化工原理各章节知识点总结

合集下载

(完整版)化工原理基本知识点

(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。

(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。

表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==液体的粘度随温度升高而减小,气体粘度随温度升高而增大。

三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。

111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。

四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。

(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。

圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点(完美版)————————————————————————————————作者:————————————————————————————————日期:ﻩ第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=-倾斜液柱压差计 微差压差计ﻩ ﻩﻩﻩ ﻩﻩ二、流体动力学● 流量质量流量 m S kg /s m S =V S ρ体积流量 V S m3/s质量流速 G kg/m2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = m S =GA=π● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

化工原理知识点

化工原理知识点

第一章 知识点一、 流体静力学基本方程式或注意:1、应用条件:静止的连通着的同一种连续的流体。

2、压强的表示方法:绝压—大气压=表压 表压常由压强表来测量; 大气压—绝压=真空度 真空度常由真空表来测量。

3、压强单位的换算:1atm=760mmHg=10.33mH 2O=101.33kPa=1.033kgf/cm2=1.033at4、应用:水平管路上两点间压强差与U 型管压差计读数R 的关系:处于同一水平面的液体,维持等压面的条件必须时静止、连续和同一种液体二、定态流动系统的连续性方程式––––物料衡算式三、定态流动的柏努利方程式––––能量衡算式1kg 流体:讨论点:1、流体的流动满足连续性假设。

2、理想流体,无外功输入时,机械能守恒式:3、可压缩流体,当Δp/p 1<20%,仍可用上式,且ρ=ρm 。

4、注意运用柏努利方程式解题时的一般步骤,截面与基准面选取的原则。

5、流体密度ρ的计算:理想气体ρ=P M /R T混合气体 混合液体 上式中:x wi ––––体积分率;x wi ––––质量分率。

6、gz,u 2/2,p/ρ三项表示流体本身具有的能量,即位能、动能和静压能。

∑hf 为)(2112z z g p p -+=ρghp p ρ+=0gR p p A )(21ρρ-=-常数常数=====≠ρρρρuA A u A u w s A 222111,常数常数======uA A u A u V s A 2211,ρ21221221///,d d A A u u A ===圆形管中流动常数ρf h u P gZ We u P gZ ∑+++=+++22222111ρρ2222222111u P gZ u P gZ ++=++ρρvn n v v m x x x ρρρρ+++= 2211n wn w m w m x x x ρρρρ+++= 2211流经系统的能量损失。

We 为流体在两截面间所获得的有效功,是决定流体输送设备重要参数。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)
管截面速度大小分布:
无论是层流或揣流,在管道任意截面上,流体 质点的速度均沿管径而变化,管壁处速度为零,离 开管壁以后速度渐增,到管中心处速度最大。
层流:1、呈抛物线分布;2、管中心最大速度 为平均速度的2倍。
湍流:1、层流内层;2、过渡区或缓冲区;3、 湍流主体
湍流时管壁处的速度也等于零,靠近管壁的流 体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移, 速度逐渐增大,出现了既非层流流动亦非完全端流 流动的区域,这区域称为缓冲层或过渡层,再往中
出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平
行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相
匹配。
三、流体流动现象:
流体流动类型及雷诺准数:
(1)层流区
Re<2000
离心泵:电动机 流体(动能)转化 静压能
一、离心泵的结构和工作原理:
离心泵的主要部件:

心泵的的启动流程:


吸液(管泵,无自吸能力)
泵壳
液体的汇集与能量的转换
转能


排放
密封 填料密封 机械密封(高级)
叶轮 其作用为将原动机的能量直接传给液体,
以提高液体的静压能与动能(主要为静压能)。
泵壳 具有汇集液体和能量转化双重功能。
(2)过渡区
2000< Re<4000
(3)湍流区
Re>4000
本质区别:(质点运动及能量损失区别)层流与端
流的区分不仅在于各有不同的Re 值,更重要的是

