【考试点】【考研数学】《微积分》强化精讲(数学三)

合集下载

2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版2024年全国硕士研究生入学考试数学(三)真题及参考答案考研数学三考什么内容?数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。

而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。

考研的考试内容有哪些一、考研公共课:政治、英语一、英语二、俄语、日语、数学一、数学二、数学三,考研公共课由国家教育部统一命题。

各科的考试时间均为3小时。

考研的政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)。

考研的英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)。

数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。

数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。

这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。

二、考研专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。

其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。

数学三考研知识点总结

数学三考研知识点总结

数学三考研知识点总结一、数学分析1. 集合与映射集合的基本概念,包括子集、并集、交集、补集等;映射的定义和性质,包括单射、满射、双射等。

2. 数列与级数数列的概念,包括常数数列、等差数列、等比数列等;级数的概念,包括收敛级数、发散级数等。

3. 函数与极限函数的定义和性质,包括连续函数、可导函数等;极限的概念,包括极限存在的条件、极限运算法则等。

4. 一元函数微分学导数的定义和性质,包括高阶导数、隐函数求导等;微分的概念和应用,包括微分中值定理、泰勒公式等。

5. 一元函数积分学不定积分的计算方法,包括分部积分、换元积分等;定积分的计算方法,包括定积分的几何意义、定积分的性质等。

6. 定积分的应用定积分在几何、物理等领域的应用,包括求曲线长度、曲线面积、体积等问题。

7. 多元函数微分学偏导数的概念和性质,包括高阶偏导数、全微分等;多元函数的极值和条件极值的判定。

8. 重积分重积分的定义和性质,包括累次积分、极坐标系下的重积分等;重积分的应用,包括质量、质心、转动惯量等问题。

9. 曲线积分与曲面积分曲线积分的概念和计算方法,包括第一类曲线积分和第二类曲线积分;曲面积分的概念和计算方法,包括第一类曲面积分和第二类曲面积分。

10. 常微分方程常微分方程的基本概念,包括初值问题、兼切性、自由度等;常微分方程的解法,包括特征方程法、常数变易法、常系数高阶线性齐次微分方程的特解法等。

11. 泛函分析线性空间和内积空间的定义和性质,包括线性子空间、正交投影等;巴拿赫空间和希尔伯特空间的概念和性质。

12. 牛顿-莱布尼茨公式牛顿-莱布尼茨公式的推导和应用,包括用它来求定积分、用它来求极限等。

二、代数与数论1. 线性代数线性代数的基本概念,包括向量空间、线性变换、矩阵等;线性方程组的解法,包括高斯消元法、矩阵的秩等。

2. 群论群的定义和性质,包括子群、正规子群、循环群等;群的同态映射和同构定理。

3. 环论环的定义和性质,包括理想、素理想、商环等;整环、域的概念和性质。

2024年考研数学三大纲重点解析

2024年考研数学三大纲重点解析

2024年考研数学三大纲重点解析考研数学三作为经济管理类专业研究生入学考试的重要科目之一,对于考生的数学素养和解题能力有着较高的要求。

2024 年的考研数学三大纲在延续以往基本框架的基础上,也有一些重点的调整和变化。

为了帮助广大考生更好地把握复习方向,提高复习效率,下面对 2024 年考研数学三大纲的重点进行详细解析。

一、微积分微积分部分一直是考研数学三的重点和难点,占据了较大的分值比例。

(一)函数、极限、连续函数的概念和性质,包括定义域、值域、单调性、奇偶性等,仍然是基础中的基础。

