染色体结构的变异
染色体结构变异的四种类型及遗传效应
染色体结构变异的四种类型及遗传效应
染色体结构变异是指染色体上的一部分或整个染色体的结构发生改变。
它可以分为四种类型,包括缺失、重复、倒位和易位。
1. 缺失:染色体上的一部分基因或染色体片段缺失或丢失。
这可能导致缺失区域基因的缺失或功能异常,进而影响相关的生物过程。
2. 重复:染色体上的某些基因或染色体片段出现重复。
这种变异可能导致相应基因过度表达或功能异常,从而影响正常的生物调控。
3. 倒位:染色体上的一部分基因或染色体片段发生倒位,即发生了颠倒。
这种变异可能导致基因间的序列重排,进而改变基因的表达和功能。
4. 易位:染色体上的一部分基因或染色体片段与其他非同源染色体发生交换。
这种变异可能导致两个染色体上的基因交换位置,进而影响基因的表达和功能。
这些染色体结构变异会对遗传产生不同的效应:
1. 显性效应:染色体结构变异可能导致相关基因的功能改变,进而表现出明显的遗传效应。
这些效应可能是由于基因缺失、重复或倒位引起的。
2. 隐性效应:染色体结构变异可能导致基因的功能改变,但这种改变在个体的表型中并不明显。
这些效应可能是由于基因重复或易位
引起的。
3. 无效果:染色体结构变异可能发生在非编码区域或没有明显功能的基因上,因此对个体的遗传效应可能没有明显影响。
总的来说,染色体结构变异的类型和遗传效应是相互关联的,不同类型的变异可能导致不同的遗传效应。
这些遗传效应可能会对个体的发育和健康产生影响。
染色体结构变异例子
染色体结构变异例子
以下是 9 条关于染色体结构变异的例子:
1. 嘿,大家知道缺失吗?就像一个拼图少了一块儿!比如说果蝇的一条染色体上少了某个片段,这就是缺失啊,这可会对果蝇产生很大影响呢,你说神奇不神奇?
2. 重复呀,就好比一句话被重复说了好几遍!像有些植物的染色体多了一段基因序列,这不就是重复嘛,这会让植物呈现出不一样的特征哟。
3. 倒位,哎呀,就像是把一段东西给颠倒过来了!比如说有的蛾类,染色体的某个片段位置颠倒了,这可真是有意思呀!
4. 易位呢,就好像是两个不同的东西换了位置!像人类的一些疾病可能就是因为染色体发生了易位,这多让人惊讶呀!
5. 你们想想,染色体裂成两段,像断了的绳子一样,这就是断裂啊!很多生物的变异就是从这样开始的呢。
6. 双着丝粒染色体,就如同有两个“小脑袋”的奇怪家伙!某些肿瘤细胞里就会出现这种奇怪的染色体呢。
7. 环状染色体,不就像是一个圈圈嘛!真的会有生物有着这样特别的染色体哦,是不是很好玩?
8. 插入,像突然多了个东西插进来一样!有的生物由于染色体插入了新的片段而发生了变化,是不是很奇特?
9. 等臂染色体呀,两边一样长,就像个对称的图形!这种情况也会在一些生物中出现呢,真让人感叹染色体的奇妙世界!
总之,染色体结构变异真的是非常神奇又多样,对生物的影响也是各不相同啊!。
2024届高考一轮复习生物课件(人教版):染色体变异
色体数目加倍
(5)实例:三倍体无子西瓜
第一次传粉:杂交获得_三__倍__体__种__子__ ①两次传粉
第二次传粉:刺激子房发育成_果__实__
②用秋水仙素处理幼苗后,分生组织分裂产生的茎、叶、花染色体数目 加倍 ,而未经处理部分(如根部细胞)的染色体数 不变 。 ③三倍体西瓜无子的原因:三倍体西瓜在减数分裂过程中,由于染色体 联会紊乱,不能产生正常配子。
由受精卵发育而来,含有两个染色体组的个体称为二倍体,但是二 倍体不一定都是由受精卵发育来的,比如单倍体育种中人工诱导加 倍后得到的二倍体,A错误; 单倍体生物体细胞中,含有本物种配子染色体组数,但不一定只含 有一个染色体组,也可能含有多个染色体组,B正确; 采用花药离体培养的方法得到的个体与本物种配子中的染色体数目 相同,都是单倍体,C正确;
