抽屉原理例习题
专题十三抽屉原理
ቤተ መጻሕፍቲ ባይዱ
【例题四】小猴爬竹竿,每次上爬3节下 滑1节。请你算一下,竹竿有7节,小猴爬 到竿顶要爬几次?
【例题五】李家有个小弟弟,边上楼边做游戏, 他每次上3级后又退下来1级。想一想,11级楼 梯几次才能上去?
• 【例题六】一口水井深5米,一只青蛙在井底,每 次只能跳上1米,问这只青蛙几次才能跳出井口?
习题 1.糖罐里放着巧克力、牛奶糖各6粒,它 们的大小、形状都相同,要保证一次拿出两粒 不同的糖,至少要拿出几粒糖?
专题 十三 抽屉原理 蜗牛爬井 【例题一】抽屉里有6只白袜子和6只红袜子, 每次拿1只,最少拿几次就会有一双颜色相同 的袜子?
【例题二】王老师的教具盒里有红、黄、白三种 颜色的方木块各3个,大小形状相同,每次拿1个,最 多拿几次就会有相同颜色的两个方木块?
【例题三】王老师的教具盒里有黑色、白色的 球各5个,它们的形状、大小相同,要保证一次拿 出两个颜色不同的球,至少要摸出多少个球?
抽屉原理十个例题
抽屉原理十个例题抽屉原理(也称为鸽笼原理)是数学中的一个基本概念,它在解决许多问题时发挥了重要作用。
抽屉原理的核心思想是,如果有n+1个物体放置在n个容器中,那么至少有一个容器中会有两个或更多的物体。
在这篇文档中,我们将介绍十个关于抽屉原理的例题。
1. 抽屉宝藏假设有10个宝箱和11个宝藏,我们要将宝藏放入宝箱中。
根据抽屉原理,我们可以得出结论:至少有一个宝箱中会有两个或更多的宝藏。
2. 课程选择某所大学有30门课程供学生选择,每位学生需要选择至少一门课程。
如果学校有100名学生,我们可以使用抽屉原理来得出结论:至少有一个课程被超过3名学生选择。
3. 生日相同班级里有30个学生,我们假设每个人的生日在1月1日至12月31日之间。
根据抽屉原理,我们可以得出结论:至少有两个学生生日相同。
4. 电话号码某个城市有10000个家庭,每个家庭都有一个电话号码。
如果每个电话号码只有4位数字,那么按照抽屉原理,至少有两个家庭有相同的电话号码。
5. 钥匙串一个钥匙串上有11把钥匙,这些钥匙开启了12扇门。
根据抽屉原理,我们可以得出结论:至少有两把钥匙可以开启同一扇门。
6. 信件一天,一位邮递员需要将101封信投递给100个信箱。
根据抽屉原理,我们可以得出结论:至少有一个信箱会收到两封或更多的信件。
7. 纸牌游戏一副标准扑克牌有52张牌。
如果我们从这副牌中随机抽取53张牌,根据抽屉原理,至少会有一张重复的牌。
8. 电子邮件一家公司有100个员工,每个员工都有自己的邮箱。
如果员工们相互发送邮件,根据抽屉原理,至少有两个员工的收件箱中会有相同的邮件。
9. 书籍分类一家图书馆有1000本书,这些书分为10个不同的类别。
如果每个类别中都至少有101本书,根据抽屉原理,至少有一个类别中会有两本或更多的书。
10. 时区时间考虑世界上的24个时区,如果我们考虑每个时区的时间精确到分钟级别,抽屉原理告诉我们:在某个时刻,至少两个时区的时间是一样的。
抽屉原理十个例题
抽屉原理十个例题抽屉原理,又称鸽巢原理,是数学中一个非常重要的概念。
它指的是如果有n+1个或更多的物体放入n个抽屉中,那么至少有一个抽屉中会有两个或更多的物体。
这个原理在数学证明和计算概率等领域中有着广泛的应用。
下面我们来看看抽屉原理在实际问题中的应用,通过十个例题来深入理解这一概念。
例题1,班上有30名学生,其中有29名学生的生日不在同一天,那么至少有两名学生的生日在同一天。
例题2,某个班级有25名学生,其中有23名学生的身高不相同,那么至少有两名学生的身高相同。
例题3,在一个班级里,有10名男生和9名女生,那么至少有一个班级有两名同性别的学生。
例题4,某公司有36名员工,其中每个员工的年龄都不相同,那么至少有两名员工的年龄相差不超过1岁。
例题5,一家商店有40件商品,其中有39件商品的价格都不相同,那么至少有两件商品的价格相同。
例题6,在一个班级里,有15名学生,每个学生都选修了2门不同的课程,那么至少有一门课程有两名学生选修。
例题7,某个班级有20名学生,他们每个人的体重都不相同,那么至少有两名学生的体重相差不超过1千克。
例题8,某个班级的学生参加了一次考试,考试成绩都不相同,那么至少有两名学生的成绩相差不超过5分。
例题9,在一个班级里,有12名男生和13名女生,那么至少有一名学生和另一名学生同性别并且同年龄。
例题10,某公司的40名员工中,每个员工的工作经验都不相同,那么至少有两名员工的工作经验相差不超过1年。
通过以上十个例题的分析,我们可以看到抽屉原理在实际问题中的应用。
无论是生日、身高、性别、价格还是其他属性,只要物体的数量超过抽屉的数量,就一定会存在重复的情况。
这个原理在解决排列组合、概率统计等问题时都有着重要的作用,希望通过这些例题的学习,大家能更加深入地理解抽屉原理的应用。
抽屉原理练习题
抽屉原理练习题一、选择题1. 抽屉原理是指,如果有n+1个或更多的物品放入n个抽屉中,至少有一个抽屉中会有2个或更多的物品。
以下哪项不是抽屉原理的表述?A. 每个抽屉至少有一个物品B. 至少有一个抽屉包含多个物品C. 物品数量总是比抽屉数量多1D. 物品和抽屉的数量关系导致至少一个抽屉有多个物品2. 如果有10个苹果要放入9个抽屉中,根据抽屉原理,至少有几个苹果会放在同一个抽屉里?A. 1B. 2C. 3D. 43. 一个班级有50名学生,如果至少有5名学生在同一天过生日,根据抽屉原理,这个班级至少有多少名学生的生日是在同一个月?A. 5B. C. 6D. 7二、填空题4. 如果有13个球要放入12个盒子中,至少有一个盒子里会有______个或更多的球。
5. 一年有12个月,如果有25个人的生日在一年中的不同月份,根据抽屉原理,至少有______个人的生日在同一个月。
6. 一个学校有100名学生,如果至少有10名学生在同一天参加考试,根据抽屉原理,至少有______名学生的考试日期是在同一天。
三、解答题7. 一个班级有36名学生,他们要参加7个不同的兴趣小组。
请证明至少有一个兴趣小组有6名或更多的学生参加。
解答:设有7个兴趣小组,每个小组最多可以有5名学生。
如果每个小组都只有5名学生,那么总共会有7*5=35名学生参加兴趣小组。
但班级有36名学生,这意味着至少有1名学生必须加入到已经满员的小组中,使得至少有一个小组有6名学生。
8. 一个图书馆有10个书架,每个书架最多可以放100本书。
如果图书馆有1000本书需要放置,根据抽屉原理,至少有一个书架上会有多少本书?解答:如果每个书架都放满100本书,那么10个书架可以放1000本书。
但根据抽屉原理,至少有一个书架上会有101本书,因为如果每个书架都只有100本书,那么总共只有1000本书,而实际上有1001本书需要放置。
9. 一个学校有365名学生,他们的生日分布在一年中的不同天。
抽屉原理练习题(精选3篇)
