化工原理总结

合集下载

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。

化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。

2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。

(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。

在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。

(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。

化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。

(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。

(4)流体力学流体力学是研究流体运动规律和流体性质的科学。

在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。

这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。

二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。

因此,分析化学平衡是化工过程设计和运行中的重要内容。

2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。

热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。

3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。

热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。

三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结1. 流体力学- 流体静力学:压力的概念、流体静力学平衡、马里奥特原理、流体静压力的测量。

- 流体动力学:连续性方程、伯努利方程、动量守恒、流动类型(层流与湍流)、雷诺数。

- 管道流动:管道摩擦损失、达西-韦斯巴赫方程、摩擦因子的确定、管道网络分析。

2. 传热学- 热传导:傅里叶定律、导热系数、热阻、稳态与非稳态导热。

- 对流热传递:对流热流密度、牛顿冷却定律、对流给热系数。

- 辐射传热:斯特藩-玻尔兹曼定律、黑体辐射、角系数、有效辐射面积。

- 热交换器:热交换器类型、效能-NTU方法、传热强化技术。

3. 物质分离- 蒸馏:基本原理、平衡曲线、麦卡布-锡尔比法、塔板理论、塔内设备。

- 萃取:液-液萃取、固-液萃取、溶剂萃取、萃取平衡、萃取过程设计。

- 过滤与沉降:沉降原理、过滤操作、离心分离、膜分离技术。

- 色谱与电泳:色谱原理、色谱柱、电泳分离、毛细管电泳。

4. 化学反应工程- 化学反应动力学:反应速率、速率方程、活化能、催化剂。

- 反应器设计:批式反应器、半连续反应器、连续搅拌槽式反应器(CSTR)、管式反应器。

- 反应器分析:稳态操作、非稳态操作、反应器的稳定性分析。

- 催化反应工程:催化剂特性、催化剂制备、催化剂失活与再生。

5. 质量传递- 扩散现象:菲克定律、扩散系数、分子扩散与对流扩散。

- 质量传递原理:质量守恒、质量传递微分方程、边界条件。

- 吸收与解吸:气液平衡、吸收塔操作、解吸过程。

- 干燥过程:湿空气系统、干燥过程分析、干燥器设计。

6. 过程控制- 控制系统基础:控制系统组成、开环与闭环系统、控制器类型。

- 控制器设计:PID控制器、串级控制系统、比值控制系统。

- 过程动态分析:拉普拉斯变换、传递函数、系统稳定性分析。

- 先进控制策略:模糊控制、自适应控制、预测控制。

7. 化工热力学- 热力学第一定律:能量守恒、热力学过程、热力学循环。

- 热力学第二定律:熵的概念、熵增原理、卡诺循环。

化工原理 知识点总结

化工原理 知识点总结

化工原理知识点总结一、化工原理概述化工原理是研究在化工过程中物质的变化和转化规律的科学。

它涉及到化工过程的热力学、动力学、传质与相平衡、反应工程等方面的知识。

通过对化工原理的研究,人们可以了解化工过程中发生的物质变化和反应规律,从而为化工生产提供科学依据,指导化工工程的设计和操作。

化工原理的研究对象主要包括化工过程中的物质变化规律、传热传质现象、反应过程机理、工艺参数的选择与优化等内容。

在化工生产中,要对原料、中间产物和产品进行分析和控制,掌握化工原理知识至关重要。

二、化学反应动力学1. 化学反应速率化学反应速率是指单位时间内反应物的浓度变化量,它反映了反应物质转化的快慢程度。

在化学反应速率的研究中,我们需要了解反应物的浓度与时间的关系,以及影响反应速率的因素,如温度、压力和催化剂等。

2. 反应速率方程反应速率方程描述了反应速率与反应物浓度之间的关系。

它可以通过实验测定反应速率随时间的变化曲线来确定。

对于复杂的反应系统,反应速率方程往往需要通过多步反应动力学模型来描述。

3. 反应动力学模型反应动力学模型描述了反应速率与反应物浓度、温度等因素之间的关系。

常见的模型包括零阶、一阶、二阶反应动力学模型等。

这些模型可以根据实验数据拟合得到,用于预测反应过程中物质转化的规律。

4. 催化剂的作用催化剂是一种能够促进化学反应进行的物质,它可以降低反应的活化能,提高反应速率,从而节约能源、提高产率。

催化剂的设计和选择对化学反应的进行有着重要的影响。

三、化工热力学1. 热力学基本概念热力学是研究物质能量转化和传递规律的科学。

在化工过程中,热力学可以描述热力平衡、热力过程、热力循环等内容。

通常情况下,热力学律的应用可以帮助我们分析和解决化工过程的能量转化和传递问题。

2. 热力学第一定律热力学第一定律是能量守恒定律的化学表述,它说明了在闭合系统中,能量可以从一种形式转化为另一种形式,但总能量守恒。

在化工过程中,热力学第一定律的应用可以帮助我们分析热电站、锅炉、冷凝器等设备的能量平衡。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强〔力〕=绝对压强〔力〕-大气压强〔力〕 真空度=大气压强-绝对压大气压力、绝对压力、表压力〔或真空度〕之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s 质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = m S =GA=π/4d 2G V S =uA=π/4d 2u● 一实际流体的柏努利方程及应用〔例题作业题〕 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =〔运算效率进行简单数学变换〕应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

(完整版)化工原理知识点总结整理

(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

化工原理终极总结

化工原理终极总结

第一章流体与输送机械1、基本研究方法:实验研究法、数学模型法2、牛顿粘性定理:应用条件:3、阻力平方区:管内阻力与流速平方成正比的流动区域;原因:流体质点与粗糙管壁上凸出的地方直接接触碰撞产生的惯性阻力在压倒地位。

