应性。
在受力时,金属部分能够吸收和分散应力,而陶瓷部分则提供较高的硬度和强度。
金属-陶瓷梯度功能材料在航空航天、汽车工业、能源领域和医疗器械等多个领域具有广泛应用。
例如,它们可用于制造高温环境下的热障涂层、高强度和轻量化结构材料、耐磨和耐腐蚀部件等。
功能梯度材料
功能梯度材料功能梯度材料(FGM)是一种具有梯度性质的复合材料,其性能在材料内部呈现出逐渐变化的特点。
这种材料的设计灵感来源于自然界中许多生物体的结构,比如贝壳、骨骼等,它们都具有类似的梯度性质,能够有效地抵抗外部环境的影响,具有很高的韧性和强度。
功能梯度材料的设计理念是将不同性能的材料通过一定的方式结合起来,使得整体材料的性能在空间上呈现出梯度变化。
这种设计能够充分发挥各种材料的优势,同时弥补它们的缺陷,从而实现材料性能的最优化。
在实际应用中,功能梯度材料已经被广泛应用于航空航天、汽车制造、医疗器械等领域,取得了显著的效果。
功能梯度材料的制备方法多种多样,包括堆砌法、激光熔覆法、沉积法等。
其中,堆砌法是一种比较常见的制备方法,它通过层层堆砌不同性能的材料,然后进行烧结或热压,最终形成具有梯度性质的复合材料。
激光熔覆法则是利用激光熔化金属粉末,将不同成分的金属粉末逐层熔覆在基底上,形成梯度材料。
沉积法则是通过化学气相沉积、物理气相沉积等方法,在基底上沉积不同性能的材料,形成梯度材料。
功能梯度材料的应用前景广阔,它可以为工程领域提供更多的可能性。
比如,在航空航天领域,功能梯度材料可以用于制造航天器的热防护层,提高其对高温和高速气流的抵抗能力;在汽车制造领域,功能梯度材料可以用于制造车身结构件,提高汽车的安全性和舒适性;在医疗器械领域,功能梯度材料可以用于制造人工关节和骨科植入物,提高其与人体组织的相容性和稳定性。
总的来说,功能梯度材料是一种具有巨大潜力的新型材料,它将为人类社会的发展带来新的机遇和挑战。
随着科学技术的不断进步,功能梯度材料必将在更多领域展现出其独特的价值和魅力,为人类社会的可持续发展做出更大的贡献。
最新2019-第十二章梯度功能材料-PPT课件
12.3.1 折射率梯度类型
(一)类型:
• 径向梯度折射率材料 • 轴向梯度折射率材料 • 球向梯度折射率材料
1.径向梯度折射率材料
• 径向梯度折射率材料是圆棒状的。 • 它的折射率沿垂直于光轴的半径从中心到边缘连续变化。 • 等折射率面是以光轴为对称轴的圆柱面。
沿垂直于光轴方向截取一定长度的梯度折射率棒两端 加工成平面,就制成一个梯度折射率棒透镜。光线在镜内 以正弦曲线的轨迹传播。
梯度功能材料的物性参数是一种非均质复合材料类型的 物性参数,它主要取决于梯度层中的组成和微观结构。 推定 方法有:实测法、复合法则法和微观力学法。
复合法则法:P=k1P1+k2P2+k1k2Q12 式中:P1——组分1的物性参数;
P2——组分2的物性参数; k1——组分1的体积分数; k2——组分2的体积分数 P——梯度功能材料的物性参数 ; Q12——与k1、P1、k2、P2有关的函数
12.3 梯度折射率材料
折射率梯度类型 梯度折射率材料的制法
在传统的光学系统中,各种光学元件所用的材料都是均 质的,每个元件内部各处的折射率为常数。
梯度折射率材料则是一种非均质材料,它的组分和结构 在材料内部按一定规律连续变化,从而使折射率也相应地呈 连续变化。
光学梯度功能材料是最早研究的梯度功能材料。 1900年美国人用明胶做成了光折射率沿径向连续变化的 圆柱棒,称之为梯度折射率材料(gradient-index materials, 简称GIM)。由于制作工艺没有解决,未能实际应用。1969 年,日本人用离子交换工艺制成玻璃梯度折射率棒材和光纤,
FT8燃气轮机
主要性能如下: ISO基本功率(kW)25700 热效率(%)39.2 流量(kg/s)85.9 排气温度(℃)457℃ 大修间隔(小时)≥450 启动可靠性99% 可用性99.9%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 具有缓和热应力的功能。
金属和陶瓷构成的材料特性 (a)无梯度;(b)有梯度
18
比较发现:
• 成分突变会导致应力集中
• 成分逐步过渡,应力集中 大大降低,有梯度时集中 区压应力仅为无梯度时的
1/3-1/4
• 无梯度样品冷却时开裂, 有梯度样品有近400MPa
• 功能梯度材料已发展为当前结构材料和功能材料研究领 域中的重要主题之一。
摩擦温升后,梯度材料变化较 小,普通材料则变成兰紫色
14
梯度功能材料的原理及特点
15
• 梯度功能材料由几种性质不同的材料组成,但与 复合材料之间有明显区别。
梯度功能材料与复合材料比较
材料 设计思想 结合方式 微观组织
复合材料
现代新型材料与纳米材料
New Materials and NanometerMaterials(6)
材料科学与工程学院 刘颖教授主讲
1
第六讲 梯度功能材料
Gradient Function Materials
2
主要内容