归纳 总结
(1)染色体结构变异和基因突变的比较
项目
染色体结构变异
本质
染色体片段的缺失、重复、 易位或倒位
对象
基因
变异水平
细胞水平
光镜检测
可见
基因数目或排列顺序改变 变异结果
基因突变
碱基的替换、增添或缺失
碱基 分子水平 不可见 碱基的排列顺序改变,基 因的数目、位置不变
归纳 总结
(2)染色体易位与互换的比较
拓展 提升科学思维 1.如图1表示果蝇某细胞内的相关染色体行为,1、2代表两条未发生变异 的染色体,3、4代表两条正在发生变异的染色体,图中字母表示染色体 上的不同片段。
(1)正常情况下,1与2是非同源染色体,图1中A中发生碱基的增添、缺失 或替换 不一定 (填“一定”或“不一定”)属于基因突变。
第2课时 染色体变异
课标要求
举例说明染色体结构和数目的变异都可能导致生物性状的改变甚至 死亡。
拓展资料:染色体结构变异(附图)
染色体结构变异染色体结构变异包括缺失、重复、倒位和易位四种类型。
染色体结构变异最早是在果蝇中发现的。
遗传学家在1917年发现染色体缺失,1919年发现染色体重复,1923年发现染色体易位,1926年发现染色体倒位。
人们在果蝇幼虫唾腺染色体上,对各种染色体结构变异进行了详细的遗传学研究。
染色体结构变异的发生是内因和外因共同作用的结果,外因有各种射线、化学药剂、温度的剧变等,内因有生物体内代谢过程的失调、衰老等。
在这些因素的作用下,染色体可能发生断裂,断裂端具有愈合与重接的能力。
当染色体在不同区段发生断裂后,在同一条染色体内或不同的染色体之间以不同的方式重接时,就会导致各种结构变异的出现。
下面分别介绍这几种结构变异的情况。
缺失缺失是指染色体上某一区段及其带有的基因一起丢失,从而引起变异的现象。
如果缺失的区段发生在染色体两臂的内部,称为中间缺失。
如果缺失的区段在染色体的一端,则称为顶端缺失。
在缺失杂合体中,由于缺失的染色体不能和它的正常同源染色体完全相应地配对,所以当同源染色体联会时,可以看到正常的一条染色体多出了一段(顶端缺失),或者形成一个拱形的结构(中间缺失),这条正常染色体上多出的一段或者一个结,正是缺失染色体上相应失去的部分。
缺失引起的遗传效应随着缺失片段大小和细胞所处发育时期的不同而不同。
在个体发育中,缺失发生得越早,影响越大缺失的片段越大,对个体的影响也越严重,重则引起个体死亡,轻则影响个体的生活力。
在人类遗传中,染色体缺失常会引起较严重的遗传性疾病,如猫叫综合征等。
重复染色体上增加了相同的某个区段而引起变异的现象,叫做重复。
在重复杂合体中,当同源染色体联会时,发生重复的染色体的重复区段形成一个拱形结构,或者比正常染色体多出一段。
重复引起的遗传效应比缺失的小。
但是如果重复的部分太大,也会影响个体的生活力,甚至引起个体死亡。
例如,果蝇由正常的卵圆形眼变为棒状眼的变异,就是X染色体上某一区段重复的结果。
2019-2020年高中生物苏教版必修2教学案:第三章 第三节 染色体变异及其应用(含答案)
2019-2020年高中生物苏教版必修2教学案:第三章第三节染色体变异及其应用(含答案)一、染色体结构的变异1.特点:染色体结构变异一般可通过光学显微镜直接观察。
2.类型:包括缺失、重复、倒位和易位四种。
3.染色体结构变异导致性状变异的原因:染色体结构变异都会使染色体上的基因的数目或排列顺序发生改变,从而导致性状的变异。
4.结果:大多数染色体结构的变异对生物体是不利的,甚至会导致生物体死亡。