极限的计算方法,如四则运算、等价无穷小替换、洛必达法则等,需要熟练掌握。

连续的概念以及间断点的类型判断也是常见的考点。

(二)一元函数微分学导数的定义、几何意义以及基本初等函数的导数公式要牢记于心。

导数的应用,如函数的单调性和极值、凹凸性和拐点,是重点考查的内容。

此外,中值定理也是一个难点,包括罗尔定理、拉格朗日中值定理和柯西中值定理,需要理解其定理的条件和结论,并能够熟练运用。

(三)一元函数积分学不定积分和定积分的计算是必考的知识点,要掌握换元积分法和分部积分法。

定积分的应用,如求平面图形的面积、旋转体的体积、弧长等,需要结合几何图形进行分析和计算。

(四)多元函数微积分学多元函数的偏导数和全微分的计算,复合函数和隐函数的求导法则要熟练掌握。

多元函数极值和条件极值的求法,以及二重积分的计算方法,都是重点考查的内容。

二、线性代数线性代数部分在考研数学三中的分值比例相对稳定。

(一)行列式行列式的性质和计算方法是基础,要能够熟练计算二阶和三阶行列式,以及利用行列式的性质化简行列式。

(二)矩阵矩阵的运算,包括加法、乘法、数乘和转置,要熟练掌握。

矩阵的秩的概念和求法,以及逆矩阵的存在条件和求法,是重点内容。

此外,分块矩阵的运算和应用也是一个考点。

(三)向量向量组的线性相关性和线性表示是重点,要能够判断向量组的线性相关性,并求出向量组的极大线性无关组。

考研数学三知识点整理

考研数学三知识点整理

考研数学三知识点整理一、数学分析1.极限与连续-无穷小量与无穷大量-函数极限的定义和性质-极限运算的基本法则-函数连续的定义和性质-邻域及其性质-间断点的分类-初等函数的连续性2.一元函数微分学-导数的定义和性质-导数的几何意义-凹凸性与拐点-微分中值定理-泰勒公式及其应用-常用高阶导数的计算3.一元函数积分学-普通函数的不定积分-定积分与不定积分的关系-牛顿—莱布尼茨公式-反常积分的概念和性质-反常积分的审敛法-定积分的应用4.多元函数微分学-多元函数的极限与连续-偏导数的定义和性质-方向导数和梯度-隐函数的求导-全微分和全导数-多元函数的泰勒公式5.曲线积分与曲面积分-第一类曲线积分-第二类曲线积分-曲面积分的概念和性质-曲面积分的计算方法-散度和旋度的概念及计算二、高等代数1.行列式与矩阵-行列式的定义和性质-行列式的计算方法-矩阵的概念和运算-矩阵的秩和逆-矩阵的特征值和特征向量-对称矩阵和正定矩阵2.线性方程组与向量空间-线性方程组的解的结构-线性方程组的常用解法-向量空间的概念和性质-线性相关性和线性无关性-线性方程组与矩阵的关系-矩阵的秩与线性方程组的解3.线性变换与矩阵的相似-线性变换的概念和性质-线性变换的矩阵表示和标准形-矩阵的相似和对角化-幂零矩阵和对角化的条件-线性变换的特征值和特征子空间-正交矩阵和对称矩阵4.线性空间与线性变换-线性空间的定义和性质-基与维数-有限维线性空间的同构-线性变换的矩阵表示-基变换和坐标变换矩阵-初等变换和矩阵的相似5.内积空间-内积与内积空间的定义和性质-正交与正交补-角和长度的内积表示-柯西—施瓦茨不等式和三角不等式-格拉姆—斯密特正交化方法-正交投影和最小二乘逼近三、概率论1.随机事件与概率-随机事件和样本空间-随机事件的运算和性质-概率的定义和性质-条件概率与乘法定理-全概率公式与贝叶斯公式2.随机变量与概率分布-随机变量的概念和分类-分布函数和概率密度函数-离散型随机变量与连续型随机变量-随机变量函数的概率分布-重要离散型和连续型分布-数学期望和方差的定义和性质3.多维随机变量及其分布-多维随机变量的联合分布-边缘分布和条件分布-随机变量的独立性-随机变量函数的分布-重要的二维和多维分布-列联表和卡方检验4.随机变量的数字特征-几个重要的数字特征-方差和标准差-协方差和相关系数-强大数定律与中心极限定理-大数定律和极限定理-泊松定理和辛钦定理5.数理统计基础-总体和样本的概念-统计量及其分布-正态总体的统计推断-点估计和区间估计-参数估计的评价准则-假设检验和拒绝域以上是对考研数学三知识点的整理,内容包括数学分析、高等代数和概率论三个方面的主要知识点。

考研数学三(微积分)历年真题试卷汇编15(题后含答案及解析)

考研数学三(微积分)历年真题试卷汇编15(题后含答案及解析)

考研数学三(微积分)历年真题试卷汇编15(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2005年)当a取值为( )时,函数f(x)=2x3一9x2+12x—a恰有两个不同的零点。