4、流动边界层:紧贴壁面非常薄的一区域,该薄层内流体速度梯度非常大。

流动边界层分离的弊端:增加流动阻力。

优点:增加湍动程度。

5、流体黏性是造成管内流动机械能损失的原因。

6、压差计:文丘里孔板转子7、离心泵工作原理:离心泵工作时,液体在离心力的作用下从叶轮中心被抛向外缘并获得能量,使叶轮外缘的液体静压强提高。

液体离开叶轮进入泵壳后,部分动能转变成为静压能。

当液体从叶轮中心被抛向外缘时,在中心处形成低压区,在外界与泵吸入口的压差作用下,致使液体被吸进叶轮中心。

8、汽蚀现象:离心泵安装过高,泵进口处的压力降低至同温度下液体的饱和蒸汽压,使液体气化,产生气泡。

气泡随液体进入高压区后立即凝结消失,形成真空导致巨大的水力冲击,对泵造成损害。

9、气缚现象:离心泵启动时,若泵内存在空气,由于空气密度大大低于输送流体的密度,经离心力的作用产生的真空度小,没有足够的压差使液体进入泵内,从而吸不上液体。

10、泵壳作用:收集液体和能量转化(将流体部分动能转化为静压能)11、离心泵在设计流量下工作效率最高,是因为:此时水力损失小。

12、大型泵的效率通常高于小型泵是由于:容积效率大。

13、叶轮后弯的优缺点优点:叶片后弯使液体势能提高大于动能提高,动能在蜗壳中转化为势能的损失小,泵的效率高。

缺点:产生同样的理论压头所需泵的体积大。

14、正位移泵(往复泵)的特点:a流量与管路状况、流体温度、黏度无关;b 压头仅取决于管路特性。

(耐压强度)c 不能在关死点运转。

d 很好的自吸能力15、真空泵的性能:极限真空和抽吸时间16、无限大平板液膜厚a ,其水力当量直径为4a第二章机械分离与固体流化态1、过滤推动力:重力压差离心力2、气体净制:重力沉降、离心沉降、过滤(膜)。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)
管截面速度大小分布:
无论是层流或揣流,在管道任意截面上,流体 质点的速度均沿管径而变化,管壁处速度为零,离 开管壁以后速度渐增,到管中心处速度最大。
层流:1、呈抛物线分布;2、管中心最大速度 为平均速度的2倍。
湍流:1、层流内层;2、过渡区或缓冲区;3、 湍流主体
湍流时管壁处的速度也等于零,靠近管壁的流 体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移, 速度逐渐增大,出现了既非层流流动亦非完全端流 流动的区域,这区域称为缓冲层或过渡层,再往中
出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平
行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相
匹配。
三、流体流动现象:
流体流动类型及雷诺准数:
(1)层流区
Re<2000
离心泵:电动机 流体(动能)转化 静压能
一、离心泵的结构和工作原理:
离心泵的主要部件:

心泵的的启动流程:


吸液(管泵,无自吸能力)
泵壳
液体的汇集与能量的转换
转能


排放
密封 填料密封 机械密封(高级)
叶轮 其作用为将原动机的能量直接传给液体,
以提高液体的静压能与动能(主要为静压能)。
泵壳 具有汇集液体和能量转化双重功能。
(2)过渡区
2000< Re<4000
(3)湍流区
Re>4000
本质区别:(质点运动及能量损失区别)层流与端
流的区分不仅在于各有不同的Re 值,更重要的是

化工原理知识点总结整理

化工原理知识点总结整理

一、流体力学及其输送1、单元操作:物理化学变化得单个操作过程,如过滤、蒸馏、萃取。

2、四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3、牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4、两种流动形态:层流与湍流。

流动形态得判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度就是最大流速得1/2。

5、连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6、流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7、流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计得特点;结构简单,制造容易,安装方便,得到广泛得使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计得特点——恒压差、变截面。

8、离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成得能量损失;水力效率ηH :考虑流动阻力所造成得能量损失;机械效率ηm :考虑轴承、密封填料与轮盘得摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵得型号(泵口直径与扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9、 常温下水得密度1000kg/m3,标准状态下空气密度1、29 kg/m31atm =101325Pa=101、3kPa=0、1013MPa=10、33mH2O=760mmHg (1)被测流体得压力 > 大气压 表压 = 绝压-大气压(2)被测流体得压力 < 大气压 真空度 = 大气压-绝压= -表压10、 管路总阻力损失得计算 11、 离心泵得构件: 叶轮、泵壳(蜗壳形)与 轴封装置 离心泵得叶轮闭式效率最高,适用于输送洁净得液体。

