GS8321ZV18E-166I中文资料

合集下载

GS8640Z18GT-167中文资料

GS8640Z18GT-167中文资料

GS8640Z18/36T-300/250/200/16772Mb Pipelined and Flow ThroughSynchronous NBT SRAM 300 MHz –167 MHz 2.5 V or 3.3 V V DD 2.5 V or 3.3 V I/O100-Pin TQFP Commercial Temp Industrial Temp Features• NBT (No Bus Turn Around) functionality allows zero wait read-write-read bus utilization; Fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs• 2.5 V or 3.3 V +10%/–10% core power supply • 2.5 V or 3.3 V I/O supply• User-configurable Pipeline and Flow Through mode • LBO pin for Linear or Interleave Burst mode• Pin compatible with 4Mb, 9Mb, 18Mb and 36Mb devices • Byte write operation (9-bit Bytes)• 3 chip enable signals for easy depth expansion • ZZ Pin for automatic power-down• JEDEC-standard 100-lead TQFP package• RoHS-compliant 100-lead TQFP package availableFunctional DescriptionThe GS8640Z18/36T is a 72Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.Because it is a synchronous device, address, data inputs, and read/ write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable (ZZ) and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.The GS8640Z18/36T may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, meaning that in addition to the rising edge triggered registers that capture input signals, the deviceincorporates a rising-edge-triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.The GS8640Z18/36T is implemented with GSI's highperformance CMOS technology and is available in a JEDEC-standard 100-pin TQFP package.Parameter Synopsis-300-250-200-167Unit Pipeline 3-1-1-1t KQ tCycle 2.33.3 2.54.0 3.05.0 3.56.0ns ns (x18)Curr (x32/x36)480410350305mA Flow Through 2-1-1-1t KQ tCycle 5.55.5 6.56.57.57.58.08.0ns ns (x18)Curr (x32/x36)330280250240mA*All GSI Technology packages are at least 5/6 RoHS compliant.Packages listed with the additional “G” designator are 6/6 RoHS compliant.807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B FT V DD V DD V SS DQ B DQ B V DDQ V SS DQ B DQ B DQP BV SS V DDQ V DDQ V SS DQ A DQ A V SS V DDQ DQ A DQ A V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0N C N C V S SV D DA A A A A A A AA A E 1E 2 N C N C B BB AE 3C K W C K E VD DV S SG A D V A A A AA 2M x 18Top View DQP A A NC NC NC NC NC NC NC NCNC NC NC NC NC NC NCNC NC 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS8640Z18/36T-300/250/200/167GS8640Z18T Pinout807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ C DQ C V SS V DDQ DQ C DQ C FT V DD V DD V SS DQ D DQ D V DDQ V SS DQ D DQ D DQ D V SS V DDQ V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0N C N C V S SV D DA A A A A A A AA A E 1E 2 B DB CB BB AE 3C K W C K E VD DV S SG A D V A A A AA 1M x 36Top View DQB DQP B DQ B DQ B DQ B DQ A DQ A DQ A DQ A DQP ADQ C DQ C DQ C DQ D DQ D DQ D DQP DDQ C DQP C 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS8640Z18/36T-300/250/200/167GS8640Z36T PinoutTQFP Pin DescriptionsSymbolTypeDescriptionA 0, A 1In Burst Address Inputs; Preload the burst counterA In Address Inputs CK In Clock Input SignalB A In Byte Write signal for data inputs DQ A1-DQ A9; active low B B In Byte Write signal for data inputs DQ B1-DQ B9; active low BC In Byte Write signal for data inputs DQ C1-DQ C9; active low BD In Byte Write signal for data inputs DQ D1-DQ D9; active lowW In Write Enable; active low E 1In Chip Enable; active lowE 2In Chip Enable; Active High. For self decoded depth expansion E 3In Chip Enable; Active Low. For self decoded depth expansionG In Output Enable; active lowADV In Advance/Load; Burst address counter control pinCKE In Clock Input Buffer Enable; active low DQ A I/O Byte A Data Input and Output pins DQ B I/O Byte B Data Input and Output pins DQ C I/O Byte C Data Input and Output pins DQ D I/O Byte D Data Input and Output pins ZZ In Power down control; active high FT In Pipeline/Flow Through Mode Control; active lowLBO In Linear Burst Order; active lowV DD In Core power supplyV SS In GroundV DDQ In Output driver power supplyNC—No ConnectGS8640Z18/36T-300/250/200/167KS A 1S A 0B u r s t Co u nt e rL B OA D VM e m o r y A r r a yE 3E 2E 1GWB DB CB BB AC KC K ED QF TD Q a –D Q nKS A 1’S A 0’D QM a t c hW r i t e A d d r e s sR e g i s t e r 2W r i t e A d d r e s sR e g i s t e r 1W r i t e D a t aR e g i s t e r 2W r i t e D a t aR e g i s t e r 1KKKKKKS e n s e A m p sW r i t e D r i v e r sR e a d , W r i t e a n dD a t a C o h e r e n c yC o n t r o l L o g i cF TA 0–A nGS8640Z18/36T-300/250/200/167GS8640Z18/36 NBT SRAM Functional Block DiagramGS8640Z18/36T-300/250/200/167Functional DetailsClockingDeassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.Pipeline Mode Read and Write OperationsAll inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E 1, E 2 and E 3). Deassertion of any one of the Enable inputs will deactivate the device. Function W B A B B B C B D Read H X X X X Write Byte “a”L L H H H Write Byte “b”L H L H H Write Byte “c”L H H L H Write Byte “d”L H H H L Write all Bytes L L L L L Write Abort/NOPLHHHHRead operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted Low, all three chip enables (E 1, E 2, and E 3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.Write operation occurs when the RAM is selected, CKE is active, and the Write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (B A , B B , B C, & B D ) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock.Flow Through Mode Read and Write OperationsOperation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode.Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.Synchronous Truth TableOperationType Address CK CKE ADV W Bx E 1E 2E 3G ZZDQNotesRead Cycle, Begin Burst R External L-H L L H X L H L L L Q Read Cycle, Continue Burst B Next L-H L H X X X X X L L Q 1,10NOP/Read, Begin Burst R External L-H L L H X L H L H L High-Z 2Dummy Read, Continue Burst B Next L-H L H X X X X X H L High-Z 1,2,10Write Cycle, Begin Burst W External L-H L L L L L H L X L D 3Write Cycle, Continue Burst B Next L-H L H X L X X X X L D1,3,10Write Abort, Continue Burst B Next L-H L H X H X X X X L High-Z 1,2,3,10Deselect Cycle, Power Down D None L-H L L X X H X X X L High-Z Deselect Cycle, Power Down D None L-H L L X X X X H X L High-Z Deselect Cycle, Power Down D None L-H L L X X X L X X L High-Z Deselect Cycle D None L-H L L L H L H L X L High-Z 1Deselect Cycle, Continue DNone L-H L H X X X X X X L High-Z 1Sleep ModeNone X X X X X X X X X H High-Z Clock Edge Ignore, StallCurrentL-HHXXXXXXXL-4Notes:1.Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-lect cycle is executed first.2.Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the Wpin is sampled low but no Byte Write pins are active so no write operation is performed.3.G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off duringwrite cycles.4.If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the buswill remain in High Z.5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Writesignals are Low6.All inputs, except G and ZZ must meet setup and hold times of rising clock edge.7.Wait states can be inserted by setting CKE high.8.This device contains circuitry that ensures all outputs are in High Z during power-up.9. A 2-bit burst counter is incorporated.10.The address counter is incriminated for all Burst continue cycles.GS8640Z18/36T-300/250/200/167GS8640Z18/36T-300/250/200/167DeselectNew ReadNew WriteBurst ReadBurst WriteWRBRBWDDBBWRD BWRDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B and D represent input commandcodes ,as indicated in the Synchronous Truth Table.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline and Flow Through Read/Write Control State DiagramWRPipeline and Flow Through Read Write Control State DiagramGS8640Z18/36T-300/250/200/167IntermediateIntermediateIntermediateIntermediateIntermediateIntermediateHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)TransitionƒInput Command CodeKeyTransitionIntermediate State (N+1)Notes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateIntermediate ƒn n+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline Mode Data I/O State DiagramNext StateStatePipeline Mode Data I/O State DiagramGS8640Z18/36T-300/250/200/167High Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for: Pipeline and Flow Through Read Write Control State DiagramFlow Through Mode Data I/O State DiagramGS8640Z18/36T-300/250/200/167Burst CyclesAlthough NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.Burst OrderThe burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have beenaccessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details.Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down Control ZZ L or NC Active H Standby, I DD = I SB Single/Dual Cycle Deselect Control SCD L Dual Cycle Deselect H or NC Single Cycle Deselect FLXDrive Output Impedance ControlZQ L High Drive (Low Impedance)H or NC Low Drive (High Impedance)9th Bit EnablePEL Activate DQPx I/Os (x18/x3672 mode)H or NCDeactivate DQPx I/Os (x16/x3272 mode)Note:There is a are pull-up devices on the ZQ, SCD, and FT pins and a pull-down device on the ZZ pin, so those this input pins can be unconnected and the chip will operate in the default states as specified in the above tables.Note:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100GS8640Z18/36T-300/250/200/167Burst Counter SequencesBPR 1999.05.18GS8640Z18/36T-300/250/200/167Sleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by it’s internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after 2 cycles of wake up time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a deselect or read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramtZZRtZZHtZZStKLtKHtKCCKZZDesigning for CompatibilityThe GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal found on Pin 14. Not all vendors offer this option, however most mark Pin 14 as V DD or V DDQ on pipelined parts and V SS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets.Absolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage in V DDQ Pins –0.5 to 4.6V V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125oCGS8640Z18/36T-300/250/200/167Note:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage RangesParameterSymbolMin.Typ.Max.UnitNotes3.3 V Supply Voltage V DD3 3.0 3.3 3.6V 2.5 V Supply Voltage V DD2 2.3 2.5 2.7V 3.3 V V DDQ I/O Supply Voltage V DDQ3 3.0 3.3 3.6V 2.5 V V DDQ I/O Supply VoltageV DDQ22.32.52.7VNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS8640Z18/36T-300/250/200/167V DDQ3 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 2.0—V DD + 0.3V 1V DD Input Low Voltage V IL –0.3—0.8V 1V DDQ I/O Input High Voltage V IHQ 2.0—V DDQ + 0.3V 1,3V DDQ I/O Input Low VoltageV ILQ–0.3—0.8V1,3Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.V DDQ2 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low Voltage V IL –0.3—0.3*V DD V 1V DDQ I/O Input High Voltage V IHQ 0.6*V DD —V DDQ + 0.3V 1,3V DDQ I/O Input Low VoltageV ILQ–0.3—0.3*V DDV1,3Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS8640Z18/36T-300/250/200/16720% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DD ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFNote:These parameters are sample tested.AC Test ConditionsParameterConditionsInput high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DDQ /2Output reference levelV DDQ /2Output loadFig. 1Notes:1.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table.DQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig Capacitance(T A = 25= 2.5 V)DC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –2 uA 2 uA ZZInput CurrentI IN1V DD ≥ V IN ≥ V IH 0 V ≤ V IN ≤ V IH–1 uA –1 uA 1 uA 100 uA Output Leakage Current (x36/x72)I OL Output Disable, V OUT = 0 to V DD –1 uA 1 uA Output Leakage Current (x18)I OL Output Disable, V OUT = 0 to V DD –1 uA 1 uA Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V 1.7 V —Output High Voltage V OH3I OH = –8 mA, V DDQ = 3.135 V2.4 V —Output Low VoltageV OLI OL = 8 mA—0.4 VGS8640Z18/36T-300/250/200/167Operating CurrentsParameterTest ConditionsModeSymbol-300-250-200-167Unit0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40to 85°C 0 to 70°C –40to 85°C Operating CurrentDevice Selected; All other inputs ≥V IH o r ≤ V IL Output open(x32/x36)Pipeline I DD I DDQ 4206044060360503805031040330402703529035mA Flow Through I DD I DDQ 3003032030255252752523020250202202024020mA (x18)PipelineI DD I DDQ 3703039030315253352527020290202402026020mA Flow Through I DD I DDQ 2701529015230152501520515225151951521515mA Standby Current ZZ ≥ V DD – 0.2 V —PipelineI SB 100120100120100120100120mA Flow Through I SB 100120100120100120100120mA Deselect CurrentDevice Deselected; All other inputs ≥ V IH or ≤ V IL—Pipeline I DD 150165140155130146125140mA Flow ThroughI DD135150125140120135120135mAGS8640Z18/36T-300/250/200/167Notes:1.I DD and I DDQ apply to any combination of V DD3, V DD2, V DDQ3, and V DDQ2 operation.2.All parameters listed are worst case scenario.AC Electrical CharacteristicsParameter Symbol -300-250-200-167Unit Min Max MinMax MinMax MinMax PipelineClock Cycle Time tKC 3.3— 4.0— 5.0— 6.0—ns Clock to Output ValidtKQ — 2.3— 2.5— 3.0— 3.5ns Clock to Output Invalid tKQX 1.5— 1.5— 1.5— 1.5—ns Clock to Output in Low-ZtLZ 1 1.5— 1.5— 1.5— 1.5—ns Setup time tS 1.1— 1.2— 1.4— 1.5—ns Hold time tH 0.1—0.2—0.4—0.5—ns Flow ThroughClock Cycle Time tKC 5.5— 6.5—7.5—8.0—ns Clock to Output ValidtKQ — 5.5— 6.5—7.5—8.0ns Clock to Output Invalid tKQX 3.0— 3.0— 3.0— 3.0—ns Clock to Output in Low-ZtLZ 1 3.0— 3.0— 3.0— 3.0—ns Setup time tS 1.5— 1.5— 1.5— 1.5—ns Hold time tH 0.5—0.5—0.5—0.5—ns Clock HIGH Time tKH 1.0— 1.3— 1.3— 1.3—ns Clock LOW Time tKL 1.2— 1.5— 1.5— 1.5—ns Clock to Output inHigh-Z tHZ 1 1.5 2.3 1.5 2.5 1.5 3.0 1.5 3.0ns G to Output Valid tOE — 2.3— 2.5— 3.0— 3.5ns G to output in Low-Z tOLZ 10—0—0—0—ns G to output in High-Z tOHZ 1— 2.3— 2.5— 3.0— 3.0ns ZZ setup time tZZS 25—5—5—5—ns ZZ hold time tZZH 21—1—1—1—ns ZZ recoverytZZR20—20—20—20—nsGS8640Z18/36T-300/250/200/167Notes:1.These parameters are sampled and are not 100% tested.2.ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and holdtimes as specified above.GS8640Z18/36T-300/250/200/167Pipeline Mode Timing (NBT)Write ARead BSuspend Read CWrite Dwriteno-opRead EDeselecttHZtKQXtKQtLZ tH tStHtStH tStH tStH tStH tStH tStH tStKCtKLtKHA B C D ED(A)D(D)Q(E)Q(B)Q(C)CKA CKEE*ADVWBnDQGS8640Z18/36T-300/250/200/167Flow Through Mode Timing (NBT)Write AWrite BWrite B+1Read CCont Read D Write E Read F Write GD(A)D(B)D(B+1)Q(C)Q(D)D(E)Q(F)D(G)tOLZ tOEtOHZtKQXtKQtLZtHZtKQX tKQ tLZtHtStHtStHtStHtStHtStHtStHtStKCtKLtKHABCDEFG*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1CKCKEEADVWBnA0–AnDQGGS8640Z18/36T-300/250/200/167TQFP Package Drawing (Package T) D1DE1EPin 1be cLL1A2A1YθNotes:1.All dimensions are in millimeters (mm).2.Package width and length do not include mold protrusion.SymbolDescriptionMin.Nom.MaxA1Standoff 0.050.100.15A2Body Thickness 1.35 1.40 1.45b Lead Width 0.200.300.40c Lead Thickness 0.09—0.20D Terminal Dimension 21.922.022.1D1Package Body 19.920.020.1E Terminal Dimension 15.916.016.1E1Package Body 13.914.014.1e Lead Pitch —0.65—L Foot Length 0.450.600.75L1Lead Length —1.00—Y Coplanarity 0.10θLead Angle0°—7°GS8640Z18/36T-300/250/200/167Ordering Information —GSI NBT Synchronous SRAM OrgPart Number1Type2PackageSpeed 3(M Hz/ns)T A 4Status4M x 18GS8640Z18T-300NBT Pipeline/Flow Through TQFP 300/5.5C 4M x 18GS8640Z18T-250NBT Pipeline/Flow Through TQFP 250/6.5C 4M x 18GS8640Z18T-200NBT Pipeline/Flow Through TQFP 200/7.5C 4M x 18GS8640Z18T-167NBT Pipeline/Flow Through TQFP 167/8C 2M x 36GS8640Z36T-300NBT Pipeline/Flow Through TQFP 300/5.5C 2M x 36GS8640Z36T-250NBT Pipeline/Flow Through TQFP 250/6.5C 2M x 36GS8640Z36T-200NBT Pipeline/Flow Through TQFP 200/7.5C 2M x 36GS8640Z36T-167NBT Pipeline/Flow Through TQFP 167/8C 4M x 18GS8640Z18T-300I NBT Pipeline/Flow Through TQFP 300/5.5I 4M x 18GS8640Z18T-250I NBT Pipeline/Flow Through TQFP 250/6.5I 4M x 18GS8640Z18T-200I NBT Pipeline/Flow Through TQFP 200/7.5I 4M x 18GS8640Z18T-167I NBT Pipeline/Flow Through TQFP 167/8I 2M x 36GS8640Z36T-300I NBT Pipeline/Flow Through TQFP 300/5.5I 2M x 36GS8640Z36T-250I NBT Pipeline/Flow Through TQFP 250/6.5I 2M x 36GS8640Z36T-200I NBT Pipeline/Flow Through TQFP 200/7.5I 2M x 36GS8640Z36T-167I NBT Pipeline/Flow Through TQFP167/8I 4M x 18GS8640Z18GT-300NBT Pipeline/Flow Through RoHS-compliant TQFP 300/5.5C 4M x 18GS8640Z18GT-250NBT Pipeline/Flow Through RoHS-compliant TQFP 250/6.5C 4M x 18GS8640Z18GT-200NBT Pipeline/Flow Through RoHS-compliant TQFP 200/7.5C 4M x 18GS8640Z18GT-167NBT Pipeline/Flow Through RoHS-compliant TQFP 167/8C 2M x 36GS8640Z36GT-300NBT Pipeline/Flow Through RoHS-compliant TQFP 300/5.5C 2M x 36GS8640Z36GT-250NBT Pipeline/Flow ThroughRoHS-compliant TQFP250/6.5CNotes:1.Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8640Z36T-167IT.2.All GSI Technology packages are at least 5/6 RoHS compliant. Packages listed with the additional “G” designator are 6/6 RoHS compliant.3.The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Eachdevice is Pipeline/Flow Through mode-selectable by the user.4.T A = C = Commercial Temperature Range. T A = I = Industrial Temperature Range.5.GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which arecovered in this data sheet. See the GSI Technology web site () for a complete listing of current offerings。

GS8662R18GE-250I资料

GS8662R18GE-250I资料

GS8662R08/09/18/36E-333/300/250/200/16772Mb SigmaCIO DDR-II Burst of 4 SRAM333 MHz–167 MHz1.8 V V DD1.8 V and 1.5 V I/O165-Bump BGA Commercial Temp Industrial Temp Features• Simultaneous Read and Write SigmaCIO™ Interface • Common I/O bus• JEDEC-standard pinout and package • Double Data Rate interface• Byte Write (x36 and x18) and Nybble Write (x8) function • Burst of 4 Read and Write• 1.8 V +100/–100 mV core power supply • 1.5 V or 1.8 V HSTL Interface• Pipelined read operation with self-timed Late Write • Fully coherent read and write pipelines• ZQ pin for programmable output drive strength • IEEE 1149.1 JTAG-compliant Boundary Scan• Pin-compatible with present 9Mb, 18Mb, 36Mb and future 144Mb devices• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package • RoHS-compliant 165-bump BGA package availableSigmaCIO ™ Family OverviewThe GS8662R08/09/18/36E are built in compliance with the SigmaCIO DDR-II SRAM pinout standard for Common I/O synchronous SRAMs. They are 75,497,472-bit (72Mb)SRAMs. The GS8662R08/09/18/36E SigmaCIO SRAMs are just one element in a family of low power, low voltage HSTL I/O SRAMs designed to operate at the speeds needed toimplement economical high performance networking systems.Clocking and Addressing SchemesThe GS8662R08/09/18/36E SigmaCIO DDR-II SRAMs are synchronous devices. They employ two input register clock inputs, K and K. K and K are independent single-ended clock inputs, not differential inputs to a single differential clock input buffer. The device also allows the user to manipulate theoutput register clock inputs quasi independently with the C and C clock inputs. C and C are also independent single-endedclock inputs, not differential inputs. If the C clocks are tied high, the K clocks are routed internally to fire the output registers instead.Common I/O x36 and x18 SigmaCIO DDR-II B4 RAMs always transfer data in four packets. When a new address is loaded, A0 and A1 preset an internal 2 bit linear addresscounter. The counter increments by 1 for each beat of a burst of four data transfer. The counter always wraps to 00 after reaching 11, no matter where it starts.Common I/O x8 SigmaCIO DDR-II B4 RAMs always transfer data in four packets. When a new address is loaded, the LSBs are internally set to 0 for the first read or write transfer, and incremented by 1 for the next 3 transfers. Because the LSBs are tied off internally, the address field of a x8 SigmaCIO DDR-II B4 RAM is always two address pins less than the advertised index depth (e.g., the 4M x 18 has a 1024K addressable index).Parameter Synopsis-333-300-250-200-167tKHKH 3.0 ns 3.3 ns 4.0 ns 5.0 ns 6.0 ns tKHQV0.45 ns0.45 ns0.45 ns0.45 ns0.5 ns165-Bump, 15 mm x 17 mm BGA 1 mm Bump Pitch, 11 x 15 Bump ArrayBottom View2M x 36 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ MCL/SA (144Mb)SA R/W BW2K BW1LD SA SA CQ B NC DQ27DQ18SA BW3K BW0SA NC NC DQ8C NC NC DQ28V SS SA SA0SA1V SS NC DQ17DQ7D NC DQ29DQ19V SS V SS V SS V SS V SS NC NC DQ16E NC NC DQ20 V DDQ V SS V SS V SS V DDQ NC DQ15DQ6F NC DQ30DQ21 V DDQ V DD V SS V DD V DDQ NC NC DQ5G NC DQ31DQ22 V DDQ V DD V SS V DD V DDQ NC NC DQ14H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC DQ32 V DDQ V DD V SS V DD V DDQ NC DQ13DQ4K NC NC DQ23V DDQ V DD V SS V DD V DDQ NC DQ12DQ3L NC DQ33DQ24 V DDQ V SS V SS V SS V DDQ NC NC DQ2M NC NC DQ34 V SS V SS V SS V SS V SS NC DQ11DQ1N NC DQ35DQ25 V SS SA SA SA V SS NC NC DQ10P NC NC DQ26SA SA C SA SA NC DQ9DQ0RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17; BW2 controls writes to DQ18:DQ26; BW3 controls writes toDQ27:DQ352.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/1674M x 18 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ SA SA R/W BW1K NC LD SA SA CQ B NC DQ9NC SA NC K BW0SA NC NC DQ8C NC NC NC V SS SA SA0SA1V SS NC DQ7NC D NC NC DQ10V SS V SS V SS V SS V SS NC NC NC E NC NC DQ11 V DDQ V SS V SS V SS V DDQ NC NC DQ6F NC DQ12NC V DDQ V DD V SS V DD V DDQ NC NC DQ5G NC NC DQ13 V DDQ V DD V SS V DD V DDQ NC NC NC H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC NC V DDQ V DD V SS V DD V DDQ NC DQ4NC K NC NC DQ14V DDQ V DD V SS V DD V DDQ NC NC DQ3L NC DQ15NC V DDQ V SS V SS V SS V DDQ NC NC DQ2M NC NC NC V SS V SS V SS V SS V SS NC DQ1NC N NC NC DQ16 V SS SA SA SA V SS NC NC NC P NC NC DQ17SA SA C SA SA NC NC DQ0RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ172.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/1678M x 9 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ SA SA R/W NC K NC LD SA SA CQ B NC NC NC SA NC K BW SA NC NC DQ4C NC NC NC V SS SA NC SA V SS NC NC NC D NC NC NC V SS V SS V SS V SS V SS NC NC NC E NC NC DQ5 V DDQ V SS V SS V SS V DDQ NC NC DQ3F NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC G NC NC DQ6 V DDQ V DD V SS V DD V DDQ NC NC NC H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC NC V DDQ V DD V SS V DD V DDQ NC DQ2NC K NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC L NC DQ7NC V DDQ V SS V SS V SS V DDQ NC NC DQ1M NC NC NC V SS V SS V SS V SS V SS NC NC NC N NC NC NC V SS SA SA SA V SS NC NC NC P NC NC DQ8SA SA C SA SA NC NC DQ0RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 and SA1 are set to0 at the beginning of each access.2.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/1678M x 8 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ SA SA R/W NW1K NC LD SA SA CQ B NC NC NC SA NC K NW0SA NC NC DQ3C NC NC NC V SS SA NC SA V SS NC NC NC D NC NC NC V SS V SS V SS V SS V SS NC NC NC E NC NC DQ4 V DDQ V SS V SS V SS V DDQ NC NC DQ2F NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC G NC NC DQ5 V DDQ V DD V SS V DD V DDQ NC NC NC H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC NC V DDQ V DD V SS V DD V DDQ NC DQ1NC K NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC L NC DQ6NC V DDQ V SS V SS V SS V DDQ NC NC DQ0M NC NC NC V SS V SS V SS V SS V SS NC NC NC N NC NC NC V SS SA SA SA V SS NC NC NC P NC NC DQ7SA SA C SA SA NC NC NC RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 and SA1 are set to0 at the beginning of each access.2.NW0 controls writes to DQ0:DQ3; NW1 controls writes to DQ4:DQ73.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/167Pin Description TableSymbolDescriptionTypeCommentsSA Synchronous Address InputsInput —NC No Connect ——R Synchronous Read Input Active High W Synchronous Write Input Active Low BW0–BW3Synchronous Byte Writes Input Active Low x18/x36 only NW0–NW1Nybble Write Control Pin Input Active Low x8 only LD Synchronous Load PinInput Active Low K Input Clock Input Active High K Input Clock Input Active Low C Output Clock Input Active High C Output Clock Input Active LowTMS Test Mode Select Input —TDI Test Data Input Input —TCK Test Clock Input Input —TDO Test Data Output Output —V REF HSTL Input Reference Voltage Input —ZQ Output Impedance Matching InputInput —MCL Must Connect Low——DQ Data I/O Input/Output Three State Doff Disable DLL when low Input Active LowCQ Output Echo Clock Output —CQ Output Echo Clock Output —V DD Power Supply Supply 1.8 V Nominal V DDQ Isolated Output Buffer Supply Supply 1.5 V NominalV SSPower Supply: GroundSupply—GS8662R08/09/18/36E-333/300/250/200/167Note:NC = Not Connected to die or any other pinGS8662R08/09/18/36E-333/300/250/200/167BackgroundCommon I/O SRAMs, from a system architecture point of view, are attractive in read dominated or block transfer applications. Therefore, the SigmaCIO DDR-II SRAM interface and truth table are optimized for burst reads and writes. Common I/O SRAMs are unpopular in applications where alternating reads and writes are needed because bus turnaround delays can cut high speed Common I/O SRAM data bandwidth in half.Burst OperationsRead and write operations are “burst” operations. In every case where a read or write command is accepted by the SRAM, it will respond by issuing or accepting four beats of data, executing a data transfer on subsequent rising edges of K and K#, as illustrated in the timing diagrams. It is not possible to stop a burst once it starts. Four beats of data are always transferred. This means that it is possible to load new addresses every other K clock cycle. Addresses can be loaded less often, if intervening deselect cycles are inserted.Deselect CyclesChip Deselect commands are pipelined to the same degree as read commands. This means that if a deselect command is applied to the SRAM on the next cycle after a read command captured by the SRAM, the device will complete the four beat read data transfer and then execute the deselect command, returning the output drivers to high-Z.A high on the LD# pin prevents the RAM from loading read or write commandinputs and puts the RAM into deselect mode as soon as it completes all outstanding burst transfer operations.SigmaCIO DDR-II B4 SRAM Read CyclesThe status of the Address, LD# and R/W# pins are evaluated on the rising edge of K. Because the device executes a four beat burst transfer inresponse to a read command, if the previous command captured was a read or write command, the Address, LD# and R/W# pins are ignored. If the previous command captured was a deselect, the control pin status is checked.The SRAM executes pipelined reads. The read command is clocked into the SRAM by a rising edge of K. After the next rising edge of K, the SRAM produces data out in response to the next rising edge of C# (or the next rising edge of K#, if C and C# are tied high). The second beat of data is transferred on the next rising edge of C, then on the next rising edge of C# and finally on the next rising edge of C, for a total of four transfers per address load.SigmaCIO DDR-II B4 SRAM Write CyclesThe status of the Address, LD# and R/W# pins are evaluated on the rising edge of K. Because the device executes a four beat burst transfer in response to a write command, if the previous command captured was a read or write command, the Address, LD# and R/ W# pins are ignored at the next rising edge of K. If the previous command captured was a deselect, the control pin status is checked.The SRAM executes “late write” data transfers. Data in is due at the device inputs on the rising edge of K following the rising edge of K clock used to clock in the write command and the write address. To complete the remaining three beats of the burst of four write transfer the SRAM captures data in on the next rising edge of K#, the following rising edge of K and finally on the next rising edge of K#, for a total of four transfers per address load.GS8662R08/09/18/36E-333/300/250/200/167Power-Up Sequence for SigmaQuad-II SRAMsSigmaQuad-II SRAMs must be powered-up in a specific sequence in order to avoid undefined operations.Power-Up Sequence1. Power-up and maintain Doff at low state.1a.Apply V DD .1b. Apply V DDQ .1c. Apply V REF (may also be applied at the same time as V DDQ ).2. After power is achieved and clocks (K, K, C, C) are stablized, change Doff to high.3. An additional 1024 clock cycles are required to lock the DLL after it has been enabled.Note:If you want to tie Doff high with an unstable clock, you must stop the clock for a minimum of 30 seconds to reset the DLL after the clocks become stablized.DLL Constraints•The DLL synchronizes to either K or C clock. These clocks should have low phase jitter (t KCVar on page 20).•The DLL cannot operate at a frequency lower than 119 MHz.•If the incoming clock is not stablized when DLL is enabled, the DLL may lock on the wrong frequency and cause undefined errors or failures during the initial stage.Power-Up Sequence (Doff controlled)Power UP IntervalUnstable Clocking IntervalDLL Locking Interval (1024 Cycles)Normal OperationKKV DDV DDQV REFDoffPower-Up Sequence (Doff tied High)Power UP IntervalUnstable Clocking IntervalStop Clock IntervalDLL Locking Interval (1024 Cycles)Normal OperationKKV DDV DDQV REFDoff30ns MinNote:If the frequency is changed, DLL reset is required. After reset, a minimum of 1024 cycles is required for DLL lock.GS8662R08/09/18/36E-333/300/250/200/167Special FunctionsByte Write and Nybble Write ControlByte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low during the data in sample times in a write sequence.Each write enable command and write address loaded into the RAM provides the base address for a 4 beat data transfer. The x18 version of the RAM, for example, may write 72 bits in association with each address loaded. Any 9-bit byte may be masked in any write sequence.Nybble Write (4-bit) write control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble Write Enable” and “NBx” may be substituted in all the discussion above.Example x18 RAM Write Sequence using Byte Write EnablesData In SampleTimeBW0BW1D0–D8D9–D17Beat 101Data In Don’t CareBeat 210Don’t Care Data InBeat 300Data In Data InBeat 410Don’t Care Data InResulting Write OperationByte 1 D0–D8Byte 2D9–D17Byte 1D0–D8Byte 2D9–D17Byte 1D0–D8Byte 2D9–D17Byte 1D0–D8Byte 2D9–D17Written Unchanged Unchanged Written Written Written Unchanged Written Beat 1Beat 2Beat 3Beat 4Output Register ControlSigmaCIO DDR-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K and K clocks. If the C and C clock inputs isare tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to function as a conventional pipelined read SRAM.A K R/W LDA 0–A nKBank 0Bank 1Bank 2Bank 3A KLD A K LD A K LD R/W R/W R/W DQDQDQ DQCC CCDQ 1–C R/WLD 0LD 1LD 2LD 3Note:For simplicity BWn (or NWn), K, and C are not shown.CQ CQ CQ CQ CQGS8662R08/09/18/36E-333/300/250/200/167Example Four Bank Depth Expansion SchematicGS8662R08/09/18/36E-333/300/250/200/167FLXDrive-II Output Driver Impedance ControlHSTL I/O SigmaCIO DDR-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to V SS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be 5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is between 150Ω and 300Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver isimplemented with discrete binary weighted impedance steps. Updates of pull-down drive impedance occur whenever a driver is producing a “1” or is High-Z. Pull-up drive impedance is updated when a driver is producing a “0” or is High-Z.Common I/O SigmaCIO DDR-II B4 SRAM Truth TableK nLDR/WDQOperationA + 0A + 1A + 2A + 3↑1X Hi-Z Hi-Z Hi-Z Hi-Z Deselect ↑00D@K n+1D@K n+1D@K n+2D@K n+2Write ↑1Q@K n+1or C n+1Q@K n+2or C n+2Q@K n+2or C n+2Q@K n+3or C n+3ReadNote:Q is controlled by K clocks if C clocks are not used.B4 Byte Write Clock Truth TableBW BW BW BW Current OperationD D D D K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)K ↑(t n )K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)TTTTWriteDx stored if BWn = 0 in all four data transfers D0D2D3D4T F F F WriteDx stored if BWn = 0 in 1st data transfer only D0X X XF T F F WriteDx stored if BWn = 0 in 2nd data transfer only X D1X XF F T F WriteDx stored if BWn = 0 in 3rd data transfer only X X D2XF F F T WriteDx stored if BWn = 0 in 4th data transfer only X X X D3F F F F Write AbortNo Dx stored in any of the four data transfersX X X XNotes:1.“1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.2.If one or more BWn = 0, then BW = “T”, else BW = “F”.GS8662R08/09/18/36E-333/300/250/200/167*Assuming stable conditions, the RAM can achieve optimum impedance within 1024 cycles.B4 Nybble Write Clock Truth TableNW NW NW NW Current OperationD D D D K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)K ↑(t n )K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)TTTTWriteDx stored if NWn = 0 in all four data transfers D0D2D3D4T F F F WriteDx stored if NWn = 0 in 1st data transfer only D0X X XF T F F WriteDx stored if NWn = 0 in 2nd data transfer only X D1X XF F T F WriteDx stored if NWn = 0 in 3rd data transfer only X X D2XF F F T WriteDx stored if NWn = 0 in 4th data transfer only X X X D3F F F F Write AbortNo Dx stored in any of the four data transfersX X X XNotes:1.“1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.2.If one or more NWn = 0, then NW = “T”, else NW = “F”.GS8662R08/09/18/36E-333/300/250/200/167x36 Byte Write Enable (BWn) Truth TableBW0BW1BW2BW3D0–D8D9–D17D18–D26D27–D351111Don’t Care Don’t Care Don’t Care Don’t Care 0111Data In Don’t Care Don’t Care Don’t Care 1011Don’t Care Data In Don’t Care Don’t Care 0011Data In Data In Don’t Care Don’t Care 1101Don’t Care Don’t Care Data In Don’t Care 0101Data In Don’t Care Data In Don’t Care 1001Don’t Care Data In Data In Don’t Care 0001Data In Data In Data In Don’t Care 1110Don’t Care Don’t Care Don’t Care Data In 0110Data In Don’t Care Don’t Care Data In 1010Don’t Care Data In Don’t Care Data In 0010Data In Data In Don’t Care Data In 1100Don’t Care Don’t Care Data In Data In 0100Data In Don’t Care Data In Data In 1000Don’t Care Data In Data In Data In 0Data InData InData InData Inx18 Byte Write Enable (BWn) Truth Table BW0BW1D0–D8D9–D1711Don’t Care Don’t Care 01Data In Don’t Care 10Don’t Care Data In 0Data InData Inx8 Nybble Write Enable (NWn) Truth Table NW0NW1D0–D3D4–D711Don’t Care Don’t Care 01Data In Don’t Care 10Don’t Care Data In 0Data InData InGS8662R08/09/18/36E-333/300/250/200/167GS8662R08/09/18/36E-333/300/250/200/167B4 State DiagramPower-UpNOPLoad New AddressDDR Read DDR WriteLOADREAD WRITE LOADLOADLOADLOADNotes:1.The internal burst address counter is a 4-bit linear counter (i.e., when first address is A0, next internal burst address is A0+1).2.“READ” refers to read active status with R/W = High, “WRITE” refers to write inactive status with R/W = Low.3.“LOAD” refers to read new address active status with LD = Low, “LOAD” refers to read new address inactive status with LD = High.LOAD Increment Read Address Increment Write AddressAlwaysAlwaysREADWRITEAbsolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 2.9V V DDQ Voltage in V DDQ Pins –0.5 to V DD V V REF Voltage in V REF Pins –0.5 to V DDQV V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 2.9 V max.)V V IN Voltage on Other Input Pins –0.5 to V DDQ +0.5 (≤ 2.9 V max.)V I IN Input Current on Any Pin +/–100mA dc I OUT Output Current on Any I/O Pin +/–100mA dcT J Maximum Junction Temperature125o C T STGStorage Temperature–55 to 125oCNote:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect reliability of this component.GS8662R08/09/18/36E-333/300/250/200/167Recommended Operating ConditionsPower SuppliesParameterSymbolMin.Typ.Max.UnitSupply Voltage V DD 1.7 1.8 1.9V I/O Supply Voltage V DDQ 1.7 1.8 1.9V Reference VoltageV REF0.68—0.95VNotes:1.Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 1.4 V ≤ V DDQ ≤ 1.6 V (i.e., 1.5 V I/O)and 1.7 V ≤ V DDQ ≤ 1.95 V (i.e., 1.8 V I/O) and quoted at whichever condition is worst case.2.The power supplies need to be powered up simultaneously or in the following sequence: V DD , V DDQ , V REF , followed by signal inputs. Thepower down sequence must be the reverse. V DDQ must not exceed V DD ..Operating TemperatureParameterSymbolMin.Typ.Max.UnitAmbient Temperature (Commercial Range Versions)T A 02570°C Ambient Temperature (Industrial Range Versions)T A–402585°CGS8662R08/09/18/36E-333/300/250/200/167HSTL I/O DC Input CharacteristicsParameterSymbolMinMaxUnitsNotesDC Input Logic High V IH (dc)V REF + 0.10V DD + 0.3 V V 1DC Input Logic LowV IL (dc)–0.3 VV REF – 0.10V1Notes:patible with both 1.8 V and 1.5 V I/O drivers2.These are DC test criteria. DC design criteria is V REF ± 50 mV. The AC V IH /V IL levels are defined separately for measuring timing parame-ters.3.V IL (Min) DC = –0.3 V, V IL (Min) AC = –1.5 V (pulse width ≤ 3 ns).4.V IH (Max) DC = V DDQ + 0.3 V, V IH (Max) AC = V DDQ + 0.85 V (pulse width ≤ 3 ns).HSTL I/O AC Input CharacteristicsParameterSymbolMinMaxUnitsNotesAC Input Logic High V IH (ac)V REF + 0.20—V 3,4AC Input Logic LowV IL (ac)—V REF – 0.20V 3,4V REF Peak to Peak AC VoltageV REF (ac)—5% V REF (DC)V1Notes:1.The peak to peak AC component superimposed on V REF may not exceed 5% of the DC component of V REF .2.To guarantee AC characteristics, V IH ,V IL , Trise, and Tfall of inputs and clocks must be within 10% of each other.3.For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.20% tKHKHV SS – 1.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKHKHV DD + 1.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DDParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Output Capacitance C OUT V OUT = 0 V67pF Clock CapacitanceC CLK—56pFNote:This parameter is sample tested.GS8662R08/09/18/36E-333/300/250/200/167AC Test ConditionsParameterConditionsInput high level V DDQ Input low level 0 V Max. input slew rate 2 V/ns Input reference level V DDQ /2Output reference levelV DDQ /2Note:Test conditions as specified with output loading as shown unless otherwise noted.DQVT = V DDQ /250ΩRQ = 250 Ω (HSTL I/O)V REF = 0.75 VAC Test Load DiagramInput and Output Leakage CharacteristicsParameterSymbolTest ConditionsMin.MaxNotesInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –2 uA 2 uA DoffI INDOFF V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL –100 uA –2 uA 2 uA 2 uA Output Leakage CurrentI OLOutput Disable,V OUT = 0 to V DDQ–2 uA2 uA(T A = 25= 3.3 V)GS8662R08/09/18/36E-333/300/250/200/167Programmable Impedance HSTL Output Driver DC Electrical CharacteristicsParameterSymbolMin.Max.UnitsNotesOutput High Voltage V OH1 V DDQ /2V DDQ V 1, 3Output Low Voltage V OL1 Vss V DDQ /2V 2, 3Output High Voltage V OH2 V DDQ – 0.2V DDQ V 4, 5Output Low VoltageV OL2Vss0.2V4, 6Notes:1. I OH = (V DDQ /2) / (RQ/5) +/– 15% @ V OH = V DDQ /2 (for: 175Ω ≤ RQ ≤ 350Ω).2. I OL = (V DDQ /2) / (RQ/5) +/– 15% @ V OL = V DDQ /2 (for: 175Ω ≤ RQ ≤ 350Ω).3.Parameter tested with RQ = 250Ω and V DDQ = 1.5 V or 1.8 V4.Minimum Impedance mode, ZQ = V SS5.I OH = –1.0 mA6.I OL = 1.0 mAOperating CurrentsParameterSymbolTest Conditions-333-300-250-200-167Notes0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40 to 85°C Operating Current (x36):DDR I DD V DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBDTBDTBDTBDTBDTBDTBDTBDTBDTBD2, 3Operating Current (x18):DDR I DD V DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 3Operating Current (x9):DDR I DD V DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 3Operating Current (x8):DDR I DDV DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 3Standby Current (NOP):DDRI SB1Device deselected,I OUT = 0 mA, f = Max,All Inputs ≤ 0.2 V or ≥ V DD – 0.2 VTBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 4Notes:1.Power measured with output pins floating.2.Minimum cycle, I OUT = 0 mA3.Operating current is calculated with 50% read cycles and 50% write cycles.4.Standby Current is only after all pending read and write burst operations are completed.GS8662R08/09/18/36E-333/300/250/200/167AC Electrical CharacteristicsParameterSymbol-333-300-250-200-167UnitsN o t e sMin Max Min Max Min Max Min Max Min MaxClockK, K Clock Cycle Time C, C Clock Cycle Time t KHKH t CHCH 3.0 3.5 3.3 4.2 4.0 6.3 5.07.88 6.08.4ns tTKC Variablet KCVar —0.2—0.2—0.2—0.2—0.2ns 5K, K Clock High Pulse Width C, C Clock High Pulse Width t KHKL t CHCL 1.2— 1.32— 1.6— 2.0— 2.4—ns K, K Clock Low Pulse Width C, C Clock Low Pulse Width t KLKH t CLCH 1.2— 1.32— 1.6— 2.0— 2.4—ns K to K High C to C Hight KHKH 1.35— 1.49— 1.8— 2.2— 2.7—ns K, K Clock High to C, C Clock High t KHCH 0 1.30 1.450 1.80 2.30 2.8ns DLL Lock Time t KCLock 1024—1024—1024—1024—1024—cycle 6K Static to DLL resett KCReset 30—30—30—30—30—nsOutput TimesK, K Clock High to Data Output Valid C, C Clock High to Data Output Valid t KHQV t CHQV —0.45—0.45—0.45—0.45—0.5ns 3K, K Clock High to Data Output Hold C, C Clock High to Data Output Hold t KHQX t CHQX –0.45—–0.45—–0.45—–0.45—–0.5—ns 3K, K Clock High to Echo Clock Valid C, C Clock High to Echo Clock Valid t KHCQV t CHCQV —0.45—0.45—0.45—0.45—0.5ns K, K Clock High to Echo Clock Hold C, C Clock High to Echo Clock Hold t KHCQX t CHCQX –0.45—–0.45—–0.45—–0.45—–0.5—ns CQ, CQ High Output Valid t CQHQV —0.25—0.27—0.30—0.35—0.40ns 7CQ, CQ High Output Hold t CQHQX –0.25—–0.27—–0.30—–0.35—–0.40—ns 7K Clock High to Data Output High-Z C Clock High to Data Output High-Z t KHQZ t CHQZ —0.45—0.45—0.45—0.45—0.5ns 3K Clock High to Data Output Low-Z C Clock High to Data Output Low-Zt KHQX1t CHQX1–0.45—–0.45—–0.45—–0.45—–0.5—ns3Setup TimesAddress Input Setup Time t AVKH 0.4—0.4—0.5—0.6—0.7—ns Control Input Setup Time t IVKH 0.4—0.4—0.5—0.6—0.7—ns 2Data Input Setup Timet DVKH0.28—0.3—0.35—0.4—0.5—ns。