抽屉原理练习题〔精选3篇〕篇1:抽屉原理练习题抽屉原理练习题抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,假设蒙眼去摸,为保证取出的球中有两个球的颜色一样,那么最少要取出多少个球?2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有一样的点数?3.有11名学生到教师家借书,教师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型一样4.有50名运发动进展某个工程的单循环赛,假如没有平局,也没有全胜。
试证明:一定有两个运发动积分一样。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?6.某校有55个同学参加数学竞赛,将参赛人任意分成四组,那么必有一组的女生多于2人,又知参赛者中任何10人中必有男生,那么参赛男生的人数为多少人?7.有黑色、白色、蓝色手套各5只〔不分左右手〕,至少要拿出多少只〔拿的时候不许看颜色〕,才能使拿出的手套中一定有两双是同颜色的。
8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了假设干堆,后来发现无论怎么分,总能从这假设干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?9.从1,3,5,……,99中,至少选出多少个数,其中必有两个数的和是100。
10.某旅游车上有47名乘客,每位乘客都只带有一种水果。
假如乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。
11.某个年级有202人参加考试,总分值为100分,且得分都为整数,总得分为01分,那么至少有多少人得分一样?12.名营员去游览长城,颐和园,天坛。
规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全一样?13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,那么至少有多少人植树的株数一样?答案:1.将红、黄、蓝三种颜色看作三个抽屉,为保证取出的球中有两个球的颜色一样,那么最少要取出4个球。
抽屉原理十个例题
抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。
首先,计算取出3个球都是不同色球的概率。
当第一个球被取出后,有5个红球和7个蓝球剩下。
那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。
同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。
因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。
所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。
2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。
从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。
在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。
同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。
然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。
所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。
3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。
如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。
当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。
所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。
所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。
4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。
如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。
抽屉原理练习题(打印版)
抽屉原理练习题(打印版)# 抽屉原理练习题## 一、基础题目1. 题目一:有5个苹果,要分给4个孩子,至少有一个孩子能得到至少几个苹果?2. 题目二:一个班级有35名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?3. 题目三:有7个不同的球,要放入6个相同的盒子中,至少有一个盒子里至少有几个球?## 二、进阶题目4. 题目四:一个篮子里有100个鸡蛋,需要将它们分成9组,每组至少有几个鸡蛋?5. 题目五:有24个不同的球,要放入5个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?6. 题目六:有36个不同的球,要放入10个相同的盒子中,至少有一个盒子里至少有几个球?## 三、应用题目7. 题目七:一个学校有365名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?8. 题目八:一个图书馆有1000本书,要将它们平均分配给10个书架,每个书架至少有100本书,那么至少有一个书架上至少有多少本书?9. 题目九:有50个不同的球,要放入4个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?## 四、拓展题目10. 题目十:一个班级有40名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?11. 题目十一:有31个不同的球,要放入4个相同的盒子中,至少有一个盒子里至少有几个球?12. 题目十二:一个篮子里有200个鸡蛋,需要将它们分成5组,每组至少有几个鸡蛋?## 五、挑战题目13. 题目十三:有49个不同的球,要放入7个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?14. 题目十四:一个学校有400名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?15. 题目十五:有56个不同的球,要放入8个相同的盒子中,至少有一个盒子里至少有几个球?解题提示:抽屉原理,又称鸽巢原理,是数学中的一个基本概念,它指出如果有更多的物品(鸽子)需要放入较少的容器(巢穴)中,那么至少有一个容器必须包含多于一个的物品。
抽屉原理公式及例题
抽屉原理公式及例题
抽屉原则一:如果把n+1个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体;例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体;