(完整版)化工原理各章节知识点总结

(完整版)化工原理各章节知识点总结

(完整版)化工原理各章节知识点总结第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。

连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。

拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。

欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。

定态流动流场中各点流体的速度u 、压强p 不随时间而变化。

轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。

流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。

系统与控制体系统是采用拉格朗日法考察流体的。

控制体是采用欧拉法考察流体的。

理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。

粘性的物理本质分子间的引力和分子的热运动。

通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。

气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。

总势能流体的压强能与位能之和。

可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。

有关的称为可压缩流体,无关的称为不可压缩流体。

伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。

平均流速流体的平均流速是以体积流量相同为原则的。

动能校正因子实际动能之平均值与平均速度之动能的比值。

均匀分布同一横截面上流体速度相同。

均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。

稳定性与定态性稳定性是指系统对外界扰动的反应。

定态性是指有关运动参数随时间的变化情况。

边界层流动流体受固体壁面阻滞而造成速度梯度的区域。

化工原理各章知识点汇总

化工原理各章知识点汇总
气体
吸收
概念
平衡溶解度;分子扩散;对流传质;主体流动;等分子反向扩散;单向扩散;漂流因子;最小液气比;
基本理论
(或知识点)
亨利定律;亨利系数;相平衡与吸收过程得关系;费克定律;扩散系数(及影响因素);对流传质速率;对流传质准数关联式(各准数得物理意义、影响因素等);对流传质理论(有效膜理论、溶质渗透理论、表面更新理论);相际传质速率;传质总系数;传质阻力得控制(液膜控制、气膜控制);传质单元数;传质单元高度;吸收因素法;高含量气体吸收得特点;化学吸收得优点;
化工原理各章知识点汇总(各专业根据已学章节对应复习)
章次
内容汇总(上册)
流体
流动
概念
定态流动;边界层;理想流体;层流;湍流;雷诺准数;
粘度得物理意义(及其影响因素);剪应力;静压力;绝压;表压;当量直径;孔流系数;
基本理论
(或知识点)
牛顿粘性定律;连续性方程(依据);伯努利方程(依据);静止流体平衡方程及其意义;直管阻力及其与流型关系;局部阻力得计算及其实质;阻力系数;孔板流量计与转子流量计测量原理;流量校正
重要理论
相平衡方程:
连续精馏过程计算(物料衡算、热量衡算、操作线方程、q线方程、最小回流比):
逐板计算法;
气液
传质
设备
概念
液沫夹带;气泡夹带;漏液;夹带液泛;溢流液泛;板效率;返混;湿板效率;正系统;负系统;填料得特性(比表面积、空隙率、几何形状)
基本理论
(或知识点)
传质设备分类;板式塔构件;填料塔构件;筛板塔气液接触状态分类;筛板塔阻力(组成、各自特点);气液两相非理想流动;负荷性能图(组成、操作弹性、调节);液体成膜得条件;填料塔得持液量;填料塔液泛;填料塔实际气速与液泛气速得关系;填料塔得附属机构;

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;m S =GA=π/4d 2G V S =uA=π/4d 2u5、 单位必须一致:有关物理量的单位必须一致相匹配。

化工原理各章节知识点总结

化工原理各章节知识点总结

化工原理各章节知识点总结化工原理是化学工程与技术的基础课程之一,主要涉及物质的物理性质、能量转化、传质现象、化学反应等方面的知识。

下面是化工原理各章节知识点的总结。

第一章:化工基本概念与物质的物理性质1.1化学工程与化学技术的发展历史与现状1.2化工过程及其特点1.3物质的物理性质-物质的密度、比重、相对密度-物质的表观密度、气体密度-物质的粘度、表面张力、折射率-物质的热容、导热系数、热膨胀系数-物质的流变性质第二章:能量转化与传递2.1能量的基本概念2.2热力学第一定律2.3热力学第二定律2.4热力学第三定律2.5热力学循环第三章:物质的传递过程3.1传质的基本概念与分类3.2质量传递平衡方程3.3传质速率和传质通量3.4界面传质-液-气界面传质-液-液界面传质-固-液界面传质-固-气界面传质3.5传质过程中的最速传质与弛豫时间第四章:化工流体的流动4.1流体的基本性质4.2流体的流动类别4.3流体的流动方程-流体的质量守恒方程-流体的动量守恒方程-流体的能量守恒方程4.4流体内运动的基本规律-斯托克斯定律-流体的相对运动-流体的运动粘度4.5流体的管道流动-管道内的雷诺数-管道的流动阻力第五章:多元物系中物质的平衡与分离5.1多元物系基本概念5.2雾滴定律5.3吸附平衡5.4蒸汽液平衡5.5溶液中的平衡情况5.6气相-液相-固相三相平衡第六章:化学反应与反应工程6.1化学反应动力学6.2化学平衡6.3化学反应速率6.4反应器的基本类型-批次反应器-连续流动反应器-均质反应器-非均质反应器6.5反应器的设计与操作以上是化工原理各章节的知识点总结,涵盖了物理性质、能量转化、传质现象、化学反应等方面的内容。