GS881Z36BGD-150V中文资料

GS881Z36BGD-150V中文资料

GS881Z18/32/36B(T/D)-xxxV9Mb Pipelined and Flow ThroughSynchronous NBT SRAM250 MHz–150 MHz 1.8 V or 2.5 V V DD 1.8 V or 2.5 V I/O100-Pin TQFP & 165-Bump BGA Commercial Temp Industrial Temp Features• User-configurable Pipeline and Flow Through mode• NBT (No Bus Turn Around) functionality allows zero wait read-write-read bus utilization• Fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs• IEEE 1149.1 JTAG-compatible Boundary Scan• On-chip write parity checking; even or odd selectable • 1.8 V or 2.5 V core power supply • 1.8 V or 2.5 V I/O supply• LBO pin for Linear or Interleave Burst mode • Pin-compatible with 2M, 4M, and 18M devices • Byte write operation (9-bit Bytes)• 3 chip enable signals for easy depth expansion • ZZ pin for automatic power-down • JEDEC-standard packages• RoHS-compliant 100-lead TQFP and 165-bump BGA packages availableFunctional DescriptionThe GS881Z18/32/36B(T/D)-xxxV is a 9Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.Because it is a synchronous device, address, data inputs, and read/ write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable, ZZ and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.The GS881Z18/32/36B(T/D)-xxxV may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edge-triggered registers that capture input signals, the device incorporates a rising-edge-triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.The GS881Z18/32/36B(T/D)-xxxV is implemented with GSI's high performance CMOS technology and is available inJEDEC-standard 100-pin TQFP and 165-bump BGA packages.Paramter Synopsis-250-200-150UnitPipeline 3-1-1-1KQ tCycle 4.0 5.0 6.7ns Curr (x18)Curr (x32/x36)200230170195140160mA mA Flow Through 2-1-1-1t KQ tCycle 5.55.5 6.56.57.57.5ns ns Curr (x18)Curr (x32/x36)160185140160128145mA mA807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B FT V DD NC V SS DQ B DQ B6V DD V SS DQ B DQ B DQP BV SS V DDQ V DDQ V SS DQ A DQ A V SS V DDQ DQ A DQ A V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0T M S T D I V S SV D DT D O T C K A A A A A A 1A A E 1E 2 N C N C B BB AE 3C K W C K E VD DV S SG A D V N C A A AA 512K x 18Top View DQP A A NC NC NC NC NC NC NC NCNC NC NC NC NC NC NCNC NC 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881Z18/32/36B(T/D)-xxxVGS881Z18BT-xxxV 100-Pin TQFP Pinout (Package T)807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ C DQ C V SS V DDQ DQ C DQ C FT V DD NC V SS DQ D DQ D2V DDQ V SS DQ D DQ D DQ D V SS V DDQ V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0T M S T D I V S SV D DT D O T C K A A A A A AA A E 1E 2 B DB CB BB AE 3C K W C K E VD DV S SG A D V N C A A AA 256K x 32Top View DQB NC DQ B DQ B DQ B DQ A DQ A DQ A DQ A NCDQ C DQ C DQ C DQ D DQ D DQ D NCDQ C NC 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881Z18/32/36B(T/D)-xxxVGS881Z32BT-xxxV 100-Pin TQFP Pinout (Package T)807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ C DQ C V SS V DDQ DQ C DQ C FT V DD NC V SS DQ D DQ D2V DDQ V SS DQ D DQ D DQ D V SS V DDQ V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0T M S T D I V S SV D DT D O T C K A A A A A AA A E 1E 2 B DB CB BB AE 3C K W C K E VD DV S SG A D V N C A A AA 256K x 36Top View DQB DQP B DQ B DQ B DQ B DQ A DQ A DQ A DQ A DQP ADQ C DQ C DQ C DQ D DQ D DQ D DQP DDQ C DQP C 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881Z18/32/36B(T/D)-xxxVGS881Z36BT-xxxV 100-Pin TQFP Pinout (Package T)100-Pin TQFP Pin DescriptionsSymbolTypeDescriptionA 0, A 1In Burst Address Inputs; Preload the burst counterA In Address Inputs CK In Clock Input SignalB A In Byte Write signal for data inputs DQ A1–DQ A9; active low B B In Byte Write signal for data inputs DQ B1–DQ B9; active low BC In Byte Write signal for data inputs DQ C1–DQ C9; active low BD In Byte Write signal for data inputs DQ D1–DQ D9; active lowW In Write Enable; active low E 1In Chip Enable; active lowE 2In Chip Enable—Active High. For self decoded depth expansion E 3In Chip Enable—Active Low. For self decoded depth expansionG In Output Enable; active lowADV In Advance/Load; Burst address counter control pinCKE In Clock Input Buffer Enable; active lowNC —No ConnectDQ A I/O Byte A Data Input and Output pins DQ B I/O Byte B Data Input and Output pins DQ C I/O Byte C Data Input and Output pins DQ D I/O Byte D Data Input and Output pins ZZ In Power down control; active high FT In Pipeline/Flow Through Mode Control; active lowLBO InLinear Burst Order; active low.TMS Scan Test Mode Select TDI Scan Test Data In TDO Scan Test Data Out TCK Scan Test Clock V DD In Core power supplyV SS In GroundV DDQInOutput driver power supplyGS881Z18/32/36B(T/D)-xxxVGS881Z18/32/36B(T/D)-xxxV165 Bump BGA—x18 Commom I/O—Top View 1234567891011A NC A E1BB NC E3CKE ADV A17A A A B NC A E2NC BA CK W G NC A NC B C NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQA C D NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA D E NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA E F NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA F G NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA G H FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC J K DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC K L DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC L M DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC M N DQB NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P RLBONCAATMSA0TCKAAAAR11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch(Package D)GS881Z18/32/36B(T/D)-xxxV165 Bump BGA—x32 Common I/O—Top View 1234567891011A NC A E1BC BB E3CKE ADV A17A NC A B NC A E2BD BA CK W G NC A NC B C NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC NC C D DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB D E DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB E F DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB F G DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB G H FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N NC NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P RLBONCAATMSA0TCKAAAAR11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch(Package D)GS881Z18/32/36B(T/D)-xxxV165 Bump BGA—x36 Common I/O—Top View 1234567891011A NC A E1BC BB E3CKE ADV A A NC A B NC A E2BD BA CK W G NC A NC B C DQPC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPB C D DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB D E DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB E F DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB F G DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB G H FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N DQPD NC V DDQ V SS NC NC NC V SS V DDQ NC DQPA N P NC NC A A TDI A1TDO A A A NC P RLBONCAATMSA0TCKAAAAR11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch(Package D)GS881Z18/32/36D-xxxV165-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsA I Address Inputs DQ A DQB DQC DQD I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active high CKE I Clock Enable; active low W I Write Enable; active low E 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active lowADV I Burst address counter advance enable; active highZZ I Sleep mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock MCH —Must Connect High DNU —Do Not Use V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyGS881Z18/32/36B(T/D)-xxxVK18S A 1S A 0Bu r s t C o u n t e rL B OA D VM e m o r y A r r a yGC KC K ED QF TN CN CD Q a –D Q nKS A 1’S A 0’D QM a t c hW r i t e A d d r e s sR e g i s t e r 2W r i t e A d d r e s sR e g i s t e r 1W r i t e D a t aR e g i s t e r 2W r i t e D a t aR e g i s t e r 1KKKKKKS e n s e A m p sW r i t e D r i v e r sR e a d , W r i t e a n dD a t a C o h e r e n c yC o n t r o l L o g i cD QKP a r i t y C h e c kF TA 0–A nE 3E 2E 1WB DB CB BB AGS881Z18/32/36B(T/D)-xxxVGS881Z18/32/36B(T/D)-xxxV NBT SRAM Functional Block DiagramGS881Z18/32/36B(T/D)-xxxVFunctional DetailsClockingDeassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.Pipeline Mode Read and Write OperationsAll inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E 1, E 2 and E 3). Deassertion of any one of the Enable inputs will deactivate the device. Function W B A B B B C B D Read H X X X X Write Byte “a”L L H H H Write Byte “b”L H L H H Write Byte “c”L H H L H Write Byte “d”L H H H L Write all Bytes L L L L L Write Abort/NOPLHHHHRead operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E 1, E 2, and E 3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.Write operation occurs when the RAM is selected, CKE is active and the write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (B A , B B , B C & B D ) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality, matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock.Flow Through Mode Read and Write OperationsOperation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode.Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.Synchronous Truth TableOperationType Address CK CKE ADV W Bx E 1E 2E 3G ZZDQNotesRead Cycle, Begin Burst R External L-H L L H X L H L L L Q Read Cycle, Continue Burst B Next L-H L H X X X X X L L Q 1,10NOP/Read, Begin Burst R External L-H L L H X L H L H L High-Z 2Dummy Read, Continue Burst B Next L-H L H X X X X X H L High-Z 1,2,10Write Cycle, Begin Burst W External L-H L L L L L H L X L D 3Write Cycle, Continue Burst B Next L-H L H X L X X X X L D1,3,10Write Abort, Continue Burst B Next L-H L H X H X X X X L High-Z 1,2,3,10Deselect Cycle, Power Down D None L-H L L X X H X X X L High-Z Deselect Cycle, Power Down D None L-H L L X X X X H X L High-Z Deselect Cycle, Power Down D None L-H L L X X X L X X L High-Z Deselect Cycle D None L-H L L L H L H L X L High-Z 1Deselect Cycle, Continue DNone L-H L H X X X X X X L High-Z 1Sleep ModeNone X X X X X X X X X H High-Z Clock Edge Ignore, StallCurrentL-HHXXXXXXXL-4Notes:1.Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-lect cycle is executed first.2.Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the Wpin is sampled low but no Byte Write pins are active so no write operation is performed.3.G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off duringwrite cycles.4.If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the buswill remain in High Z.5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Writesignals are Low6.All inputs, except G and ZZ must meet setup and hold times of rising clock edge.7.Wait states can be inserted by setting CKE high.8.This device contains circuitry that ensures all outputs are in High Z during power-up.9. A 2-bit burst counter is incorporated.10.The address counter is incriminated for all Burst continue cycles.GS881Z18/32/36B(T/D)-xxxVGS881Z18/32/36B(T/D)-xxxVDeselectNew ReadNew WriteBurst ReadBurst WriteWRBRBWDDBBWRD BWRDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input commandcodes as indicated in the Synchronous Truth Table.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipelined and Flow Through Read/Write Control State DiagramWRPipelined and Flow Through Read Write Control State DiagramGS881Z18/32/36B(T/D)-xxxVIntermediateIntermediateIntermediateIntermediateIntermediateIntermediateHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)TransitionƒInput Command CodeKeyTransitionIntermediate State (N+1)Notes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateIntermediate ƒn n+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline Mode Data I/O State DiagramNext StateStatePipeline Mode Data I/O State DiagramGS881Z18/32/36B(T/D)-xxxVFlow Through Mode Data I/O State Diagram High Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for: Pipeline and Flow through Read Write Control State DiagramGS881Z18/32/36B(T/D)-xxxVBurst CyclesAlthough NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.Burst OrderThe burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have beenaccessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details.Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down ControlZZL or NC Active HStandby, I DD = I SBNote:There is a pull-up device on the FT pin and a pull-down device on the ZZ pin, so this input pin can be unconnected and the chip will operate in the default states as specified in the above table.Note:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100Burst Counter SequencesBPR 1999.05.18GS881Z18/32/36B(T/D)-xxxVSleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by it’s internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramtZZRtZZHtZZStKLtKHtKCCKZZDesigning for CompatibilityThe GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipelinemode via the FT signal found on Pin 14. Not all vendors offer this option, however most mark Pin 14 as V DD or V DDQ on pipelined parts and V SS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets.Pin 66, a No Connect (NC) on GSI’s GS8160Z18/36 NBT SRAM, the Parity Error open drain output on GSI’s GS881Z18/36B NBT SRAM, is often marked as a power pin on other vendor’s NBT compatible SRAMs. Specifically, it is marked V DD or V DDQ on pipelined parts and V SS on flow through parts. Users of GSI NBT devices who are not actually using the ByteSafe™ parity feature may want to design the board site for the RAM with Pin 66 tied high through a 1k ohm resistor in Pipeline modeapplications or tied low in Flow Through mode applications in order to keep the option to use non-configurable devices open.Absolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage on V DDQ Pins –0.5 to V DDV V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125oCGS881Z18/32/36B(T/D)-xxxVNote:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage Ranges (1.8 V/2.5 V Version)ParameterSymbolMin.Typ.Max.UnitNotes1.8 V Supply Voltage V DD1 1.7 1.82.0V 2.5 V Supply Voltage V DD2 2.3 2.5 2.7V 1.8 V V DDQ I/O Supply Voltage V DDQ1 1.7 1.8V DD V 2.5 V V DDQ I/O Supply VoltageV DDQ22.32.5V DDVNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS881Z18/32/36B(T/D)-xxxVV DDQ2 & V DDQ1 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low VoltageV IL–0.3—0.3*V DDV1Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.20% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DD ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFNote:These parameters are sample tested.(T A = 25= 2.5 V)AC Test ConditionsParameterConditionsDQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceFigure 1Input high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 11.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. GS881Z18/32/36B(T/D)-xxxVDC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA FT, ZZ Input Current I IN V DD ≥ V IN ≥ 0 V –100 uA 100 uA Output Leakage CurrentI OLOutput Disable, V OUT = 0 to V DD–1 uA1 uADC Output Characteristics (1.8 V/2.5 V Version)ParameterSymbolTest ConditionsMinMax1.8 V Output High Voltage V OH1I OH = –4 mA, V DDQ = 1.6 V V DDQ – 0.4 V —2.5 V Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V1.7 V —1.8 V Output Low Voltage V OL1I OL = 4 mA —0.4 V2.5 V Output Low VoltageV OL2I OL = 8 mA—0.4 VGS881Z18/32/36B(T/D)-xxxVOperating CurrentsParameterTest ConditionsModeSymbol-250-200-150Unit0to 70°C–40 to 85°C0to 70°C –40to 85°C 0 to 70°C –40to 85°COperating CurrentDevice Selected; All other inputs ≥V IH o r ≤ V IL Output open(x32/x36)PipelineI DD I DDQ 200302203017025190251402016020mA Flow Through I DD I DDQ 160251802514020160201301515015mA (x18)PipelineI DD I DDQ 185152051515515175151301015010mA Flow ThroughI DD I DDQ 1451516515130101501012081408mA Standby Current ZZ ≥ V DD – 0.2 V —Pipeline I SB 405040504050mA Flow Through I SB 405040504050mA Deselect CurrentDevice Deselected; All other inputs ≥ V IH or ≤ V IL—PipelineI DD 859075806065mA Flow Through I DD606550555055mA1.I DD and I DDQ apply to any combination of V DD1, V DD2, V DDQ1, and V DDQ2 operation.2.All parameters listed are worst case scenario.。

832B中文资料

832B中文资料

ZC829, ZDC833, ZMV829, ZMDC830, ZV831 Series Device DescriptionA range of silicon varactor diodes for use in frequency control and filtering.Featuring closely controlled CV characteristics and high Q.Low reverse current ensures very low phase noise performance.Available in single or dual common cathode format in a wide rage of miniature surface mount packages.Features·Close tolerance C-V characteristics ·High tuning ratio ·Low I R (typically 200pA)·Excellent phase noise performance ·High Q·Range of miniature surface mount packagesApplications·VCXO and TCXO·Wireless communications ·Pagers ·Mobile radio*Where steeper CV slopes are required there is the 12V hyperabrupt range.ZC930, ZMV930, ZV930, ZV931 Series 830 seriesISSUE 6 - JANUARY 20021SILICON 28V HYPERABRUPT VARACTOR DIODES830 seriesISSUE 6 - JANUARY 20022PARTCapacitance (pF)V R =2V,f=1MHzMin Q V R =3V f=50MHzCapacitance RatioC 2/C 20at f=1MHzMIN.NOM.MAX.MIN.MAX.829A 7.388.29.02250 4.3 5.8829B 7.798.28.61250 4.3 5.8830A 9.010.011.0300 4.5 6.0830B 9.510.010.5300 4.5 6.0831A 13.515.016.5300 4.5 6.0831B 14.2515.015.75300 4.5 6.0832A 19.822.024.2200 5.0 6.5832B 20.922.023.1200 5.0 6.5833A 29.733.036.3200 5.0 6.5833B 31.3533.034.65200 5.0 6.5834A 42.347.051.7200 5.0 6.5834B 44.6547.049.35200 5.0 6.5835A 61.268.074.8100 5.0 6.5835B 64.668.071.4100 5.0 6.5836A 90.0100.0110.0100 5.0 6.5836B95.0100.0105.0100 5.06.5TUNING CHARACTERISTICS at Tamb = 25°CPARAMETER SYMBOLMAX UNIT Forward currentI F 200mA Power dissipation at T amb =25ЊC SOT23P tot 330mW Power dissipation at T amb =25ЊC SOD323P tot 330mW Power dissipation at T amb =25ЊC SOD523P tot250mW Operating and storage temperature range-55to +150ЊCABSOLUTE MAXIMUM RATINGSPARAMETERCONDITIONS MIN.TYP.MAX.UNIT Reverse breakdown voltage I R =10uA 25V Reverse voltage leakageV R =20V 0.220nA Temperature coefficient of capacitanceV R =3V,f =1MHz300400ppCm/ЊCELECTRICAL CHARACTERISTICS at Tamb = 25°C830 seriesTYPICAL CHARACTERISTICSISSUE 6 - JANUARY 20023830 seriesISSUE 6 - JANUARY 20024O R D E R C O D E S A N D P A R T M A R K I N GR E E L C O D ER E E L S I Z ET A P E W I D T HQ U A N T I T Y P E R R E E LT A7i n c h (180m m )8m m3000T C13i n c h (330m m )8m m 10000T A P E A N D R E E L I N F O R M A T I O NT h e o r d e r c o d e s a r e s h o w n a s T A w h i c h i s f o r 7i n c h r e e l s .F o r 13i n c h r e e l s s u b s t i t u t e T C i n p l a c e o f T A i n t h e o r d e r c o d e .ISSUE 6 - JANUARY 20025830 seriesSOT23 PACKAGE DIMENSIONSSOD323 PACKAGE DIMENSIONSZetex plcFields New Road ChaddertonOldham, OL9 8NP United KingdomTelephone (44) 161 622 4422Fax: (44) 161 622 4420Zetex GmbHStreitfeldstraße 19D-81673 München GermanyTelefon: (49) 89 45 49 49 0Fax: (49) 89 45 49 49 49Zetex Inc700 Veterans Memorial Hwy Hauppauge, NY11788USATelephone: (631) 360 2222Fax: (631) 360 8222Zetex (Asia) Ltd3701-04Metroplaza, Tower 1Hing Fong Road Kwai Fong Hong KongTelephone: (852) 26100 611Fax: (852) 24250 494These offices are supported by agents and distributors in major countries world-wide.This publication is issued to provide outline information only which (unless agreed by the Company in writing)may not be used,applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.The Company reserves the right to alter without notice the specification,design,price or conditions of supply of any product or service.For the latest product information,log on to©Zetex plc 2001830 series6ISSUE 6 - JANUARY 2002DIM MILLIMETRES MIN.MAX A ᎏ0.800A10.0000.100A20.6000.800b10.1600.300c 0.0800.220D 0.7000.900E 1.500 1.700E1 1.100 1.300L 0.2000.400L10.1700.230⍜1Њ4Њ10ЊSOD523 PACKAGE DIMENSIONSSOD323 PACKAGE DIMENSIONS。

GS864218B-200V资料

GS864218B-200V资料

PreliminaryGS864218/36/72(B/C)-xxxV4M x 18, 2M x 36, 1M x 7272Mb S/DCD Sync Burst SRAMs250 MHz –167 MHz 1.8 V or 2.5 V V DD 1.8 V or 2.5 V I/O119- & 209-Pin BGA Commercial Temp Industrial Temp Features• FT pin for user-configurable flow through or pipeline operation • Single/Dual Cycle Deselect selectable• IEEE 1149.1 JTAG-compatible Boundary Scan• ZQ mode pin for user-selectable high/low output drive • 1.8 V or 2.5 V core power supply • 1.8 V or 2.5 V I/O supply• LBO pin for Linear or Interleaved Burst mode• Internal input resistors on mode pins allow floating mode pins • Default to SCD x18/x36 Interleaved Pipeline mode • Byte Write (BW) and/or Global Write (GW) operation • Internal self-timed write cycle• Automatic power-down for portable applications • JEDEC-standard 119- and 209-bump BGA package• RoHS-compliant 119- and 209-bump BGA packages availableFunctional DescriptionApplicationsThe GS864218/36/72(B/C)-xxxV is a 75,497,472-bit high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support.ControlsAddresses, data I/Os, chip enable (E1), address burst control inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW, GW) are synchronous and are controlled by a positive-edge-triggered clock input (CK). Output enable (G) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either ADSP or ADSC inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by ADV. The burst address counter may be configured to count in either linear or interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance.Flow Through/Pipeline ReadsThe function of the Data Output register can be controlled by the user via the FT mode . Holding the FT mode pin low places the RAM in Flow Through mode, causing output data to bypass the Data Output Register. Holding FT high places the RAM inPipeline mode, activating the rising-edge-triggered Data Output Register.SCD and DCD Pipelined ReadsThe GS864218/36/72(B/C)-xxxV is a SCD (Single CycleDeselect) and DCD (Dual Cycle Deselect) pipelined synchronous SRAM. DCD SRAMs pipeline disable commands to the same degree as read commands. SCD SRAMs pipeline deselectcommands one stage less than read commands. SCD RAMs begin turning off their outputs immediately after the deselect command has been captured in the input registers. DCD RAMs hold the deselect command for one full cycle and then begin turning off their outputs just after the second rising edge of clock. The user may configure this SRAM for either mode of operation using the SCD mode input.Byte Write and Global WriteByte write operation is performed by using Byte Write enable (BW) input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the Byte Write control inputs.FLXDrive™The ZQ pin allows selection between high drive strength (ZQ low) for multi-drop bus applications and normal drive strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.Core and Interface VoltagesThe GS864218/36/72(B/C)-xxxV operates on a 1.8 V or 2.5 V power supply. All inputs are 1.8 V or 2.5 V compatible. Separate output power (V DDQ ) pins are used to decouple output noise from the internal circuits and are 1.8 V or 2.5 V compatible.Parameter Synopsis-250-200-167UnitPipeline 3-1-1-1KQ tCycle 4.0 5.0 6.0ns Curr (x18)Curr (x36)Curr (x72)340410520290350435260305380mA mA mA Flow Through 2-1-1-1t KQ tCycle 6.56.57.57.58.08.0ns ns Curr (x18)Curr (x36)Curr (x72)245280370220250315210240300mA mA mAGS864218/36/72(B/C)-xxxV209-Bump BGA—x72 Common I/O—Top View (Package C)1234567891011A DQ G DQ G A E2ADSP ADSC ADV E3A DQB DQ B AB DQ G DQ G BC BG NC BW A BB BF DQ B DQ B BC DQ G DQ G BH BD NC E1NC BE BA DQ B DQ B CD DQ G DQ G V SS NC NC G GW NC V SS DQ B DQ B DE DQP G DQP C V DDQ V DDQ V DD V DD V DD V DDQ V DDQ DQPF DQP B EF DQ C DQ C V SS V SS V SS ZQ V SS V SS V SS DQ F DQ F FG DQ C DQ C V DDQ V DDQ V DD MCH V DD V DDQ V DDQ DQ F DQ F GH DQ C DQ C V SS V SS V SS MCL V SS V SS V SS DQ F DQ F H J DQ C DQ C V DDQ V DDQ V DD MCL V DD V DDQ V DDQ DQ F DQ F J K NC NC CK NC V SS MCL V SS NC NC NC NC K L DQ H DQ H V DDQ V DDQ V DD FT V DD V DDQ V DDQ DQ A DQ A L M DQ H DQ H V SS V SS V SS MCL V SS V SS V SS DQ A DQ A M N DQ H DQ H V DDQ V DDQ V DD SCD V DD V DDQ V DDQ DQ A DQ A N P DQ H DQ H V SS V SS V SS ZZ V SS V SS V SS DQ A DQ A P R DQP D DQP H V DDQ V DDQ V DD V DD V DD V DDQ V DDQ DQP A DQP E R T DQ D DQ D V SS NC NC LBO NC NC V SS DQ E DQ E T U DQ D DQ D A A A A A A A DQ E DQ E U V DQ D DQ D A A A A1A A A DQ E DQ E V W DQ D DQ D TMS TDI A A0A TDO TCK DQ E DQ E W11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump PitchGS864218/36/72(B/C)-xxxVGS864272C-xxxV 209-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset Inputs.An IAddress InputsDQ A DQ B DQ C DQ D DQ E DQ F DQ G DQ H I/O Data Input and Output pinsB A , B B I Byte Write Enable for DQ A , DQ B I/Os; active low BC ,BD I Byte Write Enable for DQ C , DQ D I/Os; active low BE , BF , BG ,B HI Byte Write Enable for DQ E , DQ F , DQ G , DQ H I/Os; active lowNC —No ConnectCK I Clock Input Signal; active highGW I Global Write Enable—Writes all bytes; active lowE 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active lowADV I Burst address counter advance enable; active low ADSP, ADSCI Address Strobe (Processor, Cache Controller); active lowZZ I Sleep Mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowSCD I Single Cycle Deselect/Dual Cycle Deselect Mode ControlMCH IMust Connect High MCL Must Connect Low BW I Byte Enable; active lowZQ I FLXDrive Output Impedance Control(Low = Low Impedance [High Drive], High = High Impedance [Low Drive])TMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCKIScan Test ClockGS864218/36/72(B/C)-xxxVV DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyGS864272C-xxxV 209-Bump BGA Pin Description (Continued)SymbolTypeDescriptionGS864218/36/72(B/C)-xxxV119-Bump BGA—x36 Common I/O—Top View 1234567A V DDQ A A ADSP A A V DDQ A B NC A A ADSC A A NC B C NC A A V DD A A NC C D DQ DQP V SS ZQ V SS DQP B DQ B D E DQ DQ V SS E1V SS DQ B DQ B E F V DDQ DQ V SS G V SS DQ B V DDQ F G DQ DQ BC ADV BB DQ B DQ B G H DQ DQ V SS GW V SS DQ B DQ B H J V DDQ V DD NC V DD NC V DD V DDQ J K DQ D DQ D V SS CK V SS DQ A DQ A K L DQ D DQ D BD SCD BA DQ A DQ A L M V DDQ DQ D V SS BW V SS DQ A V DDQ M N DQ D DQ D V SS A1V SS DQ A DQ A N P DQ D DQP D V SS A0V SS DQP A DQ A P R NC A LBO V DD FT A NC R T NC A A A A A ZZ T UV DDQTMSTDITCKTDONCV DDQU7 x 17 Bump BGA—14 x 22 mm 2 Body—1.27 mm Bump Pitch(Package B)C C C C C C2C C CGS864218/36/72(B/C)-xxxV119-Bump BGA—x18 Common I/O—Top View 1234567A V DDQ A A ADSP A A V DDQ A B NC A A ADSC A A NC B C NC A A V DD A A NC C D DQ B NC V SS ZQ V SS DQP A NC D E NC DQ B V SS E1V SS NC DQ A E F V DDQ NC V SS G V SS DQ A V DDQ F G NC DQ B BB ADV NC NC DQ A G H DQ B NC V SS GW V SS DQ A NC H J V DDQ V DD NC V DD NC V DD V DDQ J K NC DQ B V SS CK V SS NC DQ A K L DQ B NC NC SCD BA DQ A NC L M V DDQ DQ B V SS BW V SS NC V DDQ M N DQ B NC V SS A1V SS DQ A NC N P NC DQP B V SS A0V SS NC DQ A P R NC A LBO V DD FT A NC R T A A A A A A ZZ T UV DDQTMSTDITCKTDONCV DDQU7 x 17 Bump BGA—14 x 22 mm 2 Body—1.27 mm Bump Pitch(Package B)GS864218/36/72(B/C)-xxxVGS864218/36B-xxxV 119-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsAn I Address Inputs DQ A DQ B DQ C DQ D I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active highBW I Byte Write—Writes all enabled bytes; active low GW I Global Write Enable—Writes all bytes; active lowE 1I Chip Enable; active low G I Output Enable; active lowADV I Burst address counter advance enable; active low ADSP, ADSCI Address Strobe (Processor, Cache Controller); active lowZZ I Sleep mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowZQ I FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [LowDrive])SCD I Single Cycle Deselect/Dual Cyle Deselect Mode ControlTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock V DD I Core power supply V SS I I/O and Core Ground V SS I I/O and Core Ground V DDQIOutput driver power supplyGS864218/36/72(B/C)-xxxVA1A0A0A1D0D1Q1Q0Counter LoadD QDQRegisterRegisterDQRegisterDQRegisterDQRegisterD QRegisterD QRegisterD QRegisterDQR e g i s t e rDQRegisterA0–AnLBO ADV CK ADSC ADSP GW BW E 1GZZPower Down ControlMemory Array36364AQDE 2E 3DQx1–DQx9Note: Only x36 version shown for simplicity.B AB BB CB DFT GS864218/36/72-xxxV Block DiagramMode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down Control ZZ L or NC Active H Standby, I DD = I SB Single/Dual Cycle Deselect Control SCD L Dual Cycle Deselect H or NC Single Cycle Deselect FLXDrive Output Impedance ControlZQL High Drive (Low Impedance)H or NCLow Drive (High Impedance)GS864218/36/72(B/C)-xxxVNote:There are pull-up devices on the ZQ, SCD, and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.Note:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100Burst Counter SequencesBPR 1999.05.18GS864218/36/72(B/C)-xxxVByte Write Truth TableFunctionGWBWB AB BB CB DNotesRead H H X X X X 1Read H L H H H H 1Write byte a H L L H H H 2, 3Write byte b H L H L H H 2, 3Write byte c H L H H L H 2, 3, 4Write byte d H L H H H L 2, 3, 4Write all bytes H L L L L L 2, 3, 4Write all bytesLXXXXX1.All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.2.Byte Write Enable inputs B A , B B , B C , and/or B D may be used in any combination with BW to write single or multiple bytes.3.All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.4.Bytes “C ” and “D ” are only available on the x36 version.Synchronous Truth TableOperationAddress UsedState Diagram Key 5E 1E 2ADSP ADSCADVW 3DQ 4Deselect Cycle, Power Down None X H X X L X X High-Z Deselect Cycle, Power Down None X L F L X X X High-Z Deselect Cycle, Power Down None X L F H L X X High-Z Read Cycle, Begin Burst External R L T L X X X Q Read Cycle, Begin Burst External R L T H L X F Q Write Cycle, Begin Burst External W L T H L X T D Read Cycle, Continue Burst Next CR X X H H L F Q Read Cycle, Continue Burst Next CR H X X H L F Q Write Cycle, Continue Burst Next CW X X H H L T D Write Cycle, Continue Burst Next CWH X X H L T D Read Cycle, Suspend Burst Current X X H H H F Q Read Cycle, Suspend Burst Current H X X H H F Q Write Cycle, Suspend BurstCurrentXXHHHTDWrite Cycle, Suspend Burst Current H X X H H T D 1.X = Don’t Care, H = High, L = Low2. E = T (True) if E 2 = 1 and E 3 = 0; E = F (False) if E 2 = 0 or E 3 = 13.W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.4.G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shownas “Q” in the Truth Table above).5.All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplishbasic synchronous or synchronous burst operations and may be avoided for simplicity.6.Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.7.Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.GS864218/36/72(B/C)-xxxVFirst WriteFirst ReadBurst WriteBurst ReadDeselect R WCRCWXXWRRWRXXX S i m p l e S y n c h r o n o u s O p e r a t i o nS i m p l e B u r s t S y n c h r o n o u s O p e r a t i o nCR RCWCRCRNotes:1.The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.2.The upper portion of the diagram assumes active use of only the Enable (E1) and Write (B A , B B , B C , B D , BW, and GW) control inputs, andthat ADSP is tied high and ADSC is tied low.3.The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs andassumes ADSP is tied high and ADV is tied low.GS864218/36/72(B/C)-xxxVSimplified State DiagramFirst WriteFirst ReadBurst WriteBurst ReadDeselectR WCRCWXXWRRWRXXX CRR CW CRCRW CWW CWNotes:1.The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.e of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passingthrough a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.3.Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meetData Input Set Up Time.GS864218/36/72(B/C)-xxxVSimplified State Diagram with GAbsolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage on V DDQ Pins –0.5 to V DDV V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125oCGS864218/36/72(B/C)-xxxVNote:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage Ranges (1.8 V/2.5 V Version)ParameterSymbolMin.Typ.Max.UnitNotes1.8 V Supply Voltage V DD1 1.7 1.82.0V 2.5 V Supply Voltage V DD2 2.3 2.5 2.7V 1.8 V V DDQ I/O Supply Voltage V DDQ1 1.7 1.8V DD V 2.5 V V DDQ I/O Supply VoltageV DDQ22.32.5V DDVNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS864218/36/72(B/C)-xxxVV DDQ2 & V DDQ1 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low VoltageV IL–0.3—0.3*V DDV1Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.20% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DD ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFNote:These parameters are sample tested.(T A = 25= 2.5 V)AC Test ConditionsParameterConditionsDQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceFigure 1Input high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 11.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. GS864218/36/72(B/C)-xxxVDC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA FT, SCD, ZQ, ZZ Input Current I IN V DD ≥ V IN ≥ 0 V –100 uA 100 uA Output Leakage CurrentI OLOutput Disable, V OUT = 0 to V DD–1 uA1 uADC Output Characteristics (1.8 V/2.5 V Version)ParameterSymbolTest ConditionsMinMax1.8 V Output High Voltage V OH1I OH = –4 mA, V DDQ = 1.6 V V DDQ – 0.4 V —2.5 V Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V1.7 V —1.8 V Output Low Voltage V OL1I OL = 4 mA —0.4 V2.5 V Output Low VoltageV OL2I OL = 8 mA—0.4 VGS864218/36/72(B/C)-xxxVOperating CurrentsParameterTest ConditionsModeSymbol-250-200-167Unit0to 70°C –40 to 85°C 0to 70°C –40to 85°C 0 to 70°C –40to 85°C Operating CurrentDevice Selected; All other inputs ≥V IH o r ≤ V IL Output open(x72)PipelineI DD I DDQ 460604806038550405503404036040mA Flow Through I DD I DDQ 330403404028530295302703028030mA (x32/x36)Pipeline I DD I DDQ 360503805031040330402703529035mA Flow Through I DD I DDQ 255252752523020250202202024020mA (x18)PipelineI DD I DDQ 315253352527020290202402026020mA Flow Through I DD I DDQ 230152501520515225151951521515mA Standby Current ZZ ≥ V DD – 0.2 V —PipelineI SB 100120100120100120mA Flow Through I SB 100120100120100120mA Deselect CurrentDevice Deselected; All other inputs ≥ V IH or ≤ V IL—PipelineI DD 140155130146125140mA Flow ThroughI DD125140120135120135mA1.I DD and I DDQ apply to any combination of V DD and V DDQ operation.2.All parameters listed are worst case scenario.AC Electrical CharacteristicsParameter Symbol -250-200-167Unit Min Max Min Max Min Max PipelineClock Cycle Time tKC 4.0— 5.0— 6.0—ns Clock to Output ValidtKQ — 3.0— 3.0— 3.5ns Clock to Output Invalid tKQX 1.5— 1.5— 1.5—ns Clock to Output in Low-ZtLZ 1 1.5— 1.5— 1.5—ns Setup time tS 1.5— 1.5— 1.5—ns Hold time tH 0.2—0.4—0.5—ns Flow ThroughClock Cycle Time tKC 6.5—7.5—8.0—ns Clock to Output ValidtKQ — 6.5—7.5—8.0ns Clock to Output Invalid tKQX 3.0— 3.0— 3.0—ns Clock to Output in Low-ZtLZ 1 3.0— 3.0— 3.0—ns Setup time tS 1.5— 1.5— 1.5—ns Hold time tH 0.5—0.5—0.5—ns Clock HIGH Time tKH 1.3— 1.3— 1.3—ns Clock LOW Time tKL 1.7— 1.7— 1.7—ns Clock to Output in High-Z (x18/x36)tHZ 1 1.5 2.5 1.5 3.0 1.5 3.0ns Clock to Output in High-Z (x72)tHZ 1 1.5 3.0 1.5 3.0 1.5 3.0ns G to Output Valid (x18/x36)tOE — 2.5— 3.0— 3.5ns G to Output Valid(x72)tOE — 3.0— 3.0— 3.5ns G to output in Low-Z tOLZ 10—0—0—ns G to output in High-Z(x18/36)tOHZ 1— 2.5— 3.0— 3.0ns G to output in High-Z(x72)tOHZ 1— 3.0— 3.0— 3.0ns ZZ setup time tZZS 25—5—5—ns ZZ hold time tZZH 21—1—1—ns ZZ recoverytZZR20—20—20—nsGS864218/36/72(B/C)-xxxVNotes:1.These parameters are sampled and are not 100% tested.2.ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and holdtimes as specified above.GS864218/36/72(B/C)-xxxVPipeline Mode Timing (SCD)Begin Read A Cont Cont Deselect Write B Read C Read C+1Read C+2Read C+3ContDeselecttHZtKQX tKQtLZtHtStOHZtOEtHtStHtStHtStHtStHtStStHtStHtStHtSBurst ReadtKCtKL tKH Single Write Single ReadQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)ABCDeselected with E1E1 masks ADSPE2 and E3 only sampled with ADSP and ADSCADSC initiated readCK ADSPADSCADVA0–AnGWBWBa–BdE1E2E3GDQa–DQdGS864218/36/72(B/C)-xxxVFlow Through Mode Timing (SCD)Begin Read A ContCont Write B Read C Read C+1Read C+2Read C+3Read C Cont DeselecttHZtKQXtKQ tLZtH tStOHZtOEtHtS tHtS tHtStHtS tHtS tHtStHtS tHtS tH tS tHtS tKCtKL tKHABCQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)Q(C)E2 and E3 only sampled with ADSCADSC initiated readDeselected with E1Fixed HighCK ADSPADSCADVA0–AnGWBWBa–BdE1E2E3GDQa–DQdGS864218/36/72(B/C)-xxxVPipeline Mode Timing (DCD)Begin Read A Cont Deselect Deselect Write BRead C Read C+1Read C+2Read C+3Cont Deselect DeselecttHZtKQXtKQtLZtHtStOHZtOEtHtStHtStHtStH tStHtStStHtStHtStHtStKCtKL tKHQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)ABCHi-ZDeselected with E1E2 and E3 only sampled with ADSCADSC initiated readCK ADSPADSCADVAo–AnGWBWBa–BdE1E2E3GDQa–DQdGS864218/36/72(B/C)-xxxVFlow Through Mode Timing (DCD)Begin Read A ContDeselect Write B Read C Read C+1Read C+2Read C+3Read C DeselecttHZtKQX tLZtH tStOHZtOE tKQtHtS tHtS tHtStH tStHtS tHtStHtS tHtS tH tStH tS tHtS tKCtKL tKHABCQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)Q(C)E2 and E3 only sampled with ADSP and ADSCE1 masks ADSPADSC initiated readDeselected with E1E1 masks ADSPFixed HighCK ADSPADSCADVAo–AnGWBWBa–BdE1E2E3GDQa–DQdGS864218/36/72(B/C)-xxxVSleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode TimingtZZRtZZHtZZSHoldSetup tKLtKHtKCCKADSP ADSCZZApplication TipsSingle and Dual Cycle DeselectSCD devices (like this one) force the use of “dummy read cycles” (read cycles that are launched normally, but that are ended with the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance, but their use usually assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at bank address boundary crossings), but greater care must be exercised to avoid excessive bus contention.JTAG Port OperationOverviewThe JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V DD . The JTAG output drivers are powered by V DDQ .Disabling the JTAG PortIt is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either V DD or V SS . TDO should be left unconnected.JTAG Pin DescriptionsPinPin NameI/ODescriptionTCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.TMSTest Mode SelectInThe TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.TDI Test Data In InThe TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.TDO Test Data OutOut Output that is active depending on the state of the TAP state machine. Output changes inresponse to the falling edge of TCK. This is the output side of the serial registers placed betweenTDI and TDO.This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.GS864218/36/72(B/C)-xxxVJTAG Port RegistersOverviewThe various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins.Instruction RegisterThe Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.Bypass RegisterThe Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.Boundary Scan RegisterThe Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is inCapture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.。