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=n/m +1个物体:当n不能被m整除时;
②k=n/m个物体:当n能被m整除时;
理解知识点:表示不超过X的最大整数;
键问题:构造物体和抽屉;也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算;
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球
解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求;
例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数
解:点数为1A、2、3、4、5、6、7、8、9、10、11J、12Q、13K的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同;这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同;。
抽屉原理典型习题
抽屉原理规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1;若除数为零,则“答案”为商抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。
抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。
一、基础训练。
1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少有______个苹果。
98÷10=9 (8)2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有_______只鸽子。
1000÷50=203、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出______个苹果。
17÷8=2 (1)4、从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。
25÷(4)=6 (1)二、拓展训练。
1、六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。
王老师说的对吗?为什么(49-3)÷15=3 (1)86,,87,88,89,90,91,92,93,94,95,96,97,98,99,100十五个数2、从1、2、3……,100这100个数中任意挑出51个数来,证明这51个数中,一定有(1)2个数互质任一个奇数都可以和偶数成互质数50个偶数,任意挑出51个数来必会有奇数与偶数(2)有两个数的差是50(1,51)(2,52)(3,53)……(49,99)(50,100)50组若取51个每组可取1个共50个,另一个任意取一个,就能组成差是5051÷50=1 (1)3、圆周上有2000个点,在其上任意地标上0、1、2……、1999(每一点只标一个数,不同的点标上不同的数),求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999.(0+1999)*2000÷2=19990001999000÷2000*3=4、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号中至少有四个信号完全相同。
抽屉原理的例题
例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.证明:把颜两种色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色.例2:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。
证明:至少有三个科学家通信时讨论的是同一个问题。
解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。
设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。
若这6位中有两位之间也讨论甲问题,则结论成立。
否则他们6位只讨论乙、丙两问题。
这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。
若C,D,E中有两人也讨论乙问题,则结论也就成立了。
否则,他们间只讨论丙问题,这样结论也成立。
例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
分析与解答我们用题目中的15个偶数制造8个抽屉:此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。
现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。
例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。
分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。
抽屉原理原理及典型例题
常见题型(1)——找最不利情况
例1-2. 一副扑克牌有54张,至少抽取( )张扑克牌,方 能使其中至少有两张牌有相同点数。(大小鬼不相同)
解: “至少抽取()张扑克牌”,最不利的情况是尽可能 让每次取出的点数都不相同,最多一共可以取 1,2,3,……,9,10,J,Q,K,小鬼,大鬼,15张不一样点数的牌, 那么当取第16张时,一定会与之前的某一张点数相同。答案 16。
常见题型(2)——排列组合问题
例2-2.新年晚会上,老师让每位同学从一个装有许多玻璃球 的口袋中摸2个球,这些球给人的手感相同,只有红、黄、 白、蓝、绿之分,结果发现总有2个人取的球颜色相同。由 此可知,参加取球的至少有( )人。
解:摸出2个球,两球颜色组合一共有15种。
(红、红),(黄、黄),(白、白),(蓝、蓝),(绿、绿),
抽屉原理
基本概念
• 将多于n个苹果任意放到n个抽屉里,那么至 少有一个抽屉中的苹果个数不少于2个。
• 将多于m*n个苹果任意放到n个抽屉中,那么 至 少 有 一 个 抽 屉 中 的 苹 果 的 件 数 不 少 于 m+1 。
• 将无穷多个苹果任意放到n个抽屉中,那么至 少有一个抽屉中有无穷多个苹果。(很少用)
最不利的情况下,51个数中有33个元素在第三组,那么剩下的18个数分到第 一、二组内,那么至少有9个数在同一组。所以这9个数的最大公约数为2或3或它 们的倍数,显然大于1。
常见题型(3)——数列问题
例3-4.有49个小孩,每人胸前有一个号码,号码从1到49各 不相同。现在请你挑选若干个小孩,排成一个圆圈,使任何 相邻的两个小孩的号码数的乘积小于100,那么你最多能挑 选出多少个孩子?