化工原理各章节知识点总结

化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多.连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质.拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数如位移、速度等与时间的关系.欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化.定态流动流场中各点流体的速度u、压强p不随时间而变化.轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果.流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果.系统与控制体系统是采用拉格朗日法考察流体的.控制体是采用欧拉法考察流体的.理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零. 粘性的物理本质分子间的引力和分子的热运动.通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主.气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主.总势能流体的压强能与位能之和.可压缩流体与不可压缩流体的区别流体的密度是否与压强有关.有关的称为可压缩流体,无关的称为不可压缩流体.伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变. 平均流速流体的平均流速是以体积流量相同为原则的.动能校正因子实际动能之平均值与平均速度之动能的比值.均匀分布同一横截面上流体速度相同.均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,故沿该截面势能分布应服从静力学原理.层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性.稳定性与定态性稳定性是指系统对外界扰动的反应.定态性是指有关运动参数随时间的变化情况.边界层流动流体受固体壁面阻滞而造成速度梯度的区域.边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象.雷诺数的物理意义雷诺数是惯性力与粘性力之比.量纲分析实验研究方法的主要步骤:①经初步实验列出影响过程的主要因素;②无量纲化减少变量数并规划实验;③通过实验数据回归确定参数及变量适用范围,确定函数形式.摩擦系数层流区,λ与Re成反比,λ与相对粗糙度无关;一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大;充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大.完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管.Re很大,λ与Re无关的区域,称为完全湍流粗糙管.同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管.局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度.毕托管特点毕托管测量的是流速,通过换算才能获得流量.驻点压强在驻点处,动能转化成压强称为动压强,所以驻点压强是静压强与动压强之和.孔板流量计的特点恒截面,变压差.结构简单,使用方便,阻力损失较大.转子流量计的特点恒流速,恒压差,变截面.非牛顿流体的特性塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动.假塑性与涨塑性:随剪切率增高,表观粘度下降的为假塑性.随剪切率增高,表观粘度上升的为涨塑性.触变性与震凝性:随剪应力t作用时间的延续,流体表观粘度变小,当一定的剪应力t所作用的时间足够长后,粘度达到定态的平衡值,这一行为称为触变性.反之,粘度随剪切力作用时间延长而增大的行为则称为震凝性.粘弹性:不但有粘性,而且表现出明显的弹性.具体表现如:爬杆效应、挤出胀大、无管虹吸.第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加.输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量J/N. 离心泵主要构件叶轮和蜗壳.离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关.叶片后弯原因使泵的效率高.气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象.离心泵特性曲线离心泵的特性曲线指He~qV,η~qV, Pa~qV.离心泵工作点管路特性方程和泵的特性方程的交点.离心泵的调节手段调节出口阀,改变泵的转速.汽蚀现象液体在泵的最低压强处叶轮入口汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象.必需汽蚀余量NPSHr泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型类型、型号①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号.正位移特性流量由泵决定,与管路特性无关.往复泵的调节手段旁路阀、改变泵的转速、冲程.离心泵与往复泵的比较流量、压头前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变.前者不易达到高压头,后者可达高压头.前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门.通风机的全压、动风压通风机给每立方米气体加入的能量为全压Pa=J/m3,其中动能部分为动风压.真空泵的主要性能参数①极限真空;②抽气速率.第三章液体的搅拌搅拌目的均相液体的混合,多相物体液液,气液,液固的分散和接触,强化传热.搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类.旋桨式大流量,低压头;涡轮式小流量,高压头.混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量.宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合.微观混合只有分子扩散才能达到微观混合.总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间.搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场.改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施.第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等.形状系数等体积球形的表面积与非球形颗粒的表面积之比.分布函数小于某一直径的颗粒占总量的分率.频率函数某一粒径范围内的颗粒占总量的分率与粒径范围之比.颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准.因为颗粒层内流体为爬流流动,流动阻力主要与颗粒表面积的大小有关.床层比表面单位床层体积内的颗粒表面积.床层空隙率单位床层体积内的空隙体积.数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数.架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象.过滤常数及影响因素过滤常数是指 K、qe.K与压差、悬浮液浓度、滤饼比阻、滤液粘度有关;qe与过滤介质阻力有关.它们在恒压下才为常数.过滤机的生产能力滤液量与总时间过滤时间和辅助时间之比.最优过滤时间使生产能力达到最大的过滤时间.加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤.第五章颗粒的沉降和流态化曳力表面曳力、形体曳力曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系.表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起.自由沉降速度颗粒自由沉降过程中,曳力、重力、浮力三者达到平衡时的相对运动速度.离心分离因数离心力与重力之比.旋风分离器主要评价指标分离效率、压降.总效率进入分离器后,除去的颗粒所占比例.粒级效率某一直径的颗粒的去除效率.分割直径粒级效率为50%的颗粒直径.流化床的特点混合均匀、传热传质快;压降恒定、与气速无关.两种流化现象散式流化和聚式流化.聚式流化的两种极端情况腾涌和沟流.起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度.带出速度随着操作气速逐渐增大,流化床内颗粒全被带出的空床速度.气力输送利用气体在管内的流动来输送粉粒状固体的方法.第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式.载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体.用于加热的称为加热剂;用于冷却的称为冷却剂.三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波. 间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁内热传导至另一侧,由壁面对流至冷流体.导热系数物质的导热系数与物质的种类、物态、温度、压力有关.热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻.推动力高温物体向低温传热,两者的温度差就是推动力.流动对传热的贡献流动流体载热.强制对流传热在人为造成强制流动条件下的对流传热.自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热.自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动.努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比.普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献.α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度.比如,圆管内的强制对流传热,定性尺寸为管径d、定性温度为进出口平均温度.大容积自然对流的自动模化区自然对流α与高度h无关的区域.液体沸腾的两个必要条件过热度tw-ts、汽化核心.核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt急剧上升.第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同.主要操作费溶剂再生费用,溶剂损失费用.解吸方法升温、减压、吹气.选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小.相平衡常数及影响因素m、E、H均随温度上升而增大,E、H与总压无关,m 反比于总压.漂流因子P/PBm表示了主体流动对传质的贡献.气、液扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关.传质机理分子扩散、对流传质.气液相际物质传递步骤气相对流,相界面溶解,液相对流.有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝.传质速率方程式传质速率为浓度差推动力与传质系数的乘积.因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应.传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力.当mky<<kx 时,为气相阻力控制;当mky>>kx时,为液相阻力控制.低浓度气体吸收特点①G、L为常量,②等温过程,③传质系数沿塔高不变. 建立操作线方程的依据塔段的物料衡算.返混少量流体自身由下游返回至上游的现象.最小液气比完成指定分离任务所需塔高为无穷大时的液气比.NOG的计算方法对数平均推动力法,吸收因数法,数值积分法.HOG的含义塔段为一个传质单元高,气体流经一个传质单元的浓度变化等于该单元内的平均推动力.常用设备的HOG值~m.吸收剂三要素及对吸收结果的影响吸收剂三要素是指t、x2、L.t↓,x2↓,L↑均有利于吸收.化学吸收与物理吸收的区别溶质是否与液相组分发生化学反应.增强因子化学吸收速率与物理吸收速率之比.容积过程慢反应使吸收成容积过程.表面过程快反应使吸收成表面过程.第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据原理是液体中各组分挥发度的不同.主要操作费用塔釜的加热和塔顶的冷却.双组份汽液平衡自由度自由度为2P一定,t~x或y;t一定,P~x或y;P 一定后,自由度为1.泡点泡点指液相混合物加热至出现第一个汽泡时的温度.露点露点指气相混合物冷却至出现第一个液滴时的温度.非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系.总压对相对挥发度的影响压力降低,相对挥发度增加.平衡蒸馏连续过程且一级平衡.简单蒸馏间歇过程且瞬时一级平衡.连续精馏连续过程且多级平衡.间歇精馏时变过程且多级平衡.特殊精馏恒沸精馏、萃取精馏等加第三组分改变α.实现精馏的必要条件回流液的逐板下降和蒸汽逐板上升,实现汽液传质、高度分离.理论板离开该板的汽液两相达到相平衡的理想化塔板.板效率经过一块塔板之后的实际增浓与理想增浓之比.恒摩尔流假设及主要条件在没有加料、出料的情况下,塔段内的汽相或液相摩尔流率各自不变.组分摩尔汽化热相近,热损失不计,显热差不计.加料热状态参数q值的含义及取值范围一摩尔加料加热至饱和汽体所需热量与摩尔汽化潜热之比,表明加料热状态.取值范围:q<0过热蒸汽,q=0饱和蒸汽,0<q<1汽液混和物,q=1饱和液体,q>1冷液.建立操作线的依据塔段物料衡算.操作线为直线的条件液汽比为常数恒摩尔流.最优加料位置在该位置加料,使每一块理论板的提浓度达到最大.挟点恒浓区的特征汽液两相浓度在恒浓区几乎不变.芬斯克方程求取全回流条件下,塔顶塔低浓度达到要求时的最少理论板数.最小回流比达到指定分离要求所需理论板数为无穷多时的回流比,是设计型计算特有的问题.最适宜回流比使设备费、操作费之和最小的回流比.灵敏板塔板温度对外界干扰反映最灵敏的塔板,用于预示塔顶产品浓度变化.间歇精馏的特点操作灵活、适用于小批量物料分离.恒沸精馏与萃取精馏的主要异同点相同点:都加入第三组份改变相对挥发度;区别:①前者生成新的最低恒沸物,加入组分从塔顶出;后者不形成新恒沸物,加入组分从塔底出.②操作方式前者可间歇,较方便.③前者消耗热量在汽化潜热,后者在显热.多组分精馏流程方案选择选择多组分精馏的流程方案需考虑①经济上优化;②物性;③产品纯度.关键组分对分离起控制作用的两个组分为关键组分,挥发度大的为轻关键组分;挥发度小的为重关键组分.清晰分割法清晰分割法假定轻组分在塔底的浓度为零,重组分在塔顶的浓度为零.全回流近似法全回流近似法假定塔顶、塔底的浓度分布与全回流时相近第十章气液传质设备板式塔的设计意图①气液两相在塔板上充分接触,②总体上气液逆流,提供最大推动力.对传质过程最有利的理想流动条件总体两相逆流,每块板上均匀错流.三种气液接触状态鼓泡状态:气量低,气泡数量少,液层清晰.泡沫状态:气量较大,液体大部分以液膜形式存在于气泡之间,但仍为连续相.喷射状态:气量很大,液体以液滴形式存在,气相为连续相.转相点由泡沫状态转为喷射状态的临界点.板式塔内主要的非理想流动液沫夹带、气泡夹带、气体的不均匀流动、液体的不均匀流动.板式塔的不正常操作现象夹带液泛、溢流液泛、漏液.筛板塔负荷性能图将筛板塔的可操作范围在汽、液流量图上表示出来. 湿板效率考虑了液沫夹带影响的塔板效率.全塔效率全塔的理论板数与实际板数之比.操作弹性上、下操作极限的气体流量之比.常用塔板类型筛孔塔板、泡罩塔板、浮阀塔板、舌形塔板、网孔塔板等. 填料的主要特性参数①比表面积a,②空隙率ε,③填料的几何形状.常用填料类型拉西环,鲍尔环,弧鞍形填料,矩鞍形填料,阶梯形填料,网体填料等.载点填料塔内随着气速逐渐由小到大,气液两相流动的交互影响开始变得比较显着时的操作状态为载点.泛点气速增大至出现每米填料压降陡增的转折点即为泛点.最小喷淋密度保证填料表面润湿、保持一定的传质效果所需的液体速度. 等板高度HETP分离效果相当于一块理论板的填料层高度.填料塔与板式塔的比较填料塔操作范围小,宜处理不易聚合的清洁物料,不易中间换热,处理量较小,造价便宜,较宜处理易起泡、腐蚀性、热敏性物料,能适应真空操作.板式塔适合于要求操作范围大,易聚合或含固体悬浮物,处理量较大,设计要求比较准确的场合.第十一章液液萃取萃取的目的及原理目的是分离液液混合物.原理是混合物各组分溶解度的不同.溶剂的必要条件①与物料中的B组份不完全互溶,②对A组份具有选择性的溶解度.临界混溶点相平衡的两相无限趋近变成一相时的组成所对应的点.和点两股流量的平均浓度在相图所对应的点.差点和点的流量减去一股流量后剩余的浓度在相图所对应的点.分配曲线相平衡的yA ~ xA曲线.最小溶剂比当萃取相达到指定浓度所需理论级为无穷多时,相应的S/F为最小溶剂比.选择性系数β=yA/yB/xA/xB.操作温度对萃取的影响温度低,B、S互溶度小,相平衡有利些,但粘度大等对操作不利,所以要适当选择.第十二章其他传质分离方法溶液结晶操作的基本原理溶液的过饱和.造成过饱和度方法冷却,蒸发浓缩.晶习各晶面速率生长不同,形成不同晶体外形的习性.溶解度曲线结晶体与溶液达到相平衡时,溶液浓度随温度的变化曲线. 超溶解度曲线溶液开始析出结晶的浓度大于溶解度,溶液浓度随温度的变化曲线为超溶解度曲线,超溶解度曲线在溶解度曲线之上.溶液结晶的两个阶段晶核生成,晶体成长.晶核的生成方式初级均相成核,初级非均相成核,二次成核.再结晶现象小晶体溶解与大晶体成长同时发生的现象.过饱和度对结晶速率的影响过饱和度ΔC大,有利于成核;过饱和度ΔC 小,有利于晶体成长.吸附现象流体中的吸附质借助于范德华力而富集于吸附剂固体表面的现象.物理吸附与化学吸附的区别物理吸附靠吸附剂与吸附质之间的范德华力,吸附热较小;化学吸附靠吸附剂与吸附质之间的化学键合,吸附热较大. 吸附分离的基本原理吸附剂对流体中各组分选择性的吸附.常用的吸附解吸循环变温吸附,变压吸附,变浓度吸附,置换吸附.常用吸附剂活性炭,硅胶,活性氧化铝,活性土,沸石分子筛,吸附树脂等. 吸附等温线在一定的温度下,吸附相平衡浓度随流体相浓度变化的曲线. 传质内扩散的四种类型分子扩散,努森扩散,表面扩散,固体晶体扩散. 负荷曲线固定床吸附器中,固体相浓度随距离的变化曲线称为负荷曲线. 浓度波固定床吸附器中,流体相浓度随距离的变化曲线称为浓度波.透过曲线吸附器出口流体相浓度随时间的变化称为透过曲线.透过点透过曲线中,出口浓度达到5%进口浓度时,对应的点称为透过点.饱和点透过曲线中,出口浓度达到95%进口浓度时,对应的点称为饱和点. 膜分离基本原理利用固体膜对流体混合物各组分的选择性渗透,实现分离.分离过程对膜的基本要求截留率,透过速率,截留分子量.膜分离推动力压力差,电位差.浓差极化溶质在膜表面被截留,形成高浓度区的现象.阴膜阴膜电离后固定基团带正电,只让阴离子通过.阳膜阳膜电离后固定基团带负电,只让阳离子通过.气体混合物膜分离机理努森流的分离作用;均质膜的溶解、扩散、解吸.第十四章固体干燥物料去湿的常用方法机械去湿、吸附或抽真空去湿、供热干燥等.对流干燥过程的特点热质同时传递.主要操作费用空气预热、中间加热. tas与tW在物理含义上的差别 tas由热量衡算导出,属于静力学问题;tW 是传热传质速率均衡的结果,属于动力学问题.改变湿空气温度、湿度的工程措施加热、冷却可以改变湿空气温度;喷水可以增加湿空气的湿度,也可以降低湿空气的湿度,比如喷的是冷水,使湿空气中的水分析出.平衡蒸汽压曲线物料平衡含水量与空气相对湿度的关系曲线.结合水与非结合水平衡水蒸汽压开始小于饱和蒸汽压的含水量为结合水,超出部分为非结合水.。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版为了更好地进行化工原理的复习和理解,以下是一份完整的知识点总结,帮助你复习和复盘学到的重要内容。