SL2.2S规格书,usb HUB大全,替换FE1.1S,GL850,GL852,PL2586

SL2.2S规格书,usb HUB大全,替换FE1.1S,GL850,GL852,PL2586

USB2.0 HUB控制器集成电路USB 2.0 HIGH SPEED 4-PORT HUB CONTROLLERSL2.2s数据手册Data Sheet内容目录第一章管脚分配 (3)1.1 SL2.2S管脚图 (3)1.2 SL2.2S管脚定义 (3)第二章 功能叙述 (5)2.1综述 (5)2.2指示灯 (5)2.2.1单灯方案 (5)2.2.2多灯方案 (6)2.2.3 LED指示定义 (6)2.3过流保护 (6)2.4充电支持 (6)2.5I2C接口 (7)2.6EEPROM设置 (7)第三章电气特性 (8)3.1极限工作条件 (8)3.2工作范围 (8)3.3直流电特性 (8)3.4HS/FS/LS电气特性 (8)3.5ESD特性 (8)附录一封装 (9)表格目录表格1: 端口LED定义 (6)表格 2 : ACTIVE LED定义 (6)表格3:EEPROM数据结构定义 (7)表格4: 最大额定值 (8)表格5: 工作范围 (8)表格6: 直流电特性 (8)插图目录图1:SSOP28 管脚图 (3)图2:单灯方案配置 (5)图3: 5灯方案配置 ............................................................................... (6)图 4:附录 封装图 ................................................................................... .9第一章管脚分配1.1SL2.2s管脚图图1:SSOP28 管脚图1.2SL2.2s管脚定义管脚名称28Die IO类型定义Pin#VSS 1 P 芯片地XOUT 2 O晶振PAD XIN 3 IDM4 4 B下行口4的USB信号DP4 5 BDM3 6 B下行口3的USB信号DP3 7 BDM2 8 B下行口2的USB信号DP2 9 BDM1 10 B下行口1的USB信号DP1 11 BVDD18 12 P 模拟1.8vVDD33 13 P 模拟3.3v - 14 NCUDM 15 B上行口的USB信号UDP 16 BRESET_N 17 I,Pu 芯片外部复位输入- 18 NCPSELF 19 I,Pu 高为自供电,低为总线供电VDD5 20 P 5v输入VDD33 21 P 3.3v输出DRV 22 B,Pu 点灯驱动信号LED1 23 B,Pu 点灯驱动信号LED2 24 B,Pu 点灯驱动信号PWRN 25 B,Pu 下行口电源输出控制,低有效OVCRN/SDA 26 B,PuI2C SDA数据线,内部上拉;芯片初始化完成后作为过流保护输入脚,低有效SCL 27 B,Pu I2C SCL时钟输出VDD18 28 P 数字1.8v注释:O,输出;I 输入;B 双向;P 电源/接地;Pu 上拉;Pd 下拉;NC 悬空;第二章 功能叙述2.1综述SL2.2s 是一颗高集成度,高性能,低功耗的USB2.0集线器主控芯片;该芯片采用STT 技术,单电源供电方式,芯片供电电压为5v , 内部集成5V 转3.3V,只需在外部电源添加滤波电容;芯片自带复位电路,低功耗技术让他更加出众。

SG2813中文资料

SG2813中文资料

DESCRIPTIONThe SG2800 series integrates eight NPN Darlington pairs with internal suppression diodes to drive lamps, relays, and solenoids in many military, aerospace, and industrial applications that require severe environments. All units feature open collector outputs with greater than 50V breakdown voltages combined with 500mA current carrying capabilities. Five different input configurations provide optimized designs for interfacing with DTL, TTL, PMOS, or CMOS drive signals. These devices are designed to operate from -55°C to 125°C ambient temperature in a 18-pin dual in-line ceramic (J) package and 20-pin leadless chip carrier (LCC).FEATURES•Eight NPN Darlington pairs•Collector currents to 600mA•Output voltages from 50V to 95V•Internal clamping diodes for inductive loads •DTL, TTL, PMOS, or CMOS compatible inputs •Hermetic ceramic packageHIGH RELIABILITY FEATURES♦Available to MIL-STD-883 and DESC SMD♦MIL-M38510/14106BVA - JAN2801J♦MIL-M38510/14107BVA - JAN2802J♦MIL-M38510/14108BVA - JAN2803J♦MIL-M38510/14109BVA - JAN2804J♦Radiation data available♦LMI level "S" processing availableHIGH VOLTAGE MEDIUM CURRENT DRIVER ARRAYSPARTIAL SCHEMATICSABSOLUTE MAXIMUM RATINGS (Note 1)Continuous Collector Current, I C(SG2800, 2820) ......................................................(SG2810) ...............................................................Operating Junction TemperatureHermetic (J, L Packages) .........................................Plastic (N Package) ..................................................Storage Temperature Range ..........................Lead Temperature (Soldering 10 sec.) .........................Output Voltage, V CE(SG2800, 2810 series) ................................................(SG2820 series) ..........................................................Input Voltage, V IN(SG2802,3,4 series) ....................................................Continuous Input Current, I IN ........................................50V 95V 30V 25mA500mA 600mA 150°C 150°C -65°C to 150°C 300°CNote 1. Values beyond which damage may occur.J Package:Thermal Resistance-Junction to Case , θJC .................. 25°C/W Thermal Resistance-Junction to Ambient , θJA ...............70°C/W N Package:Thermal Resistance-Junction to Case , θJC .................. 30°C/W Thermal Resistance-Junction to Ambient , θJA .............. 60°C/W L Package:Thermal Resistance-Junction to Case , θJC .................. 35°C/W Thermal Resistance-Junction to Ambient , θJA .............120°C/WTHERMAL DATANote A.Junction Temperature Calculation: T J = T A + (P D x θJA ).Note B.The above numbers for θJC are maximums for the limitingthermal resistance of the package in a standard mount-ing configuration. The θJA numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.Output Voltage, V CESG2800, SG2820 series ..............................................SG2810 series .............................................................50V 95VPeak Collector Current, I CSG2800, SG2820 series .........................................SG2810 series ........................................................Operating Ambient Temperature Range ........350mA 500mA -55°C to 125°CNote 2. Range over which the device is functional.RECOMMENDED OPERATING CONDITIONS (Note 2)SELECTION GUIDEDevice V CE Max I C Max Logic Inputs SG280150V 500mA General Purpose PMOS, CMOS SG280250V 500mA 14V-25V PMOS SG280350V 500mA 5V TTL, CMOSSG280450V 500mA 6V-15V CMOS, PMOS SG281150V 600mA General Purpose PMOS, CMOS SG281250V600mA14V-25V PMOSDevice V CE Max I C Max Logic Inputs SG281350V 600mA 5V TTL, CMOSSG281450V 600mA 6V-15V CMOS, PMOS SG281550V 600mA High Output TTL SG282195V 500mA General Purpose PMOS, CMOS SG282395V 500mA 5V TTL, CMOSSG282495V500mA6V-15V CMOS, PMOSCHARACTERISTIC CURVESFIGURE 4.INPUT CHARACTERISTICS - SG2802FIGURE 5.INPUT CHARACTERISTICS - SG2803FIGURE 6.INPUT CHARACTERISTICS - SG2804FIGURE 7.PEAK COLLECTOR CURRENT VS. DUTY CYCLEFIGURE 1.OUTPUT CHARACTERISTICS FIGURE 2.OUTPUT CURRENT VS. INPUT VOLTAGE FIGURE 3.OUTPUT CURRENT VS. INPUT CURRENTNote 1. Contact factory for JAN and DESC product availability.2. All parts are viewed from the top.3. See Selection Guide for specific device types.CONNECTION DIAGRAMS & ORDERING INFORMATION (See Notes Below)AmbientTemperature Range Part No. (Note 3)PackageConnection Diagram18-PIN CERAMIC DIP J - PACKAGESG28XXJ/883B -55°C to 125°C JAN2801J -55°C to 125°C JAN2802J -55°C to 125°C JAN2803J -55°C to 125°C JAN2804J-55°C to 125°C SG2803J/DESC -55°C to 125°C SG2821J/DESC -55°C to 125°C SG2823J/DESC -55°C to 125°C SG2824J/DESC -55°C to 125°C SG28XXJ-55°C to 125°C18-PIN PLASTIC DIP N- PACKAGESG2803N 0°C to 70°C SG2823N 0°C to 70°C 20-PIN CERAMICLEADLESS CHIP CARRIER L- PACKAGESG28XXL/883B -55°C to 125°C SG2803L/DESC -55°C to 125°C SG2821L/DESC -55°C to 125°C SG2823L/DESC -55°C to 125°C SG2824L/DESC -55°C to 125°C SG28XXL-55°C to 125°C1849319201214151716876513121110176543281110121314151716918。

GS881Z36BT-333IT资料

GS881Z36BT-333IT资料

GS881Z18B(T/D)/GS881Z32B(T/D)/GS881Z36B(T/D)9Mb Pipelined and Flow Through Synchronous NBT SRAM 333 MHz–150 MHz 2.5 V or 3.3 V V DD 2.5 V or 3.3 V I/O100-Pin TQFP & 165-Bump BGA Commercial TempIndustrial TempFeatures• User-configurable Pipeline and Flow Through mode• NBT (No Bus Turn Around) functionality allows zero wait read-write-read bus utilization• Fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs• IEEE 1149.1 JTAG-compatible Boundary Scan• On-chip write parity checking; even or odd selectable• 2.5 V or 3.3 V +10%/–10% core power supply• 2.5 V or 3.3 V I/O supply• LBO pin for Linear or Interleave Burst mode• Pin-compatible with 2M, 4M, and 18M devices• Byte write operation (9-bit Bytes)• 3 chip enable signals for easy depth expansion• ZZ pin for automatic power-down• JEDEC-standard packages• Pb-Free 100-lead TQFP package availableFunctional DescriptionThe GS881Z18B(T/D)/GS881Z32B(T/D)/GS881Z36B(T/D) is a 9Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles. Because it is a synchronous device, address, data inputs, and read/ write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable, ZZ and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.The GS881Z18B(T/D)/GS881Z32B(T/D)/GS881Z36B(T/D) may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edge-triggered registers that capture input signals, the device incorporates a rising-edge-triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.The GS881Z18B(T/D)/GS881Z32B(T/D)/GS881Z36B(T/D) is implemented with GSI's high performance CMOS technology and is available in a JEDEC-standard 100-pin TQFP package.Paramter Synopsis-333-300-250-200-150UnitPipeline 3-1-1-1KQtCycle 3.0 3.3 4.0 5.0 6.7ns Curr (x18)Curr (x32/x36)250290230265200230170195140160mAmAFlow Through2-1-1-1t KQtCycle4.54.55.05.05.55.56.56.57.57.5nsns Curr (x18)Curr (x32/x36)200230185210160185140160128145mAmAGS881Z18BT 100-Pin TQFP Pinout (Package T)807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B FT V DD NC V SS DQ B DQ B6V DD V SS DQ B DQ B DQP BV SS V DDQ V DDQ V SS DQ A DQ A V SS V DDQ DQ A DQ A V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0T M S T D I V S SV D DT D O T C K A A A A A A 1A A E 1E 2 N C N C B BB AE 3C K W C K E VD DV S SG A D V N C A A AA 512K x 18Top View DQP A A NC NC NC NC NC NC NC NCNC NC NC NC NC NC NCNC NC 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881Z32BT 100-Pin TQFP Pinout (Package T)807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ C DQ C V SS V DDQ DQ C DQ C FT V DD NC V SS DQ D DQ D2V DDQ V SS DQ D DQ D DQ D V SS V DDQ V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0T M S T D I V S SV D DT D O T C K A A A A A AA A E 1E 2 B DB CB BB AE 3C K W C K E VD DV S SG A D V N C A A AA 256K x 32Top View DQB NC DQ B DQ B DQ B DQ A DQ A DQ A DQ A NCDQ C DQ C DQ C DQ D DQ D DQ D NCDQ C NC 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881Z36BT 100-Pin TQFP Pinout (Package T)807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ C DQ C V SS V DDQ DQ C DQ C FT V DD NC V SS DQ D DQ D2V DDQ V SS DQ D DQ D DQ D V SS V DDQ V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0T M S T D I V S SV D DT D O T C K A A A A A AA A E 1E 2 B DB CB BB AE 3C K W C K E VD DV S SG A D V N C A A AA 256K x 36Top View DQB DQP B DQ B DQ B DQ B DQ A DQ A DQ A DQ A DQP ADQ C DQ C DQ C DQ D DQ D DQ D DQP DDQ C DQP C 100999897969594939291908988878685848382813132333435363738394041424344454647484950100-Pin TQFP Pin DescriptionsSymbol Type DescriptionA0, A1In Burst Address Inputs; Preload the burst counterA In Address InputsCK In Clock Input SignalB A In Byte Write signal for data inputs DQ A1–DQ A9; active lowB B In Byte Write signal for data inputs DQ B1–DQ B9; active lowB C In Byte Write signal for data inputs DQ C1–DQ C9; active lowB D In Byte Write signal for data inputs DQ D1–DQ D9; active lowW In Write Enable; active lowE1In Chip Enable; active lowE2In Chip Enable—Active High. For self decoded depth expansion E3In Chip Enable—Active Low. For self decoded depth expansionG In Output Enable; active lowADV In Advance/Load; Burst address counter control pinCKE In Clock Input Buffer Enable; active lowNC—No ConnectDQ A I/O Byte A Data Input and Output pinsDQ B I/O Byte B Data Input and Output pinsDQ C I/O Byte C Data Input and Output pinsDQ D I/O Byte D Data Input and Output pinsZZ In Power down control; active highFT In Pipeline/Flow Through Mode Control; active lowLBO In Linear Burst Order; active low.V DD In Core power supplyV SS In GroundV DDQ In Output driver power supply165 Bump BGA—x18 Commom I/O—Top View (Package D)1234567891011A NC A E1BB NC E3CKE ADV A17A A AB NC A E2NC BA CK W G A NC BC NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQA CD NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA DE NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA EF NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA FG NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA GH FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC J K DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC K L DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC L M DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC M N DQB NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P R LBO NC A A TMS A0TCK A A A A R11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch165 Bump BGA—x32 Common I/O—Top View (Package D)1234567891011A NC A E1BC BB E3CKE ADV A17A NC AB NC A E2BD BA CK W G A NC BC NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC NC CD DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB DE DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB EF DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB FG DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB GH FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N NC NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P R LBO NC A A TMS A0TCK A A A A R11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch165 Bump BGA—x36 Common I/O—Top View (Package D)1234567891011A NC A E1BC BB E3CKE ADV A A NC AB NC A E2BD BA CK W G A NC BC DQPC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPB CD DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB DE DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB EF DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB FG DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB GH FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N DQPD NC V DDQ V SS NC NC NC V SS V DDQ NC DQPA N P NC NC A A TDI A1TDO A A A NC P R LBO NC A A TMS A0TCK A A A A R11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump PitchGS81Z18/32/36D 165-Bump BGA Pin DescriptionSymbol Type DescriptionA0, A1I Address field LSBs and Address Counter Preset InputsA I Address InputsDQ ADQ BI/O Data Input and Output pins DQ CDQ DB A, B B, B C, B D I Byte Write Enable for DQ A, DQ B, DQ C, DQ D I/Os; active lowNC—No ConnectCK I Clock Input Signal; active highCKE I Clock Enable; active lowW I Write Enable; active lowE1I Chip Enable; active lowE3I Chip Enable; active lowE2I Chip Enable; active highG I Output Enable; active lowADV I Burst address counter advance enable; active highZZ I Sleep mode control; active highFT I Flow Through or Pipeline mode; active lowLBO I Linear Burst Order mode; active lowTMS I Scan Test Mode SelectTDI I Scan Test Data InTDO O Scan Test Data OutTCK I Scan Test ClockMCH—Must Connect HighDNU—Do Not UseV DD I Core power supplyV SS I I/O and Core GroundV DDQ I Output driver power supplyGS881Z18/32/36B NBT SRAM Functional Block DiagramK18S A 1S A 0B u r s t C o u n t e r L B OA D VM e m o r y A r r a yGC KC K ED QF TN CN CD Q a –D Q nKS A 1’S A 0’D QM a t c hW r i t e A d d r e s sR e g i s t e r 2W r i t e A d d r e s s R e g i s t e r 1W r i t e D a t aR e g i s t e r 2W r i t e D a t aR e g i s t e r 1K KK KKK S e n s e A m p sW r i t e D r i v e r sR e a d , W r i t e a n dD a t a C o h e r e n c yC o n t r o l L o g i cD QKP a r i t y C h e c kF TA 0–A nE 3E 2E 1WB DB C B BB AFunctional DetailsClockingDeassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.Pipeline Mode Read and Write OperationsAll inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2 and E3). Deassertion of any one of the Enable inputs will deactivate the device.Function W B A B B B C B DRead H X X X XWrite Byte “a”L L H H HWrite Byte “b”L H L H HWrite Byte “c”L H H L HWrite Byte “d”L H H H LWrite all Bytes L L L L LWrite Abort/NOP L H H H HRead operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.Write operation occurs when the RAM is selected, CKE is active and the write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (B A, B B, B C & B D) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality, matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock.Flow Through Mode Read and Write OperationsOperation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode.Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.Synchronous Truth TableOperation Type Address CK CKE ADV W Bx E1E2E3G ZZ DQ Notes Read Cycle, Begin Burst R External L-H L L H X L H L L L QRead Cycle, Continue Burst B Next L-H L H X X X X X L L Q1,10 NOP/Read, Begin Burst R External L-H L L H X L H L H L High-Z2 Dummy Read, Continue Burst B Next L-H L H X X X X X H L High-Z1,2,10 Write Cycle, Begin Burst W External L-H L L L L L H L X L D3 Write Cycle, Continue Burst B Next L-H L H X L X X X X L D1,3,10 Write Abort, Continue Burst B Next L-H L H X H X X X X L High-Z1,2,3,10 Deselect Cycle, Power Down D None L-H L L X X H X X X L High-Z Deselect Cycle, Power Down D None L-H L L X X X X H X L High-Z Deselect Cycle, Power Down D None L-H L L X X X L X X L High-Z Deselect Cycle D None L-H L L L H L H L X L High-Z1 Deselect Cycle, Continue D None L-H L H X X X X X X L High-Z1 Sleep Mode None X X X X X X X X X H High-ZClock Edge Ignore, Stall Current L-H H X X X X X X X L-4 Notes:1.Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-lect cycle is executed first.2.Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the Wpin is sampled low but no Byte Write pins are active so no write operation is performed.3.G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off duringwrite cycles.4.If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the buswill remain in High Z.5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Writesignals are Low6.All inputs, except G and ZZ must meet setup and hold times of rising clock edge.7.Wait states can be inserted by setting CKE high.8.This device contains circuitry that ensures all outputs are in High Z during power-up.9. A 2-bit burst counter is incorporated.10.The address counter is incriminated for all Burst continue cycles.Pipelined and Flow Through Read Write Control State DiagramDeselectNew ReadNew WriteBurst ReadBurst WriteWRBRBWDDBBWRD BWRDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input commandcodes as indicated in the Synchronous Truth Table.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipelined and Flow Through Read/Write Control State DiagramWRPipeline Mode Data I/O State DiagramIntermediateIntermediateIntermediateIntermediateIntermediateIntermediateHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)TransitionƒInput Command CodeKeyTransitionIntermediate State (N+1)Notes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateIntermediate ƒn n+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline Mode Data I/O State DiagramNext StateStateFlow Through Mode Data I/O State DiagramHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for: Pipeline and Flow through Read Write Control State DiagramBurst CyclesAlthough NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.Burst OrderThe burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have beenaccessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details.Note:There is a pull-up device on the FT pin and a pull-down device on the ZZ pin, so this input pin can be unconnected and the chip will operate in the default states as specified in the above tables.Burst Counter SequencesBPR 1999.05.18Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down ControlZZL or NC Active HStandby, I DD = I SBNote:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100Sleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by it’s internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramDesigning for CompatibilityThe GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipelinemode via the FT signal found on Pin 14. Not all vendors offer this option, however most mark Pin 14 as V DD or V DDQ on pipelined parts and V SS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets.Pin 66, a No Connect (NC) on GSI’s GS8160Z18/36 NBT SRAM, the Parity Error open drain output on GSI’s GS881Z18/36B NBT SRAM, is often marked as a power pin on other vendor’s NBT compatible SRAMs. Specifically, it is marked V DD or V DDQ on pipelined parts and V SS on flow through parts. Users of GSI NBT devices who are not actually using the ByteSafe™ parity feature may want to design the board site for the RAM with Pin 66 tied high through a 1k ohm resistor in Pipeline modeapplications or tied low in Flow Through mode applications in order to keep the option to use non-configurable devices open.tZZRtZZHtZZStKLtKHtKCCKZZAbsolute Maximum Ratings(All voltages reference to V SS)Symbol Description Value UnitV DD Voltage on V DD Pins–0.5 to 4.6VV DDQ Voltage in V DDQ Pins–0.5 to 4.6VV I/O Voltage on I/O Pins–0.5 to V DDQ +0.5 (≤ 4.6 V max.)VV IN Voltage on Other Input Pins–0.5 to V DD +0.5 (≤ 4.6 V max.)VI IN Input Current on Any Pin+/–20mAI OUT Output Current on Any I/O Pin+/–20mAP D Package Power Dissipation 1.5WT STG Storage Temperature–55 to 125o CT BIAS Temperature Under Bias–55 to 125o C Note:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.Power Supply Voltage RangesParameter Symbol Min.Typ.Max.Unit Notes3.3 V Supply Voltage V DD3 3.0 3.3 3.6V2.5 V Supply Voltage V DD2 2.3 2.5 2.7V3.3 V V DDQ I/O Supply Voltage V DDQ3 3.0 3.3 3.6V2.5 V V DDQ I/O Supply Voltage V DDQ2 2.3 2.5 2.7VNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.V DDQ3 Range Logic LevelsParameter Symbol Min.Typ.Max.Unit Notes V DD Input High Voltage V IH 2.0—V DD + 0.3V1V DD Input Low Voltage V IL–0.3—0.8V1V DDQ I/O Input High Voltage V IHQ 2.0—V DDQ + 0.3V1,3V DDQ I/O Input Low Voltage V ILQ–0.3—0.8V1,3 Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.V DDQ2 Range Logic LevelsParameter Symbol Min.Typ.Max.Unit Notes V DD Input High Voltage V IH0.6*V DD—V DD + 0.3V1V DD Input Low Voltage V IL–0.3—0.3*V DD V1V DDQ I/O Input High Voltage V IHQ0.6*V DD—V DDQ + 0.3V1,3V DDQ I/O Input Low Voltage V ILQ–0.3—0.3*V DD V1,3 Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.Recommended Operating TemperaturesParameter Symbol Min.Typ.Max.Unit Notes Ambient Temperature (Commercial Range Versions)T A02570°C2 Ambient Temperature (Industrial Range Versions)T A–402585°C2 Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.Note:These parameters are sample tested.Capacitance(T A = 25o C, f = 1 MH Z , V DD = 2.5 V)ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFAC Test ConditionsParameterConditionsInput high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 1Notes:1.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. 50% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing50% tKCV DD + 2.0 V50%V DDV ILDQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceDC Electrical CharacteristicsParameter Symbol Test Conditions Min Max Input Leakage Current(except mode pins)I IL V IN = 0 to V DD–1 uA 1 uAZZ Input Current I IN1V DD≥V IN ≥V IH0 V≤ V IN ≤ V IH–1 uA–1 uA1 uA100 uAFT, SCD, ZQ Input Current I IN2V DD≥V IN ≥V IL0 V≤ V IN ≤ V IL–100 uA–1 uA1 uA1 uAOutput Leakage Current I OL Output Disable, V OUT = 0 to V DD–1 uA 1 uA Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V 1.7 V—Output High Voltage V OH3I OH = –8 mA, V DDQ = 3.135 V 2.4 V—Output Low Voltage V OL I OL = 8 mA—0.4 V1.I DD and I DDQ apply to any combination of V DD3, V DD2, V DDQ3, and V DDQ2 operation.2.All parameters listed are worst case scenario.Operating CurrentsParameterTest ConditionsModeSymbol-333-300-250-200-150Unit0to 70°C–40 to 85°C0to 70°C–40 to 85°C0to 70°C–40 to 85°C0to 70°C–40to 85°C0 to 70°C–40to 85°COperating CurrentDevice Selected; All other inputs ≥V IH o r ≤ V IL Output open(x32/x36)Pipeline I DD I DDQ 25040270402303525035200302203017025190251402016020mA Flow Through I DD I DDQ 20525225251852520525160251802514020160201301515015mA (x18)PipelineI DD I DDQ 23020250202102023020185152051515515175151301015010mA Flow Through I DD I DDQ 185152051517015190151451516515130101501012081408mA Standby CurrentZZ ≥ V DD – 0.2 V —PipelineI SB 40504050405040504050mA Flow Through I SB 40504050405040504050mA Deselect CurrentDevice Deselected; All other inputs ≥ V IH or ≤ V IL—PipelineI DD 951009095859075806065mA Flow ThroughI DD65606065606550555055mA。

GS881Z32BT-250V资料

GS881Z32BT-250V资料

GS881Z18/32/36B(T/D)-xxxV9Mb Pipelined and Flow ThroughSynchronous NBT SRAM250 MHz–150 MHz 1.8 V or 2.5 V V DD 1.8 V or 2.5 V I/O100-Pin TQFP & 165-Bump BGA Commercial Temp Industrial Temp Features• User-configurable Pipeline and Flow Through mode• NBT (No Bus Turn Around) functionality allows zero wait read-write-read bus utilization• Fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs• IEEE 1149.1 JTAG-compatible Boundary Scan• On-chip write parity checking; even or odd selectable • 1.8 V or 2.5 V core power supply • 1.8 V or 2.5 V I/O supply• LBO pin for Linear or Interleave Burst mode • Pin-compatible with 2M, 4M, and 18M devices • Byte write operation (9-bit Bytes)• 3 chip enable signals for easy depth expansion • ZZ pin for automatic power-down • JEDEC-standard packages• RoHS-compliant 100-lead TQFP and 165-bump BGA packages availableFunctional DescriptionThe GS881Z18/32/36B(T/D)-xxxV is a 9Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.Because it is a synchronous device, address, data inputs, and read/ write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable, ZZ and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.The GS881Z18/32/36B(T/D)-xxxV may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edge-triggered registers that capture input signals, the device incorporates a rising-edge-triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.The GS881Z18/32/36B(T/D)-xxxV is implemented with GSI's high performance CMOS technology and is available inJEDEC-standard 100-pin TQFP and 165-bump BGA packages.Paramter Synopsis-250-200-150UnitPipeline 3-1-1-1KQ tCycle 4.0 5.0 6.7ns Curr (x18)Curr (x32/x36)200230170195140160mA mA Flow Through 2-1-1-1t KQ tCycle 5.55.5 6.56.57.57.5ns ns Curr (x18)Curr (x32/x36)160185140160128145mA mA807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B FT V DD NC V SS DQ B DQ B6V DD V SS DQ B DQ B DQP BV SS V DDQ V DDQ V SS DQ A DQ A V SS V DDQ DQ A DQ A V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0T M S T D I V S SV D DT D O T C K A A A A A A 1A A E 1E 2 N C N C B BB AE 3C K W C K E VD DV S SG A D V N C A A AA 512K x 18Top View DQP A A NC NC NC NC NC NC NC NCNC NC NC NC NC NC NCNC NC 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881Z18/32/36B(T/D)-xxxVGS881Z18BT-xxxV 100-Pin TQFP Pinout (Package T)807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ C DQ C V SS V DDQ DQ C DQ C FT V DD NC V SS DQ D DQ D2V DDQ V SS DQ D DQ D DQ D V SS V DDQ V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0T M S T D I V S SV D DT D O T C K A A A A A AA A E 1E 2 B DB CB BB AE 3C K W C K E VD DV S SG A D V N C A A AA 256K x 32Top View DQB NC DQ B DQ B DQ B DQ A DQ A DQ A DQ A NCDQ C DQ C DQ C DQ D DQ D DQ D NCDQ C NC 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881Z18/32/36B(T/D)-xxxVGS881Z32BT-xxxV 100-Pin TQFP Pinout (Package T)807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ C DQ C V SS V DDQ DQ C DQ C FT V DD NC V SS DQ D DQ D2V DDQ V SS DQ D DQ D DQ D V SS V DDQ V DDQ V SS DQ B DQ B V SS V DDQ DQ B DQ B V SS NC V DD ZZ DQ A DQ A V DDQ V SS DQ A DQ A V SS V DDQ L B O A A A A A 1A 0T M S T D I V S SV D DT D O T C K A A A A A AA A E 1E 2 B DB CB BB AE 3C K W C K E VD DV S SG A D V N C A A AA 256K x 36Top View DQB DQP B DQ B DQ B DQ B DQ A DQ A DQ A DQ A DQP ADQ C DQ C DQ C DQ D DQ D DQ D DQP DDQ C DQP C 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881Z18/32/36B(T/D)-xxxVGS881Z36BT-xxxV 100-Pin TQFP Pinout (Package T)100-Pin TQFP Pin DescriptionsSymbolTypeDescriptionA 0, A 1In Burst Address Inputs; Preload the burst counterA In Address Inputs CK In Clock Input SignalB A In Byte Write signal for data inputs DQ A1–DQ A9; active low B B In Byte Write signal for data inputs DQ B1–DQ B9; active low BC In Byte Write signal for data inputs DQ C1–DQ C9; active low BD In Byte Write signal for data inputs DQ D1–DQ D9; active lowW In Write Enable; active low E 1In Chip Enable; active lowE 2In Chip Enable—Active High. For self decoded depth expansion E 3In Chip Enable—Active Low. For self decoded depth expansionG In Output Enable; active lowADV In Advance/Load; Burst address counter control pinCKE In Clock Input Buffer Enable; active lowNC —No ConnectDQ A I/O Byte A Data Input and Output pins DQ B I/O Byte B Data Input and Output pins DQ C I/O Byte C Data Input and Output pins DQ D I/O Byte D Data Input and Output pins ZZ In Power down control; active high FT In Pipeline/Flow Through Mode Control; active lowLBO InLinear Burst Order; active low.TMS Scan Test Mode Select TDI Scan Test Data In TDO Scan Test Data Out TCK Scan Test Clock V DD In Core power supplyV SS In GroundV DDQInOutput driver power supplyGS881Z18/32/36B(T/D)-xxxVGS881Z18/32/36B(T/D)-xxxV165 Bump BGA—x18 Commom I/O—Top View 1234567891011A NC A E1BB NC E3CKE ADV A17A A A B NC A E2NC BA CK W G NC A NC B C NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQA C D NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA D E NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA E F NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA F G NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA G H FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC J K DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC K L DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC L M DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC M N DQB NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P RLBONCAATMSA0TCKAAAAR11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch(Package D)GS881Z18/32/36B(T/D)-xxxV165 Bump BGA—x32 Common I/O—Top View 1234567891011A NC A E1BC BB E3CKE ADV A17A NC A B NC A E2BD BA CK W G NC A NC B C NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC NC C D DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB D E DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB E F DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB F G DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB G H FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N NC NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P RLBONCAATMSA0TCKAAAAR11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch(Package D)GS881Z18/32/36B(T/D)-xxxV165 Bump BGA—x36 Common I/O—Top View 1234567891011A NC A E1BC BB E3CKE ADV A A NC A B NC A E2BD BA CK W G NC A NC B C DQPC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPB C D DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB D E DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB E F DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB F G DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB G H FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N DQPD NC V DDQ V SS NC NC NC V SS V DDQ NC DQPA N P NC NC A A TDI A1TDO A A A NC P RLBONCAATMSA0TCKAAAAR11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch(Package D)GS881Z18/32/36D-xxxV165-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsA I Address Inputs DQ A DQB DQC DQD I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active high CKE I Clock Enable; active low W I Write Enable; active low E 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active lowADV I Burst address counter advance enable; active highZZ I Sleep mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock MCH —Must Connect High DNU —Do Not Use V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyGS881Z18/32/36B(T/D)-xxxVK18S A 1S A 0Bu r s t C o u n t e rL B OA D VM e m o r y A r r a yGC KC K ED QF TN CN CD Q a –D Q nKS A 1’S A 0’D QM a t c hW r i t e A d d r e s sR e g i s t e r 2W r i t e A d d r e s sR e g i s t e r 1W r i t e D a t aR e g i s t e r 2W r i t e D a t aR e g i s t e r 1KKKKKKS e n s e A m p sW r i t e D r i v e r sR e a d , W r i t e a n dD a t a C o h e r e n c yC o n t r o l L o g i cD QKP a r i t y C h e c kF TA 0–A nE 3E 2E 1WB DB CB BB AGS881Z18/32/36B(T/D)-xxxVGS881Z18/32/36B(T/D)-xxxV NBT SRAM Functional Block DiagramGS881Z18/32/36B(T/D)-xxxVFunctional DetailsClockingDeassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.Pipeline Mode Read and Write OperationsAll inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E 1, E 2 and E 3). Deassertion of any one of the Enable inputs will deactivate the device. Function W B A B B B C B D Read H X X X X Write Byte “a”L L H H H Write Byte “b”L H L H H Write Byte “c”L H H L H Write Byte “d”L H H H L Write all Bytes L L L L L Write Abort/NOPLHHHHRead operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E 1, E 2, and E 3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.Write operation occurs when the RAM is selected, CKE is active and the write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (B A , B B , B C & B D ) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality, matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock.Flow Through Mode Read and Write OperationsOperation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode.Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.Synchronous Truth TableOperationType Address CK CKE ADV W Bx E 1E 2E 3G ZZDQNotesRead Cycle, Begin Burst R External L-H L L H X L H L L L Q Read Cycle, Continue Burst B Next L-H L H X X X X X L L Q 1,10NOP/Read, Begin Burst R External L-H L L H X L H L H L High-Z 2Dummy Read, Continue Burst B Next L-H L H X X X X X H L High-Z 1,2,10Write Cycle, Begin Burst W External L-H L L L L L H L X L D 3Write Cycle, Continue Burst B Next L-H L H X L X X X X L D1,3,10Write Abort, Continue Burst B Next L-H L H X H X X X X L High-Z 1,2,3,10Deselect Cycle, Power Down D None L-H L L X X H X X X L High-Z Deselect Cycle, Power Down D None L-H L L X X X X H X L High-Z Deselect Cycle, Power Down D None L-H L L X X X L X X L High-Z Deselect Cycle D None L-H L L L H L H L X L High-Z 1Deselect Cycle, Continue DNone L-H L H X X X X X X L High-Z 1Sleep ModeNone X X X X X X X X X H High-Z Clock Edge Ignore, StallCurrentL-HHXXXXXXXL-4Notes:1.Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-lect cycle is executed first.2.Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the Wpin is sampled low but no Byte Write pins are active so no write operation is performed.3.G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off duringwrite cycles.4.If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the buswill remain in High Z.5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Writesignals are Low6.All inputs, except G and ZZ must meet setup and hold times of rising clock edge.7.Wait states can be inserted by setting CKE high.8.This device contains circuitry that ensures all outputs are in High Z during power-up.9. A 2-bit burst counter is incorporated.10.The address counter is incriminated for all Burst continue cycles.GS881Z18/32/36B(T/D)-xxxVGS881Z18/32/36B(T/D)-xxxVDeselectNew ReadNew WriteBurst ReadBurst WriteWRBRBWDDBBWRD BWRDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input commandcodes as indicated in the Synchronous Truth Table.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipelined and Flow Through Read/Write Control State DiagramWRPipelined and Flow Through Read Write Control State DiagramGS881Z18/32/36B(T/D)-xxxVIntermediateIntermediateIntermediateIntermediateIntermediateIntermediateHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)TransitionƒInput Command CodeKeyTransitionIntermediate State (N+1)Notes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateIntermediate ƒn n+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline Mode Data I/O State DiagramNext StateStatePipeline Mode Data I/O State DiagramGS881Z18/32/36B(T/D)-xxxVFlow Through Mode Data I/O State Diagram High Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for: Pipeline and Flow through Read Write Control State DiagramGS881Z18/32/36B(T/D)-xxxVBurst CyclesAlthough NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.Burst OrderThe burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have beenaccessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details.Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down ControlZZL or NC Active HStandby, I DD = I SBNote:There is a pull-up device on the FT pin and a pull-down device on the ZZ pin, so this input pin can be unconnected and the chip will operate in the default states as specified in the above table.Note:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100Burst Counter SequencesBPR 1999.05.18GS881Z18/32/36B(T/D)-xxxVSleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by it’s internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramtZZRtZZHtZZStKLtKHtKCCKZZDesigning for CompatibilityThe GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipelinemode via the FT signal found on Pin 14. Not all vendors offer this option, however most mark Pin 14 as V DD or V DDQ on pipelined parts and V SS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets.Pin 66, a No Connect (NC) on GSI’s GS8160Z18/36 NBT SRAM, the Parity Error open drain output on GSI’s GS881Z18/36B NBT SRAM, is often marked as a power pin on other vendor’s NBT compatible SRAMs. Specifically, it is marked V DD or V DDQ on pipelined parts and V SS on flow through parts. Users of GSI NBT devices who are not actually using the ByteSafe™ parity feature may want to design the board site for the RAM with Pin 66 tied high through a 1k ohm resistor in Pipeline modeapplications or tied low in Flow Through mode applications in order to keep the option to use non-configurable devices open.Absolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage on V DDQ Pins –0.5 to V DDV V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125oCGS881Z18/32/36B(T/D)-xxxVNote:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage Ranges (1.8 V/2.5 V Version)ParameterSymbolMin.Typ.Max.UnitNotes1.8 V Supply Voltage V DD1 1.7 1.82.0V 2.5 V Supply Voltage V DD2 2.3 2.5 2.7V 1.8 V V DDQ I/O Supply Voltage V DDQ1 1.7 1.8V DD V 2.5 V V DDQ I/O Supply VoltageV DDQ22.32.5V DDVNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS881Z18/32/36B(T/D)-xxxVV DDQ2 & V DDQ1 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low VoltageV IL–0.3—0.3*V DDV1Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.20% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DD ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFNote:These parameters are sample tested.(T A = 25= 2.5 V)AC Test ConditionsParameterConditionsDQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceFigure 1Input high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 11.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. GS881Z18/32/36B(T/D)-xxxVDC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA FT, ZZ Input Current I IN V DD ≥ V IN ≥ 0 V –100 uA 100 uA Output Leakage CurrentI OLOutput Disable, V OUT = 0 to V DD–1 uA1 uADC Output Characteristics (1.8 V/2.5 V Version)ParameterSymbolTest ConditionsMinMax1.8 V Output High Voltage V OH1I OH = –4 mA, V DDQ = 1.6 V V DDQ – 0.4 V —2.5 V Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V1.7 V —1.8 V Output Low Voltage V OL1I OL = 4 mA —0.4 V2.5 V Output Low VoltageV OL2I OL = 8 mA—0.4 VGS881Z18/32/36B(T/D)-xxxVOperating CurrentsParameterTest ConditionsModeSymbol-250-200-150Unit0to 70°C–40 to 85°C0to 70°C –40to 85°C 0 to 70°C –40to 85°COperating CurrentDevice Selected; All other inputs ≥V IH o r ≤ V IL Output open(x32/x36)PipelineI DD I DDQ 200302203017025190251402016020mA Flow Through I DD I DDQ 160251802514020160201301515015mA (x18)PipelineI DD I DDQ 185152051515515175151301015010mA Flow ThroughI DD I DDQ 1451516515130101501012081408mA Standby Current ZZ ≥ V DD – 0.2 V —Pipeline I SB 405040504050mA Flow Through I SB 405040504050mA Deselect CurrentDevice Deselected; All other inputs ≥ V IH or ≤ V IL—PipelineI DD 859075806065mA Flow Through I DD606550555055mA1.I DD and I DDQ apply to any combination of V DD1, V DD2, V DDQ1, and V DDQ2 operation.2.All parameters listed are worst case scenario.。