5.影响因素:电离辐射、病毒感染或一些化学物质诱导。
二、染色体数目变异1.概念和类型(1)概念:染色体数目以染色体组的方式成倍增加或减少,个别染色体的增加或减少,都称为染色体数目的变异。
(2)类型:2.染色体组(1)概念:细胞中形态和功能各不相同,但互相协调、共同控制生物的生长、发育、遗传和变异的一组非同源染色体,称为一个染色体组。
(2)实例:人的精子或卵细胞中含有一个染色体组,体细胞中含有两个染色体组。
(3)单倍体、二倍体与多倍体:①单倍体是指体细胞中含有配子染色体组的个体。
②由受精卵发育成的个体,体细胞内含有两个染色体组的称为二倍体,含有三个或三个以上染色体组的叫多倍体。
3.低温诱导染色体数目加倍(1)原理:用低温处理或化学因素刺激植物分生组织细胞,有可能抑制纺锤体的形成,导致细胞内染色体数目加倍。
(2)实验步骤:①培养根尖:将一些蚕豆或豌豆种子放入培养皿,加入适量的清水浸泡,在培养皿上覆盖2~3层潮湿的纱布。
②低温诱导:在蚕豆幼根长至 1.0~1.5 cm左右的不定根时,将其中的两个培养装置放入冰箱的低温室内(4 ℃),诱导培养36 h。
③固定细胞形态:剪取诱导处理的根尖约5 mm,放入卡诺氏固定液中固定0.5~1 h,以固定细胞的形态,然后用体积分数为95%的乙醇溶液冲洗2~3次。
④XXX装片:取固定好的根尖,进行解离→漂洗→染色→制片4个步骤。
⑤观察装片:先用低倍镜寻找染色体形态较好的分裂相,确认某个细胞发生染色体数目变化后,再换用高倍镜观察。
染色体结构变异的四种类型及遗传效应
染色体结构变异的四种类型及遗传效应
染色体结构变异的四种类型包括缺失、重复、倒位和易位,这些变异会导致不同的遗传效应。
1. 缺失是指染色体中某一片段的缺失,这会导致缺失杂合体在减数分裂时形成缺失环或多出一段,有致死、半致死、降低生活力或育性等效应,纯合体通常为致死的。
这种缺失也可能导致拟显性现象和后代中正常分离比的改变。
2. 重复是指染色体上增加了相同的某个区段,这会导致此区段上的基因也随之增加。
遗传效应一般小于缺失,但有时也会引起疾病。
3. 倒位是指同一染色体上内部区段发生180度倒转后重新连接,使得基因顺序发生颠倒和重排。
这可分为臂内倒位和臂间倒位,一般认为促进生物进化。
4. 易位是指一条染色体的某一片段移接到另一条非同源染色体上,或者非同源染色体间相互交换染色体片段。
这会引起变异和疾病。
以上信息仅供参考,如有需要建议查阅遗传学书籍或咨询遗传学专家。
染色体结构变异的例子
染色体结构变异的例子
1. 你知道吗,果蝇的棒眼现象就是染色体结构变异的一个超有趣的例子呀!就好像搭积木,染色体的某些部分被重新排列了呢。
2. 哇塞,慢性粒细胞白血病知道不?那可是因为染色体发生了易位这种结构变异导致的呢,真的很让人惊讶呀!
3. 嘿,夜来香的花色变异也和染色体结构变异有关哦!你能想象小小的染色体变动能带来这么明显的变化吗,神奇吧!
4. 咱呐,再说说玉米的籽粒色斑,这也是染色体结构变异搞的鬼呀!就像生活中一些意想不到的变化一样。
5. 哎呀呀,人的一些遗传疾病也可能是染色体结构变异造成的哟,是不是很不可思议呢!
6. 讲真的,某些花卉的奇特形态,其实背后的原因就是染色体结构变异呀,这难道不像是一场神秘的魔法吗?
7. 你晓得不,有些动物的特殊性状居然也是染色体结构变异的杰作呢,多有意思呀!
8. 嘿,有一种罕见的遗传病,就是因为染色体缺失这个结构变异弄出来的,很让人震惊吧!
9. 其实呀,染色体结构变异就在我们身边,影响着各种生物的表现呢,它可真是个神奇又有点让人敬畏的存在呀!