➢梯度功能材料的发展 ➢梯度功能材料的原理及特点 ➢梯度功能材料的制备 ➢梯度功能材料的应用
• 1990年,日本召开第一届梯度功能材料国际研讨会。
热防护梯度
梯度复合管
13
• 1993年,美国国家标准技术研究所开始以开发超高温耐 氧化保护涂层为目标的大型梯度功能材料研究。
• 1995年德国发起一项六年国家协调计划,主要研究功能 梯度材料的制备。
• 最近,通过改变复合两相的配制,在复合材料内部形成 精细的构造梯度(将预先存在的不同相进行人为组合)。
20
梯度功能材料的制备方法
21
• 梯度功能材料的制备技术和方法,综合了超细、 超微细粉、均质或非均质复合材树等微观结构控 制技术和生产技术。
➢ 化学气相沉积法(CVD) ➢ 物理蒸镀法(PVD) ➢ 等离子喷涂法(PS) ➢ 自蔓延高温合成法(SHS) ➢ 粉末冶金法 ➢ 激光熔覆法 ➢ 化学气相渗透法(CVI) ➢ 电解析出法等
梯度材料
材料优点的相互 复合
化学键/物理键
特殊功能为目标
分子间力/化学键/物 理键
界面处非均质
均质/非均质能
一致
梯度化
16
• 梯度功能材料主要通过连续控制材料的微观要素 (包括组成、结构),使界面的成分和组织呈连续 性变化,主要特征有:
➢ 材料的组分和结构呈连续性梯度变化; ➢ 材料内部没有明显的界面; ➢ 材料的性质也呈连续性梯度变化。
10
• 1900年,美国用明胶作成光 折射率沿径向连续变化的圆 柱棒,称为梯度折射材料。 由于制作工艺没有解决,未 能得到实际应用。
• 1969年,日本板玻璃公司的 北野等人制成梯度折射棒材 和光纤,达到了实用水平, 梯度折射率材料的研究迅速 发展起来。
中国剑
梯度折射玻璃
11
航天飞机飞行时预想的表面温度
航天工业
化工工业
交通工业
5
梯度功能材料的发展
6
• 梯度功能材料是一种集各种组分(如金属、陶瓷、 纤维、聚合物等)于一体的新型材料,其微观结构 和物理、化学、生物等单一或综合性能都呈连续 变化,以适应不同环境,实现某一特殊功能。
梯度功能材料制备的耐磨轴承,外表为陶瓷, 内表面为金属
7
• 梯度功能材料早就出现在自然界中。
不锈钢-陶瓷(Si3N4)界面上应力分布 结合强度
(单位:1/100MPa) (a)无梯度;(b)有梯度 虚线-压应力区;0-无应力区
19
➢ 与突变界面相比,梯度材料可在成分中引入连续的 或逐级的梯度来提高不同固体(如金属和陶瓷)之间 的界面结合强度,抑制应力集中,推迟塑性屈服和 失效的发生;
• 热防护梯度功能材料正是利用其成分和结构的连续 变化来避免热应力集中所造成的界面脱落和开裂, 防止材料的失效。
• 功能梯度材料作为一个规范化正式概念,于1984年 由日本国立宇航实验室提出。
• 航天飞机中,燃烧室内外表面温差达到1000K以上, 普通的金属材料难以满足这种苛刻的使用环境。
12
• 1987年,日本平井敏雄、新野正之和渡边龙三人提出 使金属/陶瓷复合材料的组分、结构和性能呈连续变 化的热防护梯度功能材料的概念。
3
• 许多结构件会遇到各种服役条 件,因此要求材料的性能应随 构件位置不同而不同。
➢ 刀具只需刃部坚硬,其它部位需 要具有高强度和韧性;
➢ 齿轮轮体必须有好的韧性,表面 必须坚硬和耐磨;
➢ 涡轮叶片的主体必须具有高强度 、高韧性和抗蠕变,而它的外表 面必须耐热和抗氧化。
• 诸如此类,工程应用的许多材 料都属于这个范畴。
竹子
竹节中纤维素含量变化 8
人体长骨结构示意图
9
• 人造梯度功能材料也不是新事物。越王勾践剑深埋地下 2400多年,1965年出土时依旧寒光逼人,锋利无比。
• 剑的主要成分是铜、锡及少量铝、铁、镍、硫。 • 剑的各部位铜和锡的比例不一,形成良好的成分梯度。
剑脊含铜较多,韧性好,不易折断;剑刃含锡高,硬度 大,非常锋利;护手花纹处含硫高,硫化铜可防锈蚀。
• 竹子是一种典型的梯度功能材料,人类和动物身体中 的骨骼也是一种梯度材料,其特点是结构中的最强单 元承受最高的应力。
• 生物的梯度结构与人造梯度结构之间存在很大差异。 有生命的FGMs是“有智能的”,它们能感受所处环境 的变化(包括局部应力集中),产生相应的结构修改,而 人造梯度材料至少在目前还缺乏这种功能。
中国刀
涡轮叶片
4
• 构件中材料成分和性能的突然变化常常会导致明显的 局部应力集中。如果一种材料过渡到另一种材料是逐 步进行的,这些应力集中就会大大地降低。
• 为减少材料的应力集中,提高材料性能,人们发展了 新型的功能梯度材料(简称FGM) 。
• 日本、美国、德国、俄罗斯、英国、法国、瑞士等许 多国家都开展FGM的研究,其应用已扩展到宇航、能 源、交通、光学、化学、生物医学工程等各领域。
•ZrO2-CrNi合金FGM横 截面,白色的陶瓷粉末与 黑色的合金粉末含量呈连 续性梯度变化,没有明显 的界面,
17
• 金属-陶瓷构成的热应力缓和梯度功能材料,对高 温侧壁采用耐热性好的陶瓷材料,低温侧壁使用 导热和强度好的金属材料。
➢ 材料从陶瓷过渡到金属的过程中,耐热性逐渐降低,机 械强度逐渐升高。