GS8321V18E-166资料

GS8321V18E-166资料

GS8321V18/32/36E-250/225/200/166/150/1332M x 18, 1M x 32, 1M x 3636Mb Sync Burst SRAMs250 MHz –133 MHz1.8 V V DD 1.8 V I/O165-Bump FP-BGA Commercial Temp Industrial Temp Features• IEEE 1149.1 JTAG-compatible Boundary Scan • 1.8 V +10%/–10% core power supply • 1.8 V I/O supply• LBO pin for Linear or Interleaved Burst mode• Internal input resistors on mode pins allow floating mode pins • Byte Write (BW) and/or Global Write (GW) operation • Internal self-timed write cycle• Automatic power-down for portable applications • JEDEC-standard 165-bump FP-BGA package • Pb-Free 165-bump BGA package availableFunctional DescriptionApplicationsThe GS8321V18/32/36E is a 37,748,736-bit high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support. ControlsAddresses, data I/Os, chip enable (E1), address burst control inputs (ADSP, ADSC, ADV) and write control inputs (Bx, BW, GW) are synchronous and are controlled by a positive-edge-triggered clock input (CK). Output enable (G) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either ADSP or ADSC inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by ADV. The burst address counter may beconfigured to count in either linear or interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance.Flow Through/Pipeline ReadsThe function of the Data Output register can be controlled by the user via the FT mode pin (Pin 14). Holding the FT mode pin low places the RAM in Flow Through mode, causing output data to bypass the Data Output Register. Holding FT high places the RAM in Pipeline mode, activating the rising-edge-triggered Data Output Register.SCD Pipelined ReadsThe GS8321V18/32/36E is a SCD (Single Cycle Deselect) pipelined synchronous SRAM. DCD (Dual Cycle Deselect) versions are also available. SCD SRAMs pipeline deselect commands one stage less than read commands. SCD RAMs begin turning off their outputs immediately after the deselect command has been captured in the input registers.Byte Write and Global WriteByte write operation is performed by using Byte Write enable (BW) input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the Byte Write control inputs.Sleep ModeLow power (Sleep mode) is attained through the assertion (High) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode.Core and Interface VoltagesThe GS8321V18/32/36E operates on a 1.8 V power supply. All input are 1.8 V compatible. Separate output power (V DDQ ) pins are used to decouple output noise from the internal circuits and are 1.8 V compatible.Parameter Synopsis-250-225-200-166-150-133Unit Pipeline 3-1-1-1KQ tCycle 4.0 4.4 5.0 6.0 6.67.5ns Curr (x18)Curr (x32/x36)285350265320245295220260210240185215mA mA Flow Through 2-1-1-1t KQ tCycle 6.57.07.58.08.58.5ns Curr (x18)Curr (x32/x36)205235195225185210175200165190155175mA mAGS8321V18/32/36E-250/225/200/166/150/133165 Bump BGA—x18 Commom I/O—Top View (Package E)1234567891011A NC A E1BB NC E3BW ADSC ADV A A AB NC A E2NC BA CK GW G ADSP A NC BC NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPA CD NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA DE NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA EF NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA FG NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA GH FT MCL NC V DD V SS V SS V SS V DD NC NC ZZ HJ DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC JK DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC KL DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC LM DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC MN DQPB NC V DDQ V SS NC A NC V SS V DDQ NC NC NP NC NC A A TDI A1TDO A A A A PR LBO A19A A TMS A0TCK A A A A R11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump PitchGS8321V18/32/36E-250/225/200/166/150/133165 Bump BGA—x32 Common I/O—Top View (Package E)1234567891011A NC A E1BC BB E3BW ADSC ADV A NC AB NC A E2BD BA CK GW G ADSP A NC BC NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC NC CD DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB DE DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB EF DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB FG DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB GH FT MCL NC V DD V SS V SS V SS V DD NC NC ZZ HJ DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA JK DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA KL DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA LM DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA MN NC NC V DDQ V SS NC A NC V SS V DDQ NC NC NP NC NC A A TDI A1TDO A A A A PR LBO A A A TMS A0TCK A A A A R11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump PitchGS8321V18/32/36E-250/225/200/166/150/133165 Bump BGA—x36 Common I/O—Top View (Package E)1234567891011A NC A E1BC BB E3BW ADSC ADV A NC AB NC A E2BD BA CK GW G ADSP A NC BC DQPC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPB CD DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB DE DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB EF DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB FG DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB GH FT MCL NC V DD V SS V SS V SS V DD NC NC ZZ HJ DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA JK DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA KL DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA LM DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA MN DQPD NC V DDQ V SS NC A NC V SS V DDQ NC DQPA NP NC NC A A TDI A1TDO A A A A PR LBO A A A TMS A0TCK A A A A R11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump PitchGS8321V18/32/36E 165-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsA I Address Inputs DQ A DQB DQC DQD I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active highBW I Byte Write—Writes all enabled bytes; active low GW I Global Write Enable—Writes all bytes; active lowE 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active lowADV I Burst address counter advance enable; active l0w ADSC, ADSPI Address Strobe (Processor, Cache Controller); active lowZZ I Sleep mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock MCL —Must Connect Low V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyGS8321V18/32/36E-250/225/200/166/150/133GS8321V18/32/36E-250/225/200/166/150/133A1A0A0A1D0D1Q1Q0Counter LoadD QDQRegisterRegisterDQRegisterDQRegisterDQRegisterD QRegisterD QRegisterD QRegisterD QR e g i s t e rDQ RegisterA0–AnLBO ADV CK ADSC ADSP GW BW E 1FT GZZPower Down ControlMemory Array36364AQD DQx1–DQx9NCParity NCParity EncodeCompare3643636432Note: Only x36 version shown for simplicity.13636DQR e g i s t e r 4B AB BB CB DGS8321V18/32/36 Block DiagramMode Pin FunctionsMode NamePin NameStateFunctionBurst Order ControlLBO L Linear Burst H Interleaved Burst Output Register ControlFT L Flow Through H or NC Pipeline Power Down ControlZZL or NC Active HStandby, I DD = I SBGS8321V18/32/36E-250/225/200/166/150/133Note:There are pull-up devices on the FT pin and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.The burst counter wraps to initial state on the 5th clock.The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014thaddress11000110I nterleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1staddress 000110112nd address 010011103rd address 101100014th address11100100Burst Counter SequencesBPR 1999.05.18GS8321V18/32/36E-250/225/200/166/150/133Byte Write Truth TableFunctionGWBWB AB BB CB DNotesRead H H X X X X 1Read H L H H H H 1Write byte a H L L H H H 2, 3Write byte b H L H L H H 2, 3Write byte c H L H H L H 2, 3, 4Write byte d H L H H H L 2, 3, 4Write all bytes H L L L L L 2, 3, 4Write all bytesLXXXXX1.All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.2.Byte Write Enable inputs B A , B B , B C and/or B D may be used in any combination with BW to write single or multiple bytes.3.All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.4.Bytes “C ” and “D ” are only available on the x36 version.Synchronous Truth TableOperationAddress UsedState Diagram Key 5E 1ADSPADSCADVW 3DQ 4Deselect Cycle, Power Down None X H X L X X High-Z Read Cycle, Begin Burst External R L L X X X Q Read Cycle, Begin Burst External R L H L X F Q Write Cycle, Begin Burst External W L H L X T D Read Cycle, Continue Burst Next CR X H H L F Q Read Cycle, Continue Burst Next CR H X H L F Q Write Cycle, Continue Burst Next CW X H H L T D Write Cycle, Continue Burst Next CWH X H L T D Read Cycle, Suspend Burst Current X H H H F Q Read Cycle, Suspend Burst Current H X H H F Q Write Cycle, Suspend Burst Current X H H H T D Write Cycle, Suspend BurstCurrentHXHHTDNotes:1.X = Don’t Care, H = High, L = Low2.W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.3.G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shownas “Q” in the Truth Table above).4.All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplishbasic synchronous or synchronous burst operations and may be avoided for simplicity.5.Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.6.Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.GS8321V18/32/36E-250/225/200/166/150/133First WriteFirst ReadBurst WriteBurst ReadDeselect R WCRCWXXWRRWRXXX S i m p l e S y n c h r o n o u s O p e r a t i o nS i m p l e B u r s t S y n c h r o n o u s O p e r a t i o nCR RCWCRCRNotes:1.The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.2.The upper portion of the diagram assumes active use of only the Enable (E1) and Write (B A , B B , B C , B D , BW, and GW) control inputs, andthat ADSP is tied high and ADSC is tied low.3.The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs, andassumes ADSP is tied high and ADV is tied low.GS8321V18/32/36E-250/225/200/166/150/133Simplified State DiagramFirst WriteFirst ReadBurst WriteBurst ReadDeselectR WCRCWXXWRRWRXXX CRR CW CRCRW CWW CWNotes:1.The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.e of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passingthrough a deselect cycle. Dummy read cycles increment the address counter just like normal read cycles.3.Transitions shown in gray tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meetData Input Set Up Time.GS8321V18/32/36E-250/225/200/166/150/133Simplified State Diagram with GAbsolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 3.6V V DDQ Voltage in V DDQ Pins –0.5 to 3.6V V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 3.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 3.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125oCGS8321V18/32/36E-250/225/200/166/150/133Note:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage RangesParameterSymbolMin.Typ.Max.UnitNotes1.8 V Supply Voltage V DD 1.6 1.82.0V 1.8 V V DDQ I/O Supply VoltageV DDQ1.61.82.0VNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed3.6 V maximum, with a pulse width not to exceed 20% tKC.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS8321V18/32/36E-250/225/200/166/150/133Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low Voltage V IL –0.3—0.3*V DD V 1V DDQ I/O Input High Voltage V IHQ 0.6*V DD —V DDQ + 0.3V 1,3V DDQ I/O Input Low VoltageV ILQ–0.3—0.3*V DDV1,3Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed3.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.20% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DD ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFNote:These parameters are sample tested.(T A = 25= 2.5 V)AC Test ConditionsParameterConditionsInput high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 11.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. GS8321V18/32/36E-250/225/200/166/150/133DQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceDC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA ZZ Input Current I IN1V DD ≥ V IN ≥ V IH 0 V ≤ V IN ≤ V IH –1 uA –1 uA 1 uA 100 uA FT Input Current I IN2V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL–100 uA –1 uA 1 uA 1 uA Output Leakage Current I OL Output Disable, V OUT = 0 to V DD –1 uA 1 uA Output High Voltage V OH1I OH = –4 mA, V DDQ = 1.6 V V DDQ – 0.4 V—Output Low VoltageV OL1I OL = 4 mA, V DD = 1.6 V—0.4 VGS8321V18/32/36E-250/225/200/166/150/133O p e r a t i n g C u r r e n t sP a r a m e t e r T e s t C o n d i t i o n s M o d eS y m b o l -250-225-200-166-150-133U n i t0t o 70°C –40 t o 85°C0t o 70°C–40 t o 85°C0t o 70°C–40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°CO p e r a t i n g C u r r e n tD e v i c e S e l e c t e d ; A l l o t h e r i n p u t s ≥V I H o r ≤ V I LO u t p u t o p e n(x 32/x 36)P i p e l i n e I D DI D D Q300503205027545295452554027540225352453521030230301902521025m AF l o w T h r o u g hI D DI D D Q210252202520025210251902020020180201902017020180201601517015m A(x 18)P i p e l i n e I D DI D D Q260252802524025260252252024520200202202019020210201701519015m AF l o w T h r o u g hI D DI D D Q190152001518015190151701518015160151701515015160151401515015m AS t a n d b y C u r r e n tZ Z ≥ V D D – 0.2 V—P i p e l i n eI S B 608060806080608060806080m AF l o w T h r o u g hI S B608060806080608060806080m AD e s e l e c t C u r r e n tD e v i c e D e s e l e c t e d ; A l l o t h e r i n p u t s ≥ V I H o r ≤ V I L—P i p e l i n eI D D100115951109010585100851008095m AF l o w T h r o u g hI D D85100851008095809575907085m AN o t e s : 1.I D D a n d I D D Q a p p l y t o a n y c o m b i n a t i o n o f V D D 3, V D D 2, V D D Q 3, a n d V D D Q 2 o p e r a t i o n .2.A l l p a r a m e t e r s l i s t e d a r e w o r s t c a s e s c e n a r i o .AC Electrical CharacteristicsParameter Symbol -250-225-200-166-150-133UnitMin Max Min Max Min Max Min Max Min Max Min Max Flow ThroughClock Cycle Time tKC 5.5— 6.0— 6.5—7.0—7.5—8.5—ns Clock to Output ValidtKQ — 5.5— 6.0— 6.5—7.0—7.5—8.5ns Clock to Output Invalid tKQX 3.0— 3.0— 3.0— 3.0— 3.0— 3.0—ns Clock to Output in Low-ZtLZ 1 3.0— 3.0— 3.0— 3.0— 3.0— 3.0—ns Setup time tS 1.5— 1.5— 1.5— 1.5— 1.5— 1.5—ns Hold time tH 0.5—0.5—0.5—0.5—0.5—0.5—ns Clock HIGH Time tKH 1.3— 1.3— 1.3— 1.3— 1.5— 1.7—ns Clock LOW Time tKL 1.5— 1.5— 1.5— 1.5— 1.7—2—ns Clock to Output inHigh-Z tHZ 1 1.5 2.5 1.5 2.7 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0ns G to Output Valid tOE — 2.5— 2.7— 3.0— 3.5— 3.8— 4.0ns G to output in Low-Z tOLZ 10—0—0—0—0—0—ns G to output in High-Z tOHZ 1— 2.5— 2.7— 3.0— 3.0— 3.0— 3.0ns ZZ setup time tZZS 25—5—5—5—5—5—ns ZZ hold time tZZH 21—1—1—1—1—1—ns ZZ recoverytZZR20—20—20—20—20—20—ns GS8321V18/32/36E-250/225/200/166/150/133Notes:1.These parameters are sampled and are not 100% tested2.ZZ is an asynchronous signal. However, In order to be recognized on any given clock cycle, ZZ must meet the specified setup and holdtimes as specified above.GS8321V18/32/36E-250/225/200/166/150/133Pipeline Mode TimingBegin Read A Cont Cont Deselect Write B Read C Read C+1Read C+2Read C+3ContDeselecttHZtKQX tKQtLZtHtStOHZtOEtHtStHtStHtStHtStHtStStHtStHtStHtSBurst ReadtKCtKL tKH Single Write Single ReadQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)ABCDeselected with E1E1 masks ADSPE2 and E3 only sampled with ADSP and ADSCADSC initiated readCK ADSPADSCADVA0–AnGWBWBa–BdE1E2E3GDQa–DQdGS8321V18/32/36E-250/225/200/166/150/133Flow Through Mode TimingBegin Read A ContCont Write B Read C Read C+1Read C+2Read C+3Read C Cont DeselecttHZtKQXtKQ tLZtH tStOHZtOEtHtS tHtS tHtStHtS tHtS tHtStHtS tHtS tH tS tHtS tKCtKL tKHABCQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)Q(C)E2 and E3 only sampled with ADSCADSC initiated readDeselected with E1Fixed HighCK ADSPADSCADVA0–AnGWBWBa–BdE1E2E3GDQa–DQdGS8321V18/32/36E-250/225/200/166/150/133Sleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramtZZRtZZHtZZSHoldSetup tKLtKHtKCCKADSP ADSCZZApplication TipsSingle and Dual Cycle DeselectSCD devices (like this one) force the use of “dummy read cycles” (read cycles that are launched normally but that are ended with the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance but their use usuallyassures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at bank address boundary crossings) but greater care must be exercised to avoid excessive bus contention.JTAG Port OperationOverviewThe JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V DD . The JTAG output drivers are powered by V DDQ .Disabling the JTAG PortIt is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either V DD or V SS . TDO should be left unconnected.JTAG Pin DescriptionsPinPin NameI/ODescriptionTCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.TMSTest Mode SelectInThe TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.TDI Test Data In InThe TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.TDO Test Data OutOut Output that is active depending on the state of the TAP state machine. Output changes inresponse to the falling edge of TCK. This is the output side of the serial registers placed betweenTDI and TDO.This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.GS8321V18/32/36E-250/225/200/166/150/133JTAG Port RegistersOverviewThe various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins.Instruction RegisterThe Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.Bypass RegisterThe Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.Boundary Scan RegisterThe Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is inCapture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.。

GS8321ZV18E-200I中文资料

GS8321ZV18E-200I中文资料

GS8321ZV18/32/36E-250/225/200/166/150/13336Mb Pipelined and Flow ThroughSynchronous NBT SRAM250 MHz–133 MHz1.8 V V DD 1.8 V I/O165-Bump FP-BGA Commercial Temp Industrial Temp Features• User-configurable Pipeline and Flow Through mode• NBT (No Bus Turn Around) functionality allows zero wait read-write-read bus utilization• Fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs• IEEE 1149.1 JTAG-compatible Boundary Scan • 1.8 V +10%/–10% core power supply• LBO pin for Linear or Interleave Burst mode• Pin-compatible with 2Mb, 4Mb, 8Mb, and 18Mb devices • Byte write operation (9-bit Bytes)• 3 chip enable signals for easy depth expansion • ZZ pin for automatic power-down• JEDEC-standard 165-bump FP-BGA packageFunctional DescriptionThe GS8321ZV18/32/36E is a 36Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.Because it is a synchronous device, address, data inputs, and read/ write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable, ZZ and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.The GS8321ZV18/32/36E may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edge-triggered registers that capture input signals, the deviceincorporates a rising-edge-triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.The GS8321ZV18/32/36E is implemented with GSI's high performance CMOS technology and is available in JEDEC-standard 165-bump FP-BGA package.Parameter Synopsis-250-225-200-166-150-133Unit Pipeline 3-1-1-1t KQ tCycle 2.54.0 2.74.4 3.05.0 3.56.0 3.86.6 4.07.5ns ns (x18)Curr (x32/x36)350320295260240215mA Flow Through 2-1-1-1t KQ tCycle 6.56.57.07.07.57.58.08.08.58.58.58.5ns ns (x18)Curr (x32/x36)235225210200190175mA165 Bump BGA—x18 Commom I/O—Top View (Package E)1234567891011A NC A E1BB NC E3CKE ADV A A A AB NC A E2NC BA CK W G A A NC BC NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQA CD NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA DE NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA EF NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA FG NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA GH FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC J K DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC K L DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC L M DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC M N DQB NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P R LBO A A A TMS A0TCK A A A A R11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch165 Bump BGA—x32 Common I/O—Top View (Package E)1234567891011A NC A E1BC BB E3CKE ADV A A NC AB NC A E2BD BA CK W G A A NC BC NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC NC CD DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB DE DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB EF DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB FG DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB GH FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N NC NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P R LBO A A A TMS A0TCK A A A A R11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch165 Bump BGA—x36 Common I/O—Top View (Package E)1234567891011A NC A E1BC BB E3CKE ADV A A NC AB NC A E2BD BA CK W G A A NC BC DQC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQB CD DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB DE DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB EF DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB FG DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB GH FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N DQD NC V DDQ V SS NC NC NC V SS V DDQ NC DQA N P NC NC A A TDI A1TDO A A A NC P R LBO A A A TMS A0TCK A A A A R11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump PitchGS8321ZV18/32/36E 165-Bump BGA Pin DescriptionSymbol Type DescriptionA0, A1I Address field LSBs and Address Counter Preset InputsAn I Address InputsDQ ADQ BI/O Data Input and Output pins DQ CDQ DB A, B B, B C, B D I Byte Write Enable for DQ A, DQ B, DQ C, DQ D I/Os; active lowNC—No ConnectCK I Clock Input Signal; active highCKE I Clock Enable; active lowW I Write Enable; active lowE1I Chip Enable; active lowE3I Chip Enable; active lowE2I Chip Enable; active highFT I Flow Through / Pipeline Mode ControlG I Output Enable; active lowADV I Burst address counter advance enable; active highZZ I Sleep mode control; active highLBO I Linear Burst Order mode; active lowTMS I Scan Test Mode SelectTDI I Scan Test Data InTDO O Scan Test Data OutTCK I Scan Test ClockMCH—Must Connect HighV DD I Core power supplyV SS I I/O and Core GroundV DDQ I Output driver power supplyGS8321ZV18/32/36 NBT SRAM Functional Block DiagramK18S A 1S A 0B u r s tC o u n t e rL B OA D VM e m o r y A r r a yGC KC K ED QF TD Q a –D Q nKS A 1’S A 0’D QM a t c hW r i t e A d d r e s sR e g i s t e r 2W r i t e A d d r e s sR e g i s t e r 1W r i t e D a t aR e g i s t e r 2W r i t e D a t aR e g i s t e r 1KKKKKKS e n s e A m p sW r i t e D r i v e r sR e a d , W r i t e a n dD a t a C o h e r e n c yC o n t r o l L o g i cF TA 0–A nE 3E 2E 1WB DB CB BB AFunctional DetailsClockingDeassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.Pipeline Mode Read and Write OperationsAll inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2 and E3). Deassertion of any one of the Enable inputs will deactivate the device.Function W B A B B B C B DRead H X X X XWrite Byte “a”L L H H HWrite Byte “b”L H L H HWrite Byte “c”L H H L HWrite Byte “d”L H H H LWrite all Bytes L L L L LWrite Abort/NOP L H H H HRead operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.Write operation occurs when the RAM is selected, CKE is active and the write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (B A, B B, B C & B D) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality, matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock.Flow Through Mode Read and Write OperationsOperation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode.Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.Synchronous Truth TableOperation Type Address CK CKE ADV W Bx E1E2E3G ZZ DQ Notes Read Cycle, Begin Burst R External L-H L L H X L H L L L QRead Cycle, Continue Burst B Next L-H L H X X X X X L L Q1,10 NOP/Read, Begin Burst R External L-H L L H X L H L H L High-Z2 Dummy Read, Continue Burst B Next L-H L H X X X X X H L High-Z1,2,10 Write Cycle, Begin Burst W External L-H L L L L L H L X L D3 Write Cycle, Continue Burst B Next L-H L H X L X X X X L D1,3,10 Write Abort, Continue Burst B Next L-H L H X H X X X X L High-Z1,2,3,10 Deselect Cycle, Power Down D None L-H L L X X H X X X L High-Z Deselect Cycle, Power Down D None L-H L L X X X X H X L High-Z Deselect Cycle, Power Down D None L-H L L X X X L X X L High-Z Deselect Cycle D None L-H L L L H L H L X L High-Z1 Deselect Cycle, Continue D None L-H L H X X X X X X L High-Z1 Sleep Mode None X X X X X X X X X H High-ZClock Edge Ignore, Stall Current L-H H X X X X X X X L-4 Notes:1.Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-lect cycle is executed first.2.Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the Wpin is sampled low but no Byte Write pins are active so no write operation is performed.3.G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off duringwrite cycles.4.If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the buswill remain in High Z.5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Writesignals are Low6.All inputs, except G and ZZ must meet setup and hold times of rising clock edge.7.Wait states can be inserted by setting CKE high.8.This device contains circuitry that ensures all outputs are in High Z during power-up.9. A 2-bit burst counter is incorporated.10.The address counter is incriminated for all Burst continue cycles.Pipelined and Flow Through Read Write Control State DiagramDeselectNew ReadNew WriteBurst ReadBurst WriteWRBRBWDDBBWRD BWRDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input commandcodes as indicated in the Synchronous Truth Table.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipelined and Flow Through Read/Write Control State DiagramWRPipeline Mode Data I/O State DiagramIntermediateIntermediateIntermediateIntermediateIntermediateIntermediateHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)TransitionƒInput Command CodeKeyTransitionIntermediate State (N+1)Notes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateIntermediate ƒn n+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline Mode Data I/O State DiagramNext StateStateFlow Through Mode Data I/O State DiagramHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for: Pipeline and Flow through Read Write Control State DiagramBurst CyclesAlthough NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.Burst OrderThe burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have beenaccessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details.Note:There are pull-up devices on the FT pin and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.Burst Counter SequencesBPR 1999.05.18Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved BurstPower Down ControlZZL or NC Active HStandby, I DD = I SBThe burst counter wraps to initial state on the 5th clock.The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1staddress 000110112nd address 010011103rd address 101100014th address11100100Sleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by it’s internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramDesigning for CompatibilityThe GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipelinemode via the FT signal found on Pin 14. Not all vendors offer this option, however most mark Pin 14 as V DD or V DDQ on pipelined parts and V SS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets.tZZRtZZHtZZStKLtKHtKCCKZZAbsolute Maximum Ratings(All voltages reference to V SS)Symbol Description Value UnitV DD Voltage on V DD Pins–0.5 to 3.6VV DDQ Voltage in V DDQ Pins–0.5 to 3.6VV I/O Voltage on I/O Pins–0.5 to V DDQ +0.5 (≤ 3.6 V max.)VV IN Voltage on Other Input Pins–0.5 to V DD +0.5 (≤ 3.6 V max.)VI IN Input Current on Any Pin+/–20mAI OUT Output Current on Any I/O Pin+/–20mAP D Package Power Dissipation 1.5WT STG Storage Temperature–55 to 125o CT BIAS Temperature Under Bias–55 to 125o C Note:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.Power Supply Voltage RangesParameter Symbol Min.Typ.Max.Unit Notes1.8 V Supply Voltage V DD1 1.6 1.82.0V1.8 V V DDQ I/O Supply Voltage V DDQ1 1.6 1.82.0VNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn+2 V not to exceed3.6 V maximum, with a pulse width not to exceed 20% tKC.Note:These parameters are sample tested.Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low Voltage V IL –0.3—0.3*V DD V 1V DDQ I/O Input High Voltage V IHQ 0.6*V DD —V DDQ + 0.3V 1,3V DDQ I/O Input Low VoltageV ILQ–0.3—0.3*V DDV1,3Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed3.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.Capacitance(T A = 25o C, f = 1 MH Z , V DD = 2.5 V)ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pF20% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILAC Test ConditionsParameterConditionsInput high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 11.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. DC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA ZZ Input Current I IN1V DD ≥ V IN ≥ V IH 0 V ≤ V IN ≤ V IH –1 uA –1 uA 1 uA 100 uA FT, SCD, and ZQ Input Current I IN2V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL–100 uA –1 uA 1 uA 1 uA Output Leakage Current I OL Output Disable, V OUT = 0 to V DD –1 uA 1 uA Output High Voltage V OH1I OH = –4 mA, V DDQ = 1.6 V V DDQ – 0.4 V—Output Low VoltageV OL1I OL = 4 mA, V DD = 1.6 V—0.4 VDQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceN o t e s : 1.I D D a n d I D D Q a p p l y t o a n y c o m b i n a t i o n o f V D D 3, V D D 2, V D D Q 3, a n d V D D Q 2 o p e r a t i o n .2.A l l p a r a m e t e r s l i s t e d a r e w o r s t c a s e s c e n a r i o .O p e r a t i n g C u r r e n t sP a r a m e t e r T e s t C o n d i t i o n sM o d e S y m b o l -250-225-200-166-150-133U n i t 0t o 70°C–40 t o 85°C 0t o 70°C –40 t o 85°C 0t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C O p e r a t i n g C u r r e n tD e v i c e S e l e c t e d ; A l l o t h e r i n p u t s ≥V I H o r ≤ V I LO u t p u t o p e n(x 32/x 36)P i p e l i n e I D DI D D Q 300503205027545295452554027540225352453521030230301902521025m AF l o w T h r o u g h I D D I D D Q210252202520025210251902020020180201902017020180201601517015m A(x 18)P i p e l i n eI D DI D D Q260252802524025260252252024520200202202019020210201701519015m AF l o w T h r o u g hI D DI D D Q190152001518015190151701518015160151701515015160151401515015m AS t a n d b y C u r r e n tZ Z ≥ V D D – 0.2 V—P i p e l i n eI S B608060806080608060806080m AF l o w T h r o u g hI S B608060806080608060806080m AD e s e l e c t C u r r e n tD e v i c e D e s e l e c t e d ; A l l o t h e r i n p u t s ≥ V I H o r ≤ V I L—P i p e l i n eI D D100115951109010585100851008095m AF l o w T h r o u g hI D D85100851008095809575907085m ANotes:1.These parameters are sampled and are not 100% tested.2.ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and holdtimes as specified above.AC Electrical CharacteristicsParameter Symbol -250-225-200-166-150-133UnitMin Max Min Max Min Max Min Max Min Max Min Max Flow ThroughClock Cycle Time tKC 5.5— 6.0— 6.5—7.0—7.5—8.5—ns Clock to Output ValidtKQ — 5.5— 6.0— 6.5—7.0—7.5—8.5ns Clock to Output Invalid tKQX 3.0— 3.0— 3.0— 3.0— 3.0— 3.0—ns Clock to Output in Low-ZtLZ 1 3.0— 3.0— 3.0— 3.0— 3.0— 3.0—ns Setup time tS 1.5— 1.5— 1.5— 1.5— 1.5— 1.5—ns Hold time tH 0.5—0.5—0.5—0.5—0.5—0.5—ns Clock HIGH Time tKH 1.3— 1.3— 1.3— 1.3— 1.5— 1.7—ns Clock LOW Time tKL 1.5—1.5—1.5—1.5— 1.7—2—ns Clock to Output inHigh-Z tHZ 1 1.5 2.5 1.5 2.7 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0ns G to Output Valid tOE — 2.5— 2.7— 3.0— 3.5— 3.8— 4.0ns G to output in Low-Z tOLZ 10—0—0—0—0—0—ns G to output in High-Z tOHZ 1— 2.5— 2.7— 3.0— 3.0— 3.0— 3.0ns ZZ setup time tZZS 25—5—5—5—5—5—ns ZZ hold time tZZH 21—1—1—1—1—1—ns ZZ recoverytZZR20—20—20—20—20—20—nsPipeline Mode Timing (NBT)Write AWrite BWrite B+1Read CContRead DWrite ERead FDESELECTD(A)D(B)D(B+1)Q(C)Q(D)D(E)Q(F)tOLZtOEtOHZtHZtKQXtKQtLZ tHtStHtStHtStHtStHtStHtStHtStKC tKLtKHA BCD E FG*Note: E=High(False) if E1 = 1 or E2 = 0 or E3 = 1CKCKEE*ADVWBnA0–An DQa–DQd GFlow Through Mode Timing (NBT)JTAG Port OperationOverviewThe JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V DD . The JTAG output drivers are powered by V DDQ .Disabling the JTAG PortIt is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either V DD or V SS . TDO should be left unconnected.Write AWrite BWrite B+1Read CCont Read D Write E Read F Write GD(A)D(B)D(B+1)Q(C)Q(D)D(E)Q(F)D(G)tOLZ tOEtOHZtKQXtKQtLZtHZtKQX tKQ tLZtHtStHtStHtStHtStHtStHtStHtStKCtKLtKHABCDEFG*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1CKCKEEADVWBnA0–AnDQGJTAG Port RegistersOverviewThe various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins.Instruction RegisterThe Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.Bypass RegisterThe Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.Boundary Scan RegisterThe Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is inCapture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.JTAG Pin Descriptions PinPin NameI/ODescriptionTCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.TMSTest Mode SelectInThe TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.TDI Test Data In InThe TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.TDO Test Data OutOut Output that is active depending on the state of the TAP state machine. Output changes inresponse to the falling edge of TCK. This is the output side of the serial registers placed betweenTDI and TDO.This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.。

GS8322Z72GC-133IV资料

GS8322Z72GC-133IV资料

GS8322Z18/36/72(B/E/C)-xxxV36Mb Pipelined and Flow ThroughSynchronous NBT SRAM250 MHz –133 MHz 1.8 V or 2.5 V V DD 1.8 V or 2.5 V I/O119, 165 & 209 BGA Commercial Temp Industrial Temp Features• NBT (No Bus Turn Around) functionality allows zero wait Read-Write-Read bus utilization; fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs• 1.8 V or 2.5 V core power supply • 1.8 V or 2.5 V I/O supply• User-configurable Pipeline and Flow Through mode • ZQ mode pin for user-selectable high/low output drive • IEEE 1149.1 JTAG-compatible Boundary Scan • LBO pin for Linear or Interleave Burst mode• Pin-compatible with 2Mb, 4Mb, 8Mb, and 16Mb devices • Byte write operation (9-bit Bytes)• 3 chip enable signals for easy depth expansion • ZZ Pin for automatic power-down• JEDEC-standard 119-, 165- or 209-Bump BGA package • RoHS-compliant packages availableFunctional DescriptionThe GS8322Z18/36/72-xxxV is a 36Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.Because it is a synchronous device, address, data inputs, and read/write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable (ZZ) and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.The GS8322Z18/36/72-xxxV may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edge-triggered registers that capture input signals, the device incorporates a rising edge triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge-triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.The GS8322Z18/36/72-xxxV is implemented with GSI's high performance CMOS technology and is available in a JEDEC-standard 119-bump, 165-bump or 209-bump BGA package.Parameter Synopsis-250-225-200-166-150-133Unit Pipeline 3-1-1-1KQ tCycle 4.0 4.4 5.0 6.0 6.77.5ns Curr (x18)Curr (x36)Curr (x72)275330415255300385240280340215245305205230285180205255mA mA mA Flow Through 2-1-1-1t KQ tCycle 6.57.07.58.08.58.5ns Curr (x18)Curr (x36)Curr (x72)200225300190215280180205255170195245160185230150170225mA mA mAGS8322Z18/36/72(B/E/C)-xxxVGS8322Z72C-xxxV Pad Out—209-Bump BGA—Top View (Package C)1234567891011A DQ G DQ G A E2A ADV A E3A DQB DQ B AB DQ G DQ G BC BG NC W A BB BF DQ B DQ B BC DQ G DQ G BH BD NC E1NC BE BA DQ B DQ B CD DQ G DQ G V SS NC NC G NC NC V SS DQ B DQ B DE DQP G DQP C V DDQ V DDQ V DD V DD V DD V DDQ V DDQ DQPF DQP B EF DQ C DQ C V SS V SS V SS ZQ V SS V SS V SS DQ F DQ F FG DQ C DQ C V DDQ V DDQ V DD MCH V DD V DDQ V DDQ DQ F DQ F GH DQ C DQ C V SS V SS V SS MCL V SS V SS V SS DQ F DQ F H J DQ C DQ C V DDQ V DDQ V DD MCH V DD V DDQ V DDQ DQ F DQ F J K NC NC CK NC V SS CKE V SS NC NC NC NC K L DQ H DQ H V DDQ V DDQ V DD FT V DD V DDQ V DDQ DQ A DQ A L M DQ H DQ H V SS V SS V SS MCL V SS V SS V SS DQ A DQ A M N DQ H DQ H V DDQ V DDQ V DD MCH V DD V DDQ V DDQ DQ A DQ A N P DQ H DQ H V SS V SS V SS ZZ V SS V SS V SS DQ A DQ A P R DQP D DQP H V DDQ V DDQ V DD V DD V DD V DDQ V DDQ DQP A DQP E R T DQ D DQ D V SS NC NC LBO NC NC V SS DQ E DQ E T U DQ D DQ D NC A NC A A A NC DQ E DQ E U V DQ D DQ D A A A A1A A A DQ E DQ E V W DQ D DQ D TMS TDI A A0A TDO TCK DQ E DQ E W11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump PitchGS8322Z18/36/72(B/E/C)-xxxVGS8322Z72C-xxxV 209-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsAn IAddress InputsDQ A DQ B DQ C DQ D DQ E DQ F DQ G DQ H I/O Data Input and Output pinsB A , B B I Byte Write Enable for DQ A , DQ B I/Os; active low BC ,BD I Byte Write Enable for DQ C , DQ D I/Os; active low BE , BF , BG ,B HI Byte Write Enable for DQ E , DQ F , DQ G , DQ H I/Os; active lowNC —No ConnectCK I Clock Input Signal; active high E 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active low ADV I Burst address counter advance enable ZZ I Sleep Mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowMCH I Must Connect High MCH IMust Connect High MCL Must Connect Low W I Write Enable; active low ZQ I FLXDrive Output Impedance Control Low = Low Impedance [High Drive], High = High Impedance [Low Drive]CKEIClock Enable; active lowGS8322Z18/36/72(B/E/C)-xxxVTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyGS8322Z72C-xxxV 209-Bump BGA Pin DescriptionSymbolTypeDescriptionGS8322Z18/36/72(B/E/C)-xxxVGS8322Z36B-xxxV Pad Out—119-Bump BGA—Top View 1234567A V DDQ A A A A A V DDQ A B NC E2A ADV A E3NC B C NC A A V DD A A NC C D DQC DQPC V SS ZQ V SS DQPB DQB D E DQC DQC V SS E1V SS DQB DQB E F V DDQ DQC V SS G V SS DQB V DDQ F G DQC DQC BC A BB DQB DQB G H DQC DQC V SS W V SS DQB DQB H J V DDQ V DD NC V DD NC V DD V DDQ J K DQD DQD V SS CK V SS DQA DQA K L DQD DQD BD NC BA DQA DQA L M V DDQ DQD V SS CKE V SS DQA V DDQ M N DQD DQD V SS A1V SS DQA DQA N P DQD DQPD V SS A0V SS DQPA DQA P R NC A LBO V DD FT A NC R T NC NC A A A A ZZ T UV DDQTMSTDITCKTDONCV DDQU7 x 17 Bump BGA—14 x 22 mm 2 Body—1.27 mm Bump Pitch(Package B)GS8322Z18/36/72(B/E/C)-xxxVGS8322Z18B-xxxV Pad Out—119-Bump BGA—Top View 1234567A V DDQ A A A A A V DDQ A B NC E2A ADV A E3NC B C NC A A V DD A A NC C D DQB NC V SS ZQ V SS DQPA NC D E NC DQB V SS E1V SS NC DQA E F V DDQ NC V SS G V SS DQA V DDQ F G NC DQB BB A NC NC DQA G H DQB NC V SS W V SS DQA NC H J V DDQ V DD NC V DD NC V DD V DDQ J K NC DQB V SS CK V SS NC DQA K L DQB NC NC NC BA DQA NC L M V DDQ DQB V SS CKE V SS NC V DDQ M N DQB NC V SS A1V SS DQA NC N P NC DQPB V SS A0V SS NC DQA P R NC A LBO V DD FT A NC R T NC A A A A A ZZ T UV DDQTMSTDITCKTDONCV DDQU7 x 17 Bump BGA—14 x 22 mm 2 Body—1.27 mm Bump Pitch(Package B)GS8322Z18/36/72(B/E/C)-xxxVGS8322Z18/36B-xxxV 119-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsAn I Address Inputs DQ A DQ B DQ C DQ D I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active high CKE I Clock Enable; active low W I Write Enable; active low E 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active low ADV I Burst address counter advance enable ZZ I Sleep mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowZQ I FLXDrive Output Impedance ControlLow = Low Impedance [High Drive], High = High Impedance [Low Drive])TMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyBPR1999.05.18GS8322Z18/36/72(B/E/C)-xxxV165 Bump BGA—x18 Common I/O—Top View 1234567891011A NC A E1BB NC E3CKE ADV A A A A B NC A E2NC BA CK W G A A NC B C NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPA C D NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA D E NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA E F NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA F G NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA G H FT MCH NC V DD V SS V SS V SS V DD NC ZQ ZZ H J DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC J K DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC K L DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC L M DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC M N DQPB NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P RLBOAAATMSA0TCKAAAAR11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch(Package E)GS8322Z18/36/72(B/E/C)-xxxV165 Bump BGA—x36 Common I/O—Top View 1234567891011A NC A E1BC BB E3CKE ADV A A NC A B NC A E2BD BA CK W G A A NC B C DQPC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPB C D DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB D E DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB E F DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB F G DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB G H FT MCH NC V DD V SS V SS V SS V DD NC ZQ ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N DQPD NC V DDQ V SS NC NC NC V SS V DDQ NC DQPA N P NC NC A A TDI A1TDO A A A NC P RLBOAAATMSA0TCKAAAAR11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch(Package E)GS8322Z18/36/72(B/E/C)-xxxVGS8322Z18/36E-xxxV 165-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsAn I Address Inputs A 18I Address Input DQ A DQ B DQ C DQ D I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active high CKE I Clock Enable; active low W I Write Enable; active low E 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high FT I Flow Through / Pipeline Mode ControlG I Output Enable; active lowADV I Burst address counter advance enable; active highZQ I FLXDrive Output Impedance ControlLow = Low Impedance [High Drive], High = High Impedance [Low Drive])ZZ I Sleep mode control; active high LBO I Linear Burst Order mode; active lowTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock MCH —Must Connect High V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyGS8322Z18/36/72(B/E/C)-xxxVFunctional DetailsClockingDeassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.Pipeline Mode Read and Write OperationsAll inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E 1, E 2, and E 3). Deassertion of any one of the Enable inputs will deactivate the device. Function W B A B B B C B D Read H X X X X Write Byte “a”L L H H H Write Byte “b”L H L H H Write Byte “c”L H H L H Write Byte “d”L H H H L Write all Bytes L L L L L Write Abort/NOPLHHHHRead operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E 1, E 2, and E 3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched into the address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.Write operation occurs when the RAM is selected, CKE is active, and the Write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (B A , B B , B C, and B D ) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock.Flow Through Mode Read and Write OperationsOperation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode.Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.Synchronous Truth TableOperationType Address CK CKE ADV W Bx E 1E 2E 3G ZZDQNotesRead Cycle, Begin Burst R External L-H L L H X L H L L L Q Read Cycle, Continue Burst B Next L-H L H X X X X X L L Q 1,10NOP/Read, Begin Burst R External L-H L L H X L H L H L High-Z 2Dummy Read, Continue Burst B Next L-H L H X X X X X H L High-Z 1,2,10Write Cycle, Begin Burst W External L-H L L L L L H L X L D 3Write Cycle, Continue Burst B Next L-H L H X L X X X X L D1,3,10Write Abort, Continue Burst B Next L-H L H X H X X X X L High-Z 1,2,3,10Deselect Cycle, Power Down D None L-H L L X X H X X X L High-Z Deselect Cycle, Power Down D None L-H L L X X X X H X L High-Z Deselect Cycle, Power Down D None L-H L L X X X L X X L High-Z Deselect Cycle D None L-H L L L H L H L X L High-Z 1Deselect Cycle, Continue DNone L-H L H X X X X X X L High-Z 1Sleep ModeNone X X X X X X X X X H High-Z Clock Edge Ignore, StallCurrentL-HHXXXXXXXL-4Notes:1.Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-lect cycle is executed first.2.Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the Wpin is sampled low but no Byte Write pins are active so no write operation is performed.3.G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off duringwrite cycles.4.If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the buswill remain in High Z.5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Writesignals are Low6.All inputs, except G and ZZ must meet setup and hold times of rising clock edge.7.Wait states can be inserted by setting CKE high.8.This device contains circuitry that ensures all outputs are in High Z during power-up.9. A 2-bit burst counter is incorporated.10.The address counter is incriminated for all Burst continue cycles.GS8322Z18/36/72(B/E/C)-xxxVGS8322Z18/36/72(B/E/C)-xxxVDeselectNew ReadNew WriteBurst ReadBurst WriteWRBRBWDDBBWRD BWRDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input commandcodes as indicated in the Synchronous Truth Table.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipelined and Flow through Read/Write Control State DiagramWRPipelined and Flow Through Read Write Control State DiagramGS8322Z18/36/72(B/E/C)-xxxVPipeline Mode Data I/O State Diagram IntermediateIntermediateIntermediateIntermediateIntermediateIntermediateHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)TransitionƒInput Command CodeKeyTransitionIntermediate State (N+1)Notes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateIntermediate ƒn n+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline Mode Data I/O State DiagramNext StateStateGS8322Z18/36/72(B/E/C)-xxxVFlow Through Mode Data I/O State Diagram High Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for: Pipeline and Flow Through Read Write Control State DiagramGS8322Z18/36/72(B/E/C)-xxxVBurst CyclesAlthough NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.Burst OrderThe burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have beenaccessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details.FLXDrive™The ZQ pin allows selection between NBT RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down Control ZZ L or NC Active H Standby, I DD = I SB FLXDrive Output Impedance ControlZQL High Drive (Low Impedance)H or NCLow Drive (High Impedance)Note:There are pull-up devices on the ZQ and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.Note:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100GS8322Z18/36/72(B/E/C)-xxxVBurst Counter SequencesBPR 1999.05.18Sleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after 2 cycles of wake up time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramtZZRtZZHtZZStKLtKHtKCCKZZDesigning for CompatibilityThe GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal. Not all vendors offer this option, however most mark the pin V DD or V DDQ on pipelined parts and V SS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets. Other vendors mark the pin as a No Connect (NC). GSI RAMs have an internal pull-up device on the FT pin so a floating FT pin will result in pipelined operation. If the part being replaced is a pipelined mode part, the GSI RAM is fully compatible with these sockets. In the unlikely event the part being replaced is a Flow Through device, the pin will need to be pulled low for correct operation.Absolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage on V DDQ Pins –0.5 to V DDV V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125oCT BIASTemperature Under Bias–55 to 125o CGS8322Z18/36/72(B/E/C)-xxxVNote:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage Ranges (1.8 V/2.5 V Version)ParameterSymbolMin.Typ.Max.UnitNotes1.8 V Supply Voltage V DD1 1.7 1.82.0V 2.5 V Supply Voltage V DD2 2.3 2.5 2.7V 1.8 V V DDQ I/O Supply Voltage V DDQ1 1.7 1.8V DD V 2.5 V V DDQ I/O Supply VoltageV DDQ22.32.5V DDVNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS8322Z18/36/72(B/E/C)-xxxVV DDQ2 & V DDQ1 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low VoltageV IL–0.3—0.3*V DDV1Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.20% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DD ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFNote:These parameters are sample tested.(T A = 25= 2.5 V)AC Test ConditionsParameterConditionsDQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceFigure 1Input high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 1Notes:1.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. GS8322Z18/36/72(B/E/C)-xxxVDC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA FT, ZQ, ZZ Input Current I IN V DD ≥ V IN ≥ 0 V –100 uA 100 uA Output Leakage CurrentI OLOutput Disable, V OUT = 0 to V DD–1 uA1 uADC Output Characteristics (1.8 V/2.5 V Version)ParameterSymbolTest ConditionsMinMax1.8 V Output High Voltage V OH1I OH = –4 mA, V DDQ = 1.6 V V DDQ – 0.4 V —2.5 V Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V1.7 V —1.8 V Output Low Voltage V OL1I OL = 4 mA —0.4 V2.5 V Output Low VoltageV OL2I OL = 8 mA—0.4 VGS8322Z18/36/72(B/E/C)-xxxVO p e r a t i n g C u r r e n t sP a r a m e t e r T e s t C o n d i t i o n s M o d eS y m b o l -250-225-200-166-150-133U n i t0t o 70°C –40 t o 85°C0t o 70°C–40 t o 85°C 0t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C O p e r a t i n g C u r r e n tD e v i c e S e l e c t e d ; A l l o t h e r i n p u t s ≥V I H o r ≤ V I LO u t p u t o p e n(x 72)P i p e l i n eI D DI D D Q380354003535035370353203034030280253002526025280252352025520m AF l o w T h r o u g hI D DI D D Q275252852525525265252352024520225202352021020220202101522015m A(x 36)P i p e l i n eI D DI D D Q300303203027525295252552527525225202452021020230201901521015m AF l o w T h r o u g hI D DI D D Q210152201520015210151901520015180151901517015180151601017010m A(x 18)P i p e l i n eI D DI D D Q260152801524015260152251524515200152201519015210151701019010m AF l o w T h r o u g hI D DI D D Q190102001018010190101701018010160101701015010160101401015010m AS t a n d b y C u r r e n tZ Z ≥ V D D – 0.2 V—P i p e l i n eI S B 608060806080608060806080m AF l o w T h r o u g hI S B608060806080608060806080m AD e s e l e c t C u r r e n tD e v i c e D e s e l e c t e d ; A l l o t h e r i n p u t s ≥ V I H o r ≤ V I L—P i p e l i n eI D D100115951109010585100851008095m AF l o w T h r o u g hI D D85100851008095809575907085m AN o t e s : 1.I D D a n d I D D Q a p p l y t o a n y c o m b i n a t i o n o f V D D 3, V D D 2, V D D Q 3, a n d V D D Q 2 o p e r a t i o n .2.A l l p a r a m e t e r s l i s t e d a r e w o r s t c a s e s c e n a r i o .。