我的观点结论:染色体结构变异真的有着各种各样奇妙又让人惊叹不已的表现,它在生物界中有着极其重要的影响和作用,我们可得好好研究和了解它。
染色体结构变异类型
染色体 异常遗传病 不遵循孟
异常遗
德尔遗传 倒位、易位 (染色体数
减数分裂过程 目、结构
传病 染色体数目 规律
异常遗传病
中染色体异常 检测)
分离
3.调查人群中的遗传病 (1)原理
①人类遗传病是由遗传物质改变而引起的疾病。 ②遗传病可以通过社会调查和家系调查的方式了解发 病情况。
(2)调查流程图
(3)计算某种遗传病的发病率 某种遗传病的发病率=
[例2] 如图所示细胞中所含的染色体,下列叙述不. 正确的是
A.①代表的生物可能是二倍体,其每个染色体组含有4条染色体 B.②代表的生物可能是二倍体,其每个染色体组含有3条染色体 C.③代表的生物可能是四倍体,其每个染色体组含有2条染色体 D.④代表的生物可能是单倍体,其每个染色体组含有4条染色体
三、人类常见遗传病的类型 1.人类遗传病:由于遗传物质 改变而引起的人类疾病,主
要可以分为单基因遗传病、多基因遗传病和 染色体异常遗传 病。
2.单基因遗传病
3.多基因遗传病 概念:受 两对以上等位基因 特点:在 群体
和青少年型糖尿病
4.染色体异常遗传病 概念:由 染色体异常 引起的遗传病 类型 染色体结构异常遗传病:如 猫叫综合征 染色体数目异常遗传病:如 21三体综合征
功能上各不相同,携带着控制生物生长发育的全部遗传 信息。 2.二倍体:由受精卵发育而来,体细胞 内含有两个染 色体组的个体。
3.多倍体 (1)概念:由受精卵发育而来,体细胞内含有 三个或三个以上
染色体组的个体。 (2)特点:植株茎秆粗壮,叶片、果实、种子 都比较大,糖类
和蛋白质等营养物质的含量相对高。
(3)人工诱导多倍体 ①方法:用 秋水仙素 处理萌发的种子或幼苗。 ②原理:秋水仙素能够抑制 纺锤体形成,导致染色体不 分离,引起细胞内染色体 加倍。
高中生物学科染色体变异知识点归纳
高中生物学科染色体变异知识点归纳染色体变异是指在生物体染色体的结构、数目或自发性变化的现象。
它可以是随机发生的自然变异,也可以是由于外界环境的诱导或人为因素引起的。
一、染色体结构变异1.重组:染色体间的交叉互换,导致染色体上的基因排列顺序改变。
2.缺失:在染色体的一部分缺失了。
3.重复:染色体上的一段序列重复出现。
4.倒位:染色体上的一段序列翻转了方向。
5.易位:染色体间的一段序列与另一染色体上的一段序列互换位置。
6.克隆:由于DNA重复而导致的染色体序列的扩增。
二、染色体数目变异1.异倍体:染色体数目非整倍增加或减少。
例:三倍体、黑色素斑异倍体等。
2.畸变体:染色体数目增多或减少,但仍为整倍数的变异。
例:二倍体、四倍体等。
三、染色体自发性变异1.染色体突变:染色体上的基因发生突变,导致遗传信息的改变。
2.染色体重排:染色体间的序列重组、倒位等结构变异导致的染色体改变。
3.畸变体形成:由于各种原因,染色体数目或结构发生变异,导致畸变体的产生。
4.染色体易位:染色体间的交换互换,导致染色体上的基因位置改变。
四、染色体变异与遗传病染色体变异与遗传病之间有着密切的关系。
一些染色体变异会导致遗传病的发生,例如:1.爱德华综合征:三个21号染色体(三体儿)导致的遗传病,患者智力发育异常。
2.唐氏综合征:21号染色体染色体异常导致的遗传病,患者智力发育差,面部特征异常等。
3.克汀格综合征:15号染色体缺失或重复导致的遗传病,患者智力障碍,肌肉松弛等。
五、染色体变异的应用领域1.遗传学研究:通过对染色体的观察和分析,可以了解生物体的遗传特征和变异规律。
2.亲子鉴定:根据染色体结构和数目的差异,可以判断亲子关系的真实性。
3.肿瘤研究:染色体的突变和异常在肿瘤的形成过程中起着重要的作用,研究染色体变异可以帮助了解肿瘤的发生机制和治疗方法。
总结起来,染色体变异是生物体染色体结构、数目或自发性发生变化的现象。
它包括染色体结构变异、数目变异和自发性变异等。
高中生物染色体变异重要知识点
高中生物染色体变异重要知识点高中生物染色体变异重要知识点(一)1、染色体变异:光学显微镜下可见染色体结构的变异或者染色体数目变异。
2、染色体结构的变异:指细胞内一个或几个染色体发生片段的缺失(染色体的某一片段消逝)、增加(染色体增加了某一片段)、颠倒(染色体的某一片段颠倒了180o)或易位(染色体的某一片段移接到另一条非同源染色体上)等改变3、染色体数目的变异:指细胞内染色体数目增加或缺失的改变。
4、染色体组:一样的,生殖细胞中形状、大小不相同的一组染色体,就叫做一个染色体组。
细胞内形状相同的染色体有几条就说明有几个染色体组。
5、二倍体:凡是体细胞中含有两个染色体组的个体,就叫~。