抽屉原理十个例题
抽屉原理十个例题抽屉原理是一种数学思维方法,它可以帮助我们快速解决问题。
抽屉原理可以帮助我们把复杂的问题分解为若干个小问题,从而更容易找到问题的解决方案。
抽屉原理也叫“集合分割法”,它是一种将大问题分解为小问题的思维方式。
这种思维方式可以帮助我们在解决复杂的问题时,不断进行问题的分解,从而得出最终的解决方案。
下面我们将介绍抽屉原理十个例题。
1. 假设有50个水果,其中25个苹果,15个梨子,10个橙子,要求把这些水果放到三个盒子里,使每个盒子中的水果数量尽可能相近。
这个问题可以用抽屉原理来解决。
首先,我们把50个水果分成三组,每组17个,其中一组17个苹果,一组17个梨子,一组16个橙子和1个苹果。
然后,把每组水果放到一个盒子里,就可以把50个水果放到三个盒子里,使每个盒子中的水果数量尽可能相近。
2. 有100个卡片,其中50张是红色的,30张是蓝色的,20张是绿色的,要求把这100张卡片放到五个盒子里,使每个盒子中的卡片数量尽可能相近。
这个问题也可以用抽屉原理来解决。
首先,我们把100张卡片分成五组,每组20张,其中一组20张红色卡片,一组20张蓝色卡片,一组20张绿色卡片,一组19张红色卡片和1张蓝色卡片,一组19张蓝色卡片和1张绿色卡片。
然后,把每组卡片放到一个盒子里,就可以把100张卡片放到五个盒子里,使每个盒子中的卡片数量尽可能相近。
3. 有120个正方形,其中60个是黑色的,40个是白色的,20个是灰色的,要求把这120个正方形放到三个盒子里,使每个盒子中的正方形数量尽可能相近。
这道题也可以用抽屉原理来解决。
首先,我们把120个正方形分成三组,每组40个,其中一组40个黑色正方形,一组40个白色正方形,一组39个灰色正方形和1个黑色正方形。
然后,把每组正方形放到一个盒子里,就可以把120个正方形放到三个盒子里,使每个盒子中的正方形数量尽可能相近。
4. 假设有60个珠子,其中30个红色的,20个黄色的,10个绿色的,要求把这60个珠子放到三个盒子里,使每个盒子中的珠子数量尽可能相近。
抽屉原理练习题
抽屉原理练习题1、某班有个小书架,40个同学能够任意借阅,小书架上至少要有多少本书,才能保证至少有一个同学能借到两本或两本以上的书?2、有黑色、白色、黄色的筷子各8根,混杂放在一起,黑暗中想从这些筷子之中取出颜色不同的两双筷子,至少要取出多少根才能保证达到要求?3、一副扑克牌(大王、小王除外)有四种花色,每种花色有13张,从中任意抽牌,最少要抽几张,才能保证有四张牌是同一张花色的?4、在从1开始的10个奇数中任取6个,一定有两个数的和是20。
5、在任意的10人中,至少有两个人,他们在这10个人中理解的人数相等?6、一副扑克牌有54张,至少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?7、某班有49个学生,最大的12岁,最小的9岁,是否一定有两个学生,他们是同年同月出生的?8、某校五年级学生共有380人,年龄最大的与年龄最小的相差不到1岁,我们不用去查看学生的出生日期,就可断定在这380个学生中至少有两个是同年同月同日出生的,你知道为什么吗?9、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证有两根筷子是同色的?(2)至少拿几根,才能保证有两双同色的筷子?为什么?10、任意4个自然数,其中至少有两个数的差是3的倍数,这是为什么?11、从任意3个整数中,一定能够找到两个。
使得它们的和是一个偶数,这是为什么?12、从任意的5个整数中,一定能够找到3个数,使这3个数的和是3的倍数,这是为什么?13、从1到50的自然数中,任取27个数,其中必有两个数的和等于52,这是为什么?14、在100米的路段上栽树,至少要栽多少棵树,才能保证至少有两棵树之间的距离小于10米?(两端各栽一棵)15、从1~10这10个数中,任取多少个数,才能保证这些数中一定能找到两个数,使其中的一个数是另一个数的倍数?16、任意取多少自然数,才能保证至少有两个自然数的差是7的倍数?17、有尺寸、规格相同的6种颜色的袜子各20只,混装在箱内,从箱内至少取出多少只袜子才能保证有3双袜子?18、把135块饼干分给16个小朋友,若每个小朋有至少分得一块饼干,那么不管怎么分,一定会有两个小朋友分得的饼干数目相同,这是为什么?19、下列图中画了3行9列共27个小方格,将每一个小方格涂上红色或蓝色,请你想一想,为什么不管如何涂色,其中必定能够找到两列,它们的涂色方式相同?20、学校买来历史、文艺、科普三种图书若干本,每个同学从中任意借两本,那么至少要多少名学生一起来借书,其中才一定有两人所借的图书种类相同?21、(1)从1到100的自然数中,任取52个数,其中必有两个数的和为102.(2)从1到100的所有奇数中,任取27个不同的数,其中必有两个数的和等于102 ,请说明理由。
抽屉原理十个例题
抽屉原理十个例题
1. 一张桌子上有8个抽屉,每个抽屉里都放着相同的颜色的袜子。
根据抽屉原理,至少有两个抽屉里放着相同的数量的袜子。
2. 一本书架上有12本书,每本书的厚度不同。
根据抽屉原理,至少存在两本书的厚度相同。
3. 一辆公交车上共有30个座位,并且每个座位只能坐一个人。
根据抽屉原理,至少有两个座位上坐着相同数量的人。
4. 有10个人参加一个比赛,每个人的年龄都不相同。
根据抽
屉原理,至少有两个人的年龄相差不超过3岁。
5. 一家饭店里供应了12种不同的菜肴。
根据抽屉原理,至少
有两种菜肴的售价相同。
6. 某班级有32名学生,每个学生都有自己的出生月份。
根据
抽屉原理,至少有两名学生的出生月份相同。
7. 一个购物网站上有100种不同的商品,每种商品的价格都不同。
根据抽屉原理,至少有两种商品的价格相同。
8. 一辆公交车上共有50个座位,并且每个座位只能坐一个人。