GS881E36T-100中文资料

GS881E36T-100中文资料

GS881E18/36T-11/11.5/100/80/66512K x 18, 256K x 36 ByteSafe™8Mb Sync Burst SRAMs100 MHz–66 MHz3.3 V V DD 3.3 V and 2.5 V I/O100-Pin TQFP Commercial TempIndustrial Temp1.10 9/2000Featuresoperation• Dual Cycle Deselect (DCD) operation• IEEE 1149.1 JTAG-compatible Boundary Scan• On-chip write parity checking; even or odd selectable• 3.3 V +10%/–5% core power supply• 2.5 V or 3.3 V I/O supply• Internal input resistors on mode pins allow floating mode pins • Default to Interleaved Pipeline mode• Common data inputs and data outputs• Clock Control, registered, address, data, and control• Internal self-timed write cycle• Automatic power-down for portable applications• 100-lead TQFP packageFunctional DescriptionApplicationsThe GS881E18//36T is a 9,437,184-bit high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support. Controlsand power down control (ZZ) are asynchronous inputs. Burst Burst mode, subsequent burst addresses are generated counter may be configured to count in either linear or interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance. Flow Through/Pipeline ReadsThe function of the Data Output register can be controlled by the user via the FT mode pin (Pin 14). Holding the FT mode pin low places the RAM in Flow Through mode, causing output data to bypass the Data Output Register. Holding FT high places the RAM in Pipeline mode, activating the rising-edge-triggered Data Output Register.DCD Pipelined ReadsThe GS881E18//36T is a DCD (Dual Cycle Deselect) pipelined synchronous SRAM. SCD (Single Cycle Deselect) versions are also available. DCD SRAMs pipeline disable commands to the same degree as read commands. DCD RAMs hold the deselect command for one full cycle and then begin turning off their outputs just after the second rising edge of clock.Byte Write and Global WriteByte write operation is performed by using Byte Write enable (BW) input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the byte write control inputs.ByteSafe™ Parity FunctionsThe GS881E18/36T features ByteSafe data security functions. See detailed discussion following.Sleep ModeLow power (Sleep mode) is attained through the assertion (high) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode.Core and Interface VoltagesThe GS881E18//36T operates on a 3.3 V power supply, and all inputs/outputs are 3.3 V- and 2.5 V-compatible. Separate output power (V DDQ) pins are used to decouple output noise from the internal circuit.-11-11.5-100-80-663-1-1-1t KQI DD4.0 ns225 mA4.0 ns225 mA4.0 ns225 mA4.5 ns200 mA5.0 ns185 mAThrough 2-1-1-1KQtCycleI DD15 ns180 mA15 ns180 mA15 ns180 mA15 ns175 mA20 ns165 mAGS881E18/36T-11/11.5/100/80/66GS881E18 100-Pin TQFP Pinout807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ B1DQ B2V SS V DDQ DQ B3DQ B4FT V DD DP V SS DQ B5DQ B6V DDQ V SS DQ B7DQ B8DQ B9V SS V DDQ V DDQ V SS DQ A8DQ A7V SS V DDQ DQ A6DQ A5V SS QE V DD ZZ DQ A4DQ A3V DDQ V SS DQ A2DQ A1V SS V DDQ L B O A 5A 4A 3A 2A 1A 0T M S T D I V S SV D DT D O T C K A 10A 11A 12A 13A 14A 16A 6A 7E 1E 2 N C N C B BB AA 17C K G W B W VD DV S SG A D S C A D S P A D V A 8A 9A 15512K X 18Top ViewDQ A9A 18NC NC NC NC NC NC NC NCNC NC NC NC NC NC NCNC NC 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881E18/36T-11/11.5/100/80/66GS881E36 100-Pin TQFP Pinout807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ C4DQ C3V SS V DDQ DQ C2DQ C1FT V DD DP V SS DQ D1DQ D2V DDQ V SS DQ D3DQ D4DQ D5V SS V DDQ V DDQ V SS DQ B4DQ B3V SS V DDQ DQ B2DQ B1V SS QE V DD ZZ DQ A1DQ A2V DDQ V SS DQ A3DQ A4V SS V DDQ L B O A 5A 4A 3A 2A 1A 0T M S T D I V S ST D O T C K A 10A 11A 12A 13A 14A 16A 6A 7E 1E 2 B DB CB BB AA 17C K G W B W VD DV S SG A D S C A D S P A D V A 8A 9A 15256K x 36Top ViewDQ B5DQ B9DQ B7DQ B8DQ B6DQ A6DQ A5DQ A8DQ A7DQ A9DQ C7DQ C8DQ C6DQ D6DQ D8DQ D7DQ D9DQ C5DQ C9100999897969594939291908988878685848382813132333435363738394041424344454647484950V D DGS881E18/36T-11/11.5/100/80/66 TQFP Pin DescriptioPin Location Symbol TypeDescription37, 36A0, A1I Address field LSBs and Address Counter preset Inputs 35, 34, 33, 32, 100, 99, 82, 81, 44, 45,46, 47, 48, 49, 50, 92A2–A17I Address Inputs80A18I Address Inputs63, 62, 59, 58, 57, 56, 53, 52 68, 69, 72, 73, 74, 75, 78, 79 13, 12, 9, 8, 7, 6, 3, 2 18, 19, 22, 23, 24, 25, 28, 29DQ A1–DQ A8DQ B1–DQ B8DQ C1–DQ C8DQ D1–DQ D8I/O Data Input and Output pins ( x36 Version)51, 80, 1, 30DQ A9, DQ B9,DQ C9, DQ D9I/O Data Input and Output pins58, 59, 62, 63, 68, 69, 72, 73, 74 8, 9, 12, 13, 18, 19, 22, 23, 24DQ A1–DQ A9DQ B1–DQ B9I/O Data Input and Output pins51, 52, 53, 56, 5775, 78, 79,1, 2, 3, 6, 725, 28, 29, 30NC—No Connect16DP I Parity Input; 1 = Even, 0 = Odd66QE O Parity Error Out; Open Drain Output87BW I Byte Write—Writes all enabled bytes; active low93, 94B A, B B I Byte Write Enable for DQ A, DQ B Data I/Os; active low95, 96B C, B D I Byte Write Enable for DQ C, DQ D Data I/Os; active low ( x36 Version) 95, 96NC—No Connect (x18 Version)89CK I Clock Input Signal; active high88GW I Global Write Enable—Writes all bytes; active low98E1I Chip Enable; active low97E2I Chip Enable; active high86G I Output Enable; active low83ADV I Burst address counter advance enable; active low84, 85ADSP, ADSC I Address Strobe (Processor, Cache Controller); active lowGS881E18/36T-11/11.5/100/80/6664ZZ I Sleep mode control; active high 14FT I Flow Through or Pipeline mode; active low 31LBO I Linear Burst Order mode; active low38TMS I Scan Test Mode Select 39TDI I Scan Test Data In 42TDO O Scan Test Data Out 43TCK I Scan Test Clock 15, 41, 65, 91V DD I Core power supply 5,10,17, 21, 26, 40, 55, 60, 67, 71, 76, 90V SS I I/O and Core Ground 4, 11, 20, 27, 54, 61, 70, 77V DDQIOutput driver power supplyPin LocationSymbolTyp eDescriptionGS881E18/36T-11/11.5/100/80/66GS881E18/36 Block DiagramA1A0A0A1D0D1Q1Q0Counter LoadD QDQRegisterRegisterDQRegisterDQRegisterDQRegisterD QRegisterD QRegisterD QRegisterD QR e g i s t e rDQ RegisterA0–An LBO ADV CK ADSC ADSP GW BW B AB BB CB DFT GZZPower Down ControlMemory Array36364AQD DQx0–DQx9DPParity QEParity EncodeCompare3643636432Note: Only x36 version shown for simplicity.3636DQR e g i s t e r 4E 1E 2GS881E18/36T-11/11.5/100/80/66ByteSafe ™ Parity FunctionsThis SRAM includes a write data parity check that checks the validity of data coming into the RAM on write cycles. In Flow Through mode, write data errors are reported in the cycle following the data input cycle. In Pipeline mode, write data errors are reported one clock cycle later. (See Write Parity Error Output Timing Diagram .) The Data Parity Mode (DP) pin must be tied high to set the RAM to check for even parity or low to check for odd parity. Read data parity is not checked by the RAM as data. Validity is best established at the data’s destination. The Parity Error Output is an open drain output and drives low to indicate a parity error. Multiple Parity Error Output pins may share a common pull-up resistor.Write Parity Error Output Timing DiagramBPR 1999.05.18CK D In AD In BD In C D In D D In EtKQ tLZDQQEF l o w T h r o u g h M o d eP i p e l i n e d M o d etKQ tLZDQQED In A D In BD In CD In D D In EErr AErr AErr CErr CtHZ tKQX tHZ tKQXGS881E18/36T-11/11.5/100/80/66Note:There are pull-up devices on the LBO, DP and FT pins and a pull down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above table.Burst Counter SequencesBPR 1999.05.18Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H or NC Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down Control ZZ L or NC Active H Standby, I DD = I SB ByteSafe Data Parity ControlDPL Check for Odd Parity H or NCCheck for Even ParityLinear Burst SequenceNote: The burst counter wraps to initial state on the 5th clock.I nterleaved Burst SequenceNote: The burst counter wraps to initial state on the 5th clock.A[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110A[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100GS881E18/36T-11/11.5/100/80/66Byte Write Truth TableNotes:1.All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.2.Byte Write Enable inputs B A , B B , B C, and/or B D may be used in any combination with BW to write single or multiple bytes.3.All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.4.Bytes “C ” and “D ” are only available on the x36 version.FunctionGWBWB AB BB CB DNotesRead H H X X X X 1Read H L H H H H 1Write byte a H L L H H H 2, 3Write byte b H L H L H H 2, 3Write byte c H L H H L H 2, 3, 4Write byte d H L H H H L 2, 3, 4Write all bytes H L L L L L 2, 3, 4Write all bytesLXXXXXGS881E18/36T-11/11.5/100/80/66 Synchronous Truth TableOperation AddressUsedStateDiagramKey5E1E22(x36only)ADSP ADSC ADV W3DQ4Deselect Cycle, Power Down None X H X X L X X High-Z Deselect Cycle, Power Down None X L F L X X X High-Z Deselect Cycle, Power Down None X L F H L X X High-Z Read Cycle, Begin Burst External R L T L X X X Q Read Cycle, Begin Burst External R L T H L X F Q Write Cycle, Begin Burst External W L T H L X T D Read Cycle, Continue Burst Next CR X X H H L F Q Read Cycle, Continue Burst Next CR H X X H L F Q Write Cycle, Continue Burst Next CW X X H H L T D Write Cycle, Continue Burst Next CW H X X H L T D Read Cycle, Suspend Burst Current X X H H H F Q Read Cycle, Suspend Burst Current H X X H H F Q Write Cycle, Suspend Burst Current X X H H H T D Write Cycle, Suspend Burst Current H X X H H T D Notes:1.X = Don’t Care, H = High, L = Low.2.For x36 Version, E = T (True) if E2 = 1; E = F (False) if E2 = 0.3.W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.4.G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shownas “Q” in the Truth Table above).5.All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplishbasic synchronous or synchronous burst operations and may be avoided for simplicity.6.Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.7.Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.GS881E18/36T-11/11.5/100/80/66First WriteFirst ReadBurst WriteBurst ReadDeselectR WCRCWX XWRRWRXXX S i m p l e S y n c h r o n o u s O p e r a t i o nS i m p l e B u r s t S y n c h r o n o u s O p e r a t i o nCR RCWCRCRSimplified State DiagramNotes:1.The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.2.The upper portion of the diagram assumes active use of only the Enable (E1 and E2) and Write (B A , B B , B C , B D , BW, and GW) controlinputs, and that ADSP is tied high and ADSC is tied low.3.The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs, andassumes ADSP is tied high and ADV is tied low.GS881E18/36T-11/11.5/100/80/66First WriteFirst ReadBurst WriteBurst ReadDeselectR WCRCWXXWRRWRXXX CRR CW CRCRW CWW CWSimplified State Diagram with GNotes:1.The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.e of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from Read cycles to Write cycles without passingthrough a Deselect cycle. Dummy Read cycles increment the address counter just like normal Read cycles.3.Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meetData Input Set Up Time.GS881E18/36T-11/11.5/100/80/66Note:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.Notes:1.Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both2.75 V ≤ V DDQ ≤ 2.375 V(i.e., 2.5 V I/O) and 3.6 V ≤ V DDQ ≤ 3.135 V (i.e., 3.3 V I/O), and quoted at whichever condition is worst case. 2.This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.3.Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number ofIndustrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.4.Input Under/overshoot voltage must be –2 V > Vi < V DD +2 V with a pulse width not to exceed 20% tKC.Absolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage in V DDQ Pins –0.5 to V DD V V CK Voltage on Clock Input Pin –0.5 to 6V V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125o CRecommended Operating ConditionsParameterSymbolMin.Typ.Max.UnitNotesSupply Voltage V DD 3.135 3.3 3.6V I/O Supply Voltage V DDQ 2.375 2.5V DD V 1Input High Voltage V IH 1.7—V DD +0.3V 2Input Low VoltageV IL –0.3—0.8V 2Ambient Temperature (Commercial Range Versions)T A 02570°C 3Ambient Temperature (Industrial Range Versions)T A–402585°C3GS881E18/36T-11/11.5/100/80/66Note: These parameters are sample tested.Notes:1.Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-ature air flow, board density, and PCB thermal resistance.2.SCMI G-38-873.Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1Capacitance(T A = 25o C, f = 1 MH Z , V DD = 3.3 V)ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output CapacitanceC I/OV OUT = 0 V67pFPackage Thermal CharacteristicsRatingLayer BoardSymbolMaxUnitNotesJunction to Ambient (at 200 lfm)single R ΘJA 40°C/W 1,2Junction to Ambient (at 200 lfm)four R ΘJA 24°C/W 1,2Junction to Case (TOP)—R ΘJC9°C/W320% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILGS881E18/36T-11/11.5/100/80/66Notes:1.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.3.Output Load 2 for t LZ , t HZ , t OLZ and t OHZ4.Device is deselected as defined by the Truth Table.AC Test ConditionsParameterConditionsInput high level 2.3 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level 1.25 V Output reference level1.25 V Output loadFig. 1& 2DC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA ZZ Input Current I INZZ V DD ≥ V IN ≥ V IH 0 V ≤ V IN ≤ V IH –1 uA –1 uA 1 uA 300 uA Mode Pin Input Current I INM V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL –300 uA –1 uA 1 uA 1 uA Output Leakage Current I OL Output Disable,V OUT = 0 to V DD –1 uA 1 uA Output High Voltage V OH I OH = –8 mA, V DDQ = 2.375 V 1.7 V —Output High Voltage V OH I OH = –8 mA, V DDQ = 3.135 V2.4 V —Output Low VoltageV OLI OL = 8 mA—0.4 VDQVT = 1.25 V50Ω30pF *DQ2.5 VOutput Load 1Output Load 2225Ω225Ω5pF ** Distributed Test Jig CapacitanceGS881E18/36T-11/11.5/100/80/66 Operating CurrentsParameter Test Conditions Symbol-11-11.5-100-80-66Unit 0to70°C–40to85°Cto70°C–40to85°Cto70°C–40to85°Cto70°C–40to85°Cto70°C–40to85°COperating Current Device Selected;All other inputs≥V IH o r ≤ V ILOutput openI DDPipeline225235225235225235200210185195mAI DDFlow-Thru180 190 180 190 180190175185165175mAStandbyCurrent ZZ≥ V DD- 0.2VI SBPipeline30 40 30 40 304030403040mAI SBFlow-Thru30 40 30 40304030403040mADeselect Current Device Deselected;All other inputs≥ V IH or≤ V ILI DDPipeline80 90 80 90809070806070mAI DDFlow-Thru65 75 65 75657555655060mAGS881E18/36T-11/11.5/100/80/66AC Electrical CharacteristicsNotes:1.These parameters are sampled and are not 100% tested.2.ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and holdtimes as specified above.Parameter Symbol -11-11.5-100-80-66Unit Min Max MinMax MinMax Min Max Min Max PipelineClock Cycle TimetKC 10—10—10—12.5—15—ns Clock to Output Valid tKQ — 4.0— 4.0— 4.0— 4.5—5ns Clock to Output Invalid tKQX 1.5— 1.5— 1.5— 1.5— 1.5—ns Clock to Output in Low-Z tLZ 1 1.5— 1.5— 1.5— 1.5— 1.5—ns Flow-ThruClock Cycle TimetKC 15.0—15.0—15.0—15.0—20—ns Clock to Output Valid tKQ —11.0—11.5—12.0—14.0—18ns Clock to Output Invalid tKQX 3.0— 3.0— 3.0— 3.0— 3.0—ns Clock to Output in Low-Z tLZ 1 3.0— 3.0— 3.0— 3.0— 3.0—ns Clock HIGH Time tKH 1.7— 1.7—2—2— 2.3—ns Clock LOW Time tKL 2—2— 2.2— 2.2— 2.5—ns Clock to Output in High-Z tHZ 1 1.5 4.0 1.5 4.2 1.5 4.5 1.5 4.5 1.5 4.8ns G to Output Valid tOE — 4.0— 4.2— 4.5— 4.5— 4.8ns G to output in Low-Z tOLZ 10—0—0—0—0—ns G to output in High-ZtOHZ 1— 4.0— 4.2— 4.5— 4.5— 4.8ns Setup time tS 1.5— 2.0— 2.0— 2.0— 2.0—ns Hold time tH 0.5—0.5—0.5—0.5—0.5—ns ZZ setup time tZZS 25—5—5—5—5—ns ZZ hold time tZZH 21—1—1—1—1—ns ZZ recoverytZZR20—20—20—20—20—nsGS881E18/36T-11/11.5/100/80/66CKADSPADSCADVGWBWWR2WR3WR1WR1WR2WR3tKCSingle WriteBurst Write t KLt KH tS tHtS tHtS tHtS tHtS tHtStHtS tHWrite specified byte for 2A and all bytes for 2B , 2C & 2DADV must be inactive for ADSP WriteADSC initiated writeADSP is blocked by E inactiveA 0–A nB A –B DDQ A –DQ DWrite DeselectedWR1WR3Write Cycle TimingE 1tS tHE 2 only sampled with ADSP or ADSCE 1 masks ADSPDeselected with E 2GtS tHD2AD2BD2CD2DD3AD1AHi-ZtS tHE 2GS881E18/36T-11/11.5/100/80/66Q1AQ3AQ2DQ2cQ2BQ2AtKQtLZtOEtOHZtOLZtKQXtHZtKQXCKADSP ADSCBW GGWADVBurst ReadRD2RD3tKLtStHtHtS tHtS tHADSC initiated readSuspend Burst Single ReadADSP is blocked by E inactiveA 0–A nB A –B DtKHtKCtS tHtS tStHDQ A –DQ DRD1Hi-ZSuspend BurstFlow Through Read Cycle TimingtHtHE 1 masks ADSPDeselected with E 2E 1tS tS E 2E 2 only sampled with ADSP or ADSCGS881E18/36T-11/11.5/100/80/66Flow Through Read-Write Cycle TimingCKADSPADVGWBWGQ1AD1AQ2AQ2BQ2cQ2DSingle ReadBurst ReadtOEtOHZtS tHtStHtHtS tHtS tHtKH DQ A –DQ DB A –B DtKLtKCtS Single WriteADSP is blocked by E inactivetKQtStHHi-ZQ2ABurst wrap around to it’s initial stateWR1E 1tS tS tHE 1 masks ADSPE 2 only sampled with ADSP and ADSCtHADSCtS tHADSC initiated readRD1WR1RD2tS tHA 0–A nE 2GS881E18/36T-11/11.5/100/80/66Pipelined DCD Read Cycle TimingQ1AQ3AQ2DQ2cQ2BQ2AtKQtLZtOEtOHZtOLZtKQX tHZtKQX CKADSP ADSCBW GGWADVBurst ReadRD2RD3tKLtHtHtStHtHtS tHtS tHADSC initiated readSuspend BurstE 1 masks ADSPE 2 only sampled with ADSP or ADSCSingle ReadADSP is blocked by E 1 inactiveA 0–A nB A –B DE 1tKH tKCtS tHtS tStHDQ A –DQ DtS tS RD1Hi-ZE 2GS881E18/36T-11/11.5/100/80/66Pipelined DCD Read-Write Cycle TimingCKADSPADVGWBW E 1GWR1Q1AD1aQ2A Q2B Q2c Q2DSingle ReadBurst ReadtOEtOHZtS tStHtStH tStHtHtS tHtS tHtKHE 1 masks ADSPE 2 only sampled with ADSP and ADSCDQ A –DQ DtKLtKC tS tHSingle WriteADSP is blocked by E 1 inactivetKQtS tHHi-ZB A –B DADSCtS tHADSC initiated readRD1WR1RD2tS tHA 0–A nE 2GS881E18/36T-11/11.5/100/80/66Application TipsSingle and Dual Cycle DeselectSCD devices force the use of “dummy read cycles” (read cycles that are launched normally but that are ended with the outputdrivers inactive) in a fully synchronous environment. Dummy read cycles waste performance but their use usually assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at bank address boundary crossings) but greater care must be exercised to avoid excessive bus contention.JTAG Port OperationOverviewThe JTAG Port on this RAM operates in a manner consistent with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG), but does not implement all of the functions required for 1149.1 compliance. Some functions have been modified or eliminated because they can slow the RAM. Nevertheless, the RAM supports 1149.1-1990 TAP (Test Access Port) Controller architecture, and can be expected to function in a manner that does not conflict with the operation of Standard 1149.1 compliant devices. The JTAG Port interfaces with conventional TTL / CMOS logic level signaling.Disabling the JTAG PortIt is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unlessclocked. TCK, TDI, and TMS are designed with internal pull-up circuits. To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either V DD or V SS . TDO should be left unconnected.CKADSP ADSCtHtKH tKLtKCtS ZZtZZRtZZHtZZS~~~~~~~~~SnoozeSleep Mode Timing DiagramGS881E18/36T-11/11.5/100/80/66JTAG Port RegistersOverviewThe various JTAG registers, refered to as TAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers are serial shift registers that capture serial input data on the rising edge of TCK and push serial data out on the next falling edge of TCK. When a register is selected it is placed between the TDI and TDO pins.Instruction RegisterThe Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.Bypass RegisterThe Bypass Register is a single-bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs JTAG Port to another device in the scan chain with as little delay as possible.Boundary Scan RegisterBoundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. TheBoundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. Two TAP instructions can be used to activate the Boundary Scan Register.JTAG Pin Descriptions PinPin NameI/ODescriptionTCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.TMSTest Mode SelectInThe TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.TDI Test Data In InThe TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.TDO Test Data Out OutOutput that is active depending on the state of the TAP state machine. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.Note:This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.。