如.人果,蝇,玉米.绝大部分的动物和高等植物差不多上二倍体.6、多倍体:凡是体细胞中含有三个以上染色体组的个体,就叫~。
如:马铃薯含四个染色体组叫四倍体,一般小麦含六个染色体组叫六倍体(一般小麦体细胞6n,42条染色体,一个染色体组3n,21条染色体。
),7、一倍体:凡是体细胞中含有一个染色体组的个体,就叫~。
8、单倍体:是指体细胞含有本物种配子染色体数目的个体。
9、花药离体培养法:具有不同优点的品种杂交,取F1的花药用组织培养的方法进行离体培养,形成单倍体植株,用秋水仙素使单倍体染色体加倍,选取符合要求的个体作种。
高中生物染色体变异重要知识点(二)1、染色体结构变异①概念:排列在染色体上的基因的数目或排列顺序发生改变,而导致性状的变异。
②类型:在自然条件或人为因素的阻碍下,染色体结构的变异要紧有以下4种:缺失、重复、倒位、易位。
③结果:染色体结构变异都会使排列在染色体上的基因的数目或排列顺序发生改变,从而导致性状的改变。
类型定义实例示意图缺失一条正常染色体断裂后丢失某一片段引起的变异。
猫叫综合征重复染色体增加某一片段引起的变异。
一条染色体的某一片段连接到同源的另一条染色体上,结果后者就有一段重复基因。
果蝇棒状眼倒位染色体中某一片段位置颠倒180°后重新结合到原部位引起的变异。
染色体结构变异类型
染色体结构变异类型染色体结构变异是指在同一个个体内部不同细胞间染色体结构发生变异的一类变异。
染色体结构变异可以包括染色体数目变异、染色体臂段交换变异和染色体均衡变异等。
染色体数目变异是指在同一个个体内部,染色体数目变异,导致出现多倍体和少倍体不相等的情况。
多倍体和欠倍体的染色体数目中的偏差叫做染色体数目变异。
它是具有显著生物学意义的遗传变异。
它在植物和动物的进化调控中起着重要的作用。
其中,最常见的是Aneuploidy变异。
少倍体和多倍体可以以非对称方式将复制过程与正常多倍体分离开来,从而产生不同的基因组。
染色体臂段交换变异是指在同一种生物中,两个染色体臂段之间发生重新排列。
这种变异在动物进化中是相当常见的变异类型,包括Inversion(反转),Duplication(复制)和Translocation(转位)。
Inversion是指特定染色体区域的基因重新排列,但其全基因组结构没有发生变化,也就是没有染色体的缺失或增加。
Duplication是指特定染色体区域的基因总数在植物或动物中增加,而不会减少或改变染色体的结构。
Translocation是指将一组基因从部分特定位点移动到另一个特定位点,而不会改变染色体的结构或数量。
染色体均衡变异是指在同一个个体内部,对称染色体结构的变异。
染色体均衡变异的根源是由于无性配对不协调所造成的变异,如父本和子母本有不同的染色体偏差。
典型的染色体均衡变异有剔除、重组、衍射和整理等四种,它们都是由父本、子母本或复合父本父本之间的不协调减数分裂而发生变异。
染色体结构变异是在完成正常复制后由于染色体数目、染色体臂段交换或染色体均衡变异而出现的变异类型。
这种变异是一类非常重要的变异,它可以影响到植物和动物的生长、发育和行为,也可以影响到物种的繁殖能力,因此在生物进化和调控中起着重要的作用。
染色体结构变异的四种类型及遗传效应
染色体结构变异的四种类型及遗传效应染色体结构变异是指染色体发生了改变,包括缺失、重复、倒位和易位。
它们的发生可以导致基因的缺失、重复、倒位或重排,进而影响个体的遗传性状和健康。
缺失是指染色体上的一段染色体片段丢失。
在个体的配子形成过程中,发生缺失会导致该段染色体片段的基因缺失。
这种缺失可能会导致个体的某些遗传特征出现缺陷,例如唐氏综合征就是由于第21号染色体的一部分发生缺失而引起的,导致孩子智商低下、身体发育迟缓等症状。
重复是指染色体上的一段染色体片段出现了重复。
重复可以是单倍体染色体内部的重复,也可以是染色体间的跨越性重复。
重复可以导致一种或多种基因的过量表达,从而产生异常的遗传效应。
例如,强迫症就是由于染色体上一个与垃圾回收有关的基因重复而导致的。
倒位是指染色体上的一段染色体片段发生了旋转180度,然后重新插入到同一染色体上。
这种倒位可以导致染色体上遗传物质顺序的改变,从而影响基因的表达。
倒位也可能在染色体的配对过程中导致不正常的染色体结合,从而引起不正常的配子,导致遗传性疾病的发生。
易位是指染色体上两段染色体片段发生了交换。
这种交换可以是在同一染色体上的内部交换,也可以是不同染色体之间的跨越性交换。
易位会导致两个染色体上的遗传物质进行了交换,从而影响基因的组合。
易位也可能在染色体的配对过程中导致不正常的染色体结合,从而引起不正常的配子,导致遗传性疾病的发生。
这些染色体结构变异的遗传效应是多样的。