这些知识点是化学工程与技术的基础,对于理解和应用化工原理具有重要意义。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算X 围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。

化工原理各章知识点汇总

化工原理各章知识点汇总
重要理论
相平衡方程:
连续精馏过程计算(物料衡算、热量衡算、操作线方程、q线方程、最小回流比):
逐板计算法;
气液
传质
设备
概念
液沫夹带;气泡夹带;漏液;夹带液泛;溢流液泛;板效率;返混;湿板效率;正系统;负系统;填料的特性(比表面积、空隙率、几何形状)
基本理论
(或知识点)
传质设备分类;板式塔构件;填料塔构件;筛板塔气液接触状态分类;筛板塔阻力(组成、各自特点);气液两相非理想流动;负荷性能图(组成、操作弹性、调节);液体成膜的条件;填料塔的持液量;填料塔液泛;填料塔实际气速与液泛气速的关系;填料塔的附属机构;
颗粒沉降速度:
斯托克斯区:
牛顿区:
降尘室生产能力;
传热
概念
载热体;传热速率;热流量;温度梯度;强制对流;自然对流;定性温度;汽化核心;膜状冷凝;滴状冷凝;黑体;灰体;镜体;黑度;总传热系数;壳程;管程;逆流传热;并流传热;
基本理论
(或知识点)
传热分类;傅里叶导热定律;导热系数;对流给热系数及其方程;总传热速率方程;热阻分析;黑体辐射热流量;
气体
吸收
概念
平衡溶解度;分子扩散;对流传质;主体流动;等分子反向扩散;单向扩散;漂流因子;最小液气比;
基本理论
(或知识点)
亨利定律;亨利系数;相平衡与吸收过程的关系;费克定律;扩散系数(及影响因素);对流传质速率;对流传质准数关联式(各准数的物理意义、影响因素等);对流传质理论(有效膜理论、溶质渗透理论、表面更新理论);相际传质速率;传质总系数;传质阻力的控制(液膜控制、气膜控制);传质单元数;传质单元高度;吸收因素法;高含量气体吸收的特点;化学吸收的优点;
重要理论
亨利定律:

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、 流动阻力、复杂管路、流量计一、流体静力学:●压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 ●流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=-倾斜液柱压差计 微差压差计二、流体动力学●流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s 质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ● 连续性方程及重要引论:●一实际流体的柏努利方程及应用(例题作业题)以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;m S =GA=π/4d 2GV S =uA=π/4d 2u3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:●流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。

(完整word版)化工原理各章知识点汇总

(完整word版)化工原理各章知识点汇总
重要理论
连续性方程(依据): ;对不可压缩流体,有:
伯努利方程(依据): (无输送机械管路)
直管阻力: ;阻力系数:
局部阻Hale Waihona Puke :流体输送机械
概念
气缚;汽蚀;最大允许安装高度;管路水锤;压缩比;动风压;静风压;极限真空;抽气残率;离心泵工作点
基本理论
(或知识点)
管路特征方程;离心泵主要构件;离心泵性能曲线;叶轮类型;泵效率主要影响因素;离心泵流量调节;离心泵组合特性曲线;最大允许安装高度;输送机械分类;往复泵流量特点、计算及其调节;
重要理论
相平衡方程:
连续精馏过程计算(物料衡算、热量衡算、操作线方程、q线方程、最小回流比):
逐板计算法;
气液
传质
设备
概念
液沫夹带;气泡夹带;漏液;夹带液泛;溢流液泛;板效率;返混;湿板效率;正系统;负系统;填料的特性(比表面积、空隙率、几何形状)
基本理论
(或知识点)
传质设备分类;板式塔构件;填料塔构件;筛板塔气液接触状态分类;筛板塔阻力(组成、各自特点);气液两相非理想流动;负荷性能图(组成、操作弹性、调节);液体成膜的条件;填料塔的持液量;填料塔液泛;填料塔实际气速与液泛气速的关系;填料塔的附属机构;
颗粒沉降速度:
斯托克斯区:
牛顿区:
降尘室生产能力;
传热
概念
载热体;传热速率;热流量;温度梯度;强制对流;自然对流;定性温度;汽化核心;膜状冷凝;滴状冷凝;黑体;灰体;镜体;黑度;总传热系数;壳程;管程;逆流传热;并流传热;
基本理论
(或知识点)
传热分类;傅里叶导热定律;导热系数;对流给热系数及其方程;总传热速率方程;热阻分析;黑体辐射热流量;