一、化学平衡1.化学反应方程式的写法2.反应物和生成物的摩尔比例3.平衡常数的定义和计算4.浓度和活度的关系5.反应速率和速率常数的定义及计算6.动态平衡和平衡移动原理7.影响平衡的因素:温度、压力、浓度二、质量平衡1.质量守恒定律2.原料消耗和产物生成的计算3.原料和产物的流量计算4.反应含量和反应度的计算5.塔的进料和出料物质的计算三、能量平衡1.能量守恒定律2.热平衡方程及其计算3.基础能量平衡方程的应用4.燃料燃烧的能量平衡计算5.固体、液体和气体的热容和焓变计算6.直接、间接测定燃烧热的方法及其原理7.燃料的完全燃烧和不完全燃烧四、流体流动1.流体的基本性质:密度、粘度、黏度、温度、压力2.流体的流动模式:层流和湍流3.流量和速度的计算4.伯努利方程及其应用5.流体在管道中的阻力和压降6.伽利略与雷诺数的关系7.流体静力学公式的应用五、气体平衡1.理想气体状态方程的计算2.弗拉索的原理及其应用3.气体的混合物和饱和汽4.气体的传递和扩散5.气体流动和气体固体反应的应用6.气体和液体的溶解度计算六、固体粒度和颗粒分离1.颗粒的基本性质:颗粒大小、形状和密度2.颗粒分布函数和粒度分析3.颗粒分离的基本过程和方法4.难磨性颗粒的碾磨过程5.颗粒的流动性和堆积性6.各种固体分离设备的工作原理和应用领域七、非均相反应工程1.反应器的分类和基本概念2.反应速率方程的推导和计算3.反应的平均摩尔体积变化和速率方程的确定方法4.反应动力学和机理的研究方法5.混合反应和连续反应的计算6.活性物质的拟合反应速率方程7.补偿反应的控制和模拟以上是化工原理的主要知识点总结,希望能够帮助你更好地进行复习和理解。