它们可能会导致个体遗传特征的改变,包括表型的改变,如身高、外貌等,还包括智力、性别、免疫系统等方面的改变。
一些染色体结构变异可能会导致染色体不稳定性增加,从而增加个体发生染色体异常的风险,如无精症、复发性流产等。
此外,染色体结构变异也可能会导致染色体上的基因失调,进而引起遗传性疾病的发生。
总的来说,染色体结构变异的四种类型及其遗传效应是非常复杂且多样化的。
它们可以导致基因的缺失、重复、倒位或重排,进而影响个体的遗传性状和健康。
染色体结构的变异
染色体结构的变异
染色体断下一个断片,叫做断裂。
染色体断裂后,其断面有粘性容易粘在一起。
染色体断裂后又重新连接在一起,其上的基因发生差错,即形成染色体结构的变化。
依断裂下来的断片是否连接以及连接方式等,可以使染色体产生不同的变异。
主要有四种结构变异。
(1)倒位:一个染色体的断片倒转位置后,再接到断端上。
倒位区段内的基因排列顺序改变了,但不影响遗传物质的增减,所以表现型一般正常。
但在倒位杂合体中,因为一个染色体的某一区段的排列顺序改变,而它的对应染色体的排列顺序未变,所以影响减数分裂时这对染色体的配对,从而会使倒位区段内基因的重组降低。
(2)缺失:染色体的断片丢失,引起断片上所带某些基因的丢失,缺失影响个体的生活力。
在人体中,染色体缺失通常也显示有害影响。
例如第5号染色体短臂缺失的几童出现一系列症状,包括两眼距离较远,耳位低下,智力迟钝,生活力差等,患儿多在生命早期死亡。
患儿最明显特征是哭声轻,音调高,很象猫叫,所以称为猫叫综合证。
(3)重复:一个染色体的断片接到同源染色体相应部位,使后者发生某些染色体节段的重复。
如人的第9染色体多了一条,出现染色体病,患者有多种畸形,智力严重缺损。
又如果蝇染色体上有一小段是控制眼睛形状的,如这小段重复为二,则眼睛变小,称为棒眼。
(4)易位:一般指一个染色体的一段,跟另一个非同源的染色体连在一起。
如人的第2号染色体断下的片断接到第9号染色体上,则可能使人患一种白血病。
上述染色体的结构变化会使生物产生各种性状上的遗传变异,影响生物的生长发育,甚至使生物死亡。
染色体结构变异的种类
染色体结构变异的种类染色体结构变异是指染色体发生部分片段的缺失、重复、倒位、转座等改变。
这些变异影响了染色体的整体结构和功能,可能导致遗传信息的缺失、重复、错位等,进而影响个体的生长发育和健康状态。
下面将介绍染色体结构变异的主要种类。
1. 染色体缺失(Deletion):染色体上的一个或多个片段丢失。
缺失通常是由于两个染色体非均衡交换过程中一侧染色体的缺失引起的。
部分缺失可能会导致基因缺失,进而使个体发生发育缺陷或遗传病。
2. 染色体重复(Duplication):染色体上的一个或多个片段重复。
重复通常是由于非均衡交换导致的。
重复会增加遗传物质的副本数,从而增加特定基因的表达,引发不正常的生理和发育现象。
3. 染色体倒位(Inversion):染色体上的一个或多个片段发生180度的旋转,重新连接到原去处。
倒位通常在染色体两条互换片段时发生。
倒位可能会导致基因错位和重组障碍,进而影响个体的正常发育和繁殖。
4. 染色体转座(Translocation):染色体上的一个或多个片段被转移到同一染色体或不同染色体上的其他位置。
转座通常是非均衡交换的结果。
转座可以导致基因重组和错位,可能导致部分基因的功能变化或遗传病的产生。
5. 环形染色体(Ring chromosome):染色体的两端断裂,并在互换处形成一个环状结构。
环形染色体通常是由于两个染色体非均衡交换过程中的丢失和求和引起的。
环形染色体可能会导致基因丢失、缺乏或释放,影响个体的正常发育过程。
6. 异染色质增多(Isochromosome):染色体两个相同的臂之间的断裂并在互换处重组,形成两个相同的臂和两个相同的臂。
异染色质增多可能会导致遗传物质的重复和失衡表达,进而引发一系列的遗传病。
7. 环碱基染色体(Fragile X chromosome):染色体上的一个特定区域,即X染色体上的FMR1基因区域,变得异常脆弱。
环碱基染色体是由于这个特定基因的不稳定重复序列导致的。
染色体结构变异类型
倒位会导致染色体上基因的排列 顺序发生变化,但基因的数量和
种类不会改变。
倒位的发生机制
倒位的发生可能是由于DNA复 制过程中的错误、突变或重组
等机制引起的。
在DNA复制过程中,如果 DNA聚合酶发生错误,可能 导致DNA序列的颠倒或重复,
进而形成倒位。
另外,某些类型的倒位也可以 通过同源重组或非同源末端连
重复:指染色体上某一片段在同一条染色体上或不同染色体 上出现两次或多次的现象。
重复可能导致基因数量的增加,从而影响基因表达和功能。
重复的发生机制
染色体复制错误