根据抽屉原理,至少有两个座位上坐着相同的性别。
9. 在一个花园里有20棵不同种类的花树。
根据抽屉原理,至
少有两棵花树的花朵颜色相同。
10. 在一张桌子上有6只袜子,都是黑色的。
根据抽屉原理,至少有两只袜子的长度相同。
抽屉原理习题(含答案)
抽屉原理习题讲解1.一个篮球运动员在15分钟内将球投进篮圈20次,证明总有某一分钟他至少投进两次.2.有黑、白、黄筷子各8只,不用眼睛看,任意地取出筷子来,使得至少有两双筷子不同色,那么至少要取出多少只筷子才能做到?3.证明:在1,2,3,…,10这十个数中任取六个数,那么这六个数中总可以找到两个数,其中一个是另一个的倍数.4.证明:任意502个整数中,必有两个整数的和或差是998的倍数.5.任意写一个由数字1,2,3组成的30位数,从这30位数任意截取相邻三位,可得一个三位数,证明:在从各个不同位置上截得的三位数中至少有两个相等.6.证明:把任意10个自然数用适当的运算符号连接起来,运算的结果总能被1890整除. 7.七条直线两两相交,所得的角中至少有一个角小于26°.8.用2种颜色涂3行9列共27个小方格,证明:不论如何涂色,其中必至少有两列,它们的涂色方式相同.9.用2种颜色涂5×5共25个小方格,证明:必有一个四角同色的矩形出现.10.求证存在形如11…11的一个数,此数是1987的倍数.抽屉原理习题答案(苹果数总是比抽屉数少)1、平均分假设,每分钟投进一个,那么还有5个球没时间投,无论在哪个一分钟内投都能够使得这一分钟投进至少两球。
2、11只,最倒霉原则,先取出8只黄筷子,然后一黑一白,在任意取一只必能满足结果!3、首先找到5个数,任意数都不是其他数的倍数!可能是4、5、6、7、9或者5、6、7、8、9,这能是这两种组合,然后任意再挑一个,都会出现倍数关系。
3、另解:把1到10分成5个组{5,10}、{3,9}、{1,2,4,8}、{6}、{7}咱要从5个组里取6个数出来,必须从1个组里取2个数出来,而任意组拿出来的2个数都是倍数关系。
4、998=499*2=500+498,0-499这500个数,不能满足条件,任意拿到一个数加上或者减这500个数中的一个数,必然是998的倍数4、另解:每个整数被998除,余数必是0,1,2,…,997中的一个.把这998个余数制造为(0),(1,997),(2,996),…,(497,501),(498),(499),(500)共501个抽屉,把502个整数按被998除的余数大小分别放入上述抽屉,必有两数进入同一抽屉.若余数相同,那么它们的差是998的倍数,否则和为998的倍数.5、从30位数中截出个3位数来,这个三位数共有多少中情况呢?111,112,113。
小学数学抽屉原理题型训练例题+练习+作业带详细答案
小学数学抽屉原理题型训练例题+练习+作业带详细答案抽屉问题题型训练【例题1】、在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.【巩固】在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.小朋友从口袋中取出的两个球的颜色的组成只有以下3种可能:红红、黄黄、红黄,把这3种情况看作3个“抽屉”,把4位小朋友看作4只“苹果”,根据抽屉原理,必有两个小朋友取出的两个球的颜色完全一样.【例题2】学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗?每个小朋友都借2本有三种可能:数数,英英,数英.第4个小朋友无论借什么书,都可能是这三种情况中的一种,这样就有两个同学借的是同一类书,所以可以保证,至少有2位小朋友,他们所借阅的两本书属于同类.总结:此题如用简单乘法原理的话,有难度,因为涉及到简单加法原理,所以推荐使用列表法。
与之前不同的是,本题借阅的书只说了两本并没说其他要求,所以可以拿2本同样的书.【巩固】11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D四种;若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.【例题3】体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66÷9-7...3,7+1=8,即至少有8名同学所拿球的种类是一样的.【巩固】幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?根据题意列下表:有3个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同的.【例题4】红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?第二行第一行第五列第四列第三列第二列第一列用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:蓝蓝红蓝蓝红红红将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方格,即这两列的小方格中涂的颜色完全相同.【巩固】将每一个小方格涂上红色、黄色或蓝色.(每一列的三小格涂的颜色不相同),不论如何涂色,其中至少有两列,它们的涂色方式相同,你同意吗?这道题是例题的拓展提高,通过列举我们发现给这些方格涂色,要使每列的颜色不同,最多有6种不同的涂法,蓝黄红蓝黄红蓝黄红蓝黄红蓝黄红红黄蓝涂到第六列以后,就会跟前面的重复.所以不论如何涂色,其中至少有两列它们的涂色方式相同.【例题5】从2、4、6、8......50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?构造抽屉:(2,50),(4,48),(6,46),(8,44),...,(24,28),(26),共13种搭配,即13个抽屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应取出14个数.或者从小数入手考虑,2、4、6......26,当再取28时,与其中的一个去陪,总能找到一个数使这两个数之和为52.【巩固】证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.【例题6】从1,2,3,4,...100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。