祝你取得好成绩!。

化工原理重要知识点总结

化工原理重要知识点总结

化工原理重要知识点总结一基本概念1、连续性方程2、液体和气体混合物密度求取3、离心泵特性曲线的测定4、旋风分离器的操作原理5、传热的三种基本方式6、如何测定及如何提高对流传热的总传热系数K7、重力沉降与离心沉降8、如何强化传热9、简捷法10、精馏原理11、亨利定律12、漏液13、板式塔与填料塔14、气膜控制与液膜控制15、绝热饱和温度二、核心公式第一章、流体流动与流体输送机械(1)流体静力学基本方程(例1-9)U型管压差计(2)柏努利方程的应用(例1-14)(3)范宁公式(4)离心泵的安装高度(例2-5)第二章、非均相物系的分离和固体流态化(1)重力沉降滞流区的沉降公式、降尘室的沉降条件、在降尘室中设置水平隔板(例3-3)、流型校核、降尘室的生产能力(2)离心沉降旋风分离器的压强降、旋风分离器的临界粒径、沉降流型校核(离心沉降速度、层流)、多个旋风分离器的并联(例3-5)第三章、传热(1)热量衡算(有相变、无相变)K的计算、平均温度差、总传热速率方程、传热面积的计算(判别是否合用)(例4-8)(2)流体在圆形管内作强制湍流流动时α计算式(公式、条件),粘度μ对α的影响。

(3)实验测K例4-9(4)换热器操作型问题(求流体出口温度,例4-10)下册第一章蒸馏全塔物料衡算【例1-4】、精馏段、提馏段操作线方程、q线方程、相平衡方程、逐板计算法求理论板层数和进料版位置(完整手算过程)进料热状况对汽液相流量的影响下册第二章吸收吸收塔的物料衡算;液气比与最小液气比求m【例2-8】填料层高度的计算【传质单元高度、传质单元数(脱吸因数法)】提高填料层高度对气相出口浓度的影响下册干燥湿度、相对湿度、焓带循环的干燥器物料衡算(求循环量)热量衡算(求温度)预热器热量【例5-5】扩展阅读:化工原理知识点总结整理一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率v:考虑流量泄漏所造成的能量损失;水力效率H:考虑流动阻力所造成的能量损失;机械效率m:考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度 kg/m31atm =101325Pa====760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结1. 化工原理简介:化工原理是研究化学反应过程及其工艺条件、能量传递和物料传递等基本规律的学科,为化学工艺的设计、改进和优化提供理论基础。

2. 化学反应动力学:研究化学反应速率与反应物浓度、温度、压力等因素的关系。

常用动力学模型有零级、一级和二级反应动力学模型。

3. 热力学:研究物质在不同条件下的热力学性质,如焓、熵、自由能等。

常用的热力学模型有理想气体模型、理想溶液模型等。

4. 质量守恒:化工过程中,物料的质量总量在任何情况下都是保持不变的。

质量守恒方程可以用来描述物料在化工过程中的流动和转化。

5. 能量守恒:能量守恒是指在化工过程中能量的总量保持不变。

能量守恒方程可以用来描述能量的传递和转化。

6. 流体力学:研究流体的性质和流动规律。

常用的流体力学方程有连续性方程、动量方程和能量方程。

7. 反应器设计:根据反应动力学和热力学的知识,设计和选择适当的反应器,以实现期望的反应效果。

8. 分离工艺:将化工过程中的混合物分离成纯净的组分。

常用的分离方法包括蒸馏、萃取、吸附、结晶、膜分离等。

9. 催化剂:催化剂能够加速化学反应速率,同时不参与反应本身。

催化剂通常提供合适的活化能降低剂量。

10. 传热:研究热量在物体之间传导、对流和辐射的过程。

传热过程是化工过程中能量交换的重要方面。

11. 反应平衡:当化学反应达到一种稳定状态时,正向反应与反向反应的速率相等。

反应平衡可以根据平衡常数来描述。

12. 操作过程安全:化工过程中需要注意操作过程的安全,如避免爆炸、毒性物质的泄露等。

合理设计和控制工艺参数是保证操作过程安全的关键。

13. 环境保护:化工过程中需要注意减少对环境的污染和危害。

合理的废物处理和资源利用是环境保护的重要内容。

14. 化工装置:化工装置是指用来进行化工过程的设备和设施,例如反应器、分离设备、传热设备等。

15. 工艺流程图:用图形和符号表示化工过程的流程、设备和物料流动方式,便于理解和分析工艺过程。

化工原理各章节知识点总结

化工原理各章节知识点总结

化工原理各章节知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)第一章?流体流动质点?含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。