化工原理各章节知识点总结

化工原理各章节知识点总结

化工原理各章节知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)第一章?流体流动质点?含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。

连续性假定?假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。

拉格朗日法?选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。

欧拉法?在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。

定态流动?流场中各点流体的速度u?、压强p?不随时间而变化。

轨线与流线?轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。

流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。

系统与控制体?系统是采用拉格朗日法考察流体的。

控制体是采用欧拉法考察流体的。

理想流体与实际流体的区别?理想流体粘度为零,而实际流体粘度不为零。

粘性的物理本质?分子间的引力和分子的热运动。

通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。

气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。

总势能?流体的压强能与位能之和。

可压缩流体与不可压缩流体的区别?流体的密度是否与压强有关。

有关的称为可压缩流体,无关的称为不可压缩流体。

伯努利方程的物理意义?流体流动中的位能、压强能、动能之和保持不变。

平均流速?流体的平均流速是以体积流量相同为原则的。

动能校正因子?实际动能之平均值与平均速度之动能的比值。

均匀分布?同一横截面上流体速度相同。

均匀流段?各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,?故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别?是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。

稳定性与定态性?稳定性是指系统对外界扰动的反应。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

m S =GA=π/4d 2G V S =uA=π/4d 2u三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

必须汽蚀余量:(NPSH)r 离心泵的允许吸上真空度:
离心泵的允许安装高度Hg(低于此高度0.5-1m): 关离心泵先关阀门,后关电机,开离心泵先关出口阀,再启动电机。
四、工作点及流量调节:
管路特性与离心泵的工作点: 由两截面的伯努利方程所得
全程化简。
联解既得工作点。 离心泵的流量调节:
汽蚀现象:汽蚀现象是指当泵入口处压 力等于或小于同温度下液体的饱和蒸汽压时, 液体发生汽化,气泡在高压作用下,迅速凝 聚或破裂产生压力极大、频率极高的冲击, 泵体强烈振动并发出噪音,液体流量、压头 (出口压力)及效率明显下降。这种现象称 为离心泵的汽蚀。 二、特性参数与特性曲线: 流量 Q:离心泵在单位时间内排送到管路系 统的液体体积。 压头(扬程)H:离心泵对单位重量(1N) 的液体所提供的有效能量。
厚度随Re 值的增加而减小。
层流时的速度分布
u

1 2 umax
湍流时的速度分布
u 0.8u max
四、流动阻力、复杂管路、流量计:
计算管道阻力的通式:(伯努利方程损失能)
范宁公式的几种形式: 圆直管道
hf
l u2 d2
非圆直管道
p f
W f
l d
u 2 2
运算时,关键是找出 值,一般题目会告诉,仅用于期末考试,考研需扩充
应用解题要点:
1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相匹配。