GS8662R18GE-167I中文资料

GS8662R18GE-167I中文资料

GS8662R08/09/18/36E-333/300/250/200/16772Mb SigmaCIO DDR-II Burst of 4 SRAM333 MHz–167 MHz1.8 V V DD1.8 V and 1.5 V I/O165-Bump BGA Commercial Temp Industrial Temp Features• Simultaneous Read and Write SigmaCIO™ Interface • Common I/O bus• JEDEC-standard pinout and package • Double Data Rate interface• Byte Write (x36 and x18) and Nybble Write (x8) function • Burst of 4 Read and Write• 1.8 V +100/–100 mV core power supply • 1.5 V or 1.8 V HSTL Interface• Pipelined read operation with self-timed Late Write • Fully coherent read and write pipelines• ZQ pin for programmable output drive strength • IEEE 1149.1 JTAG-compliant Boundary Scan• Pin-compatible with present 9Mb, 18Mb, 36Mb and future 144Mb devices• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package • RoHS-compliant 165-bump BGA package availableSigmaCIO ™ Family OverviewThe GS8662R08/09/18/36E are built in compliance with the SigmaCIO DDR-II SRAM pinout standard for Common I/O synchronous SRAMs. They are 75,497,472-bit (72Mb)SRAMs. The GS8662R08/09/18/36E SigmaCIO SRAMs are just one element in a family of low power, low voltage HSTL I/O SRAMs designed to operate at the speeds needed toimplement economical high performance networking systems.Clocking and Addressing SchemesThe GS8662R08/09/18/36E SigmaCIO DDR-II SRAMs are synchronous devices. They employ two input register clock inputs, K and K. K and K are independent single-ended clock inputs, not differential inputs to a single differential clock input buffer. The device also allows the user to manipulate theoutput register clock inputs quasi independently with the C and C clock inputs. C and C are also independent single-endedclock inputs, not differential inputs. If the C clocks are tied high, the K clocks are routed internally to fire the output registers instead.Common I/O x36 and x18 SigmaCIO DDR-II B4 RAMs always transfer data in four packets. When a new address is loaded, A0 and A1 preset an internal 2 bit linear addresscounter. The counter increments by 1 for each beat of a burst of four data transfer. The counter always wraps to 00 after reaching 11, no matter where it starts.Common I/O x8 SigmaCIO DDR-II B4 RAMs always transfer data in four packets. When a new address is loaded, the LSBs are internally set to 0 for the first read or write transfer, and incremented by 1 for the next 3 transfers. Because the LSBs are tied off internally, the address field of a x8 SigmaCIO DDR-II B4 RAM is always two address pins less than the advertised index depth (e.g., the 4M x 18 has a 1024K addressable index).Parameter Synopsis-333-300-250-200-167tKHKH 3.0 ns 3.3 ns 4.0 ns 5.0 ns 6.0 ns tKHQV0.45 ns0.45 ns0.45 ns0.45 ns0.5 ns165-Bump, 15 mm x 17 mm BGA 1 mm Bump Pitch, 11 x 15 Bump ArrayBottom View2M x 36 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ MCL/SA (144Mb)SA R/W BW2K BW1LD SA SA CQ B NC DQ27DQ18SA BW3K BW0SA NC NC DQ8C NC NC DQ28V SS SA SA0SA1V SS NC DQ17DQ7D NC DQ29DQ19V SS V SS V SS V SS V SS NC NC DQ16E NC NC DQ20 V DDQ V SS V SS V SS V DDQ NC DQ15DQ6F NC DQ30DQ21 V DDQ V DD V SS V DD V DDQ NC NC DQ5G NC DQ31DQ22 V DDQ V DD V SS V DD V DDQ NC NC DQ14H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC DQ32 V DDQ V DD V SS V DD V DDQ NC DQ13DQ4K NC NC DQ23V DDQ V DD V SS V DD V DDQ NC DQ12DQ3L NC DQ33DQ24 V DDQ V SS V SS V SS V DDQ NC NC DQ2M NC NC DQ34 V SS V SS V SS V SS V SS NC DQ11DQ1N NC DQ35DQ25 V SS SA SA SA V SS NC NC DQ10P NC NC DQ26SA SA C SA SA NC DQ9DQ0RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17; BW2 controls writes to DQ18:DQ26; BW3 controls writes toDQ27:DQ352.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/1674M x 18 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ SA SA R/W BW1K NC LD SA SA CQ B NC DQ9NC SA NC K BW0SA NC NC DQ8C NC NC NC V SS SA SA0SA1V SS NC DQ7NC D NC NC DQ10V SS V SS V SS V SS V SS NC NC NC E NC NC DQ11 V DDQ V SS V SS V SS V DDQ NC NC DQ6F NC DQ12NC V DDQ V DD V SS V DD V DDQ NC NC DQ5G NC NC DQ13 V DDQ V DD V SS V DD V DDQ NC NC NC H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC NC V DDQ V DD V SS V DD V DDQ NC DQ4NC K NC NC DQ14V DDQ V DD V SS V DD V DDQ NC NC DQ3L NC DQ15NC V DDQ V SS V SS V SS V DDQ NC NC DQ2M NC NC NC V SS V SS V SS V SS V SS NC DQ1NC N NC NC DQ16 V SS SA SA SA V SS NC NC NC P NC NC DQ17SA SA C SA SA NC NC DQ0RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ172.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/1678M x 9 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ SA SA R/W NC K NC LD SA SA CQ B NC NC NC SA NC K BW SA NC NC DQ4C NC NC NC V SS SA NC SA V SS NC NC NC D NC NC NC V SS V SS V SS V SS V SS NC NC NC E NC NC DQ5 V DDQ V SS V SS V SS V DDQ NC NC DQ3F NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC G NC NC DQ6 V DDQ V DD V SS V DD V DDQ NC NC NC H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC NC V DDQ V DD V SS V DD V DDQ NC DQ2NC K NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC L NC DQ7NC V DDQ V SS V SS V SS V DDQ NC NC DQ1M NC NC NC V SS V SS V SS V SS V SS NC NC NC N NC NC NC V SS SA SA SA V SS NC NC NC P NC NC DQ8SA SA C SA SA NC NC DQ0RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 and SA1 are set to0 at the beginning of each access.2.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/1678M x 8 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ SA SA R/W NW1K NC LD SA SA CQ B NC NC NC SA NC K NW0SA NC NC DQ3C NC NC NC V SS SA NC SA V SS NC NC NC D NC NC NC V SS V SS V SS V SS V SS NC NC NC E NC NC DQ4 V DDQ V SS V SS V SS V DDQ NC NC DQ2F NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC G NC NC DQ5 V DDQ V DD V SS V DD V DDQ NC NC NC H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC NC V DDQ V DD V SS V DD V DDQ NC DQ1NC K NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC L NC DQ6NC V DDQ V SS V SS V SS V DDQ NC NC DQ0M NC NC NC V SS V SS V SS V SS V SS NC NC NC N NC NC NC V SS SA SA SA V SS NC NC NC P NC NC DQ7SA SA C SA SA NC NC NC RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 and SA1 are set to0 at the beginning of each access.2.NW0 controls writes to DQ0:DQ3; NW1 controls writes to DQ4:DQ73.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/167Pin Description TableSymbolDescriptionTypeCommentsSA Synchronous Address InputsInput —NC No Connect ——R Synchronous Read Input Active High W Synchronous Write Input Active Low BW0–BW3Synchronous Byte Writes Input Active Low x18/x36 only NW0–NW1Nybble Write Control Pin Input Active Low x8 only LD Synchronous Load PinInput Active Low K Input Clock Input Active High K Input Clock Input Active Low C Output Clock Input Active High C Output Clock Input Active LowTMS Test Mode Select Input —TDI Test Data Input Input —TCK Test Clock Input Input —TDO Test Data Output Output —V REF HSTL Input Reference Voltage Input —ZQ Output Impedance Matching InputInput —MCL Must Connect Low——DQ Data I/O Input/Output Three State Doff Disable DLL when low Input Active LowCQ Output Echo Clock Output —CQ Output Echo Clock Output —V DD Power Supply Supply 1.8 V Nominal V DDQ Isolated Output Buffer Supply Supply 1.5 V NominalV SSPower Supply: GroundSupply—GS8662R08/09/18/36E-333/300/250/200/167Note:NC = Not Connected to die or any other pinGS8662R08/09/18/36E-333/300/250/200/167BackgroundCommon I/O SRAMs, from a system architecture point of view, are attractive in read dominated or block transfer applications. Therefore, the SigmaCIO DDR-II SRAM interface and truth table are optimized for burst reads and writes. Common I/O SRAMs are unpopular in applications where alternating reads and writes are needed because bus turnaround delays can cut high speed Common I/O SRAM data bandwidth in half.Burst OperationsRead and write operations are “burst” operations. In every case where a read or write command is accepted by the SRAM, it will respond by issuing or accepting four beats of data, executing a data transfer on subsequent rising edges of K and K#, as illustrated in the timing diagrams. It is not possible to stop a burst once it starts. Four beats of data are always transferred. This means that it is possible to load new addresses every other K clock cycle. Addresses can be loaded less often, if intervening deselect cycles are inserted.Deselect CyclesChip Deselect commands are pipelined to the same degree as read commands. This means that if a deselect command is applied to the SRAM on the next cycle after a read command captured by the SRAM, the device will complete the four beat read data transfer and then execute the deselect command, returning the output drivers to high-Z.A high on the LD# pin prevents the RAM from loading read or write commandinputs and puts the RAM into deselect mode as soon as it completes all outstanding burst transfer operations.SigmaCIO DDR-II B4 SRAM Read CyclesThe status of the Address, LD# and R/W# pins are evaluated on the rising edge of K. Because the device executes a four beat burst transfer inresponse to a read command, if the previous command captured was a read or write command, the Address, LD# and R/W# pins are ignored. If the previous command captured was a deselect, the control pin status is checked.The SRAM executes pipelined reads. The read command is clocked into the SRAM by a rising edge of K. After the next rising edge of K, the SRAM produces data out in response to the next rising edge of C# (or the next rising edge of K#, if C and C# are tied high). The second beat of data is transferred on the next rising edge of C, then on the next rising edge of C# and finally on the next rising edge of C, for a total of four transfers per address load.SigmaCIO DDR-II B4 SRAM Write CyclesThe status of the Address, LD# and R/W# pins are evaluated on the rising edge of K. Because the device executes a four beat burst transfer in response to a write command, if the previous command captured was a read or write command, the Address, LD# and R/ W# pins are ignored at the next rising edge of K. If the previous command captured was a deselect, the control pin status is checked.The SRAM executes “late write” data transfers. Data in is due at the device inputs on the rising edge of K following the rising edge of K clock used to clock in the write command and the write address. To complete the remaining three beats of the burst of four write transfer the SRAM captures data in on the next rising edge of K#, the following rising edge of K and finally on the next rising edge of K#, for a total of four transfers per address load.GS8662R08/09/18/36E-333/300/250/200/167Power-Up Sequence for SigmaQuad-II SRAMsSigmaQuad-II SRAMs must be powered-up in a specific sequence in order to avoid undefined operations.Power-Up Sequence1. Power-up and maintain Doff at low state.1a.Apply V DD .1b. Apply V DDQ .1c. Apply V REF (may also be applied at the same time as V DDQ ).2. After power is achieved and clocks (K, K, C, C) are stablized, change Doff to high.3. An additional 1024 clock cycles are required to lock the DLL after it has been enabled.Note:If you want to tie Doff high with an unstable clock, you must stop the clock for a minimum of 30 seconds to reset the DLL after the clocks become stablized.DLL Constraints•The DLL synchronizes to either K or C clock. These clocks should have low phase jitter (t KCVar on page 20).•The DLL cannot operate at a frequency lower than 119 MHz.•If the incoming clock is not stablized when DLL is enabled, the DLL may lock on the wrong frequency and cause undefined errors or failures during the initial stage.Power-Up Sequence (Doff controlled)Power UP IntervalUnstable Clocking IntervalDLL Locking Interval (1024 Cycles)Normal OperationKKV DDV DDQV REFDoffPower-Up Sequence (Doff tied High)Power UP IntervalUnstable Clocking IntervalStop Clock IntervalDLL Locking Interval (1024 Cycles)Normal OperationKKV DDV DDQV REFDoff30ns MinNote:If the frequency is changed, DLL reset is required. After reset, a minimum of 1024 cycles is required for DLL lock.GS8662R08/09/18/36E-333/300/250/200/167Special FunctionsByte Write and Nybble Write ControlByte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low during the data in sample times in a write sequence.Each write enable command and write address loaded into the RAM provides the base address for a 4 beat data transfer. The x18 version of the RAM, for example, may write 72 bits in association with each address loaded. Any 9-bit byte may be masked in any write sequence.Nybble Write (4-bit) write control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble Write Enable” and “NBx” may be substituted in all the discussion above.Example x18 RAM Write Sequence using Byte Write EnablesData In SampleTimeBW0BW1D0–D8D9–D17Beat 101Data In Don’t CareBeat 210Don’t Care Data InBeat 300Data In Data InBeat 410Don’t Care Data InResulting Write OperationByte 1 D0–D8Byte 2D9–D17Byte 1D0–D8Byte 2D9–D17Byte 1D0–D8Byte 2D9–D17Byte 1D0–D8Byte 2D9–D17Written Unchanged Unchanged Written Written Written Unchanged Written Beat 1Beat 2Beat 3Beat 4Output Register ControlSigmaCIO DDR-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K and K clocks. If the C and C clock inputs isare tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to function as a conventional pipelined read SRAM.A K R/W LDA 0–A nKBank 0Bank 1Bank 2Bank 3A KLD A K LD A K LD R/W R/W R/W DQDQDQ DQCC CCDQ 1–C R/WLD 0LD 1LD 2LD 3Note:For simplicity BWn (or NWn), K, and C are not shown.CQ CQ CQ CQ CQGS8662R08/09/18/36E-333/300/250/200/167Example Four Bank Depth Expansion SchematicGS8662R08/09/18/36E-333/300/250/200/167FLXDrive-II Output Driver Impedance ControlHSTL I/O SigmaCIO DDR-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to V SS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be 5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is between 150Ω and 300Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver isimplemented with discrete binary weighted impedance steps. Updates of pull-down drive impedance occur whenever a driver is producing a “1” or is High-Z. Pull-up drive impedance is updated when a driver is producing a “0” or is High-Z.Common I/O SigmaCIO DDR-II B4 SRAM Truth TableK nLDR/WDQOperationA + 0A + 1A + 2A + 3↑1X Hi-Z Hi-Z Hi-Z Hi-Z Deselect ↑00D@K n+1D@K n+1D@K n+2D@K n+2Write ↑1Q@K n+1or C n+1Q@K n+2or C n+2Q@K n+2or C n+2Q@K n+3or C n+3ReadNote:Q is controlled by K clocks if C clocks are not used.B4 Byte Write Clock Truth TableBW BW BW BW Current OperationD D D D K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)K ↑(t n )K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)TTTTWriteDx stored if BWn = 0 in all four data transfers D0D2D3D4T F F F WriteDx stored if BWn = 0 in 1st data transfer only D0X X XF T F F WriteDx stored if BWn = 0 in 2nd data transfer only X D1X XF F T F WriteDx stored if BWn = 0 in 3rd data transfer only X X D2XF F F T WriteDx stored if BWn = 0 in 4th data transfer only X X X D3F F F F Write AbortNo Dx stored in any of the four data transfersX X X XNotes:1.“1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.2.If one or more BWn = 0, then BW = “T”, else BW = “F”.GS8662R08/09/18/36E-333/300/250/200/167*Assuming stable conditions, the RAM can achieve optimum impedance within 1024 cycles.B4 Nybble Write Clock Truth TableNW NW NW NW Current OperationD D D D K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)K ↑(t n )K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)TTTTWriteDx stored if NWn = 0 in all four data transfers D0D2D3D4T F F F WriteDx stored if NWn = 0 in 1st data transfer only D0X X XF T F F WriteDx stored if NWn = 0 in 2nd data transfer only X D1X XF F T F WriteDx stored if NWn = 0 in 3rd data transfer only X X D2XF F F T WriteDx stored if NWn = 0 in 4th data transfer only X X X D3F F F F Write AbortNo Dx stored in any of the four data transfersX X X XNotes:1.“1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.2.If one or more NWn = 0, then NW = “T”, else NW = “F”.GS8662R08/09/18/36E-333/300/250/200/167x36 Byte Write Enable (BWn) Truth TableBW0BW1BW2BW3D0–D8D9–D17D18–D26D27–D351111Don’t Care Don’t Care Don’t Care Don’t Care 0111Data In Don’t Care Don’t Care Don’t Care 1011Don’t Care Data In Don’t Care Don’t Care 0011Data In Data In Don’t Care Don’t Care 1101Don’t Care Don’t Care Data In Don’t Care 0101Data In Don’t Care Data In Don’t Care 1001Don’t Care Data In Data In Don’t Care 0001Data In Data In Data In Don’t Care 1110Don’t Care Don’t Care Don’t Care Data In 0110Data In Don’t Care Don’t Care Data In 1010Don’t Care Data In Don’t Care Data In 0010Data In Data In Don’t Care Data In 1100Don’t Care Don’t Care Data In Data In 0100Data In Don’t Care Data In Data In 1000Don’t Care Data In Data In Data In 0Data InData InData InData Inx18 Byte Write Enable (BWn) Truth Table BW0BW1D0–D8D9–D1711Don’t Care Don’t Care 01Data In Don’t Care 10Don’t Care Data In 0Data InData Inx8 Nybble Write Enable (NWn) Truth Table NW0NW1D0–D3D4–D711Don’t Care Don’t Care 01Data In Don’t Care 10Don’t Care Data In 0Data InData InGS8662R08/09/18/36E-333/300/250/200/167GS8662R08/09/18/36E-333/300/250/200/167B4 State DiagramPower-UpNOPLoad New AddressDDR Read DDR WriteLOADREAD WRITE LOADLOADLOADLOADNotes:1.The internal burst address counter is a 4-bit linear counter (i.e., when first address is A0, next internal burst address is A0+1).2.“READ” refers to read active status with R/W = High, “WRITE” refers to write inactive status with R/W = Low.3.“LOAD” refers to read new address active status with LD = Low, “LOAD” refers to read new address inactive status with LD = High.LOAD Increment Read Address Increment Write AddressAlwaysAlwaysREADWRITEAbsolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 2.9V V DDQ Voltage in V DDQ Pins –0.5 to V DD V V REF Voltage in V REF Pins –0.5 to V DDQV V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 2.9 V max.)V V IN Voltage on Other Input Pins –0.5 to V DDQ +0.5 (≤ 2.9 V max.)V I IN Input Current on Any Pin +/–100mA dc I OUT Output Current on Any I/O Pin +/–100mA dcT J Maximum Junction Temperature125o C T STGStorage Temperature–55 to 125oCNote:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect reliability of this component.GS8662R08/09/18/36E-333/300/250/200/167Recommended Operating ConditionsPower SuppliesParameterSymbolMin.Typ.Max.UnitSupply Voltage V DD 1.7 1.8 1.9V I/O Supply Voltage V DDQ 1.7 1.8 1.9V Reference VoltageV REF0.68—0.95VNotes:1.Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 1.4 V ≤ V DDQ ≤ 1.6 V (i.e., 1.5 V I/O)and 1.7 V ≤ V DDQ ≤ 1.95 V (i.e., 1.8 V I/O) and quoted at whichever condition is worst case.2.The power supplies need to be powered up simultaneously or in the following sequence: V DD , V DDQ , V REF , followed by signal inputs. Thepower down sequence must be the reverse. V DDQ must not exceed V DD ..Operating TemperatureParameterSymbolMin.Typ.Max.UnitAmbient Temperature (Commercial Range Versions)T A 02570°C Ambient Temperature (Industrial Range Versions)T A–402585°CGS8662R08/09/18/36E-333/300/250/200/167HSTL I/O DC Input CharacteristicsParameterSymbolMinMaxUnitsNotesDC Input Logic High V IH (dc)V REF + 0.10V DD + 0.3 V V 1DC Input Logic LowV IL (dc)–0.3 VV REF – 0.10V1Notes:patible with both 1.8 V and 1.5 V I/O drivers2.These are DC test criteria. DC design criteria is V REF ± 50 mV. The AC V IH /V IL levels are defined separately for measuring timing parame-ters.3.V IL (Min) DC = –0.3 V, V IL (Min) AC = –1.5 V (pulse width ≤ 3 ns).4.V IH (Max) DC = V DDQ + 0.3 V, V IH (Max) AC = V DDQ + 0.85 V (pulse width ≤ 3 ns).HSTL I/O AC Input CharacteristicsParameterSymbolMinMaxUnitsNotesAC Input Logic High V IH (ac)V REF + 0.20—V 3,4AC Input Logic LowV IL (ac)—V REF – 0.20V 3,4V REF Peak to Peak AC VoltageV REF (ac)—5% V REF (DC)V1Notes:1.The peak to peak AC component superimposed on V REF may not exceed 5% of the DC component of V REF .2.To guarantee AC characteristics, V IH ,V IL , Trise, and Tfall of inputs and clocks must be within 10% of each other.3.For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.20% tKHKHV SS – 1.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKHKHV DD + 1.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DDParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Output Capacitance C OUT V OUT = 0 V67pF Clock CapacitanceC CLK—56pFNote:This parameter is sample tested.GS8662R08/09/18/36E-333/300/250/200/167AC Test ConditionsParameterConditionsInput high level V DDQ Input low level 0 V Max. input slew rate 2 V/ns Input reference level V DDQ /2Output reference levelV DDQ /2Note:Test conditions as specified with output loading as shown unless otherwise noted.DQVT = V DDQ /250ΩRQ = 250 Ω (HSTL I/O)V REF = 0.75 VAC Test Load DiagramInput and Output Leakage CharacteristicsParameterSymbolTest ConditionsMin.MaxNotesInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –2 uA 2 uA DoffI INDOFF V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL –100 uA –2 uA 2 uA 2 uA Output Leakage CurrentI OLOutput Disable,V OUT = 0 to V DDQ–2 uA2 uA(T A = 25= 3.3 V)GS8662R08/09/18/36E-333/300/250/200/167Programmable Impedance HSTL Output Driver DC Electrical CharacteristicsParameterSymbolMin.Max.UnitsNotesOutput High Voltage V OH1 V DDQ /2V DDQ V 1, 3Output Low Voltage V OL1 Vss V DDQ /2V 2, 3Output High Voltage V OH2 V DDQ – 0.2V DDQ V 4, 5Output Low VoltageV OL2Vss0.2V4, 6Notes:1. I OH = (V DDQ /2) / (RQ/5) +/– 15% @ V OH = V DDQ /2 (for: 175Ω ≤ RQ ≤ 350Ω).2. I OL = (V DDQ /2) / (RQ/5) +/– 15% @ V OL = V DDQ /2 (for: 175Ω ≤ RQ ≤ 350Ω).3.Parameter tested with RQ = 250Ω and V DDQ = 1.5 V or 1.8 V4.Minimum Impedance mode, ZQ = V SS5.I OH = –1.0 mA6.I OL = 1.0 mAOperating CurrentsParameterSymbolTest Conditions-333-300-250-200-167Notes0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40 to 85°C Operating Current (x36):DDR I DD V DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBDTBDTBDTBDTBDTBDTBDTBDTBDTBD2, 3Operating Current (x18):DDR I DD V DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 3Operating Current (x9):DDR I DD V DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 3Operating Current (x8):DDR I DDV DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 3Standby Current (NOP):DDRI SB1Device deselected,I OUT = 0 mA, f = Max,All Inputs ≤ 0.2 V or ≥ V DD – 0.2 VTBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 4Notes:1.Power measured with output pins floating.2.Minimum cycle, I OUT = 0 mA3.Operating current is calculated with 50% read cycles and 50% write cycles.4.Standby Current is only after all pending read and write burst operations are completed.GS8662R08/09/18/36E-333/300/250/200/167AC Electrical CharacteristicsParameterSymbol-333-300-250-200-167UnitsN o t e sMin Max Min Max Min Max Min Max Min MaxClockK, K Clock Cycle Time C, C Clock Cycle Time t KHKH t CHCH 3.0 3.5 3.3 4.2 4.0 6.3 5.07.88 6.08.4ns tTKC Variablet KCVar —0.2—0.2—0.2—0.2—0.2ns 5K, K Clock High Pulse Width C, C Clock High Pulse Width t KHKL t CHCL 1.2— 1.32— 1.6— 2.0— 2.4—ns K, K Clock Low Pulse Width C, C Clock Low Pulse Width t KLKH t CLCH 1.2— 1.32— 1.6— 2.0— 2.4—ns K to K High C to C Hight KHKH 1.35— 1.49— 1.8— 2.2— 2.7—ns K, K Clock High to C, C Clock High t KHCH 0 1.30 1.450 1.80 2.30 2.8ns DLL Lock Time t KCLock 1024—1024—1024—1024—1024—cycle 6K Static to DLL resett KCReset 30—30—30—30—30—nsOutput TimesK, K Clock High to Data Output Valid C, C Clock High to Data Output Valid t KHQV t CHQV —0.45—0.45—0.45—0.45—0.5ns 3K, K Clock High to Data Output Hold C, C Clock High to Data Output Hold t KHQX t CHQX –0.45—–0.45—–0.45—–0.45—–0.5—ns 3K, K Clock High to Echo Clock Valid C, C Clock High to Echo Clock Valid t KHCQV t CHCQV —0.45—0.45—0.45—0.45—0.5ns K, K Clock High to Echo Clock Hold C, C Clock High to Echo Clock Hold t KHCQX t CHCQX –0.45—–0.45—–0.45—–0.45—–0.5—ns CQ, CQ High Output Valid t CQHQV —0.25—0.27—0.30—0.35—0.40ns 7CQ, CQ High Output Hold t CQHQX –0.25—–0.27—–0.30—–0.35—–0.40—ns 7K Clock High to Data Output High-Z C Clock High to Data Output High-Z t KHQZ t CHQZ —0.45—0.45—0.45—0.45—0.5ns 3K Clock High to Data Output Low-Z C Clock High to Data Output Low-Zt KHQX1t CHQX1–0.45—–0.45—–0.45—–0.45—–0.5—ns3Setup TimesAddress Input Setup Time t AVKH 0.4—0.4—0.5—0.6—0.7—ns Control Input Setup Time t IVKH 0.4—0.4—0.5—0.6—0.7—ns 2Data Input Setup Timet DVKH0.28—0.3—0.35—0.4—0.5—ns。

GS8662R36E-250I中文资料

GS8662R36E-250I中文资料

GS8662R08/09/18/36E-333/300/250/200/16772Mb SigmaCIO DDR-II Burst of 4 SRAM333 MHz–167 MHz1.8 V V DD1.8 V and 1.5 V I/O165-Bump BGA Commercial Temp Industrial Temp Features• Simultaneous Read and Write SigmaCIO™ Interface • Common I/O bus• JEDEC-standard pinout and package • Double Data Rate interface• Byte Write (x36 and x18) and Nybble Write (x8) function • Burst of 4 Read and Write• 1.8 V +100/–100 mV core power supply • 1.5 V or 1.8 V HSTL Interface• Pipelined read operation with self-timed Late Write • Fully coherent read and write pipelines• ZQ pin for programmable output drive strength • IEEE 1149.1 JTAG-compliant Boundary Scan• Pin-compatible with present 9Mb, 18Mb, 36Mb and future 144Mb devices• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package • RoHS-compliant 165-bump BGA package availableSigmaCIO ™ Family OverviewThe GS8662R08/09/18/36E are built in compliance with the SigmaCIO DDR-II SRAM pinout standard for Common I/O synchronous SRAMs. They are 75,497,472-bit (72Mb)SRAMs. The GS8662R08/09/18/36E SigmaCIO SRAMs are just one element in a family of low power, low voltage HSTL I/O SRAMs designed to operate at the speeds needed toimplement economical high performance networking systems.Clocking and Addressing SchemesThe GS8662R08/09/18/36E SigmaCIO DDR-II SRAMs are synchronous devices. They employ two input register clock inputs, K and K. K and K are independent single-ended clock inputs, not differential inputs to a single differential clock input buffer. The device also allows the user to manipulate theoutput register clock inputs quasi independently with the C and C clock inputs. C and C are also independent single-endedclock inputs, not differential inputs. If the C clocks are tied high, the K clocks are routed internally to fire the output registers instead.Common I/O x36 and x18 SigmaCIO DDR-II B4 RAMs always transfer data in four packets. When a new address is loaded, A0 and A1 preset an internal 2 bit linear addresscounter. The counter increments by 1 for each beat of a burst of four data transfer. The counter always wraps to 00 after reaching 11, no matter where it starts.Common I/O x8 SigmaCIO DDR-II B4 RAMs always transfer data in four packets. When a new address is loaded, the LSBs are internally set to 0 for the first read or write transfer, and incremented by 1 for the next 3 transfers. Because the LSBs are tied off internally, the address field of a x8 SigmaCIO DDR-II B4 RAM is always two address pins less than the advertised index depth (e.g., the 4M x 18 has a 1024K addressable index).Parameter Synopsis-333-300-250-200-167tKHKH 3.0 ns 3.3 ns 4.0 ns 5.0 ns 6.0 ns tKHQV0.45 ns0.45 ns0.45 ns0.45 ns0.5 ns165-Bump, 15 mm x 17 mm BGA 1 mm Bump Pitch, 11 x 15 Bump ArrayBottom View2M x 36 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ MCL/SA (144Mb)SA R/W BW2K BW1LD SA SA CQ B NC DQ27DQ18SA BW3K BW0SA NC NC DQ8C NC NC DQ28V SS SA SA0SA1V SS NC DQ17DQ7D NC DQ29DQ19V SS V SS V SS V SS V SS NC NC DQ16E NC NC DQ20 V DDQ V SS V SS V SS V DDQ NC DQ15DQ6F NC DQ30DQ21 V DDQ V DD V SS V DD V DDQ NC NC DQ5G NC DQ31DQ22 V DDQ V DD V SS V DD V DDQ NC NC DQ14H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC DQ32 V DDQ V DD V SS V DD V DDQ NC DQ13DQ4K NC NC DQ23V DDQ V DD V SS V DD V DDQ NC DQ12DQ3L NC DQ33DQ24 V DDQ V SS V SS V SS V DDQ NC NC DQ2M NC NC DQ34 V SS V SS V SS V SS V SS NC DQ11DQ1N NC DQ35DQ25 V SS SA SA SA V SS NC NC DQ10P NC NC DQ26SA SA C SA SA NC DQ9DQ0RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17; BW2 controls writes to DQ18:DQ26; BW3 controls writes toDQ27:DQ352.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/1674M x 18 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ SA SA R/W BW1K NC LD SA SA CQ B NC DQ9NC SA NC K BW0SA NC NC DQ8C NC NC NC V SS SA SA0SA1V SS NC DQ7NC D NC NC DQ10V SS V SS V SS V SS V SS NC NC NC E NC NC DQ11 V DDQ V SS V SS V SS V DDQ NC NC DQ6F NC DQ12NC V DDQ V DD V SS V DD V DDQ NC NC DQ5G NC NC DQ13 V DDQ V DD V SS V DD V DDQ NC NC NC H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC NC V DDQ V DD V SS V DD V DDQ NC DQ4NC K NC NC DQ14V DDQ V DD V SS V DD V DDQ NC NC DQ3L NC DQ15NC V DDQ V SS V SS V SS V DDQ NC NC DQ2M NC NC NC V SS V SS V SS V SS V SS NC DQ1NC N NC NC DQ16 V SS SA SA SA V SS NC NC NC P NC NC DQ17SA SA C SA SA NC NC DQ0RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ172.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/1678M x 9 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ SA SA R/W NC K NC LD SA SA CQ B NC NC NC SA NC K BW SA NC NC DQ4C NC NC NC V SS SA NC SA V SS NC NC NC D NC NC NC V SS V SS V SS V SS V SS NC NC NC E NC NC DQ5 V DDQ V SS V SS V SS V DDQ NC NC DQ3F NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC G NC NC DQ6 V DDQ V DD V SS V DD V DDQ NC NC NC H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC NC V DDQ V DD V SS V DD V DDQ NC DQ2NC K NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC L NC DQ7NC V DDQ V SS V SS V SS V DDQ NC NC DQ1M NC NC NC V SS V SS V SS V SS V SS NC NC NC N NC NC NC V SS SA SA SA V SS NC NC NC P NC NC DQ8SA SA C SA SA NC NC DQ0RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 and SA1 are set to0 at the beginning of each access.2.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/1678M x 8 SigmaCIO DDR-II SRAM—Top View1234567891011ACQ SA SA R/W NW1K NC LD SA SA CQ B NC NC NC SA NC K NW0SA NC NC DQ3C NC NC NC V SS SA NC SA V SS NC NC NC D NC NC NC V SS V SS V SS V SS V SS NC NC NC E NC NC DQ4 V DDQ V SS V SS V SS V DDQ NC NC DQ2F NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC G NC NC DQ5 V DDQ V DD V SS V DD V DDQ NC NC NC H Doff V REF V DDQ V DDQ V DD V SS V DD V DDQ V DDQ V REF ZQ J NC NC NC V DDQ V DD V SS V DD V DDQ NC DQ1NC K NC NC NC V DDQ V DD V SS V DD V DDQ NC NC NC L NC DQ6NC V DDQ V SS V SS V SS V DDQ NC NC DQ0M NC NC NC V SS V SS V SS V SS V SS NC NC NC N NC NC NC V SS SA SA SA V SS NC NC NC P NC NC DQ7SA SA C SA SA NC NC NC RTDOTCKSASASACSASASATMSTDI11 x 15 Bump BGA—13 x 15 mm 2 Body—1 mm Bump PitchNotes:1.Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 and SA1 are set to0 at the beginning of each access.2.NW0 controls writes to DQ0:DQ3; NW1 controls writes to DQ4:DQ73.MCL = Must Connect LowGS8662R08/09/18/36E-333/300/250/200/167Pin Description TableSymbolDescriptionTypeCommentsSA Synchronous Address InputsInput —NC No Connect ——R Synchronous Read Input Active High W Synchronous Write Input Active Low BW0–BW3Synchronous Byte Writes Input Active Low x18/x36 only NW0–NW1Nybble Write Control Pin Input Active Low x8 only LD Synchronous Load PinInput Active Low K Input Clock Input Active High K Input Clock Input Active Low C Output Clock Input Active High C Output Clock Input Active LowTMS Test Mode Select Input —TDI Test Data Input Input —TCK Test Clock Input Input —TDO Test Data Output Output —V REF HSTL Input Reference Voltage Input —ZQ Output Impedance Matching InputInput —MCL Must Connect Low——DQ Data I/O Input/Output Three State Doff Disable DLL when low Input Active LowCQ Output Echo Clock Output —CQ Output Echo Clock Output —V DD Power Supply Supply 1.8 V Nominal V DDQ Isolated Output Buffer Supply Supply 1.5 V NominalV SSPower Supply: GroundSupply—GS8662R08/09/18/36E-333/300/250/200/167Note:NC = Not Connected to die or any other pinGS8662R08/09/18/36E-333/300/250/200/167BackgroundCommon I/O SRAMs, from a system architecture point of view, are attractive in read dominated or block transfer applications. Therefore, the SigmaCIO DDR-II SRAM interface and truth table are optimized for burst reads and writes. Common I/O SRAMs are unpopular in applications where alternating reads and writes are needed because bus turnaround delays can cut high speed Common I/O SRAM data bandwidth in half.Burst OperationsRead and write operations are “burst” operations. In every case where a read or write command is accepted by the SRAM, it will respond by issuing or accepting four beats of data, executing a data transfer on subsequent rising edges of K and K#, as illustrated in the timing diagrams. It is not possible to stop a burst once it starts. Four beats of data are always transferred. This means that it is possible to load new addresses every other K clock cycle. Addresses can be loaded less often, if intervening deselect cycles are inserted.Deselect CyclesChip Deselect commands are pipelined to the same degree as read commands. This means that if a deselect command is applied to the SRAM on the next cycle after a read command captured by the SRAM, the device will complete the four beat read data transfer and then execute the deselect command, returning the output drivers to high-Z.A high on the LD# pin prevents the RAM from loading read or write commandinputs and puts the RAM into deselect mode as soon as it completes all outstanding burst transfer operations.SigmaCIO DDR-II B4 SRAM Read CyclesThe status of the Address, LD# and R/W# pins are evaluated on the rising edge of K. Because the device executes a four beat burst transfer inresponse to a read command, if the previous command captured was a read or write command, the Address, LD# and R/W# pins are ignored. If the previous command captured was a deselect, the control pin status is checked.The SRAM executes pipelined reads. The read command is clocked into the SRAM by a rising edge of K. After the next rising edge of K, the SRAM produces data out in response to the next rising edge of C# (or the next rising edge of K#, if C and C# are tied high). The second beat of data is transferred on the next rising edge of C, then on the next rising edge of C# and finally on the next rising edge of C, for a total of four transfers per address load.SigmaCIO DDR-II B4 SRAM Write CyclesThe status of the Address, LD# and R/W# pins are evaluated on the rising edge of K. Because the device executes a four beat burst transfer in response to a write command, if the previous command captured was a read or write command, the Address, LD# and R/ W# pins are ignored at the next rising edge of K. If the previous command captured was a deselect, the control pin status is checked.The SRAM executes “late write” data transfers. Data in is due at the device inputs on the rising edge of K following the rising edge of K clock used to clock in the write command and the write address. To complete the remaining three beats of the burst of four write transfer the SRAM captures data in on the next rising edge of K#, the following rising edge of K and finally on the next rising edge of K#, for a total of four transfers per address load.GS8662R08/09/18/36E-333/300/250/200/167Power-Up Sequence for SigmaQuad-II SRAMsSigmaQuad-II SRAMs must be powered-up in a specific sequence in order to avoid undefined operations.Power-Up Sequence1. Power-up and maintain Doff at low state.1a.Apply V DD .1b. Apply V DDQ .1c. Apply V REF (may also be applied at the same time as V DDQ ).2. After power is achieved and clocks (K, K, C, C) are stablized, change Doff to high.3. An additional 1024 clock cycles are required to lock the DLL after it has been enabled.Note:If you want to tie Doff high with an unstable clock, you must stop the clock for a minimum of 30 seconds to reset the DLL after the clocks become stablized.DLL Constraints•The DLL synchronizes to either K or C clock. These clocks should have low phase jitter (t KCVar on page 20).•The DLL cannot operate at a frequency lower than 119 MHz.•If the incoming clock is not stablized when DLL is enabled, the DLL may lock on the wrong frequency and cause undefined errors or failures during the initial stage.Power-Up Sequence (Doff controlled)Power UP IntervalUnstable Clocking IntervalDLL Locking Interval (1024 Cycles)Normal OperationKKV DDV DDQV REFDoffPower-Up Sequence (Doff tied High)Power UP IntervalUnstable Clocking IntervalStop Clock IntervalDLL Locking Interval (1024 Cycles)Normal OperationKKV DDV DDQV REFDoff30ns MinNote:If the frequency is changed, DLL reset is required. After reset, a minimum of 1024 cycles is required for DLL lock.GS8662R08/09/18/36E-333/300/250/200/167Special FunctionsByte Write and Nybble Write ControlByte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low during the data in sample times in a write sequence.Each write enable command and write address loaded into the RAM provides the base address for a 4 beat data transfer. The x18 version of the RAM, for example, may write 72 bits in association with each address loaded. Any 9-bit byte may be masked in any write sequence.Nybble Write (4-bit) write control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble Write Enable” and “NBx” may be substituted in all the discussion above.Example x18 RAM Write Sequence using Byte Write EnablesData In SampleTimeBW0BW1D0–D8D9–D17Beat 101Data In Don’t CareBeat 210Don’t Care Data InBeat 300Data In Data InBeat 410Don’t Care Data InResulting Write OperationByte 1 D0–D8Byte 2D9–D17Byte 1D0–D8Byte 2D9–D17Byte 1D0–D8Byte 2D9–D17Byte 1D0–D8Byte 2D9–D17Written Unchanged Unchanged Written Written Written Unchanged Written Beat 1Beat 2Beat 3Beat 4Output Register ControlSigmaCIO DDR-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K and K clocks. If the C and C clock inputs isare tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to function as a conventional pipelined read SRAM.A K R/W LDA 0–A nKBank 0Bank 1Bank 2Bank 3A KLD A K LD A K LD R/W R/W R/W DQDQDQ DQCC CCDQ 1–C R/WLD 0LD 1LD 2LD 3Note:For simplicity BWn (or NWn), K, and C are not shown.CQ CQ CQ CQ CQGS8662R08/09/18/36E-333/300/250/200/167Example Four Bank Depth Expansion SchematicGS8662R08/09/18/36E-333/300/250/200/167FLXDrive-II Output Driver Impedance ControlHSTL I/O SigmaCIO DDR-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to V SS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be 5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is between 150Ω and 300Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver isimplemented with discrete binary weighted impedance steps. Updates of pull-down drive impedance occur whenever a driver is producing a “1” or is High-Z. Pull-up drive impedance is updated when a driver is producing a “0” or is High-Z.Common I/O SigmaCIO DDR-II B4 SRAM Truth TableK nLDR/WDQOperationA + 0A + 1A + 2A + 3↑1X Hi-Z Hi-Z Hi-Z Hi-Z Deselect ↑00D@K n+1D@K n+1D@K n+2D@K n+2Write ↑1Q@K n+1or C n+1Q@K n+2or C n+2Q@K n+2or C n+2Q@K n+3or C n+3ReadNote:Q is controlled by K clocks if C clocks are not used.B4 Byte Write Clock Truth TableBW BW BW BW Current OperationD D D D K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)K ↑(t n )K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)TTTTWriteDx stored if BWn = 0 in all four data transfers D0D2D3D4T F F F WriteDx stored if BWn = 0 in 1st data transfer only D0X X XF T F F WriteDx stored if BWn = 0 in 2nd data transfer only X D1X XF F T F WriteDx stored if BWn = 0 in 3rd data transfer only X X D2XF F F T WriteDx stored if BWn = 0 in 4th data transfer only X X X D3F F F F Write AbortNo Dx stored in any of the four data transfersX X X XNotes:1.“1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.2.If one or more BWn = 0, then BW = “T”, else BW = “F”.GS8662R08/09/18/36E-333/300/250/200/167*Assuming stable conditions, the RAM can achieve optimum impedance within 1024 cycles.B4 Nybble Write Clock Truth TableNW NW NW NW Current OperationD D D D K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)K ↑(t n )K ↑(t n+1)K ↑(t n+1½)K ↑(t n+2)K ↑(t n+2½)TTTTWriteDx stored if NWn = 0 in all four data transfers D0D2D3D4T F F F WriteDx stored if NWn = 0 in 1st data transfer only D0X X XF T F F WriteDx stored if NWn = 0 in 2nd data transfer only X D1X XF F T F WriteDx stored if NWn = 0 in 3rd data transfer only X X D2XF F F T WriteDx stored if NWn = 0 in 4th data transfer only X X X D3F F F F Write AbortNo Dx stored in any of the four data transfersX X X XNotes:1.“1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.2.If one or more NWn = 0, then NW = “T”, else NW = “F”.GS8662R08/09/18/36E-333/300/250/200/167x36 Byte Write Enable (BWn) Truth TableBW0BW1BW2BW3D0–D8D9–D17D18–D26D27–D351111Don’t Care Don’t Care Don’t Care Don’t Care 0111Data In Don’t Care Don’t Care Don’t Care 1011Don’t Care Data In Don’t Care Don’t Care 0011Data In Data In Don’t Care Don’t Care 1101Don’t Care Don’t Care Data In Don’t Care 0101Data In Don’t Care Data In Don’t Care 1001Don’t Care Data In Data In Don’t Care 0001Data In Data In Data In Don’t Care 1110Don’t Care Don’t Care Don’t Care Data In 0110Data In Don’t Care Don’t Care Data In 1010Don’t Care Data In Don’t Care Data In 0010Data In Data In Don’t Care Data In 1100Don’t Care Don’t Care Data In Data In 0100Data In Don’t Care Data In Data In 1000Don’t Care Data In Data In Data In 0Data InData InData InData Inx18 Byte Write Enable (BWn) Truth Table BW0BW1D0–D8D9–D1711Don’t Care Don’t Care 01Data In Don’t Care 10Don’t Care Data In 0Data InData Inx8 Nybble Write Enable (NWn) Truth Table NW0NW1D0–D3D4–D711Don’t Care Don’t Care 01Data In Don’t Care 10Don’t Care Data In 0Data InData InGS8662R08/09/18/36E-333/300/250/200/167GS8662R08/09/18/36E-333/300/250/200/167B4 State DiagramPower-UpNOPLoad New AddressDDR Read DDR WriteLOADREAD WRITE LOADLOADLOADLOADNotes:1.The internal burst address counter is a 4-bit linear counter (i.e., when first address is A0, next internal burst address is A0+1).2.“READ” refers to read active status with R/W = High, “WRITE” refers to write inactive status with R/W = Low.3.“LOAD” refers to read new address active status with LD = Low, “LOAD” refers to read new address inactive status with LD = High.LOAD Increment Read Address Increment Write AddressAlwaysAlwaysREADWRITEAbsolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 2.9V V DDQ Voltage in V DDQ Pins –0.5 to V DD V V REF Voltage in V REF Pins –0.5 to V DDQV V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 2.9 V max.)V V IN Voltage on Other Input Pins –0.5 to V DDQ +0.5 (≤ 2.9 V max.)V I IN Input Current on Any Pin +/–100mA dc I OUT Output Current on Any I/O Pin +/–100mA dcT J Maximum Junction Temperature125o C T STGStorage Temperature–55 to 125oCNote:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect reliability of this component.GS8662R08/09/18/36E-333/300/250/200/167Recommended Operating ConditionsPower SuppliesParameterSymbolMin.Typ.Max.UnitSupply Voltage V DD 1.7 1.8 1.9V I/O Supply Voltage V DDQ 1.7 1.8 1.9V Reference VoltageV REF0.68—0.95VNotes:1.Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 1.4 V ≤ V DDQ ≤ 1.6 V (i.e., 1.5 V I/O)and 1.7 V ≤ V DDQ ≤ 1.95 V (i.e., 1.8 V I/O) and quoted at whichever condition is worst case.2.The power supplies need to be powered up simultaneously or in the following sequence: V DD , V DDQ , V REF , followed by signal inputs. Thepower down sequence must be the reverse. V DDQ must not exceed V DD ..Operating TemperatureParameterSymbolMin.Typ.Max.UnitAmbient Temperature (Commercial Range Versions)T A 02570°C Ambient Temperature (Industrial Range Versions)T A–402585°CGS8662R08/09/18/36E-333/300/250/200/167HSTL I/O DC Input CharacteristicsParameterSymbolMinMaxUnitsNotesDC Input Logic High V IH (dc)V REF + 0.10V DD + 0.3 V V 1DC Input Logic LowV IL (dc)–0.3 VV REF – 0.10V1Notes:patible with both 1.8 V and 1.5 V I/O drivers2.These are DC test criteria. DC design criteria is V REF ± 50 mV. The AC V IH /V IL levels are defined separately for measuring timing parame-ters.3.V IL (Min) DC = –0.3 V, V IL (Min) AC = –1.5 V (pulse width ≤ 3 ns).4.V IH (Max) DC = V DDQ + 0.3 V, V IH (Max) AC = V DDQ + 0.85 V (pulse width ≤ 3 ns).HSTL I/O AC Input CharacteristicsParameterSymbolMinMaxUnitsNotesAC Input Logic High V IH (ac)V REF + 0.20—V 3,4AC Input Logic LowV IL (ac)—V REF – 0.20V 3,4V REF Peak to Peak AC VoltageV REF (ac)—5% V REF (DC)V1Notes:1.The peak to peak AC component superimposed on V REF may not exceed 5% of the DC component of V REF .2.To guarantee AC characteristics, V IH ,V IL , Trise, and Tfall of inputs and clocks must be within 10% of each other.3.For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.20% tKHKHV SS – 1.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKHKHV DD + 1.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DDParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Output Capacitance C OUT V OUT = 0 V67pF Clock CapacitanceC CLK—56pFNote:This parameter is sample tested.GS8662R08/09/18/36E-333/300/250/200/167AC Test ConditionsParameterConditionsInput high level V DDQ Input low level 0 V Max. input slew rate 2 V/ns Input reference level V DDQ /2Output reference levelV DDQ /2Note:Test conditions as specified with output loading as shown unless otherwise noted.DQVT = V DDQ /250ΩRQ = 250 Ω (HSTL I/O)V REF = 0.75 VAC Test Load DiagramInput and Output Leakage CharacteristicsParameterSymbolTest ConditionsMin.MaxNotesInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –2 uA 2 uA DoffI INDOFF V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL –100 uA –2 uA 2 uA 2 uA Output Leakage CurrentI OLOutput Disable,V OUT = 0 to V DDQ–2 uA2 uA(T A = 25= 3.3 V)GS8662R08/09/18/36E-333/300/250/200/167Programmable Impedance HSTL Output Driver DC Electrical CharacteristicsParameterSymbolMin.Max.UnitsNotesOutput High Voltage V OH1 V DDQ /2V DDQ V 1, 3Output Low Voltage V OL1 Vss V DDQ /2V 2, 3Output High Voltage V OH2 V DDQ – 0.2V DDQ V 4, 5Output Low VoltageV OL2Vss0.2V4, 6Notes:1. I OH = (V DDQ /2) / (RQ/5) +/– 15% @ V OH = V DDQ /2 (for: 175Ω ≤ RQ ≤ 350Ω).2. I OL = (V DDQ /2) / (RQ/5) +/– 15% @ V OL = V DDQ /2 (for: 175Ω ≤ RQ ≤ 350Ω).3.Parameter tested with RQ = 250Ω and V DDQ = 1.5 V or 1.8 V4.Minimum Impedance mode, ZQ = V SS5.I OH = –1.0 mA6.I OL = 1.0 mAOperating CurrentsParameterSymbolTest Conditions-333-300-250-200-167Notes0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40 to 85°C 0to 70°C –40 to 85°C Operating Current (x36):DDR I DD V DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBDTBDTBDTBDTBDTBDTBDTBDTBDTBD2, 3Operating Current (x18):DDR I DD V DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 3Operating Current (x9):DDR I DD V DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 3Operating Current (x8):DDR I DDV DD = Max, I OUT = 0 mA Cycle Time ≥ t KHKH Min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 3Standby Current (NOP):DDRI SB1Device deselected,I OUT = 0 mA, f = Max,All Inputs ≤ 0.2 V or ≥ V DD – 0.2 VTBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 2, 4Notes:1.Power measured with output pins floating.2.Minimum cycle, I OUT = 0 mA3.Operating current is calculated with 50% read cycles and 50% write cycles.4.Standby Current is only after all pending read and write burst operations are completed.GS8662R08/09/18/36E-333/300/250/200/167AC Electrical CharacteristicsParameterSymbol-333-300-250-200-167UnitsN o t e sMin Max Min Max Min Max Min Max Min MaxClockK, K Clock Cycle Time C, C Clock Cycle Time t KHKH t CHCH 3.0 3.5 3.3 4.2 4.0 6.3 5.07.88 6.08.4ns tTKC Variablet KCVar —0.2—0.2—0.2—0.2—0.2ns 5K, K Clock High Pulse Width C, C Clock High Pulse Width t KHKL t CHCL 1.2— 1.32— 1.6— 2.0— 2.4—ns K, K Clock Low Pulse Width C, C Clock Low Pulse Width t KLKH t CLCH 1.2— 1.32— 1.6— 2.0— 2.4—ns K to K High C to C Hight KHKH 1.35— 1.49— 1.8— 2.2— 2.7—ns K, K Clock High to C, C Clock High t KHCH 0 1.30 1.450 1.80 2.30 2.8ns DLL Lock Time t KCLock 1024—1024—1024—1024—1024—cycle 6K Static to DLL resett KCReset 30—30—30—30—30—nsOutput TimesK, K Clock High to Data Output Valid C, C Clock High to Data Output Valid t KHQV t CHQV —0.45—0.45—0.45—0.45—0.5ns 3K, K Clock High to Data Output Hold C, C Clock High to Data Output Hold t KHQX t CHQX –0.45—–0.45—–0.45—–0.45—–0.5—ns 3K, K Clock High to Echo Clock Valid C, C Clock High to Echo Clock Valid t KHCQV t CHCQV —0.45—0.45—0.45—0.45—0.5ns K, K Clock High to Echo Clock Hold C, C Clock High to Echo Clock Hold t KHCQX t CHCQX –0.45—–0.45—–0.45—–0.45—–0.5—ns CQ, CQ High Output Valid t CQHQV —0.25—0.27—0.30—0.35—0.40ns 7CQ, CQ High Output Hold t CQHQX –0.25—–0.27—–0.30—–0.35—–0.40—ns 7K Clock High to Data Output High-Z C Clock High to Data Output High-Z t KHQZ t CHQZ —0.45—0.45—0.45—0.45—0.5ns 3K Clock High to Data Output Low-Z C Clock High to Data Output Low-Zt KHQX1t CHQX1–0.45—–0.45—–0.45—–0.45—–0.5—ns3Setup TimesAddress Input Setup Time t AVKH 0.4—0.4—0.5—0.6—0.7—ns Control Input Setup Time t IVKH 0.4—0.4—0.5—0.6—0.7—ns 2Data Input Setup Timet DVKH0.28—0.3—0.35—0.4—0.5—ns。