在DNA复制过程中,由于DNA聚合酶的异常或 DNA模板的缺陷,可能导致染色体某一片段重复。
染色体断裂与重排
染色体断裂后,在修复过程中可能发生错误,导 致染色体某一片段重复。
染色体结构变异类型
• 染色体结构变异概述 • 倒位(Inversion) • 重复(Duplication) • 缺失(Deletion) • 易位(Translocation)
01
染色体结构变异概述
染色体结构变异的定义
01
染色体结构变异是指染色体在结 构上发生的变化,包括染色体片 段的缺失、重复、倒位、易位等 。
02
这些变化会导致基因的数量和排 列顺序发生改变,从而影响个体 的表型和健康状况。
染色体结构变异的重要性
染色体结构变异是导致遗传性疾病和 出生缺陷的主要原因之一,如唐氏综 合征、威廉姆斯综合征等。
染色体结构变异还与一些复杂性疾病 有关,如精神分裂症、糖尿病等。
染色体结构变异的分类
根据变异的大小,染 色体结构变异可分为 大片段变异和微小变 异。
染色体转座
某些DNA片段可以在染色体之间移动,导致染色 体某一片段重复。
染色体结构变异的类型
染色体结构变异的类型1.缺失:染色体上的一部分基因序列缺失或删除。
缺失常常导致染色体上的一些基因缺乏,从而影响蛋白质的合成和功能表达。
缺失可以是整个染色体的一部分,也可以是染色体的一小段。
2.重复:染色体上的一段基因序列复制一次或多次,导致重复片段的出现。
重复可以是直接重复,即复制的片段与原片段相邻,也可以是间接重复,即复制的片段与原片段之间存在其他基因片段。
3.倒位:染色体上的一段基因序列发生颠倒,即片段按照相反的方向排列。
倒位通常会导致染色体上的基因顺序发生改变,从而影响基因的表达和功能。
4.易位:染色体上的两个非同源片段进行交换,即两个非同一条染色体上的基因片段互换位置。
易位通常会导致两个基因的调控序列发生改变,从而影响其表达和功能。
非同源重组是指两个非同源的染色体片段进行交换。
这种交换通常发生在染色体的同源区域,即两条染色体上的相似片段之间。
非同源重组是染色体结构变异的重要原因之一,尤其在减数分裂过程中,染色体会经历交联、交换和重联的过程,容易引起染色体间的重组事件,从而导致结构变异的发生。
错配复制是指在DNA复制过程中出现错误配对,导致染色体上的部分片段发生复制错误。
这种复制错误可能会导致重复、缺失和易位的结构变异。
染色体结构变异对个体的影响取决于变异的具体位置和大小。
一些变异会导致基因功能的改变,进而影响个体的生理发育和表型特征,甚至引发遗传病。
然而,一些变异可能对个体没有显著影响,或者可能具有有益的效应。
因此,染色体结构变异的研究对于理解人类遗传疾病以及进化过程中的基因改变具有重要意义。
第九章 遗传物质的改变-染色体畸变
缺失纯合体: 致死或半致死。 缺失杂合体: 缺失区段较长 时,生活力差、 配子(尤其是 花粉)败育或 竞争不过正常 配子;
影响缺失对生物个体危害程度 的因素:
– 缺失区段的大小; – 缺失区段所含基因的多少; – 缺失基因的重要程度; – 染色体倍性水平。
缺失区段较小 时,可能会造 成假显性现象 或其它异常现 象。
单倍体 (X):只含有一个染色 体组的生物体。
单元体 (n):特指有性繁殖 生物的配子体世代。
(二)染色体数目变异类型 1.整倍体(euploid)染色体数的变化是以染色
体组为单位的增减
2.非整倍体(aneuploid)染色体数的变化
是细胞核内的染色体数不是完整的倍数,通常 以二倍体(2n)染色体数作为标准,在这基础 上增减个别几个染色体,所以属于非整倍性改 变。
2. 缺失的细胞学效应 配对
缺失环
玉米缺失杂合体粗线期缺失环
果蝇唾腺染色体的缺失圈
3. 缺失的遗传学效应 影响个体的生活力 成活困难 性状丢失 性状异常 拟显性
缺失区段上基因丢失导致: – 基因所决定、控制的生物 功能丧失或异常; – 基因间相互作用关系破坏; – 基因排列位置关系改变。
倒位会改变基因间相邻关系������ 造成遗传性状 变异������ 种与种之间的差异常由多次倒位所形 成。 果蝇(n=4):不同倒位特点的种,分布在不 同地理区域; 百合(n=12):两个种(头巾百合、竹叶百合) 之间的分化是由M1、M2、S1、S2、S3、S4等6 个相同染色体发生臂内倒位形成的(两个种的 S5、S6、S7、S8、S9、S10染色体仍相同)。
重复的遗传效应
位置效应(position effect): 果蝇的棒眼遗传——是 重复造成表现型变异的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3节染色体变异及其应用
一、染色体结构变异:
实例:猫叫综合征(5号染色体部分缺失)类型:缺失、重复、倒位、易位(看书并理解
.....)