抽屉原理十个例题及解答
抽屉原理十个例题及解答1. 鸽巢原理假设有10只鸽子,但只有9个巢。
根据抽屉原理,必然会有至少一个巢里有2只鸽子。
解答:根据鸽巢原理,至少有一个巢里有2只鸽子。
2. 生日相同在一个教室里,有30个学生。
根据抽屉原理,至少有两个学生生日相同。
解答:根据抽屉原理,在30个学生中至少有两个学生生日相同。
3. 手套颜色有9副黑色手套和8副白色手套,手套放在一个抽屉里。
如果你在黑暗中随机拿出两只手套,那么至少有一只手套是黑色的。
解答:根据抽屉原理,至少有一副手套是黑色的。
4. 扑克牌颜色一副扑克牌共有52张,其中有26张红桃牌。
根据抽屉原理,在任意抓取5张扑克牌的情况下,至少有两张牌是红桃牌。
解答:根据抽屉原理,至少有两张牌是红桃牌。
5. 课程选择一个学生需要在10门不同的课程中选择5门,其中至少有两门课程是相同的。
根据抽屉原理,不同的选课组合情况中至少有两个选课组合是相同的。
解答:根据抽屉原理,至少有两门课程是相同的。
6. 彩票中奖彩票有100个号码,其中只有1个号码中奖。
如果你购买10张彩票,那么至少有一张彩票中奖。
解答:根据抽屉原理,至少有一张彩票中奖。
7. 字母排列字母表中有26个字母,如果你随机选择4个字母,那么至少有两个字母是相同的。
解答:根据抽屉原理,至少有两个字母是相同的。
8. 物品盛放一个抽屉只能容纳5件物品。
如果有6件物品要放入抽屉,那么至少有两件物品会放在同一个抽屉里。
解答:根据抽屉原理,至少有两件物品会放在同一个抽屉里。
9. 邮票问题有10种不同面值的邮票,邮票的面值分别为1元、2元、3元…10元。
如果你随机选择6张邮票,那么至少有两张邮票的面值相同。
解答:根据抽屉原理,至少有两张邮票的面值相同。
10. 青蛙跳跃在一个长度为10米的地面上,一只青蛙每次跳1米或2米。
如果青蛙从起点开始跳,那么至少有一个点被跳过两次。
解答:根据抽屉原理,至少有一个点被跳过两次。
以上是抽屉原理的十个例题及解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8-2抽屉原理教学目标抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
知识点拨一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷= ,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼. 【解析】 在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的任意一个中,这样至少有一个鱼缸里面会放有两条金鱼.【巩固】 教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业 试说明:这5名学生中,至少有两个人在做同一科作业. 【解析】 将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业.【巩固】 年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗? 【解析】 先想一想,在这个问题中,把什么当作抽屉,一共有多少个抽屉?从题目可以看出,这道题显知识精讲然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【解析】属相共12个,把12个属相作为12个“抽屉”,13个同学按照自己的属相选择相应的“抽屉”,根据抽屉原理,一定有一个“抽屉”中有两个或两个以上同学,也就是说至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【解析】一年最多有366天,把366天看作366个“抽屉”,将367名学生看作367个“苹果”.这样,把367个苹果放进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有2名同学的生日相同.【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【解析】五种颜色最多只能涂5个不同颜色的面,因为正方体有6个面,还有一个面要选择这五种颜色中的任意一种来涂,不管这个面涂成哪种颜色,都会和前面有一个面颜色相同,这样就有两个面会被涂上相同的颜色.也可以把五种颜色作为5个“抽屉”,六个面作为六个物品,当把六个面随意放入五个抽屉时,根据抽屉原理,一定有一个抽屉中有两个或两个以上的面,也就是至少会有两个面涂色相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【解析】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为7303661364÷=,所以,至少有1+1=2(个)学生的生日是同一天.【巩固】试说明400人中至少有两个人的生日相同.