化工原理各章节知识点总结

化工原理各章节知识点总结

化工原理各章节知识点总结化工原理是化学工程专业的基础课程,主要介绍了化学工程的基本概念、理论和技术。

下面是各章节的知识点总结:第一章:化工原理的基本概念和性质1.化工原理的定义和基本任务2.化工原理的基本性质和特点3.化工原理的基本方法和技术第二章:化学平衡和能量平衡1.化学反应平衡的条件和表达式2.平衡常数和平衡常数表达式3.能量平衡的基本原理和方法4.热力学和热力学函数5.熵和化学势的概念和计算第三章:物相平衡1.物质在不同相之间存在的平衡条件2.相平衡的相图和相平衡计算3.蒸馏和萃取等物相平衡的应用第四章:质量平衡和物质迁移1.质量平衡的基本原理和方程2.质量平衡的应用:反应工艺和物料平衡3.物质迁移的基本理论和计算方法第五章:流体力学1.流体的基本概念和性质2.流体的连续性方程和动量方程3.流体的能量方程和压力损失4.流体的流动和阻力的计算第六章:传递现象1.传递现象的基本概念和分类2.传递现象的数学模型和方程3.质量传递、热量传递和动量传递的计算第七章:反应工程基础1.化学反应的速率和速率方程2.反应速率的测定和表达3.反应工程的热力学和动力学分析4.反应器的分析和设计第八章:传热和传质1.传热的基本机制和传热方式2.导热和对流传热的计算3.汽液传质和固液传质的计算第九章:流体传动和流动分布1.流体传动的基本方式和流动性质2.流体传动的计算和分析3.流动分布的原理和应用第十章:分离工程基础1.分离过程的基本概念和分类2.平衡分离的基本理论和计算3.萃取、吸附和蒸馏等分离工艺的应用第十一章:生化反应工程基础1.生物反应器的基本概念和种类2.酶反应和微生物反应的基本原理3.生化反应器的分析和设计以上是化工原理各章节的知识点总结,涵盖了化工原理的核心内容。

(完整版)化工原理基本知识点

(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。

(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。

表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==g液体的粘度随温度升高而减小,气体粘度随温度升高而增大。