连续性假定?假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。

拉格朗日法?选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。

欧拉法?在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。

定态流动?流场中各点流体的速度u?、压强p?不随时间而变化。

轨线与流线?轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。

流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。

系统与控制体?系统是采用拉格朗日法考察流体的。

控制体是采用欧拉法考察流体的。

理想流体与实际流体的区别?理想流体粘度为零,而实际流体粘度不为零。

粘性的物理本质?分子间的引力和分子的热运动。

通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。

气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。

总势能?流体的压强能与位能之和。

可压缩流体与不可压缩流体的区别?流体的密度是否与压强有关。

有关的称为可压缩流体,无关的称为不可压缩流体。

伯努利方程的物理意义?流体流动中的位能、压强能、动能之和保持不变。

平均流速?流体的平均流速是以体积流量相同为原则的。

动能校正因子?实际动能之平均值与平均速度之动能的比值。

均匀分布?同一横截面上流体速度相同。

均匀流段?各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,?故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别?是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。

稳定性与定态性?稳定性是指系统对外界扰动的反应。

化工原理的知识点总结

化工原理的知识点总结

化工原理的知识点总结一、物质的转化1. 化学反应原理化学反应是化工生产中最基本的过程之一,其原理是指通过物质之间的相互作用,原有物质的化学成分和结构发生变化,产生新的物质。

在化学反应中,往往会 Begingroup 产生热量、释放或者吸收气体以及溶解或析出固体物质。

常见的反应类型包括酸碱反应、氧化还原反应、置换反应、水解反应等。

2. 反应热力学反应热力学研究的是化学反应在不同途径下产生的能量变化规律。

反应热力学的主要内容包括热力学系统、热力学函数、热力学平衡、化学平衡等。

通过反应热力学的研究,可以预测化学反应的进行方向和速率,为化工生产提供重要的理论指导。

3. 反应动力学反应动力学研究的是化学反应速率随时间变化规律。

反应动力学的主要内容包括反应速率和反应速率常数的确定、反应速率方程和速率常数的推导等。

通过反应动力学的研究,可以基于反应速率的规律来设计和优化化工反应器,提高反应效率,减少能耗,降低生产成本。

二、传热传质1. 传热原理传热是指热量从高温物体传递到低温物体的过程。

传热原理主要包括热传导、对流传热和辐射传热三种方式。

热传导是指热量在固体物质内部传递的过程,对流传热是指热量通过流体介质传递的过程,而辐射传热是指热量通过辐射的方式传递的过程。

2. 传质原理传质是物质在空间内由高浓度区向低浓度区扩散的过程。

传质原理主要包括扩散、对流传质和表面传质。

扩散是指物质在固体、液体或气体中沿浓度梯度传输的现象,对流传质是指物质通过流体介质进行传送的过程,表面传质是指物质在表面上通过吸附和蒸发进行传递的过程。

三、流体力学1. 流体性质流体是一种无固定形态的物质,其主要特点包括不能承受剪切应力、易于流动和易于变形。

在化工过程中,流体的性质对设备设计和流体流动有重要影响。

流体的主要性质包括黏度、密度、表观黏度、流变性等。

2. 流体流动流体流动是指流体在管道或设备内部的运动过程。

流体的流动过程包括定常流动和非定常流动,同时还会受到雷诺数、流态、雷诺方程等因素的影响。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结化工原理是研究化学工程中各种物质的性质、变化规律以及与工艺过程的关系的一门科学。

化工原理的研究内容包括:物质的量子力学理论、化学反应的热力学和动力学、流体力学、传热传质现象、质量守恒和能量守恒等基本原理。

下面将对化工原理的知识点进行总结。

1.化学反应热力学热力学是研究热现象和能量转换的科学。

化学反应热力学研究的是化学反应中各种物质的化学能、热、熵等能量转换。

常见的热力学参数有焓、熵、自由能等。

化学反应热力学中的重要定律有热力学第一定律和第二定律。

2.化学反应动力学动力学是研究化学反应速率的科学。

化学反应动力学研究的是反应速率与反应物浓度、温度、压力等因素之间的关系。

常见的动力学参数有反应速率常数、反应级数、反应活化能等。

化学反应动力学中的重要定律有速率方程和速率常数。

3.流体力学流体力学是研究流体运动的科学。

在化工工艺过程中,流体的运动对反应速率、传热传质等过程有重要影响。

流体力学的研究内容包括牛顿流体力学和非牛顿流体力学。

常见的流体力学参数有雷诺数、牛顿数、黏度等。

4.传热传质传热传质是研究热量和物质在不同相之间传递的科学。

在化工工艺中,传热传质对反应速率、反应平衡等过程有重要影响。

常见的传热传质方式有对流、传导、辐射等。

传热传质的研究内容包括热传导、质量传递、传热传质的机理和传递过程的数学模型。

5.质量守恒和能量守恒质量守恒是指在化工过程中,物质的质量不会凭空消失或增加。

能量守恒是指在化工过程中,能量的总量不会凭空消失或增加。

质量守恒和能量守恒是化工原理的基本原理,对于工艺过程的计算和分析非常重要。

6.化工原理应用化工原理的知识可以应用于化工工艺的设计、优化和控制。

通过对化学反应热力学、动力学的研究,可以确定最佳反应条件和反应器尺寸。

通过对流体力学、传热传质的研究,可以确定最佳流体的流动方式和传输参数。

通过对质量守恒和能量守恒的研究,可以设计高效的分离和净化过程。

综上所述,化工原理是化学工程中的基础学科,包括化学反应热力学、动力学、流体力学、传热传质、质量守恒和能量守恒等知识点。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结化工原理是化学工程领域的基础理论,涉及了化学和物理的知识。