【解析】将一年中的366天或365天视为366个或365个抽屉,400个人看作400个苹果,从最极端的情况考虑,即每个抽屉都放一个苹果,还有35个或34个苹果必然要放到有一个苹果的抽屉里,所以至少有一个抽屉有至少两个苹果,即至少有两人的生日相同.【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【解析】方法一:情况一:这三个小朋友,可能全部是男,那么必有两个小朋友都是男孩的说法是正确的;情况二:这三个小朋友,可能全部是女,那么必有两个小朋友都是女孩的说法是正确的;情况三:这三个小朋友,可能其中1男2女那么必有两个小朋友都是女孩说法是正确的;情况四:这三个小朋友,可能其中2男1女,那么必有两个小朋友都是男孩的说法是正确的.所以,三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩的说法是正确的;方法二:三个小朋友只有两种性别,所以至少有两个人的性别是相同的,所以必有两个小朋友都是男孩或者都是女孩.【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【解析】假设共有n个小朋友到公园游玩,我们把他们看作n个“苹果”,再把每个小朋友遇到的熟人数目看作“抽屉”,那么,n个小朋友每人遇到的熟人数目共有以下n种可能:0,1,2,……,n-个熟人,所以n-.其中0的意思是指这位小朋友没有遇到熟人;而每位小朋友最多遇见11共有n个“抽屉”.下面分两种情况来讨论:⑴如果在这n个小朋友中,有一些小朋友没有遇到任何熟人,这时其他小朋友最多只能遇上n-种可能:0,1,2,……,2n-.这样,“苹果”数(n个n-个熟人,这样熟人数目只有12小朋友)超过“抽屉”数(1n-种熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.⑵如果在这n个小朋友中,每位小朋友都至少遇到一个熟人,这样熟人数目只有1n-种可能:1,2,3,……,1n-种熟人数目),n-.这时,“苹果”数(n个小朋友)仍然超过“抽屉”数(1根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.总之,不管这n个小朋友各遇到多少熟人(包括没遇到熟人),必有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【解析】数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多.【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【解析】因为任何整数除以3,其余数只可能是0,1,2三种情形.我们将余数的这三种情形看成是三个“抽屉”.一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里.将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同(需要对学生利用余数性质进行解释:为什么余数相同,则差就能被整除).这两个数的差必能被3整除.【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【解析】想一想,不同的自然数被3除的余数有几类?在这道题中,把什么当作抽屉呢?把这四个连续的自然数分别除以3,其余数不外乎是0,1,2,把这3个不同的余数当作3个“抽屉”,把这4个连续的自然数按照被3除的余数,分别放入对应的3个“抽屉”中,根据抽屉原理,至少有两个自然数在同一个抽屉里,也就是说,至少有两个自然数除以3的余数相同.【例 6】 证明:任取8个自然数,必有两个数的差是7的倍数.【解析】 在与整除有关的问题中有这样的性质,如果两个整数a 、b ,它们除以自然数m 的余数相同,那么它们的差a b -是m 的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数.【巩固】 证明:任取6个自然数,必有两个数的差是5的倍数。
【解析】 把自然数按照除以5的余数分成5个剩余类,即5个抽屉.任取6个自然数,根据抽屉原理,至少有两个数属于同一剩余类,即这两个数除以5的余数相同,因此它们的差是5的倍数。
【巩固】 (第八届《小数报》数学竞赛决赛)将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的为第10类.(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请煎药说明理由;如果不一定,请举出一个反例. 【解析】 (1)不一定有.例如1、2、3、4、5、10这6个数中,任意两个数的和都不是10的倍数.(2)一定有.将第1类与第9类合并,第2类与第8类合并,第3类与第7类合并,第4类与第6类合并,制造出4个抽屉;把第5类、第10类分别看作1个抽屉,共6个抽屉.任意7个互不同类的自然数,放到这6个抽屉中,至少有1个抽屉里放2个数.因为7个数互不同类,所以后两个抽屉中每个都不可能放两个数.当两个互不同类的数放到前4个抽屉的任何一个里面时,它们的和一定是10的倍数.【巩固】 证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数. 【解析】 两位数除以11的余数有11种:0,1,2,3,4,5,6,7,8,9,10,按余数情况把所有两位数分成11种.12个不同的两位数放入11个抽屉,必定有至少2个数在同一个抽屉里,这2个数除以11的余数相同,两者的差一定能整除11.两个不同的两位数,差能被11整除,这个差也一定是两位数(如11,22……),并且个位与十位相同. 所以,任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.