三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。

111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。

四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。

(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。

圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。

化工原理各章知识点汇总

化工原理各章知识点汇总

化工原理各章知识点汇总化工原理各章知识点汇总化工原理各章知识点汇总(各专业根据已学章节对应复习)章次概念内容汇总(上册)定态流动;边界层;理想流体;层流;湍流;雷诺准数;粘度的物理意义(及其影响因素);剪应力;静压力;绝压;表压;当量直径;孔流系数;牛顿粘性定律;连续性方程(依据);伯努利方程(依据);静止流体平衡方程及其意义;直管阻力及其与流型关系;局部阻力的计算及其实质;阻力系数;孔板流量计和转子流量计测量原理;流量校正连续性方程(依据):d1u11d2u22;对不可压缩流体,有:d1u1d2u22u12p2u2伯努利方程(依据):gz1gz2hf(无输送机械管路)22基本理论(或知识点)重要理论流体流动p1lu2直管阻力:hf;阻力系数:fRe,dd2leu2u2;hf局部阻力:hfd22概念基本理论(或知识点)重要理论流体输送机械气缚;汽蚀;最大允许安装高度;管路水锤;压缩比;动风压;静风压;极限真空;抽气残率;离心泵工作点管路特征方程;离心泵主要构件;离心泵性能曲线;叶轮类型;泵效率主要影响因素;离心泵流量调节;离心泵组合特性曲线;最大允许安装高度;输送机械分类;往复泵流量特点、计算及其调节;管路特征方程:2pp1u12p2u22HzKqV;z1Hz2Hfgg2gg2g2离心泵性能曲线:HqV;P;aqV;qV;(HABqV)Pe100%;PegHqVPap0pVHf(01)NPSHr0.5gg最大允许安装高度:Hg概念流体通过颗粒床层流动基本理论(或知识点)重要理论比表面积;球形度(形状系数);床层孔隙率;当量直径;滤饼的压缩性;间歇式过滤机的生产能力;动态过滤;洗涤速率;康采尼方程;欧根方程;恒压过滤;恒速过滤;过滤常数;数学模型法;床层密度与空隙率关系:p1"恒压过滤:q22qqeK;V22VVeKA恒速过滤:qqqe概念基本理论(或知识点)重要理论颗粒沉降与流态化颗粒沉降速度:ut2KK;V2VVeA222曳力;表面曳力;形体曳力;离心分离因素;流化床;固定床;散式流化;聚式流化;沟流;腾涌;起始流化速度;固气比;曳力系数;颗粒沉降速度;降尘室生产能力;分级器特点;旋风分离器分离效率;空隙率计算;流化床主要特性(及最大特性);起始流化速度;4pgdp3du;pt;24;Rep2Rep斯托克斯区:ut2dppg18牛顿区:ut1.74dppg;0.44;Rep500降尘室生产能力;qVAut概念载热体;传热速率;热流量;温度梯度;强制对流;自然对流;定性温度;汽化核心;膜状冷凝;滴状冷凝;黑体;灰体;镜体;黑度;总传热系数;壳程;管程;逆流传热;并流传热;传热分类;傅里叶导热定律;导热系数;对流给热系数及其方程;总传热速率方程;热阻分析;黑体辐射热流量;傅里叶导热定律:QA基本理论(或知识点)重要理论dtQdt;qdnAdn0.8b传热ducpa0.023对流给热系数及其方程(无相变管内对流给热):d总传热速率方程:Qqm1cp1T1T2qm2cp2t2t1KAtm热阻分析:11d11d11d1d21d1=ln;A内d1lK内a内dma外d2a内2d1a外d2dd11d2d211d1=22ln2;A外d2lK外a内d1dma 外a内d12d1a外蒸发概念基本理论(或知识点)重要理论温差损失;生产强度;蒸发操作的经济性;蒸发操作的特点;蒸发器类型;蒸发辅助设备及其功能;单效蒸发计算;单效蒸发计算(不计浓缩热):物料衡算:Fw0(FW)w热量衡算:QDr0Fc0(tt0)WrQ损QDr0KA(Tt)章次气体吸收概念基本理论(或知识点)内容汇总(下册)平衡溶解度;分子扩散;对流传质;主体流动;等分子反向扩散;单向扩散;漂流因子;最小液气比;亨利定律;亨利系数;相平衡与吸收过程的关系;费克定律;扩散系数(及影响因素);对流传质速率;对流传质准数关联式(各准数的物理意义、影响因素等);对流传质理论(有效膜理论、溶质渗透理论、表面更新理论);相际传质速率;传质总系数;传质阻力的控制(液膜控制、气膜控制);传质单元数;传质单元高度;吸收因素法;高含量气体吸收的特点;化学吸收的优点;亨利定律:peEx;peHc;yemx重要理论DppA1pA2RTpBm对流传质速率(单向扩散):Dc液相:NAMcA1cA2cBm气相:NAdukd0.023传质系数:D0.83D0.33相际传质速率:NAKy(yye);NAKx(xex)传质总系数:11m111;KykykxKxkxmkyy2y1吸收过程计算:物料衡算:Gy1y2Lx2x1;1相平衡方程:yefx;yemxy1y2LLL最小液气比与实际液气比:;(1.12)Gminx1ex2GGmin填料塔高度计算:HGy1dyLx1dyHNHHOLNOL;OGOG;yxKya2yyeKxa2xex1ymx211mGln11;11Ay2mx2AL A1A1传质单元数捷算法:NOG液体精馏概念基本理论(或知识点)轻组分;重组分;理想体系;挥发度;相对挥发度;回流比;精馏段;提馏段;理论板;板效率;加料板;全回流;最少理论板数;灵敏板;蒸馏分离的依据;蒸馏操作的分类;拉乌尔定律;压强对相平衡的影响;相平衡方程;平衡蒸馏与简单蒸馏的计算;连续精馏过程计算(物料衡算、热量衡算、操作线方程、q线方程);逐板计算法;图解计算法;理论板数捷算法;回流比对精馏过程影响;原料热状态对精馏过程影响;最小回流比;直接蒸汽加热精馏;多股加料精馏;侧线出料精馏;回收塔;特殊精馏;相平衡方程:y重要理论ax1a1x连续精馏过程计算(物料衡算、热量衡算、操作线方程、q 线方程、最小回流比):物料衡算:FDW;FxFDxDWxW;热量衡算:QcVrc;QBVrb操作线方程:yn1yn1DxDDxFxW;FxFFxDxWxyexRxnD;RminD;R1.22RminR1R1yexeRDqFFDxnxWR 1D1qFR1D1qFIiFLLxq;yqxqFIiFq1q1q值及q方程:q逐板计算法;气液传质设备概念基本理论(或知识点)重要理论液液萃取概念基本理论(或知识点)重要理论固体干燥概念液沫夹带;气泡夹带;漏液;夹带液泛;溢流液泛;板效率;返混;湿板效率;正系统;负系统;填料的特性(比表面积、空隙率、几何形状)传质设备分类;板式塔构件;填料塔构件;筛板塔气液接触状态分类;筛板塔阻力(组成、各自特点);气液两相非理想流动;负荷性能图(组成、操作弹性、调节);液体成膜的条件;填料塔的持液量;填料塔液泛;填料塔实际气速与液泛气速的关系;填料塔的附属机构;负荷性能图(组成、操作弹性、调节);气液两相非理想流动;萃取相;萃余相;选择性;和点;差点;萃取液;萃余液;选择性系数;萃取剂的特点:萃取操作的适应性;液液相平衡;溶解度曲线;共轭相;杠杆定律;互溶度对萃取影响;单级萃取计算;露点;湿度;相对湿度;湿球温度;干球温度;绝热饱和温度;湿空气的焓;湿空气的比体积;绝热增湿过程;结合水;非结合水;自由水分;干燥速率;恒速干燥;减速干燥;临界含水量;平衡含水量;干燥过程的热效率;固体去湿方法;对流干燥特点;间歇干燥过程计算;连续干燥的一般特性;理想干燥及其计算;基本理论(或知识点)重要理论干燥参数计算:I1.011.88Ht2500H;H0.622p水汽p;=水汽pp 水汽ps间歇干燥过程计算:1干燥及其计算:GcGXXX1Xc;2cclncANA恒ANA恒X2物料衡算:WGc(X1X2)VH2H1;H1H0预热器热量衡算:QV(I1I0)VcpH1(t1t0)实际干燥过程热量衡算:VI1Gccpm11Q补VI2Gccpm22Q 损理想干燥过程特点:I2I1;Q补0;Q损=扩展阅读:化工原理知识点总结整理一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。