下面是化工原理的一些重要知识点总结:1.物料平衡:物料平衡是化工过程设计的基础,它涉及了质量平衡和能量平衡。

质量平衡是指在化工过程中所涉及的原料、中间产物和产品的物质输入和输出之间的平衡关系。

能量平衡是指化工过程中热量的输入和输出之间的平衡关系。

2.热力学:热力学是研究物质和能量之间转化关系的科学,它在化工原理中的应用非常广泛。

热力学中的重要概念包括热力学系统、热力学性质、状态方程、热力学平衡、热力学循环等。

3.流体力学:流体力学是研究流体力学行为的学科,它在化工过程中的应用非常重要。

流体力学中的重要知识点包括流体的流动类型、雷诺数、流速分布、摩擦阻力、黏度、流体静力学等。

4.传热学:传热学是研究热量传递的学科,对化工过程的设计和操作起到了至关重要的作用。

传热学中的重要知识点包括传热方式(导热、对流热传递和辐射热传递)、传热系数、传热方程、传热器件设计等。

5.反应工程学:反应工程学是研究化学反应过程的学科,在化工原理中起到了至关重要的作用。

反应工程学中的重要知识点包括反应速率、反应机理、反应平衡、反应动力学、反应器的设计和操作等。

6.单元操作:单元操作是化工过程中进行的基本操作,包括物料的混合、分离、干燥等。

单元操作中的重要知识点包括混合过程的三个基本原理(质量守恒、能量守恒和物料守恒)、分离方法(蒸馏、萃取、吸附等)、干燥方法等。

7.控制工程:控制工程在化工原理中的应用非常广泛,主要是为了实现过程的稳定和优化。

控制工程中的重要知识点包括控制系统的基本结构、反馈控制和前馈控制、PID控制器的设计和调节等。

8.安全工程:安全工程是确保化工过程安全的学科,它涉及了化工过程中的各种安全措施和应急措施。

安全工程中的重要知识点包括危险源识别和评估、安全设备的设计和选择、事故的原因和调查等。

以上是化工原理的一些重要知识点总结,化工原理非常广泛且复杂,还有很多其他的知识点需要深入学习。

化工原理总结

化工原理总结

(二) 流速 (1) 平均流速:流速是指单位时间内液体质点在流
动方向上所流经的距离。 流量与流速关系为: u=Vs/A(重点) (2)质量流速:单位时间内流体流经管道单位截面
的质量称为质量流速(mass velocity),以G表示, 单位为kg/m2·s。
G=Ws/A=ρAu/A=ρu (重点) 例1-3 用内径105mm的钢管输送压力为2atm、温度为 120℃的空气。已知空气在标准状态下的体积流量为 630m3/h,试求此空气在管内的流速和质量流速(取 空气的平均分子量为Mm=28.9)。
n
xwA xwB xwn ——液体混合物中各组分的质量分数
公式应用条件:混合前后体积不变,则1kg混合液的体积 等于各组分单独存在时的体积之和。
(3)气体密度的计算
气体的密度随温度和压强而变化
2
当气体的压强不太高、温度不太低时,气体密度可按 理想气体状态方程 来计算。
m pM
V RT
0
T0 p Tp 0
国际单位制中粘度的单位为Pa•s 物理单位制的粘度单位 为P(泊)和cP(厘泊),它们的换算关系如下:
1Pa•s=10P=1000cP (重点) 粘度与密度之比称为运动粘度,以ν表示
混合气体和液体的黏度用P14 1-8 、1-9计算 4
(1)压力的单位
在SI制中,压力的单位是N/m2,称为帕斯卡,以Pa表 示。也可用其它单位表示:atm(标准大气压)、at (工程大气压),某流体柱高度或kgf/cm2等。
层流与湍流的区别:层流只有轴向运动,而湍流不仅 有轴向运动,而且还有径向运动。
13
பைடு நூலகம்
1.4.2 流体在圆管内流动时的速度分布
层流流动时的速度分布为抛物线形状。管中心 的流速最大,向管壁的方向渐减,靠管壁的流速为 零。平均速度为最大速度的一半。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Vs1 Vs 2 Vs3 ..........
D 柏努利方程的直接应用: • 设备的相对位置 • 确定管道中流体的流量 • 确定设备内的压力 • 确定流体输送设备的功率
E 流体阻力的计算: (1) 流体粘性定律
(2) 流动形态:层流和湍流
64 (2) λ的求法: 层流 Re
du 湍流 ,d
效率η:由各能量损失引起:容积损失、水力损失、 机械损失,铭牌上所标的性能参数是最高效率点时的 参数。 轴功率N:单位时间内泵轴从电动机得到的能量


有效功率Ne:单位时间内液体获得的能量
Ne QHg
QH N [kW ] 102 Ne
(2) 特性曲线:由制造厂附于泵的样本或说明书中,是 正确选择和操作离心泵的主要依据。
A 气液相平衡 1. 蒸馏依据:液体混合物中各组分挥发性 (沸点) 的差异 2. 相平衡关系
(1)t-x-y间的函数关系(拉乌尔定律)
0 P pB xA 0 0 p A pB
pA p A P pB yA xA 0 P P p A pB 0
0
0
0
(2)t-x-y、x-y间的图形关系(二元理想物系相图)
(3)黏度:
Pa du pa s 1 ms dy m
yM yM
i i i i 1/ 2 i 1/ 2