GS881E36T-11I中文资料

GS881E36T-11I中文资料

GS881E18/36T-11/11.5/100/80/66512K x 18, 256K x 36 ByteSafe™8Mb Sync Burst SRAMs100 MHz–66 MHz3.3 V V DD 3.3 V and 2.5 V I/O100-Pin TQFP Commercial TempIndustrial Temp1.10 9/2000Featuresoperation• Dual Cycle Deselect (DCD) operation• IEEE 1149.1 JTAG-compatible Boundary Scan• On-chip write parity checking; even or odd selectable• 3.3 V +10%/–5% core power supply• 2.5 V or 3.3 V I/O supply• Internal input resistors on mode pins allow floating mode pins • Default to Interleaved Pipeline mode• Common data inputs and data outputs• Clock Control, registered, address, data, and control• Internal self-timed write cycle• Automatic power-down for portable applications• 100-lead TQFP packageFunctional DescriptionApplicationsThe GS881E18//36T is a 9,437,184-bit high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support. Controlsand power down control (ZZ) are asynchronous inputs. Burst Burst mode, subsequent burst addresses are generated counter may be configured to count in either linear or interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance. Flow Through/Pipeline ReadsThe function of the Data Output register can be controlled by the user via the FT mode pin (Pin 14). Holding the FT mode pin low places the RAM in Flow Through mode, causing output data to bypass the Data Output Register. Holding FT high places the RAM in Pipeline mode, activating the rising-edge-triggered Data Output Register.DCD Pipelined ReadsThe GS881E18//36T is a DCD (Dual Cycle Deselect) pipelined synchronous SRAM. SCD (Single Cycle Deselect) versions are also available. DCD SRAMs pipeline disable commands to the same degree as read commands. DCD RAMs hold the deselect command for one full cycle and then begin turning off their outputs just after the second rising edge of clock.Byte Write and Global WriteByte write operation is performed by using Byte Write enable (BW) input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the byte write control inputs.ByteSafe™ Parity FunctionsThe GS881E18/36T features ByteSafe data security functions. See detailed discussion following.Sleep ModeLow power (Sleep mode) is attained through the assertion (high) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode.Core and Interface VoltagesThe GS881E18//36T operates on a 3.3 V power supply, and all inputs/outputs are 3.3 V- and 2.5 V-compatible. Separate output power (V DDQ) pins are used to decouple output noise from the internal circuit.-11-11.5-100-80-663-1-1-1t KQI DD4.0 ns225 mA4.0 ns225 mA4.0 ns225 mA4.5 ns200 mA5.0 ns185 mAThrough 2-1-1-1KQtCycleI DD15 ns180 mA15 ns180 mA15 ns180 mA15 ns175 mA20 ns165 mAGS881E18/36T-11/11.5/100/80/66GS881E18 100-Pin TQFP Pinout807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ B1DQ B2V SS V DDQ DQ B3DQ B4FT V DD DP V SS DQ B5DQ B6V DDQ V SS DQ B7DQ B8DQ B9V SS V DDQ V DDQ V SS DQ A8DQ A7V SS V DDQ DQ A6DQ A5V SS QE V DD ZZ DQ A4DQ A3V DDQ V SS DQ A2DQ A1V SS V DDQ L B O A 5A 4A 3A 2A 1A 0T M S T D I V S SV D DT D O T C K A 10A 11A 12A 13A 14A 16A 6A 7E 1E 2 N C N C B BB AA 17C K G W B W VD DV S SG A D S C A D S P A D V A 8A 9A 15512K X 18Top ViewDQ A9A 18NC NC NC NC NC NC NC NCNC NC NC NC NC NC NCNC NC 100999897969594939291908988878685848382813132333435363738394041424344454647484950GS881E18/36T-11/11.5/100/80/66GS881E36 100-Pin TQFP Pinout807978777675747372717069686766656463626160595857565554535251123456789101112131415161718192021222324252627282930V DDQ V SS DQ C4DQ C3V SS V DDQ DQ C2DQ C1FT V DD DP V SS DQ D1DQ D2V DDQ V SS DQ D3DQ D4DQ D5V SS V DDQ V DDQ V SS DQ B4DQ B3V SS V DDQ DQ B2DQ B1V SS QE V DD ZZ DQ A1DQ A2V DDQ V SS DQ A3DQ A4V SS V DDQ L B O A 5A 4A 3A 2A 1A 0T M S T D I V S ST D O T C K A 10A 11A 12A 13A 14A 16A 6A 7E 1E 2 B DB CB BB AA 17C K G W B W VD DV S SG A D S C A D S P A D V A 8A 9A 15256K x 36Top ViewDQ B5DQ B9DQ B7DQ B8DQ B6DQ A6DQ A5DQ A8DQ A7DQ A9DQ C7DQ C8DQ C6DQ D6DQ D8DQ D7DQ D9DQ C5DQ C9100999897969594939291908988878685848382813132333435363738394041424344454647484950V D DGS881E18/36T-11/11.5/100/80/66 TQFP Pin DescriptioPin Location Symbol TypeDescription37, 36A0, A1I Address field LSBs and Address Counter preset Inputs 35, 34, 33, 32, 100, 99, 82, 81, 44, 45,46, 47, 48, 49, 50, 92A2–A17I Address Inputs80A18I Address Inputs63, 62, 59, 58, 57, 56, 53, 52 68, 69, 72, 73, 74, 75, 78, 79 13, 12, 9, 8, 7, 6, 3, 2 18, 19, 22, 23, 24, 25, 28, 29DQ A1–DQ A8DQ B1–DQ B8DQ C1–DQ C8DQ D1–DQ D8I/O Data Input and Output pins ( x36 Version)51, 80, 1, 30DQ A9, DQ B9,DQ C9, DQ D9I/O Data Input and Output pins58, 59, 62, 63, 68, 69, 72, 73, 74 8, 9, 12, 13, 18, 19, 22, 23, 24DQ A1–DQ A9DQ B1–DQ B9I/O Data Input and Output pins51, 52, 53, 56, 5775, 78, 79,1, 2, 3, 6, 725, 28, 29, 30NC—No Connect16DP I Parity Input; 1 = Even, 0 = Odd66QE O Parity Error Out; Open Drain Output87BW I Byte Write—Writes all enabled bytes; active low93, 94B A, B B I Byte Write Enable for DQ A, DQ B Data I/Os; active low95, 96B C, B D I Byte Write Enable for DQ C, DQ D Data I/Os; active low ( x36 Version) 95, 96NC—No Connect (x18 Version)89CK I Clock Input Signal; active high88GW I Global Write Enable—Writes all bytes; active low98E1I Chip Enable; active low97E2I Chip Enable; active high86G I Output Enable; active low83ADV I Burst address counter advance enable; active low84, 85ADSP, ADSC I Address Strobe (Processor, Cache Controller); active lowGS881E18/36T-11/11.5/100/80/6664ZZ I Sleep mode control; active high 14FT I Flow Through or Pipeline mode; active low 31LBO I Linear Burst Order mode; active low38TMS I Scan Test Mode Select 39TDI I Scan Test Data In 42TDO O Scan Test Data Out 43TCK I Scan Test Clock 15, 41, 65, 91V DD I Core power supply 5,10,17, 21, 26, 40, 55, 60, 67, 71, 76, 90V SS I I/O and Core Ground 4, 11, 20, 27, 54, 61, 70, 77V DDQIOutput driver power supplyPin LocationSymbolTyp eDescriptionGS881E18/36T-11/11.5/100/80/66GS881E18/36 Block DiagramA1A0A0A1D0D1Q1Q0Counter LoadD QDQRegisterRegisterDQRegisterDQRegisterDQRegisterD QRegisterD QRegisterD QRegisterD QR e g i s t e rDQ RegisterA0–An LBO ADV CK ADSC ADSP GW BW B AB BB CB DFT GZZPower Down ControlMemory Array36364AQD DQx0–DQx9DPParity QEParity EncodeCompare3643636432Note: Only x36 version shown for simplicity.3636DQR e g i s t e r 4E 1E 2GS881E18/36T-11/11.5/100/80/66ByteSafe ™ Parity FunctionsThis SRAM includes a write data parity check that checks the validity of data coming into the RAM on write cycles. In Flow Through mode, write data errors are reported in the cycle following the data input cycle. In Pipeline mode, write data errors are reported one clock cycle later. (See Write Parity Error Output Timing Diagram .) The Data Parity Mode (DP) pin must be tied high to set the RAM to check for even parity or low to check for odd parity. Read data parity is not checked by the RAM as data. Validity is best established at the data’s destination. The Parity Error Output is an open drain output and drives low to indicate a parity error. Multiple Parity Error Output pins may share a common pull-up resistor.Write Parity Error Output Timing DiagramBPR 1999.05.18CK D In AD In BD In C D In D D In EtKQ tLZDQQEF l o w T h r o u g h M o d eP i p e l i n e d M o d etKQ tLZDQQED In A D In BD In CD In D D In EErr AErr AErr CErr CtHZ tKQX tHZ tKQXGS881E18/36T-11/11.5/100/80/66Note:There are pull-up devices on the LBO, DP and FT pins and a pull down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above table.Burst Counter SequencesBPR 1999.05.18Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H or NC Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down Control ZZ L or NC Active H Standby, I DD = I SB ByteSafe Data Parity ControlDPL Check for Odd Parity H or NCCheck for Even ParityLinear Burst SequenceNote: The burst counter wraps to initial state on the 5th clock.I nterleaved Burst SequenceNote: The burst counter wraps to initial state on the 5th clock.A[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110A[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100GS881E18/36T-11/11.5/100/80/66Byte Write Truth TableNotes:1.All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.2.Byte Write Enable inputs B A , B B , B C, and/or B D may be used in any combination with BW to write single or multiple bytes.3.All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.4.Bytes “C ” and “D ” are only available on the x36 version.FunctionGWBWB AB BB CB DNotesRead H H X X X X 1Read H L H H H H 1Write byte a H L L H H H 2, 3Write byte b H L H L H H 2, 3Write byte c H L H H L H 2, 3, 4Write byte d H L H H H L 2, 3, 4Write all bytes H L L L L L 2, 3, 4Write all bytesLXXXXXGS881E18/36T-11/11.5/100/80/66 Synchronous Truth TableOperation AddressUsedStateDiagramKey5E1E22(x36only)ADSP ADSC ADV W3DQ4Deselect Cycle, Power Down None X H X X L X X High-Z Deselect Cycle, Power Down None X L F L X X X High-Z Deselect Cycle, Power Down None X L F H L X X High-Z Read Cycle, Begin Burst External R L T L X X X Q Read Cycle, Begin Burst External R L T H L X F Q Write Cycle, Begin Burst External W L T H L X T D Read Cycle, Continue Burst Next CR X X H H L F Q Read Cycle, Continue Burst Next CR H X X H L F Q Write Cycle, Continue Burst Next CW X X H H L T D Write Cycle, Continue Burst Next CW H X X H L T D Read Cycle, Suspend Burst Current X X H H H F Q Read Cycle, Suspend Burst Current H X X H H F Q Write Cycle, Suspend Burst Current X X H H H T D Write Cycle, Suspend Burst Current H X X H H T D Notes:1.X = Don’t Care, H = High, L = Low.2.For x36 Version, E = T (True) if E2 = 1; E = F (False) if E2 = 0.3.W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.4.G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shownas “Q” in the Truth Table above).5.All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplishbasic synchronous or synchronous burst operations and may be avoided for simplicity.6.Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.7.Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.GS881E18/36T-11/11.5/100/80/66First WriteFirst ReadBurst WriteBurst ReadDeselectR WCRCWX XWRRWRXXX S i m p l e S y n c h r o n o u s O p e r a t i o nS i m p l e B u r s t S y n c h r o n o u s O p e r a t i o nCR RCWCRCRSimplified State DiagramNotes:1.The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.2.The upper portion of the diagram assumes active use of only the Enable (E1 and E2) and Write (B A , B B , B C , B D , BW, and GW) controlinputs, and that ADSP is tied high and ADSC is tied low.3.The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs, andassumes ADSP is tied high and ADV is tied low.GS881E18/36T-11/11.5/100/80/66First WriteFirst ReadBurst WriteBurst ReadDeselectR WCRCWXXWRRWRXXX CRR CW CRCRW CWW CWSimplified State Diagram with GNotes:1.The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.e of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from Read cycles to Write cycles without passingthrough a Deselect cycle. Dummy Read cycles increment the address counter just like normal Read cycles.3.Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meetData Input Set Up Time.GS881E18/36T-11/11.5/100/80/66Note:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.Notes:1.Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both2.75 V ≤ V DDQ ≤ 2.375 V(i.e., 2.5 V I/O) and 3.6 V ≤ V DDQ ≤ 3.135 V (i.e., 3.3 V I/O), and quoted at whichever condition is worst case. 2.This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.3.Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number ofIndustrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.4.Input Under/overshoot voltage must be –2 V > Vi < V DD +2 V with a pulse width not to exceed 20% tKC.Absolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage in V DDQ Pins –0.5 to V DD V V CK Voltage on Clock Input Pin –0.5 to 6V V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125o CRecommended Operating ConditionsParameterSymbolMin.Typ.Max.UnitNotesSupply Voltage V DD 3.135 3.3 3.6V I/O Supply Voltage V DDQ 2.375 2.5V DD V 1Input High Voltage V IH 1.7—V DD +0.3V 2Input Low VoltageV IL –0.3—0.8V 2Ambient Temperature (Commercial Range Versions)T A 02570°C 3Ambient Temperature (Industrial Range Versions)T A–402585°C3GS881E18/36T-11/11.5/100/80/66Note: These parameters are sample tested.Notes:1.Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-ature air flow, board density, and PCB thermal resistance.2.SCMI G-38-873.Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1Capacitance(T A = 25o C, f = 1 MH Z , V DD = 3.3 V)ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output CapacitanceC I/OV OUT = 0 V67pFPackage Thermal CharacteristicsRatingLayer BoardSymbolMaxUnitNotesJunction to Ambient (at 200 lfm)single R ΘJA 40°C/W 1,2Junction to Ambient (at 200 lfm)four R ΘJA 24°C/W 1,2Junction to Case (TOP)—R ΘJC9°C/W320% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILGS881E18/36T-11/11.5/100/80/66Notes:1.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.3.Output Load 2 for t LZ , t HZ , t OLZ and t OHZ4.Device is deselected as defined by the Truth Table.AC Test ConditionsParameterConditionsInput high level 2.3 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level 1.25 V Output reference level1.25 V Output loadFig. 1& 2DC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA ZZ Input Current I INZZ V DD ≥ V IN ≥ V IH 0 V ≤ V IN ≤ V IH –1 uA –1 uA 1 uA 300 uA Mode Pin Input Current I INM V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL –300 uA –1 uA 1 uA 1 uA Output Leakage Current I OL Output Disable,V OUT = 0 to V DD –1 uA 1 uA Output High Voltage V OH I OH = –8 mA, V DDQ = 2.375 V 1.7 V —Output High Voltage V OH I OH = –8 mA, V DDQ = 3.135 V2.4 V —Output Low VoltageV OLI OL = 8 mA—0.4 VDQVT = 1.25 V50Ω30pF *DQ2.5 VOutput Load 1Output Load 2225Ω225Ω5pF ** Distributed Test Jig CapacitanceGS881E18/36T-11/11.5/100/80/66 Operating CurrentsParameter Test Conditions Symbol-11-11.5-100-80-66Unit 0to70°C–40to85°Cto70°C–40to85°Cto70°C–40to85°Cto70°C–40to85°Cto70°C–40to85°COperating Current Device Selected;All other inputs≥V IH o r ≤ V ILOutput openI DDPipeline225235225235225235200210185195mAI DDFlow-Thru180 190 180 190 180190175185165175mAStandbyCurrent ZZ≥ V DD- 0.2VI SBPipeline30 40 30 40 304030403040mAI SBFlow-Thru30 40 30 40304030403040mADeselect Current Device Deselected;All other inputs≥ V IH or≤ V ILI DDPipeline80 90 80 90809070806070mAI DDFlow-Thru65 75 65 75657555655060mAGS881E18/36T-11/11.5/100/80/66AC Electrical CharacteristicsNotes:1.These parameters are sampled and are not 100% tested.2.ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and holdtimes as specified above.Parameter Symbol -11-11.5-100-80-66Unit Min Max MinMax MinMax Min Max Min Max PipelineClock Cycle TimetKC 10—10—10—12.5—15—ns Clock to Output Valid tKQ — 4.0— 4.0— 4.0— 4.5—5ns Clock to Output Invalid tKQX 1.5— 1.5— 1.5— 1.5— 1.5—ns Clock to Output in Low-Z tLZ 1 1.5— 1.5— 1.5— 1.5— 1.5—ns Flow-ThruClock Cycle TimetKC 15.0—15.0—15.0—15.0—20—ns Clock to Output Valid tKQ —11.0—11.5—12.0—14.0—18ns Clock to Output Invalid tKQX 3.0— 3.0— 3.0— 3.0— 3.0—ns Clock to Output in Low-Z tLZ 1 3.0— 3.0— 3.0— 3.0— 3.0—ns Clock HIGH Time tKH 1.7— 1.7—2—2— 2.3—ns Clock LOW Time tKL 2—2— 2.2— 2.2— 2.5—ns Clock to Output in High-Z tHZ 1 1.5 4.0 1.5 4.2 1.5 4.5 1.5 4.5 1.5 4.8ns G to Output Valid tOE — 4.0— 4.2— 4.5— 4.5— 4.8ns G to output in Low-Z tOLZ 10—0—0—0—0—ns G to output in High-ZtOHZ 1— 4.0— 4.2— 4.5— 4.5— 4.8ns Setup time tS 1.5— 2.0— 2.0— 2.0— 2.0—ns Hold time tH 0.5—0.5—0.5—0.5—0.5—ns ZZ setup time tZZS 25—5—5—5—5—ns ZZ hold time tZZH 21—1—1—1—1—ns ZZ recoverytZZR20—20—20—20—20—nsGS881E18/36T-11/11.5/100/80/66CKADSPADSCADVGWBWWR2WR3WR1WR1WR2WR3tKCSingle WriteBurst Write t KLt KH tS tHtS tHtS tHtS tHtS tHtStHtS tHWrite specified byte for 2A and all bytes for 2B , 2C & 2DADV must be inactive for ADSP WriteADSC initiated writeADSP is blocked by E inactiveA 0–A nB A –B DDQ A –DQ DWrite DeselectedWR1WR3Write Cycle TimingE 1tS tHE 2 only sampled with ADSP or ADSCE 1 masks ADSPDeselected with E 2GtS tHD2AD2BD2CD2DD3AD1AHi-ZtS tHE 2GS881E18/36T-11/11.5/100/80/66Q1AQ3AQ2DQ2cQ2BQ2AtKQtLZtOEtOHZtOLZtKQXtHZtKQXCKADSP ADSCBW GGWADVBurst ReadRD2RD3tKLtStHtHtS tHtS tHADSC initiated readSuspend Burst Single ReadADSP is blocked by E inactiveA 0–A nB A –B DtKHtKCtS tHtS tStHDQ A –DQ DRD1Hi-ZSuspend BurstFlow Through Read Cycle TimingtHtHE 1 masks ADSPDeselected with E 2E 1tS tS E 2E 2 only sampled with ADSP or ADSCGS881E18/36T-11/11.5/100/80/66Flow Through Read-Write Cycle TimingCKADSPADVGWBWGQ1AD1AQ2AQ2BQ2cQ2DSingle ReadBurst ReadtOEtOHZtS tHtStHtHtS tHtS tHtKH DQ A –DQ DB A –B DtKLtKCtS Single WriteADSP is blocked by E inactivetKQtStHHi-ZQ2ABurst wrap around to it’s initial stateWR1E 1tS tS tHE 1 masks ADSPE 2 only sampled with ADSP and ADSCtHADSCtS tHADSC initiated readRD1WR1RD2tS tHA 0–A nE 2GS881E18/36T-11/11.5/100/80/66Pipelined DCD Read Cycle TimingQ1AQ3AQ2DQ2cQ2BQ2AtKQtLZtOEtOHZtOLZtKQX tHZtKQX CKADSP ADSCBW GGWADVBurst ReadRD2RD3tKLtHtHtStHtHtS tHtS tHADSC initiated readSuspend BurstE 1 masks ADSPE 2 only sampled with ADSP or ADSCSingle ReadADSP is blocked by E 1 inactiveA 0–A nB A –B DE 1tKH tKCtS tHtS tStHDQ A –DQ DtS tS RD1Hi-ZE 2GS881E18/36T-11/11.5/100/80/66Pipelined DCD Read-Write Cycle TimingCKADSPADVGWBW E 1GWR1Q1AD1aQ2A Q2B Q2c Q2DSingle ReadBurst ReadtOEtOHZtS tStHtStH tStHtHtS tHtS tHtKHE 1 masks ADSPE 2 only sampled with ADSP and ADSCDQ A –DQ DtKLtKC tS tHSingle WriteADSP is blocked by E 1 inactivetKQtS tHHi-ZB A –B DADSCtS tHADSC initiated readRD1WR1RD2tS tHA 0–A nE 2GS881E18/36T-11/11.5/100/80/66Application TipsSingle and Dual Cycle DeselectSCD devices force the use of “dummy read cycles” (read cycles that are launched normally but that are ended with the outputdrivers inactive) in a fully synchronous environment. Dummy read cycles waste performance but their use usually assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at bank address boundary crossings) but greater care must be exercised to avoid excessive bus contention.JTAG Port OperationOverviewThe JTAG Port on this RAM operates in a manner consistent with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG), but does not implement all of the functions required for 1149.1 compliance. Some functions have been modified or eliminated because they can slow the RAM. Nevertheless, the RAM supports 1149.1-1990 TAP (Test Access Port) Controller architecture, and can be expected to function in a manner that does not conflict with the operation of Standard 1149.1 compliant devices. The JTAG Port interfaces with conventional TTL / CMOS logic level signaling.Disabling the JTAG PortIt is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unlessclocked. TCK, TDI, and TMS are designed with internal pull-up circuits. To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either V DD or V SS . TDO should be left unconnected.CKADSP ADSCtHtKH tKLtKCtS ZZtZZRtZZHtZZS~~~~~~~~~SnoozeSleep Mode Timing DiagramGS881E18/36T-11/11.5/100/80/66JTAG Port RegistersOverviewThe various JTAG registers, refered to as TAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers are serial shift registers that capture serial input data on the rising edge of TCK and push serial data out on the next falling edge of TCK. When a register is selected it is placed between the TDI and TDO pins.Instruction RegisterThe Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.Bypass RegisterThe Bypass Register is a single-bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs JTAG Port to another device in the scan chain with as little delay as possible.Boundary Scan RegisterBoundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. TheBoundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. Two TAP instructions can be used to activate the Boundary Scan Register.JTAG Pin Descriptions PinPin NameI/ODescriptionTCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.TMSTest Mode SelectInThe TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.TDI Test Data In InThe TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.TDO Test Data Out OutOutput that is active depending on the state of the TAP state machine. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.Note:This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.。

GS8.2E快瘦机产品说明书

GS8.2E快瘦机产品说明书

GS8.2E Fast Slimm i ng MachineManualCONTENTSParts introduction 1 Annex 1 Basic Operati o n 2 Functions and operation 2 Notice 4 Forbidden group 4 Technical parameters 5 Annex List 5Parts introduction7 8Annex shelf1 2 5 364Obve r seBack910 11 12 13Annex1、M80 ultrasound head jack2、Medium supersonic head jack3、Small supersonic head jack4、Add button 、Decrease bu t ton5、f u nction6、St a rt/pause7、G e neral power switch8、Power supply line9、work t i me10、Continuous Wave 11、Out p ut intensity 12、fu n ction 13、Pulse waveM80 ultrasound headMedium supersonic headSmall supersonic head— 1 —Basic Operation1、P l ace annex well and connect to mainframe.①Insert M80 ult r asound head to [1 ].②Insert medium supersonic he a d to[2].③Insert small supersonic head to [3].2. Connect power line [8],t u rn on General power switch[ 7].3. Press[ 5] fu c tion sele c t bu t ton, move to the right place ,the light will shining, press[4] .Sett i ng funct i on s,work t i me,work mode and output intensity, p ress [8] start working.4. During operation, if you want to change to o t her functions within the sett i ng time, pleasepress [6] first, a nd press [5] to change.5. Turn off the General power switch, unplug the power line when finished. Sterilize the usedWork h e ad.Functions and operationM80 u l trasound h e ad1. Applied gel on fleshy part s(eg.abdomen,hip,t h igh) The amount depends on moving flexibiliof the ultrasoun d head.2.Set work time(10 min every part),Adjust output int e nsity(1 weak~5 strong).3.Click “Start”, put the service brake under your feet, step on to start working, move away for pause4. Beautician hold t h e ultrasound h e ad to move slowly on skin, in circle or beeline repeatly,theother han d push the fat towards t h e ultrasound head.5.Do not use o n back,aviod using on bones.6.Do not use o n uterus part when women do abdomen care. A bdomen treatment duringMenst r uat e shou l d b e avoided.* Enough gel are needed, you may feel painful if medium is not enough.* The total treat m ent time for daily care should be within 30 min.7.The machine will pau s e aut o mat i cally if th e set t ing time is over.8.Clean the lef t overs wit h hot t o wel, use warm towel to clean the ultrasou n d head.—2 —Super s onic func t ionSupersonic has a mechanical,h y perthermia and biochemical effect,make local tissue cells can be micro-massaged,promote blood circulat i o n,sof t en organizat i ons, speed up chemicalreact i ons, and promot e metabolism.It can promote blood circulation and lymph circulation,t h us has the effect of detoxification, wrinkle removal,tightening,lifting, l ightening f l e c ks and eliminating pouch and dark circles.1.To clean deeply, a pply medium(nutrition gel, extract oil a n d etc)The amou n t sh o uld be according to moving f l exibility of ultrasound head.2.Set work time. Press [ 7] to choose medium or small ultrasound head according t o parts need cared.(Medium size head suit fo r face and arms,the small size f o r eye a n d nosewing.3.Set t ing work mod(1-continous wave output ,2-pulse wave),to regulate output int e nsity according to diff e rent parts(1weak~9strong)4.Press start t o work.5.During operation, if you want t o chan g e to ot h er functions within the sett i ng t i me, pleasepress pause and then press [ 7] to move the curso r to the right place,t h en press [4] or [5] to Change,readjust work time,work mode,out p ut intensit y and press start.6.The machine will stop aut o matically if t h e set t ing time if over.e warm water to clean skin.8.St e rilize all the used ultrasound heads.—3 —Notice1. In operation, in o r der t o maint a in sufficient ge l.2.The ultraso u nd head should not stay out of work for to o lo n g time while outpu t ting energy.Click “pause” to stop working to avoid damage.3. M50, M80 ultrasound h e ads should not stay st i ll at one part for t o o long time,and do not use it on bones.4, Please step on service brake the n there will be sound wave exist when using M80 ultrasound head.5, M80 u l t r asound head can not be used on the back, avoid on the bo n es, and daily ca r e should Be within 30 minutes every time.6. Do not use on eyeba l l top , A d am' s apple, h eart .Do not stay st i ll on one part for to o lo n g. Forbidden group1.Peo p le who has fever, inf e ct i ous diseases, acut e diseases.2. People with heart disease or co n figured cardiac p a cemaker.3. Patients with severe high blood pressure, tumor disease, asthma, deep vein thrombosis,Varix, t h yroid ,cancer, falling sickness.4. People with hemorrhagic disease, trauma, vascular rupt u re, skin inflammation, skin disease.5.Pregnant women6. Do not use at the abdomen durin g men s trual period7. Medical P l astic p a rt s, or part s with metal inside8. People with an abnormal immune syst e m—4 —Technical parametersVolt a ge:AC 220V/50Hz or AC 110V/60Hz p o wer:≤75W Operating f r e q uency:1MHz/40KHzAnnex List1.Mainframe 1set2.Power supply line 1pc3. Use manual 1 c opy4. big ultrasound head 1pc5.Medium Ultrasound head (with wire) 1pc6.Small Ult r asound head (with wire) 1pc7.Ann e x shelf 1pc8.Hexa g onal screws 3pc—5 —。

GS8322Z36GE-200IV资料

GS8322Z36GE-200IV资料

GS8322Z18/36/72(B/E/C)-xxxV36Mb Pipelined and Flow ThroughSynchronous NBT SRAM250 MHz –133 MHz 1.8 V or 2.5 V V DD 1.8 V or 2.5 V I/O119, 165 & 209 BGA Commercial Temp Industrial Temp Features• NBT (No Bus Turn Around) functionality allows zero wait Read-Write-Read bus utilization; fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs• 1.8 V or 2.5 V core power supply • 1.8 V or 2.5 V I/O supply• User-configurable Pipeline and Flow Through mode • ZQ mode pin for user-selectable high/low output drive • IEEE 1149.1 JTAG-compatible Boundary Scan • LBO pin for Linear or Interleave Burst mode• Pin-compatible with 2Mb, 4Mb, 8Mb, and 16Mb devices • Byte write operation (9-bit Bytes)• 3 chip enable signals for easy depth expansion • ZZ Pin for automatic power-down• JEDEC-standard 119-, 165- or 209-Bump BGA package • RoHS-compliant packages availableFunctional DescriptionThe GS8322Z18/36/72-xxxV is a 36Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.Because it is a synchronous device, address, data inputs, and read/write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable (ZZ) and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.The GS8322Z18/36/72-xxxV may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edge-triggered registers that capture input signals, the device incorporates a rising edge triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge-triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.The GS8322Z18/36/72-xxxV is implemented with GSI's high performance CMOS technology and is available in a JEDEC-standard 119-bump, 165-bump or 209-bump BGA package.Parameter Synopsis-250-225-200-166-150-133Unit Pipeline 3-1-1-1KQ tCycle 4.0 4.4 5.0 6.0 6.77.5ns Curr (x18)Curr (x36)Curr (x72)275330415255300385240280340215245305205230285180205255mA mA mA Flow Through 2-1-1-1t KQ tCycle 6.57.07.58.08.58.5ns Curr (x18)Curr (x36)Curr (x72)200225300190215280180205255170195245160185230150170225mA mA mAGS8322Z18/36/72(B/E/C)-xxxVGS8322Z72C-xxxV Pad Out—209-Bump BGA—Top View (Package C)1234567891011A DQ G DQ G A E2A ADV A E3A DQB DQ B AB DQ G DQ G BC BG NC W A BB BF DQ B DQ B BC DQ G DQ G BH BD NC E1NC BE BA DQ B DQ B CD DQ G DQ G V SS NC NC G NC NC V SS DQ B DQ B DE DQP G DQP C V DDQ V DDQ V DD V DD V DD V DDQ V DDQ DQPF DQP B EF DQ C DQ C V SS V SS V SS ZQ V SS V SS V SS DQ F DQ F FG DQ C DQ C V DDQ V DDQ V DD MCH V DD V DDQ V DDQ DQ F DQ F GH DQ C DQ C V SS V SS V SS MCL V SS V SS V SS DQ F DQ F H J DQ C DQ C V DDQ V DDQ V DD MCH V DD V DDQ V DDQ DQ F DQ F J K NC NC CK NC V SS CKE V SS NC NC NC NC K L DQ H DQ H V DDQ V DDQ V DD FT V DD V DDQ V DDQ DQ A DQ A L M DQ H DQ H V SS V SS V SS MCL V SS V SS V SS DQ A DQ A M N DQ H DQ H V DDQ V DDQ V DD MCH V DD V DDQ V DDQ DQ A DQ A N P DQ H DQ H V SS V SS V SS ZZ V SS V SS V SS DQ A DQ A P R DQP D DQP H V DDQ V DDQ V DD V DD V DD V DDQ V DDQ DQP A DQP E R T DQ D DQ D V SS NC NC LBO NC NC V SS DQ E DQ E T U DQ D DQ D NC A NC A A A NC DQ E DQ E U V DQ D DQ D A A A A1A A A DQ E DQ E V W DQ D DQ D TMS TDI A A0A TDO TCK DQ E DQ E W11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump PitchGS8322Z18/36/72(B/E/C)-xxxVGS8322Z72C-xxxV 209-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsAn IAddress InputsDQ A DQ B DQ C DQ D DQ E DQ F DQ G DQ H I/O Data Input and Output pinsB A , B B I Byte Write Enable for DQ A , DQ B I/Os; active low BC ,BD I Byte Write Enable for DQ C , DQ D I/Os; active low BE , BF , BG ,B HI Byte Write Enable for DQ E , DQ F , DQ G , DQ H I/Os; active lowNC —No ConnectCK I Clock Input Signal; active high E 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active low ADV I Burst address counter advance enable ZZ I Sleep Mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowMCH I Must Connect High MCH IMust Connect High MCL Must Connect Low W I Write Enable; active low ZQ I FLXDrive Output Impedance Control Low = Low Impedance [High Drive], High = High Impedance [Low Drive]CKEIClock Enable; active lowGS8322Z18/36/72(B/E/C)-xxxVTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyGS8322Z72C-xxxV 209-Bump BGA Pin DescriptionSymbolTypeDescriptionGS8322Z18/36/72(B/E/C)-xxxVGS8322Z36B-xxxV Pad Out—119-Bump BGA—Top View 1234567A V DDQ A A A A A V DDQ A B NC E2A ADV A E3NC B C NC A A V DD A A NC C D DQC DQPC V SS ZQ V SS DQPB DQB D E DQC DQC V SS E1V SS DQB DQB E F V DDQ DQC V SS G V SS DQB V DDQ F G DQC DQC BC A BB DQB DQB G H DQC DQC V SS W V SS DQB DQB H J V DDQ V DD NC V DD NC V DD V DDQ J K DQD DQD V SS CK V SS DQA DQA K L DQD DQD BD NC BA DQA DQA L M V DDQ DQD V SS CKE V SS DQA V DDQ M N DQD DQD V SS A1V SS DQA DQA N P DQD DQPD V SS A0V SS DQPA DQA P R NC A LBO V DD FT A NC R T NC NC A A A A ZZ T UV DDQTMSTDITCKTDONCV DDQU7 x 17 Bump BGA—14 x 22 mm 2 Body—1.27 mm Bump Pitch(Package B)GS8322Z18/36/72(B/E/C)-xxxVGS8322Z18B-xxxV Pad Out—119-Bump BGA—Top View 1234567A V DDQ A A A A A V DDQ A B NC E2A ADV A E3NC B C NC A A V DD A A NC C D DQB NC V SS ZQ V SS DQPA NC D E NC DQB V SS E1V SS NC DQA E F V DDQ NC V SS G V SS DQA V DDQ F G NC DQB BB A NC NC DQA G H DQB NC V SS W V SS DQA NC H J V DDQ V DD NC V DD NC V DD V DDQ J K NC DQB V SS CK V SS NC DQA K L DQB NC NC NC BA DQA NC L M V DDQ DQB V SS CKE V SS NC V DDQ M N DQB NC V SS A1V SS DQA NC N P NC DQPB V SS A0V SS NC DQA P R NC A LBO V DD FT A NC R T NC A A A A A ZZ T UV DDQTMSTDITCKTDONCV DDQU7 x 17 Bump BGA—14 x 22 mm 2 Body—1.27 mm Bump Pitch(Package B)GS8322Z18/36/72(B/E/C)-xxxVGS8322Z18/36B-xxxV 119-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsAn I Address Inputs DQ A DQ B DQ C DQ D I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active high CKE I Clock Enable; active low W I Write Enable; active low E 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active low ADV I Burst address counter advance enable ZZ I Sleep mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowZQ I FLXDrive Output Impedance ControlLow = Low Impedance [High Drive], High = High Impedance [Low Drive])TMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyBPR1999.05.18GS8322Z18/36/72(B/E/C)-xxxV165 Bump BGA—x18 Common I/O—Top View 1234567891011A NC A E1BB NC E3CKE ADV A A A A B NC A E2NC BA CK W G A A NC B C NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPA C D NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA D E NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA E F NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA F G NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA G H FT MCH NC V DD V SS V SS V SS V DD NC ZQ ZZ H J DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC J K DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC K L DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC L M DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC M N DQPB NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P RLBOAAATMSA0TCKAAAAR11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch(Package E)GS8322Z18/36/72(B/E/C)-xxxV165 Bump BGA—x36 Common I/O—Top View 1234567891011A NC A E1BC BB E3CKE ADV A A NC A B NC A E2BD BA CK W G A A NC B C DQPC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPB C D DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB D E DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB E F DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB F G DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB G H FT MCH NC V DD V SS V SS V SS V DD NC ZQ ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N DQPD NC V DDQ V SS NC NC NC V SS V DDQ NC DQPA N P NC NC A A TDI A1TDO A A A NC P RLBOAAATMSA0TCKAAAAR11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch(Package E)GS8322Z18/36/72(B/E/C)-xxxVGS8322Z18/36E-xxxV 165-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsAn I Address Inputs A 18I Address Input DQ A DQ B DQ C DQ D I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active high CKE I Clock Enable; active low W I Write Enable; active low E 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high FT I Flow Through / Pipeline Mode ControlG I Output Enable; active lowADV I Burst address counter advance enable; active highZQ I FLXDrive Output Impedance ControlLow = Low Impedance [High Drive], High = High Impedance [Low Drive])ZZ I Sleep mode control; active high LBO I Linear Burst Order mode; active lowTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock MCH —Must Connect High V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyGS8322Z18/36/72(B/E/C)-xxxVFunctional DetailsClockingDeassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.Pipeline Mode Read and Write OperationsAll inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E 1, E 2, and E 3). Deassertion of any one of the Enable inputs will deactivate the device. Function W B A B B B C B D Read H X X X X Write Byte “a”L L H H H Write Byte “b”L H L H H Write Byte “c”L H H L H Write Byte “d”L H H H L Write all Bytes L L L L L Write Abort/NOPLHHHHRead operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E 1, E 2, and E 3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched into the address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.Write operation occurs when the RAM is selected, CKE is active, and the Write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (B A , B B , B C, and B D ) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock.Flow Through Mode Read and Write OperationsOperation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode.Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.Synchronous Truth TableOperationType Address CK CKE ADV W Bx E 1E 2E 3G ZZDQNotesRead Cycle, Begin Burst R External L-H L L H X L H L L L Q Read Cycle, Continue Burst B Next L-H L H X X X X X L L Q 1,10NOP/Read, Begin Burst R External L-H L L H X L H L H L High-Z 2Dummy Read, Continue Burst B Next L-H L H X X X X X H L High-Z 1,2,10Write Cycle, Begin Burst W External L-H L L L L L H L X L D 3Write Cycle, Continue Burst B Next L-H L H X L X X X X L D1,3,10Write Abort, Continue Burst B Next L-H L H X H X X X X L High-Z 1,2,3,10Deselect Cycle, Power Down D None L-H L L X X H X X X L High-Z Deselect Cycle, Power Down D None L-H L L X X X X H X L High-Z Deselect Cycle, Power Down D None L-H L L X X X L X X L High-Z Deselect Cycle D None L-H L L L H L H L X L High-Z 1Deselect Cycle, Continue DNone L-H L H X X X X X X L High-Z 1Sleep ModeNone X X X X X X X X X H High-Z Clock Edge Ignore, StallCurrentL-HHXXXXXXXL-4Notes:1.Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-lect cycle is executed first.2.Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the Wpin is sampled low but no Byte Write pins are active so no write operation is performed.3.G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off duringwrite cycles.4.If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the buswill remain in High Z.5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Writesignals are Low6.All inputs, except G and ZZ must meet setup and hold times of rising clock edge.7.Wait states can be inserted by setting CKE high.8.This device contains circuitry that ensures all outputs are in High Z during power-up.9. A 2-bit burst counter is incorporated.10.The address counter is incriminated for all Burst continue cycles.GS8322Z18/36/72(B/E/C)-xxxVGS8322Z18/36/72(B/E/C)-xxxVDeselectNew ReadNew WriteBurst ReadBurst WriteWRBRBWDDBBWRD BWRDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input commandcodes as indicated in the Synchronous Truth Table.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipelined and Flow through Read/Write Control State DiagramWRPipelined and Flow Through Read Write Control State DiagramGS8322Z18/36/72(B/E/C)-xxxVPipeline Mode Data I/O State Diagram IntermediateIntermediateIntermediateIntermediateIntermediateIntermediateHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)TransitionƒInput Command CodeKeyTransitionIntermediate State (N+1)Notes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateIntermediate ƒn n+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline Mode Data I/O State DiagramNext StateStateGS8322Z18/36/72(B/E/C)-xxxVFlow Through Mode Data I/O State Diagram High Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for: Pipeline and Flow Through Read Write Control State DiagramGS8322Z18/36/72(B/E/C)-xxxVBurst CyclesAlthough NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.Burst OrderThe burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have beenaccessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details.FLXDrive™The ZQ pin allows selection between NBT RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down Control ZZ L or NC Active H Standby, I DD = I SB FLXDrive Output Impedance ControlZQL High Drive (Low Impedance)H or NCLow Drive (High Impedance)Note:There are pull-up devices on the ZQ and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.Note:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100GS8322Z18/36/72(B/E/C)-xxxVBurst Counter SequencesBPR 1999.05.18Sleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after 2 cycles of wake up time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramtZZRtZZHtZZStKLtKHtKCCKZZDesigning for CompatibilityThe GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal. Not all vendors offer this option, however most mark the pin V DD or V DDQ on pipelined parts and V SS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets. Other vendors mark the pin as a No Connect (NC). GSI RAMs have an internal pull-up device on the FT pin so a floating FT pin will result in pipelined operation. If the part being replaced is a pipelined mode part, the GSI RAM is fully compatible with these sockets. In the unlikely event the part being replaced is a Flow Through device, the pin will need to be pulled low for correct operation.Absolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage on V DDQ Pins –0.5 to V DDV V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125oCT BIASTemperature Under Bias–55 to 125o CGS8322Z18/36/72(B/E/C)-xxxVNote:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage Ranges (1.8 V/2.5 V Version)ParameterSymbolMin.Typ.Max.UnitNotes1.8 V Supply Voltage V DD1 1.7 1.82.0V 2.5 V Supply Voltage V DD2 2.3 2.5 2.7V 1.8 V V DDQ I/O Supply Voltage V DDQ1 1.7 1.8V DD V 2.5 V V DDQ I/O Supply VoltageV DDQ22.32.5V DDVNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS8322Z18/36/72(B/E/C)-xxxVV DDQ2 & V DDQ1 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low VoltageV IL–0.3—0.3*V DDV1Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.20% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DD ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFNote:These parameters are sample tested.(T A = 25= 2.5 V)AC Test ConditionsParameterConditionsDQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceFigure 1Input high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 1Notes:1.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. GS8322Z18/36/72(B/E/C)-xxxVDC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA FT, ZQ, ZZ Input Current I IN V DD ≥ V IN ≥ 0 V –100 uA 100 uA Output Leakage CurrentI OLOutput Disable, V OUT = 0 to V DD–1 uA1 uADC Output Characteristics (1.8 V/2.5 V Version)ParameterSymbolTest ConditionsMinMax1.8 V Output High Voltage V OH1I OH = –4 mA, V DDQ = 1.6 V V DDQ – 0.4 V —2.5 V Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V1.7 V —1.8 V Output Low Voltage V OL1I OL = 4 mA —0.4 V2.5 V Output Low VoltageV OL2I OL = 8 mA—0.4 VGS8322Z18/36/72(B/E/C)-xxxVO p e r a t i n g C u r r e n t sP a r a m e t e r T e s t C o n d i t i o n s M o d eS y m b o l -250-225-200-166-150-133U n i t0t o 70°C –40 t o 85°C0t o 70°C–40 t o 85°C 0t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C O p e r a t i n g C u r r e n tD e v i c e S e l e c t e d ; A l l o t h e r i n p u t s ≥V I H o r ≤ V I LO u t p u t o p e n(x 72)P i p e l i n eI D DI D D Q380354003535035370353203034030280253002526025280252352025520m AF l o w T h r o u g hI D DI D D Q275252852525525265252352024520225202352021020220202101522015m A(x 36)P i p e l i n eI D DI D D Q300303203027525295252552527525225202452021020230201901521015m AF l o w T h r o u g hI D DI D D Q210152201520015210151901520015180151901517015180151601017010m A(x 18)P i p e l i n eI D DI D D Q260152801524015260152251524515200152201519015210151701019010m AF l o w T h r o u g hI D DI D D Q190102001018010190101701018010160101701015010160101401015010m AS t a n d b y C u r r e n tZ Z ≥ V D D – 0.2 V—P i p e l i n eI S B 608060806080608060806080m AF l o w T h r o u g hI S B608060806080608060806080m AD e s e l e c t C u r r e n tD e v i c e D e s e l e c t e d ; A l l o t h e r i n p u t s ≥ V I H o r ≤ V I L—P i p e l i n eI D D100115951109010585100851008095m AF l o w T h r o u g hI D D85100851008095809575907085m AN o t e s : 1.I D D a n d I D D Q a p p l y t o a n y c o m b i n a t i o n o f V D D 3, V D D 2, V D D Q 3, a n d V D D Q 2 o p e r a t i o n .2.A l l p a r a m e t e r s l i s t e d a r e w o r s t c a s e s c e n a r i o .。