连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。

拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。

欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。

定态流动流场中各点流体的速度u 、压强p不随时间而变化。

轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。

流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。

系统与控制体系统是采用拉格朗日法考察流体的。

控制体是采用欧拉法考察流体的。

理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。

粘性的物理本质分子间的引力和分子的热运动。

通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。

气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。

总势能流体的压强能与位能之和。

可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。

有关的称为可压缩流体,无关的称为不可压缩流体。

伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。

平均流速流体的平均流速是以体积流量相同为原则的。

动能校正因子实际动能之平均值与平均速度之动能的比值。

均匀分布同一横截面上流体速度相同。

均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。

稳定性与定态性稳定性是指系统对外界扰动的反应。

定态性是指有关运动参数随时间的变化情况。

边界层流动流体受固体壁面阻滞而造成速度梯度的区域。

边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。

雷诺数的物理意义雷诺数是惯性力与粘性力之比。

量纲分析实验研究方法的主要步骤:①经初步实验列出影响过程的主要因素;②无量纲化减少变量数并规划实验;③通过实验数据回归确定参数及变量适用围,确定函数形式。

摩擦系数层流区,λ与Re成反比,λ与相对粗糙度无关;一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大;充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大。

完全湍流粗糙管当壁面凸出物低于层流层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管。

Re很大,λ与Re无关的区域,称为完全湍流粗糙管。

同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管。

局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度。

毕托管特点毕托管测量的是流速,通过换算才能获得流量。

驻点压强在驻点处,动能转化成压强(称为动压强),所以驻点压强是静压强与动压强之和。

孔板流量计的特点恒截面,变压差。

结构简单,使用方便,阻力损失较大。

转子流量计的特点恒流速,恒压差,变截面。

非牛顿流体的特性塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动。

假塑性与涨塑性:随剪切率增高,表观粘度下降的为假塑性。

随剪切率增高,表观粘度上升的为涨塑性。

触变性与震凝性:随剪应力t 作用时间的延续,流体表观粘度变小,当一定的剪应力t 所作用的时间足够长后,粘度达到定态的平衡值,这一行为称为触变性。

反之,粘度随剪切力作用时间延长而增大的行为则称为震凝性。

粘弹性:不但有粘性,而且表现出明显的弹性。

具体表现如:爬杆效应、挤出胀大、无管虹吸。

第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加。

输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量(J/N)。

离心泵主要构件叶轮和蜗壳。

离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关。

叶片后弯原因使泵的效率高。

气缚现象因泵流体密度小而产生的压差小,无法吸上液体的现象。

离心泵特性曲线离心泵的特性曲线指He~qV,η~qV, Pa~qV。

离心泵工作点管路特性方程和泵的特性方程的交点。

离心泵的调节手段调节出口阀,改变泵的转速。

汽蚀现象液体在泵的最低压强处(叶轮入口)汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象。

必需汽蚀余量(NPSH)r泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型(类型、型号)①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号。