混合气体: m
混合液体: lg m xi lg i (4)流量与流速:ws uA (5)管路的直径: d
4VS u
B 流体静力学方程的应用: • 压力测量 • 液位测量 • 液封高度 C 连续性方程
D 回流比R的确定 最小回流比 Rmin
xD yq yq xq
适宜回流比:(1.1~2)Rmin E 其他了解内容 1. 简捷法求理论板数 2. 精馏装置的热量衡算
3. 简单蒸馏、平衡蒸馏、水蒸汽蒸馏、恒沸精馏、 萃取精馏
第七章
吸收
本章的核心内容是填料层高度的计算,各知识点 联系图如下:
C 泵的操作,流量调节 (1)操作 启动前先要灌泵 启动前关闭出口阀,等电机运转正常后再逐步打开 出口阀; 停泵前先关出口阀,再关闭电机。 运转过程中应注意有无不正常的噪音,压力表是否 正常,经常检查密封的泄露情况和发热与否
(2)调节 改变管路特性曲线:调解出口阀开度(最常用) 改变泵特性曲线:调节转速,更换叶轮
C 过程强化 Q KAtm
增加Δtm
增加蒸汽压力 降低冷却水出口温度 逆流操作
及时除垢 增加流速 增加流体扰动程度 加翅片 串联
增加K
增加A
第六章
蒸馏
本章的核心内容是理论塔板数的确定,各知识点 联系图如下: A 气液相平衡 B 物料衡算
C 理论塔板数的确定 (逐板计算法、图解法) D 回流比R的确定 E 其他了解内容
D 安装
pv p1 u1 NPSH g 2 g g
Hg p0 pv NPSH H f ,01 g
2
E 选型 (1)分类 按输送液体性质:清水泵、耐腐蚀泵、油泵、杂质 泵等 按叶轮数目:单级泵、多级泵 按叶轮吸入方式:单吸泵、双吸泵 (2) 选型 根据被输送液体的性质和操作条件,确定泵类型。 根据流量Qe和压头He确定泵的型号。 若输送液体的密度大于水时,需核算泵的轴功率
A 平衡关系
C 物料衡算
D 填料层高度的计算 B 吸收机理与吸收速率
A 平衡关系
(1)吸收依据:利用混合气体中各组分在同一种 液体中的溶解度差异,加压和降温利于吸收操作。 (2)亨利定律的各种形式:
p Ex
*
C p H
*
y* mx
x X 1 x
Y* mX
y 其中: Y 1 y
2. 比容 vH (0.772 1.244 H ) 3. 比热 cH 1.01 1.88H
273 t 101330 273 P
k H rtw t t ( H s ,tw H ) 5. 干球温度和湿球温度 w r0 6. 绝热饱和冷却温度 tas t ( H as H ) cH
吸收计算使用最后一种最方便
B 吸收机理与吸收速率
(1)菲克定律
J A DAB dc A dz
(2)吸收机理——双膜理论 (学习时可与传热相类比) (3)吸收计算常用的速率方程:
N A KG ( p p )
N A KY (Y Y )
1 1 1 KG HkL kG
o
4. 焓 I (1.01 1.88H )t 2490H
7.露点td H s ,t
d
0.622 ps ,td P p s ,t d
t、 tw(tas)、td 三者关系:
不饱和空气:t tw tas td
饱和空气:t tw tas td
8. H-I图的应用 根据湿空气的两个独立参数,可在H-I图上确定湿 空气的状态点(交点),进而查得其它参数。
第四章
传热
本章的核心内容是总传热速率方程,各知识点联 系图如下: A 三种基本传热方 式的速率方程 B 传热计算
Q KAtm
D 列管式换热器设计
C 过程强化
A 三种基本传热方式的速率方程 t1 t 4 热传导 Q b3 b1 b2 1 Am1 2 Am 2 3 Am3
进料热状况
q值
1km ol 原料液变成饱和蒸汽所 需热量 q 原料液km ol 汽化潜热
冷液体 饱和液体 气液混合物 饱和蒸汽 过热蒸汽
>1 1 0<q <1 0 <0
精馏段与提馏段气液流量间的关系
L L qF
V V (1 q) F
5. q线方程
xF q y x q 1 q 1
B 性能参数,特性曲线
D 安装 A 工作原理,基本结构 C 泵的操作,流量调节 E 选型
A 工作原理,基本结构 (1)工作原理:灌泵 (2)基本结构:提高静压能 叶轮:后弯 泵壳:蜗壳 B 性能参数,特性曲线 (1)性能参数 流量Q:单位时间内排到管路系统的液体体积。 压头H :泵对单位重量流体所能提供的能量。
F 简单管路的计算: 设计型 试差法 操作型
G 流量计: • 测速管 • 孔板流量计 • 文丘里流量计 • 转子流量计
第二章
流体输送机械
本章应重点掌握离心泵的工作原理、基本结构和 操作特性,以便根据生产工艺要求,合理选择和正确 使用离心泵,实现高效、安全、可靠的运行。了解其 他化工用泵和气体输送机械。 本章联系图如下:
Q Whr WcCpc (t2 t1 )
bd0 d0 d0 1 1 Rs 0 Rsi K 0 d m di i di
di u 0.8 c p n 0.023 ( ) ( ) di
t1 t 2 t m t1 ln t 2
u=0 D 直接应用 F 简单管路的计算 G 流量计的应用
p2 p1 (Z1 Z 2 ) g B
A 基本物理量: (1)密度: m V
pM 理想气体: RT
混合气体: M m M1 y1 M 2 y2 M n yn
混合液体: m 11 12 nn F (2)压强: p A 单位及换算 三种表示形式绝压、表压、真空度之间的关系
6. 干燥系统消耗的总热量
三、固体物料在干燥过程中的平衡关系与速率 关系
1. 物料中的水分 用干燥方法可除去的水分为自由水分 2. 干燥速率 3.干燥时间 恒速阶段
dW G dX U Sd Sd
QP LI1 I 0
/ QD LI 2 I1 G I 2 I1(t2 t0 ) (2490 1.88t2 )(H 2 H0 ) Gcm (2 1 ) QL W (2490 1.88t2 ) 100% 7. 干燥系统的热效率 Q
实际吸收剂用量:一般,L (1.1 2.0) Lmin 但要保 证填料表面能被液体充分润湿。
D 填料层高度的计算
基本计算式
Y1 dY V z H OG NOG Y KY a 2 Y Y
传质单元数的计算方法 (1)图解积分法——普遍适用于平衡的各种情况
(2)解析法——适用于平衡关系为直线的情况
2L(r2 r1 ) 对于圆筒壁 Am 2rm L r2 ln r1 对流传热 Q At
辐射传热:Q1 2
T1 4 T2 4 C1 2 A[( ) ( ) ] 100 100
Q B 传热计算 A Kt m
Q WhC ph (Th1 Th2 ) WcC pc (tc 2 tc1 )
KY K G P
C 物料衡算
Y1 Y2 全塔物料衡算 V (Y1 Y2 ) L( X1 X 2) A Y1
操作线方程
L L Y X (Y1 X 1 ) V V
最小吸收剂用量 Lmin V Y1 Y2 V Y1 Y2 Y1 X1 X 2 X2 m
脱吸因数法 对数平均推动力法
N OG
1 Y1 Y2 ln (1 S ) S 1 S Y2 Y2
N OG
Y1 Y2 Ym

Y Y2 (Y1 Y1 ) (Y2 Y2 ) Ym 1 Y1 ( Y Y ) ln ln 1 1 Y2 (Y Y )
2 2
第八章
塔设备
本章以塔的流体力学性能为基础,进行选型、强 化、操作和设计。 一、工业上对塔设备的要求
二、板式塔
1. 塔板类型 泡罩塔板、筛孔塔板、浮阀塔板、喷射型塔板 2. 流体力学性能 (1)气体通过塔板的压降 (2)雾(液)沫夹带 (3)液泛
相关文档
最新文档