NETGEAR GSS108E 和 GSS116E 8-Port 和 16-Port Gigabit

NETGEAR GSS108E 和 GSS116E 8-Port 和 16-Port Gigabit

Installation Guide8-Port and 16-Port Gigabit Ethernetaccess support.1. On your iOS or Android mobile device or tablet, visit the app store, searchfor NETGEAR Insight, and download the latest version of the app.2. Open the NETGEAR Insight app.3. If you did not set up a NETGEAR account, tap Create NETGEAR Account andfollow the onscreen instructions.4. Enter the email address and password for your account and tap LOG IN .5. Tap + in the upper right corner.6. Enter the serial number located on the bottom of the switch, or use thecamera on your mobile device or tablet to scan the serial number bar code.7. Tap Go .8. Follow the onscreen instructions to add your switch to a network location.The switch is registered and added to your account.2. Mount the SwitchPeel the plastic cover off the adhesive squares on the rear of the bracket. This helps hold the bracket in place during mounting.Wall Mount the SwitchStrap Mount the Switcha stud (or solidsurface)Note: For more information about mounting, see the hardware installation guide which you can download from https:///support/.mountNETGEAR, Inc.350 East Plumeria DriveSan Jose, CA 95134, USANETGEAR INTL LTDBuilding 3, University Technology Centre Curraheen Road, Cork, Ireland© NETGEAR, Inc., NETGEAR and the NETGEAR Logo are trademarks of NETGEAR, Inc. Any non‑NETGEAR trademarks are used for reference purposes only.SupportThank you for purchasing this NETGEAR product. You can visithttps:///support/ to register your product, get help, access the latest downloads and user manuals, and join our community. We recommend that you use only official NETGEAR support resources.Si ce produit est vendu au Canada, vous pouvez accéder à ce document en français canadien à https:///support/download/.(If this product is sold in Canada, you can access this document in Canadian French at https:///support/download/.)For regulatory compliance information including the EU Declaration of Conformity, visit https:///about/regulatory/.See the regulatory compliance document before connecting the power supply.Do not use this device outdoors. If you connect cables or devices that are outdoors to this device, see https:///000057103 for safety and warranty information.October 20183. Connect the Switch4. Discover the IP Address of the SwitchAn IP address is required to configure your switch. The switch gets an IPaddress from a DHCP server (such as your router) by default. If your switch is not connected to a DHCP server, use the default IP address: 192.168.0.239.1. Connect your mobile device to the same WiFi network as the switch.2. Make sure that the network connects to the Internet.3. Launch the NETGEAR Insight app from your mobile device.4. Log in to your account.The current IP address of the switch displays.5. Configure the SwitchWe recommend that you use a web browser on a computer or tablet to configure the switch.Note: If your computer is a Mac, use the NETGEAR Switch Discovery Tool, as described in the following section.1. Open a web browser from a computer or tablet that is connected to thesame network as your switch.You can use a WiFi or wired connection. 2. Enter the IP address of the switch.3. Enter the password.The default password is password . We recommend that you change the password to a more secure password.4. Click the Login button.Other Discovery and Configuration MethodsThe NETGEAR Switch Discovery Tool and the ProSAFE Plus Utility also let you discover the IP address and configure the switch. •NETGEAR Switch Discovery Tool . You can use a Mac or a 64-bit Windows-based computer that is on the same network as the switch. You can use a WiFi or wired connection. When you discover the switch, this tool provides access to the local browser interface to c onfigure the switch. To download the NETGEAR Switch Discovery Tool, visit/support/product/netgear-switch-discovery-tool.aspx .•ProSAFE Plus Utility . To download the latest utility and user manual, visit /support/product/PCU .If you cannot discover or configure the switch, you might need to temporarily disable the firewall, Internet security, or antivirus programs. Make sure to reenable these security services after you discover and configure the switch.。

GS864218B-V资料

GS864218B-V资料

PreliminaryGS864218/36/72(B/C)-xxxV4M x 18, 2M x 36, 1M x 7272Mb S/DCD Sync Burst SRAMs250 MHz –167 MHz 1.8 V or 2.5 V V DD 1.8 V or 2.5 V I/O119- & 209-Pin BGA Commercial Temp Industrial Temp Features• FT pin for user-configurable flow through or pipeline operation • Single/Dual Cycle Deselect selectable• IEEE 1149.1 JTAG-compatible Boundary Scan• ZQ mode pin for user-selectable high/low output drive • 1.8 V or 2.5 V core power supply • 1.8 V or 2.5 V I/O supply• LBO pin for Linear or Interleaved Burst mode• Internal input resistors on mode pins allow floating mode pins • Default to SCD x18/x36 Interleaved Pipeline mode • Byte Write (BW) and/or Global Write (GW) operation • Internal self-timed write cycle• Automatic power-down for portable applications • JEDEC-standard 119- and 209-bump BGA package• RoHS-compliant 119- and 209-bump BGA packages availableFunctional DescriptionApplicationsThe GS864218/36/72(B/C)-xxxV is a 75,497,472-bit high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support.ControlsAddresses, data I/Os, chip enable (E1), address burst control inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW, GW) are synchronous and are controlled by a positive-edge-triggered clock input (CK). Output enable (G) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either ADSP or ADSC inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by ADV. The burst address counter may be configured to count in either linear or interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance.Flow Through/Pipeline ReadsThe function of the Data Output register can be controlled by the user via the FT mode . Holding the FT mode pin low places the RAM in Flow Through mode, causing output data to bypass the Data Output Register. Holding FT high places the RAM inPipeline mode, activating the rising-edge-triggered Data Output Register.SCD and DCD Pipelined ReadsThe GS864218/36/72(B/C)-xxxV is a SCD (Single CycleDeselect) and DCD (Dual Cycle Deselect) pipelined synchronous SRAM. DCD SRAMs pipeline disable commands to the same degree as read commands. SCD SRAMs pipeline deselectcommands one stage less than read commands. SCD RAMs begin turning off their outputs immediately after the deselect command has been captured in the input registers. DCD RAMs hold the deselect command for one full cycle and then begin turning off their outputs just after the second rising edge of clock. The user may configure this SRAM for either mode of operation using the SCD mode input.Byte Write and Global WriteByte write operation is performed by using Byte Write enable (BW) input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the Byte Write control inputs.FLXDrive™The ZQ pin allows selection between high drive strength (ZQ low) for multi-drop bus applications and normal drive strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.Core and Interface VoltagesThe GS864218/36/72(B/C)-xxxV operates on a 1.8 V or 2.5 V power supply. All inputs are 1.8 V or 2.5 V compatible. Separate output power (V DDQ ) pins are used to decouple output noise from the internal circuits and are 1.8 V or 2.5 V compatible.Parameter Synopsis-250-200-167UnitPipeline 3-1-1-1KQ tCycle 4.0 5.0 6.0ns Curr (x18)Curr (x36)Curr (x72)340410520290350435260305380mA mA mA Flow Through 2-1-1-1t KQ tCycle 6.56.57.57.58.08.0ns ns Curr (x18)Curr (x36)Curr (x72)245280370220250315210240300mA mA mAGS864218/36/72(B/C)-xxxV209-Bump BGA—x72 Common I/O—Top View (Package C)1234567891011A DQ G DQ G A E2ADSP ADSC ADV E3A DQB DQ B AB DQ G DQ G BC BG NC BW A BB BF DQ B DQ B BC DQ G DQ G BH BD NC E1NC BE BA DQ B DQ B CD DQ G DQ G V SS NC NC G GW NC V SS DQ B DQ B DE DQP G DQP C V DDQ V DDQ V DD V DD V DD V DDQ V DDQ DQPF DQP B EF DQ C DQ C V SS V SS V SS ZQ V SS V SS V SS DQ F DQ F FG DQ C DQ C V DDQ V DDQ V DD MCH V DD V DDQ V DDQ DQ F DQ F GH DQ C DQ C V SS V SS V SS MCL V SS V SS V SS DQ F DQ F H J DQ C DQ C V DDQ V DDQ V DD MCL V DD V DDQ V DDQ DQ F DQ F J K NC NC CK NC V SS MCL V SS NC NC NC NC K L DQ H DQ H V DDQ V DDQ V DD FT V DD V DDQ V DDQ DQ A DQ A L M DQ H DQ H V SS V SS V SS MCL V SS V SS V SS DQ A DQ A M N DQ H DQ H V DDQ V DDQ V DD SCD V DD V DDQ V DDQ DQ A DQ A N P DQ H DQ H V SS V SS V SS ZZ V SS V SS V SS DQ A DQ A P R DQP D DQP H V DDQ V DDQ V DD V DD V DD V DDQ V DDQ DQP A DQP E R T DQ D DQ D V SS NC NC LBO NC NC V SS DQ E DQ E T U DQ D DQ D A A A A A A A DQ E DQ E U V DQ D DQ D A A A A1A A A DQ E DQ E V W DQ D DQ D TMS TDI A A0A TDO TCK DQ E DQ E W11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump PitchGS864218/36/72(B/C)-xxxVGS864272C-xxxV 209-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset Inputs.An IAddress InputsDQ A DQ B DQ C DQ D DQ E DQ F DQ G DQ H I/O Data Input and Output pinsB A , B B I Byte Write Enable for DQ A , DQ B I/Os; active low BC ,BD I Byte Write Enable for DQ C , DQ D I/Os; active low BE , BF , BG ,B HI Byte Write Enable for DQ E , DQ F , DQ G , DQ H I/Os; active lowNC —No ConnectCK I Clock Input Signal; active highGW I Global Write Enable—Writes all bytes; active lowE 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active lowADV I Burst address counter advance enable; active low ADSP, ADSCI Address Strobe (Processor, Cache Controller); active lowZZ I Sleep Mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowSCD I Single Cycle Deselect/Dual Cycle Deselect Mode ControlMCH IMust Connect High MCL Must Connect Low BW I Byte Enable; active lowZQ I FLXDrive Output Impedance Control(Low = Low Impedance [High Drive], High = High Impedance [Low Drive])TMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCKIScan Test ClockGS864218/36/72(B/C)-xxxVV DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyGS864272C-xxxV 209-Bump BGA Pin Description (Continued)SymbolTypeDescriptionGS864218/36/72(B/C)-xxxV119-Bump BGA—x36 Common I/O—Top View 1234567A V DDQ A A ADSP A A V DDQ A B NC A A ADSC A A NC B C NC A A V DD A A NC C D DQ DQP V SS ZQ V SS DQP B DQ B D E DQ DQ V SS E1V SS DQ B DQ B E F V DDQ DQ V SS G V SS DQ B V DDQ F G DQ DQ BC ADV BB DQ B DQ B G H DQ DQ V SS GW V SS DQ B DQ B H J V DDQ V DD NC V DD NC V DD V DDQ J K DQ D DQ D V SS CK V SS DQ A DQ A K L DQ D DQ D BD SCD BA DQ A DQ A L M V DDQ DQ D V SS BW V SS DQ A V DDQ M N DQ D DQ D V SS A1V SS DQ A DQ A N P DQ D DQP D V SS A0V SS DQP A DQ A P R NC A LBO V DD FT A NC R T NC A A A A A ZZ T UV DDQTMSTDITCKTDONCV DDQU7 x 17 Bump BGA—14 x 22 mm 2 Body—1.27 mm Bump Pitch(Package B)C C C C C C2C C CGS864218/36/72(B/C)-xxxV119-Bump BGA—x18 Common I/O—Top View 1234567A V DDQ A A ADSP A A V DDQ A B NC A A ADSC A A NC B C NC A A V DD A A NC C D DQ B NC V SS ZQ V SS DQP A NC D E NC DQ B V SS E1V SS NC DQ A E F V DDQ NC V SS G V SS DQ A V DDQ F G NC DQ B BB ADV NC NC DQ A G H DQ B NC V SS GW V SS DQ A NC H J V DDQ V DD NC V DD NC V DD V DDQ J K NC DQ B V SS CK V SS NC DQ A K L DQ B NC NC SCD BA DQ A NC L M V DDQ DQ B V SS BW V SS NC V DDQ M N DQ B NC V SS A1V SS DQ A NC N P NC DQP B V SS A0V SS NC DQ A P R NC A LBO V DD FT A NC R T A A A A A A ZZ T UV DDQTMSTDITCKTDONCV DDQU7 x 17 Bump BGA—14 x 22 mm 2 Body—1.27 mm Bump Pitch(Package B)GS864218/36/72(B/C)-xxxVGS864218/36B-xxxV 119-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsAn I Address Inputs DQ A DQ B DQ C DQ D I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active highBW I Byte Write—Writes all enabled bytes; active low GW I Global Write Enable—Writes all bytes; active lowE 1I Chip Enable; active low G I Output Enable; active lowADV I Burst address counter advance enable; active low ADSP, ADSCI Address Strobe (Processor, Cache Controller); active lowZZ I Sleep mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowZQ I FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [LowDrive])SCD I Single Cycle Deselect/Dual Cyle Deselect Mode ControlTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock V DD I Core power supply V SS I I/O and Core Ground V SS I I/O and Core Ground V DDQIOutput driver power supplyGS864218/36/72(B/C)-xxxVA1A0A0A1D0D1Q1Q0Counter LoadD QDQRegisterRegisterDQRegisterDQRegisterDQRegisterD QRegisterD QRegisterD QRegisterDQR e g i s t e rDQRegisterA0–AnLBO ADV CK ADSC ADSP GW BW E 1GZZPower Down ControlMemory Array36364AQDE 2E 3DQx1–DQx9Note: Only x36 version shown for simplicity.B AB BB CB DFT GS864218/36/72-xxxV Block DiagramMode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down Control ZZ L or NC Active H Standby, I DD = I SB Single/Dual Cycle Deselect Control SCD L Dual Cycle Deselect H or NC Single Cycle Deselect FLXDrive Output Impedance ControlZQL High Drive (Low Impedance)H or NCLow Drive (High Impedance)GS864218/36/72(B/C)-xxxVNote:There are pull-up devices on the ZQ, SCD, and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.Note:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100Burst Counter SequencesBPR 1999.05.18GS864218/36/72(B/C)-xxxVByte Write Truth TableFunctionGWBWB AB BB CB DNotesRead H H X X X X 1Read H L H H H H 1Write byte a H L L H H H 2, 3Write byte b H L H L H H 2, 3Write byte c H L H H L H 2, 3, 4Write byte d H L H H H L 2, 3, 4Write all bytes H L L L L L 2, 3, 4Write all bytesLXXXXX1.All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.2.Byte Write Enable inputs B A , B B , B C , and/or B D may be used in any combination with BW to write single or multiple bytes.3.All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.4.Bytes “C ” and “D ” are only available on the x36 version.Synchronous Truth TableOperationAddress UsedState Diagram Key 5E 1E 2ADSP ADSCADVW 3DQ 4Deselect Cycle, Power Down None X H X X L X X High-Z Deselect Cycle, Power Down None X L F L X X X High-Z Deselect Cycle, Power Down None X L F H L X X High-Z Read Cycle, Begin Burst External R L T L X X X Q Read Cycle, Begin Burst External R L T H L X F Q Write Cycle, Begin Burst External W L T H L X T D Read Cycle, Continue Burst Next CR X X H H L F Q Read Cycle, Continue Burst Next CR H X X H L F Q Write Cycle, Continue Burst Next CW X X H H L T D Write Cycle, Continue Burst Next CWH X X H L T D Read Cycle, Suspend Burst Current X X H H H F Q Read Cycle, Suspend Burst Current H X X H H F Q Write Cycle, Suspend BurstCurrentXXHHHTDWrite Cycle, Suspend Burst Current H X X H H T D 1.X = Don’t Care, H = High, L = Low2. E = T (True) if E 2 = 1 and E 3 = 0; E = F (False) if E 2 = 0 or E 3 = 13.W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.4.G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shownas “Q” in the Truth Table above).5.All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplishbasic synchronous or synchronous burst operations and may be avoided for simplicity.6.Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.7.Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.GS864218/36/72(B/C)-xxxVFirst WriteFirst ReadBurst WriteBurst ReadDeselect R WCRCWXXWRRWRXXX S i m p l e S y n c h r o n o u s O p e r a t i o nS i m p l e B u r s t S y n c h r o n o u s O p e r a t i o nCR RCWCRCRNotes:1.The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.2.The upper portion of the diagram assumes active use of only the Enable (E1) and Write (B A , B B , B C , B D , BW, and GW) control inputs, andthat ADSP is tied high and ADSC is tied low.3.The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs andassumes ADSP is tied high and ADV is tied low.GS864218/36/72(B/C)-xxxVSimplified State DiagramFirst WriteFirst ReadBurst WriteBurst ReadDeselectR WCRCWXXWRRWRXXX CRR CW CRCRW CWW CWNotes:1.The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.e of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passingthrough a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.3.Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meetData Input Set Up Time.GS864218/36/72(B/C)-xxxVSimplified State Diagram with GAbsolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage on V DDQ Pins –0.5 to V DDV V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125oCGS864218/36/72(B/C)-xxxVNote:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage Ranges (1.8 V/2.5 V Version)ParameterSymbolMin.Typ.Max.UnitNotes1.8 V Supply Voltage V DD1 1.7 1.82.0V 2.5 V Supply Voltage V DD2 2.3 2.5 2.7V 1.8 V V DDQ I/O Supply Voltage V DDQ1 1.7 1.8V DD V 2.5 V V DDQ I/O Supply VoltageV DDQ22.32.5V DDVNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS864218/36/72(B/C)-xxxVV DDQ2 & V DDQ1 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low VoltageV IL–0.3—0.3*V DDV1Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.20% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DD ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFNote:These parameters are sample tested.(T A = 25= 2.5 V)AC Test ConditionsParameterConditionsDQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceFigure 1Input high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 11.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. GS864218/36/72(B/C)-xxxVDC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA FT, SCD, ZQ, ZZ Input Current I IN V DD ≥ V IN ≥ 0 V –100 uA 100 uA Output Leakage CurrentI OLOutput Disable, V OUT = 0 to V DD–1 uA1 uADC Output Characteristics (1.8 V/2.5 V Version)ParameterSymbolTest ConditionsMinMax1.8 V Output High Voltage V OH1I OH = –4 mA, V DDQ = 1.6 V V DDQ – 0.4 V —2.5 V Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V1.7 V —1.8 V Output Low Voltage V OL1I OL = 4 mA —0.4 V2.5 V Output Low VoltageV OL2I OL = 8 mA—0.4 VGS864218/36/72(B/C)-xxxVOperating CurrentsParameterTest ConditionsModeSymbol-250-200-167Unit0to 70°C –40 to 85°C 0to 70°C –40to 85°C 0 to 70°C –40to 85°C Operating CurrentDevice Selected; All other inputs ≥V IH o r ≤ V IL Output open(x72)PipelineI DD I DDQ 460604806038550405503404036040mA Flow Through I DD I DDQ 330403404028530295302703028030mA (x32/x36)Pipeline I DD I DDQ 360503805031040330402703529035mA Flow Through I DD I DDQ 255252752523020250202202024020mA (x18)PipelineI DD I DDQ 315253352527020290202402026020mA Flow Through I DD I DDQ 230152501520515225151951521515mA Standby Current ZZ ≥ V DD – 0.2 V —PipelineI SB 100120100120100120mA Flow Through I SB 100120100120100120mA Deselect CurrentDevice Deselected; All other inputs ≥ V IH or ≤ V IL—PipelineI DD 140155130146125140mA Flow ThroughI DD125140120135120135mA1.I DD and I DDQ apply to any combination of V DD and V DDQ operation.2.All parameters listed are worst case scenario.AC Electrical CharacteristicsParameter Symbol -250-200-167Unit Min Max Min Max Min Max PipelineClock Cycle Time tKC 4.0— 5.0— 6.0—ns Clock to Output ValidtKQ — 3.0— 3.0— 3.5ns Clock to Output Invalid tKQX 1.5— 1.5— 1.5—ns Clock to Output in Low-ZtLZ 1 1.5— 1.5— 1.5—ns Setup time tS 1.5— 1.5— 1.5—ns Hold time tH 0.2—0.4—0.5—ns Flow ThroughClock Cycle Time tKC 6.5—7.5—8.0—ns Clock to Output ValidtKQ — 6.5—7.5—8.0ns Clock to Output Invalid tKQX 3.0— 3.0— 3.0—ns Clock to Output in Low-ZtLZ 1 3.0— 3.0— 3.0—ns Setup time tS 1.5— 1.5— 1.5—ns Hold time tH 0.5—0.5—0.5—ns Clock HIGH Time tKH 1.3— 1.3— 1.3—ns Clock LOW Time tKL 1.7— 1.7— 1.7—ns Clock to Output in High-Z (x18/x36)tHZ 1 1.5 2.5 1.5 3.0 1.5 3.0ns Clock to Output in High-Z (x72)tHZ 1 1.5 3.0 1.5 3.0 1.5 3.0ns G to Output Valid (x18/x36)tOE — 2.5— 3.0— 3.5ns G to Output Valid(x72)tOE — 3.0— 3.0— 3.5ns G to output in Low-Z tOLZ 10—0—0—ns G to output in High-Z(x18/36)tOHZ 1— 2.5— 3.0— 3.0ns G to output in High-Z(x72)tOHZ 1— 3.0— 3.0— 3.0ns ZZ setup time tZZS 25—5—5—ns ZZ hold time tZZH 21—1—1—ns ZZ recoverytZZR20—20—20—nsGS864218/36/72(B/C)-xxxVNotes:1.These parameters are sampled and are not 100% tested.2.ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and holdtimes as specified above.GS864218/36/72(B/C)-xxxVPipeline Mode Timing (SCD)Begin Read A Cont Cont Deselect Write B Read C Read C+1Read C+2Read C+3ContDeselecttHZtKQX tKQtLZtHtStOHZtOEtHtStHtStHtStHtStHtStStHtStHtStHtSBurst ReadtKCtKL tKH Single Write Single ReadQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)ABCDeselected with E1E1 masks ADSPE2 and E3 only sampled with ADSP and ADSCADSC initiated readCK ADSPADSCADVA0–AnGWBWBa–BdE1E2E3GDQa–DQdGS864218/36/72(B/C)-xxxVFlow Through Mode Timing (SCD)Begin Read A ContCont Write B Read C Read C+1Read C+2Read C+3Read C Cont DeselecttHZtKQXtKQ tLZtH tStOHZtOEtHtS tHtS tHtStHtS tHtS tHtStHtS tHtS tH tS tHtS tKCtKL tKHABCQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)Q(C)E2 and E3 only sampled with ADSCADSC initiated readDeselected with E1Fixed HighCK ADSPADSCADVA0–AnGWBWBa–BdE1E2E3GDQa–DQdGS864218/36/72(B/C)-xxxVPipeline Mode Timing (DCD)Begin Read A Cont Deselect Deselect Write BRead C Read C+1Read C+2Read C+3Cont Deselect DeselecttHZtKQXtKQtLZtHtStOHZtOEtHtStHtStHtStH tStHtStStHtStHtStHtStKCtKL tKHQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)ABCHi-ZDeselected with E1E2 and E3 only sampled with ADSCADSC initiated readCK ADSPADSCADVAo–AnGWBWBa–BdE1E2E3GDQa–DQdGS864218/36/72(B/C)-xxxVFlow Through Mode Timing (DCD)Begin Read A ContDeselect Write B Read C Read C+1Read C+2Read C+3Read C DeselecttHZtKQX tLZtH tStOHZtOE tKQtHtS tHtS tHtStH tStHtS tHtStHtS tHtS tH tStH tS tHtS tKCtKL tKHABCQ(A)D(B)Q(C)Q(C+1)Q(C+2)Q(C+3)Q(C)E2 and E3 only sampled with ADSP and ADSCE1 masks ADSPADSC initiated readDeselected with E1E1 masks ADSPFixed HighCK ADSPADSCADVAo–AnGWBWBa–BdE1E2E3GDQa–DQdGS864218/36/72(B/C)-xxxVSleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode TimingtZZRtZZHtZZSHoldSetup tKLtKHtKCCKADSP ADSCZZApplication TipsSingle and Dual Cycle DeselectSCD devices (like this one) force the use of “dummy read cycles” (read cycles that are launched normally, but that are ended with the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance, but their use usually assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at bank address boundary crossings), but greater care must be exercised to avoid excessive bus contention.JTAG Port OperationOverviewThe JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V DD . The JTAG output drivers are powered by V DDQ .Disabling the JTAG PortIt is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either V DD or V SS . TDO should be left unconnected.JTAG Pin DescriptionsPinPin NameI/ODescriptionTCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.TMSTest Mode SelectInThe TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.TDI Test Data In InThe TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.TDO Test Data OutOut Output that is active depending on the state of the TAP state machine. Output changes inresponse to the falling edge of TCK. This is the output side of the serial registers placed betweenTDI and TDO.This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.GS864218/36/72(B/C)-xxxVJTAG Port RegistersOverviewThe various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins.Instruction RegisterThe Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.Bypass RegisterThe Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.Boundary Scan RegisterThe Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is inCapture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GS8321ZV18/32/36E-250/225/200/166/150/13336Mb Pipelined and Flow ThroughSynchronous NBT SRAM250 MHz–133 MHz1.8 V V DD 1.8 V I/O165-Bump FP-BGA Commercial Temp Industrial Temp Features• User-configurable Pipeline and Flow Through mode• NBT (No Bus Turn Around) functionality allows zero wait read-write-read bus utilization• Fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs• IEEE 1149.1 JTAG-compatible Boundary Scan • 1.8 V +10%/–10% core power supply• LBO pin for Linear or Interleave Burst mode• Pin-compatible with 2Mb, 4Mb, 8Mb, and 18Mb devices • Byte write operation (9-bit Bytes)• 3 chip enable signals for easy depth expansion • ZZ pin for automatic power-down• JEDEC-standard 165-bump FP-BGA packageFunctional DescriptionThe GS8321ZV18/32/36E is a 36Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.Because it is a synchronous device, address, data inputs, and read/ write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable, ZZ and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.The GS8321ZV18/32/36E may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edge-triggered registers that capture input signals, the deviceincorporates a rising-edge-triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.The GS8321ZV18/32/36E is implemented with GSI's high performance CMOS technology and is available in JEDEC-standard 165-bump FP-BGA package.Parameter Synopsis-250-225-200-166-150-133Unit Pipeline 3-1-1-1t KQ tCycle 2.54.0 2.74.4 3.05.0 3.56.0 3.86.6 4.07.5ns ns (x18)Curr (x32/x36)350320295260240215mA Flow Through 2-1-1-1t KQ tCycle 6.56.57.07.07.57.58.08.08.58.58.58.5ns ns (x18)Curr (x32/x36)235225210200190175mA165 Bump BGA—x18 Commom I/O—Top View (Package E)1234567891011A NC A E1BB NC E3CKE ADV A A A AB NC A E2NC BA CK W G A A NC BC NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQA CD NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA DE NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA EF NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA FG NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA GH FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC J K DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC K L DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC L M DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC M N DQB NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P R LBO A A A TMS A0TCK A A A A R11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch165 Bump BGA—x32 Common I/O—Top View (Package E)1234567891011A NC A E1BC BB E3CKE ADV A A NC AB NC A E2BD BA CK W G A A NC BC NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC NC CD DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB DE DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB EF DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB FG DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB GH FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N NC NC V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P R LBO A A A TMS A0TCK A A A A R11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch165 Bump BGA—x36 Common I/O—Top View (Package E)1234567891011A NC A E1BC BB E3CKE ADV A A NC AB NC A E2BD BA CK W G A A NC BC DQC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQB CD DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB DE DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB EF DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB FG DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB GH FT MCH NC V DD V SS V SS V SS V DD NC NC ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N DQD NC V DDQ V SS NC NC NC V SS V DDQ NC DQA N P NC NC A A TDI A1TDO A A A NC P R LBO A A A TMS A0TCK A A A A R11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump PitchGS8321ZV18/32/36E 165-Bump BGA Pin DescriptionSymbol Type DescriptionA0, A1I Address field LSBs and Address Counter Preset InputsAn I Address InputsDQ ADQ BI/O Data Input and Output pins DQ CDQ DB A, B B, B C, B D I Byte Write Enable for DQ A, DQ B, DQ C, DQ D I/Os; active lowNC—No ConnectCK I Clock Input Signal; active highCKE I Clock Enable; active lowW I Write Enable; active lowE1I Chip Enable; active lowE3I Chip Enable; active lowE2I Chip Enable; active highFT I Flow Through / Pipeline Mode ControlG I Output Enable; active lowADV I Burst address counter advance enable; active highZZ I Sleep mode control; active highLBO I Linear Burst Order mode; active lowTMS I Scan Test Mode SelectTDI I Scan Test Data InTDO O Scan Test Data OutTCK I Scan Test ClockMCH—Must Connect HighV DD I Core power supplyV SS I I/O and Core GroundV DDQ I Output driver power supplyGS8321ZV18/32/36 NBT SRAM Functional Block DiagramK18S A 1S A 0B u r s tC o u n t e rL B OA D VM e m o r y A r r a yGC KC K ED QF TD Q a –D Q nKS A 1’S A 0’D QM a t c hW r i t e A d d r e s sR e g i s t e r 2W r i t e A d d r e s sR e g i s t e r 1W r i t e D a t aR e g i s t e r 2W r i t e D a t aR e g i s t e r 1KKKKKKS e n s e A m p sW r i t e D r i v e r sR e a d , W r i t e a n dD a t a C o h e r e n c yC o n t r o l L o g i cF TA 0–A nE 3E 2E 1WB DB CB BB AFunctional DetailsClockingDeassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.Pipeline Mode Read and Write OperationsAll inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2 and E3). Deassertion of any one of the Enable inputs will deactivate the device.Function W B A B B B C B DRead H X X X XWrite Byte “a”L L H H HWrite Byte “b”L H L H HWrite Byte “c”L H H L HWrite Byte “d”L H H H LWrite all Bytes L L L L LWrite Abort/NOP L H H H HRead operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.Write operation occurs when the RAM is selected, CKE is active and the write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (B A, B B, B C & B D) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality, matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock.Flow Through Mode Read and Write OperationsOperation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode.Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.Synchronous Truth TableOperation Type Address CK CKE ADV W Bx E1E2E3G ZZ DQ Notes Read Cycle, Begin Burst R External L-H L L H X L H L L L QRead Cycle, Continue Burst B Next L-H L H X X X X X L L Q1,10 NOP/Read, Begin Burst R External L-H L L H X L H L H L High-Z2 Dummy Read, Continue Burst B Next L-H L H X X X X X H L High-Z1,2,10 Write Cycle, Begin Burst W External L-H L L L L L H L X L D3 Write Cycle, Continue Burst B Next L-H L H X L X X X X L D1,3,10 Write Abort, Continue Burst B Next L-H L H X H X X X X L High-Z1,2,3,10 Deselect Cycle, Power Down D None L-H L L X X H X X X L High-Z Deselect Cycle, Power Down D None L-H L L X X X X H X L High-Z Deselect Cycle, Power Down D None L-H L L X X X L X X L High-Z Deselect Cycle D None L-H L L L H L H L X L High-Z1 Deselect Cycle, Continue D None L-H L H X X X X X X L High-Z1 Sleep Mode None X X X X X X X X X H High-ZClock Edge Ignore, Stall Current L-H H X X X X X X X L-4 Notes:1.Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-lect cycle is executed first.2.Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the Wpin is sampled low but no Byte Write pins are active so no write operation is performed.3.G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off duringwrite cycles.4.If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the buswill remain in High Z.5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Writesignals are Low6.All inputs, except G and ZZ must meet setup and hold times of rising clock edge.7.Wait states can be inserted by setting CKE high.8.This device contains circuitry that ensures all outputs are in High Z during power-up.9. A 2-bit burst counter is incorporated.10.The address counter is incriminated for all Burst continue cycles.Pipelined and Flow Through Read Write Control State DiagramDeselectNew ReadNew WriteBurst ReadBurst WriteWRBRBWDDBBWRD BWRDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input commandcodes as indicated in the Synchronous Truth Table.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipelined and Flow Through Read/Write Control State DiagramWRPipeline Mode Data I/O State DiagramIntermediateIntermediateIntermediateIntermediateIntermediateIntermediateHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)TransitionƒInput Command CodeKeyTransitionIntermediate State (N+1)Notes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateIntermediate ƒn n+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline Mode Data I/O State DiagramNext StateStateFlow Through Mode Data I/O State DiagramHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes:1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for: Pipeline and Flow through Read Write Control State DiagramBurst CyclesAlthough NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.Burst OrderThe burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have beenaccessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details.Note:There are pull-up devices on the FT pin and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.Burst Counter SequencesBPR 1999.05.18Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved BurstPower Down ControlZZL or NC Active HStandby, I DD = I SBThe burst counter wraps to initial state on the 5th clock.The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1staddress 000110112nd address 010011103rd address 101100014th address11100100Sleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by it’s internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramDesigning for CompatibilityThe GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipelinemode via the FT signal found on Pin 14. Not all vendors offer this option, however most mark Pin 14 as V DD or V DDQ on pipelined parts and V SS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets.tZZRtZZHtZZStKLtKHtKCCKZZAbsolute Maximum Ratings(All voltages reference to V SS)Symbol Description Value UnitV DD Voltage on V DD Pins–0.5 to 3.6VV DDQ Voltage in V DDQ Pins–0.5 to 3.6VV I/O Voltage on I/O Pins–0.5 to V DDQ +0.5 (≤ 3.6 V max.)VV IN Voltage on Other Input Pins–0.5 to V DD +0.5 (≤ 3.6 V max.)VI IN Input Current on Any Pin+/–20mAI OUT Output Current on Any I/O Pin+/–20mAP D Package Power Dissipation 1.5WT STG Storage Temperature–55 to 125o CT BIAS Temperature Under Bias–55 to 125o C Note:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.Power Supply Voltage RangesParameter Symbol Min.Typ.Max.Unit Notes1.8 V Supply Voltage V DD1 1.6 1.82.0V1.8 V V DDQ I/O Supply Voltage V DDQ1 1.6 1.82.0VNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn+2 V not to exceed3.6 V maximum, with a pulse width not to exceed 20% tKC.Note:These parameters are sample tested.Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low Voltage V IL –0.3—0.3*V DD V 1V DDQ I/O Input High Voltage V IHQ 0.6*V DD —V DDQ + 0.3V 1,3V DDQ I/O Input Low VoltageV ILQ–0.3—0.3*V DDV1,3Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed3.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.Capacitance(T A = 25o C, f = 1 MH Z , V DD = 2.5 V)ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pF20% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing20% tKCV DD + 2.0 V50%V DDV ILAC Test ConditionsParameterConditionsInput high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 11.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table. DC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA ZZ Input Current I IN1V DD ≥ V IN ≥ V IH 0 V ≤ V IN ≤ V IH –1 uA –1 uA 1 uA 100 uA FT, SCD, and ZQ Input Current I IN2V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL–100 uA –1 uA 1 uA 1 uA Output Leakage Current I OL Output Disable, V OUT = 0 to V DD –1 uA 1 uA Output High Voltage V OH1I OH = –4 mA, V DDQ = 1.6 V V DDQ – 0.4 V—Output Low VoltageV OL1I OL = 4 mA, V DD = 1.6 V—0.4 VDQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceN o t e s : 1.I D D a n d I D D Q a p p l y t o a n y c o m b i n a t i o n o f V D D 3, V D D 2, V D D Q 3, a n d V D D Q 2 o p e r a t i o n .2.A l l p a r a m e t e r s l i s t e d a r e w o r s t c a s e s c e n a r i o .O p e r a t i n g C u r r e n t sP a r a m e t e r T e s t C o n d i t i o n sM o d e S y m b o l -250-225-200-166-150-133U n i t 0t o 70°C–40 t o 85°C 0t o 70°C –40 t o 85°C 0t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C O p e r a t i n g C u r r e n tD e v i c e S e l e c t e d ; A l l o t h e r i n p u t s ≥V I H o r ≤ V I LO u t p u t o p e n(x 32/x 36)P i p e l i n e I D DI D D Q 300503205027545295452554027540225352453521030230301902521025m AF l o w T h r o u g h I D D I D D Q210252202520025210251902020020180201902017020180201601517015m A(x 18)P i p e l i n eI D DI D D Q260252802524025260252252024520200202202019020210201701519015m AF l o w T h r o u g hI D DI D D Q190152001518015190151701518015160151701515015160151401515015m AS t a n d b y C u r r e n tZ Z ≥ V D D – 0.2 V—P i p e l i n eI S B608060806080608060806080m AF l o w T h r o u g hI S B608060806080608060806080m AD e s e l e c t C u r r e n tD e v i c e D e s e l e c t e d ; A l l o t h e r i n p u t s ≥ V I H o r ≤ V I L—P i p e l i n eI D D100115951109010585100851008095m AF l o w T h r o u g hI D D85100851008095809575907085m ANotes:1.These parameters are sampled and are not 100% tested.2.ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and holdtimes as specified above.AC Electrical CharacteristicsParameter Symbol -250-225-200-166-150-133UnitMin Max Min Max Min Max Min Max Min Max Min Max Flow ThroughClock Cycle Time tKC 5.5— 6.0— 6.5—7.0—7.5—8.5—ns Clock to Output ValidtKQ — 5.5— 6.0— 6.5—7.0—7.5—8.5ns Clock to Output Invalid tKQX 3.0— 3.0— 3.0— 3.0— 3.0— 3.0—ns Clock to Output in Low-ZtLZ 1 3.0— 3.0— 3.0— 3.0— 3.0— 3.0—ns Setup time tS 1.5— 1.5— 1.5— 1.5— 1.5— 1.5—ns Hold time tH 0.5—0.5—0.5—0.5—0.5—0.5—ns Clock HIGH Time tKH 1.3— 1.3— 1.3— 1.3— 1.5— 1.7—ns Clock LOW Time tKL 1.5—1.5—1.5—1.5— 1.7—2—ns Clock to Output inHigh-Z tHZ 1 1.5 2.5 1.5 2.7 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0ns G to Output Valid tOE — 2.5— 2.7— 3.0— 3.5— 3.8— 4.0ns G to output in Low-Z tOLZ 10—0—0—0—0—0—ns G to output in High-Z tOHZ 1— 2.5— 2.7— 3.0— 3.0— 3.0— 3.0ns ZZ setup time tZZS 25—5—5—5—5—5—ns ZZ hold time tZZH 21—1—1—1—1—1—ns ZZ recoverytZZR20—20—20—20—20—20—nsPipeline Mode Timing (NBT)Write AWrite BWrite B+1Read CContRead DWrite ERead FDESELECTD(A)D(B)D(B+1)Q(C)Q(D)D(E)Q(F)tOLZtOEtOHZtHZtKQXtKQtLZ tHtStHtStHtStHtStHtStHtStHtStKC tKLtKHA BCD E FG*Note: E=High(False) if E1 = 1 or E2 = 0 or E3 = 1CKCKEE*ADVWBnA0–An DQa–DQd GFlow Through Mode Timing (NBT)JTAG Port OperationOverviewThe JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V DD . The JTAG output drivers are powered by V DDQ .Disabling the JTAG PortIt is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either V DD or V SS . TDO should be left unconnected.Write AWrite BWrite B+1Read CCont Read D Write E Read F Write GD(A)D(B)D(B+1)Q(C)Q(D)D(E)Q(F)D(G)tOLZ tOEtOHZtKQXtKQtLZtHZtKQX tKQ tLZtHtStHtStHtStHtStHtStHtStHtStKCtKLtKHABCDEFG*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1CKCKEEADVWBnA0–AnDQGJTAG Port RegistersOverviewThe various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins.Instruction RegisterThe Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.Bypass RegisterThe Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.Boundary Scan RegisterThe Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is inCapture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.JTAG Pin Descriptions PinPin NameI/ODescriptionTCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.TMSTest Mode SelectInThe TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.TDI Test Data In InThe TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.TDO Test Data OutOut Output that is active depending on the state of the TAP state machine. Output changes inresponse to the falling edge of TCK. This is the output side of the serial registers placed betweenTDI and TDO.This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.。

相关文档
最新文档