【例 7】 任给11个数,其中必有6个数,它们的和是6的倍数.【解析】 设这11个数为1a ,2a ,3a ,……,11a ,由5个数的结论可知,在1a ,2a ,3a ,4a ,5a 中必有3个数,其和为3的倍数,不妨设12313a a a k ++=;在4a ,5a ,6a ,7a ,8a 中必有3个数,其和为3的倍数,不妨设45623a a a k ++=;在7a ,8a ,9a ,10a ,11a 中必有3个数,其和为3的倍数,不妨设78933a a a k ++=.又在1k ,2k ,3k 中必有两个数的奇偶性相同,不妨设1k ,2k 的奇偶性相同,那么1233k k +是6的倍数,即1a ,2a ,3a ,4a ,5a ,6a 的和是6的倍数.【巩固】 在任意的五个自然数中,是否其中必有三个数的和是3的倍数?【解析】 至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2.因此这三个数之和能被3整除.综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数.【例 8】 任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和). 【解析】 把这2008个数先排成一行:1a ,2a ,3a ,……,2008a ,第1个数为1a ; 前2个数的和为12a a +; 前3个数的和为123a a a ++; ……前2008个数的和为122008a a a +++.如果这2008个和中有一个是2008的倍数,那么问题已经解决;如果这2008个和中没有2008的倍数,那么它们除以2008的余数只能为1,2,……,2007之一,根据抽屉原理,必有两个和除以2008的余数相同,那么它们的差(仍然是1a ,2a ,3a ,……,2008a 中若干个数的和)是2008的倍数.所以结论成立.【巩固】 20道复习题,小明在两周内做完,每天至少做一道题.证明:小明一定在连续的若干天内恰好做了7道题目. 【解析】 设小明第1天做了1a 道题,前2天共做了2a 道题,前3天共做了3a 道题,……,前14天共做了14a 道题.显然1420a =,而1a ~13a 都小于20.考虑1a ,2a ,3a ,……,14a 及17a +,27a +,37a +,……,147a +这28个数,它们都不超过27.根据抽屉原理,这28个数中必有两个数相等.由于1a ,2a ,3a ,……,14a 互不相等,17a +,27a +,37a +,……,147a +也互不相等,因而这两个相等的数只能一个在前一组,另一个在后一组中,即有:7j i a a =+,所以7j i a a -=.这表明从第1i +天到第j 天,小明恰好做了7道题.【例 9】 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.【解析】19964499÷=,下面证明可以找到1个各位数字都是1的自然数,它是499的倍数. 取500个数:1,11,111,……,111……1(500个1).用499去除这500个数,得到500个余数1a ,2a ,3a ,…,500a .由于余数只能取0,1,2,…,498这499个值,所以根据抽屉原则,必有2个余数是相同的,这2个数的差就是499的倍数,差的前若干位是1,后若干位是0:11…100…0.又499和10是互质的,所以它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,这是1996的倍数.【巩固】 任意给定一个正整数n ,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数. 【解析】 考虑如下1n +个数:7,77,777,……,777n 位,1777n +位,这1n +个数除以n 的余数只能为0,1,2,……,1n -中之一,共n 种情况,根据抽屉原理,其中必有两个数除以n 的余数相同,不妨设为777p 位和777q 位(p q >),那么()777777777000p q p q q --=位位位位是n 的倍数,所以n 乘以适当的整数,可以得到形式为()777000p q q -位位的数,即由0和7组成的数.【例 10】 求证:对于任意的8个自然数,一定能从中找到6个数a ,b ,c ,d ,e ,f ,使得()()()a b c d e f ---是105的倍数. 【解析】 105357=⨯⨯.我们可以写出下列数字谜()()()a b c d e f 使其结果为105的倍数,那么我们的思路是使第一个括号里是7的倍数,第二个括号里是5的倍数,第三个括号里是3的倍数,那么对于如果六个数字里有7的倍数,那么第一个括号里直接做乘法即可,如果没有7的倍数,那么我们做如下抽屉: {除以7的余数是1或者是6} {除以7的余数是2或者是5} {除以7的余数是3或者是4}那么六个数字肯定有两个数字在同一个抽屉里,那么这两个数如果余数相同,做减法就可以得到7的倍数,如果余数不同,做加法就可以得到7的倍数.这样剩下的4个数中,同理可得后面的括号里也可以组合出5和3的倍数.于是本题可以证明.【巩固】 (2008年中国台湾小学数学竞赛决赛(一)在100张卡片上不重复地编上1~100,至少要随意抽出几张卡片才能保证所抽出的卡片上的数之乘积可被12整除?【解析】 21223=⨯,因为3的倍数有100333⎡⎤=⎢⎥⎣⎦个,所以不是3的倍数的数一共有1003367-=(个),抽取这67个数无法保证乘积是3的倍数,但是如果抽取68个数,则必定存在一个数是3的倍数,又因为奇数只有50个,所以抽取的偶数至少有18个,可以保证乘积是4的倍数,从而可以保证乘积是12的倍数。