正位移特性流量由泵决定,与管路特性无关。

往复泵的调节手段旁路阀、改变泵的转速、冲程。

离心泵与往复泵的比较(流量、压头)前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变。

前者不易达到高压头,后者可达高压头。

前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门。

通风机的全压、动风压通风机给每立方米气体加入的能量为全压(Pa=J/m3,其中动能部分为动风压。

真空泵的主要性能参数①极限真空;②抽气速率。

第三章液体的搅拌搅拌目的均相液体的混合,多相物体(液液,气液,液固)的分散和接触,强化传热。

搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类。

旋桨式大流量,低压头;涡轮式小流量,高压头。

混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量。

宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合。

微观混合只有分子扩散才能达到微观混合。

总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间。

搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场。

改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施。

第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等。

形状系数等体积球形的表面积与非球形颗粒的表面积之比。

分布函数小于某一直径的颗粒占总量的分率。

频率函数某一粒径围的颗粒占总量的分率与粒径围之比。

颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准。

因为颗粒层流体为爬流流动,流动阻力主要与颗粒表面积的大小有关。

床层比表面单位床层体积的颗粒表面积。

床层空隙率单位床层体积的空隙体积。

数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数。

架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象。

过滤常数及影响因素过滤常数是指 K、qe。

K与压差、悬浮液浓度、滤饼比阻、滤液粘度有关;qe与过滤介质阻力有关。

它们在恒压下才为常数。

过滤机的生产能力滤液量与总时间(过滤时间和辅助时间)之比。

最优过滤时间使生产能力达到最大的过滤时间。

加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤。

第五章颗粒的沉降和流态化曳力(表面曳力、形体曳力)曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系。

表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起。

(自由)沉降速度颗粒自由沉降过程中,曳力、重力、浮力三者达到平衡时的相对运动速度。

离心分离因数离心力与重力之比。

旋风分离器主要评价指标分离效率、压降。

总效率进入分离器后,除去的颗粒所占比例。

粒级效率某一直径的颗粒的去除效率。

分割直径粒级效率为50%的颗粒直径。

流化床的特点混合均匀、传热传质快;压降恒定、与气速无关。

两种流化现象散式流化和聚式流化。

聚式流化的两种极端情况腾涌和沟流。

起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度。

带出速度随着操作气速逐渐增大,流化床颗粒全被带出的空床速度。

气力输送利用气体在管的流动来输送粉粒状固体的方法。

第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式。

载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体。

用于加热的称为加热剂;用于冷却的称为冷却剂。

三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波。

间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁热传导至另一侧,由壁面对流至冷流体。

导热系数物质的导热系数与物质的种类、物态、温度、压力有关。

热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻。

推动力高温物体向低温传热,两者的温度差就是推动力。

流动对传热的贡献流动流体载热。

强制对流传热在人为造成强制流动条件下的对流传热。

自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热。

自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动。

努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比。

普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献。

α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度。

比如,圆管的强制对流传热,定性尺寸为管径d、定性温度为进出口平均温度。

大容积自然对流的自动模化区自然对流α与高度h无关的区域。

液体沸腾的两个必要条件过热度tw-ts 、汽化核心。

核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt急剧上升。

第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同。

主要操作费溶剂再生费用,溶剂损失费用。

解吸方法升温、减压、吹气。

选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小。

相平衡常数及影响因素m、E、H 均随温度上升而增大,E、H 与总压无关,m 反比于总压。

漂流因子P/PBm 表示了主体流动对传质的贡献。

(气、液)扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关。

传质机理分子扩散、对流传质。

气液相际物质传递步骤气相对流,相界面溶解,液相对流。

有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝D0.5。

相关文档
最新文档