特别提醒易位:发生在非同源染色体之
间,是指染色体的某一片段移接到另一条非
同源染色体上;交叉互换:发生在同源染色
体的非姐妹染色单体之间(对等片段的交
换)。
二、染色体数目的变异
1、类型
●个别染色体增加或减少:实例:21三体综合征(多1条21号染色体)
●以染色体组的形式成倍增加或减少:实例:三倍体无子西瓜
2、染色体组:
(1)概念:二倍体生物配子中所具有的全部染色体组成一个染色体组。
(2)特点:①一个染色体组中(肯定)无同源染色体,形态和功能各不相同;
②一个染色体组携带着控制生物生长的全部遗传信息。
(3)染色体组数的判断:
①染色体组数=细胞中任意一种染色体条数(同一形状有几条,就有几个染色体组)
例1:以下各图中,各有几个染色体组?
答案:3 2 5 1 4
②染色体组数=基因型中控制同一性状的基因(不分显、隐)个数
以下基因型,所代表的生物染色体组数分别是多少?
(1)Aa ______ (2)AaBb _______
(3)AAa _______(4)AaaBbb _______
(5)AAAaBBbb _______(6)ABCD ______
答案:2 2 3 3 4 1
3、单倍体、二倍体和多倍体
由配子发育成的个体只能叫单倍体。
由受精卵发育成的个体,体细胞中含几个染色体组就叫几倍体,如含两个染色体组就叫二倍体,含三个染色体组就叫三倍体,以此类推。
体细胞中含三个或三个以上染色体组的个体叫多倍体。
单倍体高度不育的原因——体细胞染色体组数一般为奇数,当其进行减数分裂形成配子时,由于同源染色体无法正常联会或联会紊乱,不能产生正常的配子。
三、染色体变异在育种上的应用
1、单倍体育种:
方法:花药离体培养→人工诱导染色体加倍。
原理:染色体变异
实例:矮杆抗病水稻的培育
例:在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)
对不抗病(r)是显性。
现有纯合矮杆不抗病水稻ddrr
和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳
定遗传的矮杆抗病水稻ddRR ,应该怎么做?
优缺点:后代都是纯合子,明显缩短育种年限,
但技术较复杂。
●单倍体育种不等于花药离体培养,花药离体培养只是育种环节中的一个步骤。
2、多倍体育种:原理:染色体变异
方法:用秋水仙素处理萌发的种子或幼苗。
能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍)
实例:三倍体无子西瓜的培育;不育?由于同源染色体联会紊乱,不能产生正常的配子。
关于两次传粉:第一次传粉是杂交得到三倍体种子,第二次传粉是为了刺激子房发育成果实。
优缺点:培育出的植物器官大,产量高,营养丰富,但结实率低,成熟迟。
单倍体育种、多倍体育种、杂交育种的比较
【典型例题】
例题2有两个纯种的小麦,一为高秆(D)抗锈病(T),另一为矮秆(d)易染锈病(t),这两对性状独立遗传,用两种育种方法培育矮秆抗锈病的新品种。
(1)方法一的步骤如下:
①过程a叫,过程b叫。
②过程c的处理方法是。
③F1的基因型是,表现型是,矮秆抗锈病新品种的基因型应是。
(2)方法二的步骤如下:
过程d叫;过程e是指;过程f是;过程g是指,此过程最常用的物质是。
(3)育种方法一叫育种,方法二叫育种。