A.2。

B.4。

C.6。

D.8。

正确答案:B解析:由f’(x)=6x2一18x+12=6(x一1)(x一2),知可能极值点为x=1,x=2,当x<1和x>2时,函数单调增加,1<x<2时,函数单调减小,且f(1)=5一a,f(2)=4一a。

可见当a=4时,f(1)=1>0,且=一∞,由单调性和零点存在性定理可知,函数在(-∞,1)上有唯一的零点,而此时f(2)=0,在(1,2)和(2,+∞)上无零点,因此a=4时,f(x)恰好有两个零点。

故应选B。

知识模块:微积分2.(2001年)设函数f(x)的导数在x=a处连续,又,则( )A.x=a是f(x)的极小值点。

B.x=a是f(x)的极大值点。

C.(a,f(a))是曲线y=f(x)的拐点。

D.x=a不是f(x)的极值点,(a,f(a))也不是曲线y=f(x)的拐点。

正确答案:B解析:又函数f(x)的导数在x=a处连续,根据函数在某点连续的定义,左极限等于右极限且等于函数在该点的值,所以f’(a)=0,于是即f’(a)=0,f”(a)=一1<0,根据判定极值的第二充分条件知x=a是f(x)的极大值点,因此,正确选项为B。

知识模块:微积分3.(2004年)设f(x)=|x(1-x)|,则( )A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点。

B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点。

C.x=0是f(x)的极值点,且(O,O)是曲线y=f(x)的拐点。

D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点。

正确答案:C解析:令φ(x)=x(x一1),则φ(x)=是以直线x=为对称轴,顶点坐标为开口向上的一条抛物线,与x轴相交的两点坐标为(0,0),(1,0),f(x)=|φ(x)|的图形如图。

考研数学三必背知识点:微积分

考研数学三必背知识点:微积分

微积分必考知识点一、函数、极限与连续性1、无穷小量(假设:0)(lim ,0)(lim 0==→→x g x f x x x x )(1)若)()(lim=→x g x f x x ,则)(x f 为)(x g 的高阶无穷小量,记为)]([)(x g o x f =(2)若∞=→)()(limx g x f x x ,则)(x f 为)(x g 的低阶无穷小量(3)若A x g x f x x =→)()(lim,则)(x f 为)(x g 的同阶无穷小量(4)若1)()(lim=→x g x f x x ,则)(x f 为)(x g 的等价无穷小量,记为)(~)(x g x f2、常见无穷小等价代换(0→x 时)x nx x x x x x e x x x x x x x x x x n x1~11,21~11,21~cos 1,~1,~)1ln(,~arctan ,~arcsin ,~tan ,~sin 2-+-+--+2、极限存在准则(1) 夹逼准则:若)()()(x h x f x g ≤≤,且A x h x g x x x x ==→→)(lim )(lim 0,则有A x f x x =→)(lim 0(2) 单调有界数列必有极限 (3) 两个重要极限:ex xxx x x xx x =+=+=→∞→→1)1(lim )11(lim ,1sin lim3、间断点 (1) 第一类间断点:)(lim),(limx f x f x x x x +-→→都存在,当)(lim)(limx f x f x x x x +-→→=时为可去间断点,)(lim)(limx f x f x x x x +-→→≠时为跳跃间断点。

(2) 第二类间断点:)(lim),(limx f x f x x x x +-→→其中一个不存在。

4、闭区间上连续函数定理(1) 零点定理:设)(x f 在],[b a 上连续,0)()(<b f a f 则必有),(b a ∈ξ使得0)(=ξf(2) 介值定理:设)(x f 在],[b a 上连续,)()(b f a f ≠,且有c 介于)(),(b f a f 之间,则必有),(b a ∈ξ使得c f =)(ξ (3) 最值定理:设)(x f 在],[b a 上连续,mM,分别为最大最小值,且Mc m<<,则必有),(b a ∈ξ使得c f =)(ξ二、一元函数微分学1、导数 (1) 导数的概念hx f h x f x f x x x f x f x f h x x )()(lim)(,)()(lim)(0000000-+='--='→→当00=x ,则xf x f f x )0()(lim)0(0-='→(2) 左右导数xx f x f x f xx f x f x f x x ∆-='∆-='-+→∆-→∆+)()(lim )(,)()(lim )(000002、常用基本求导公式x x x x xx ax x e e a a a axx c axx x x a sin )(cos ,cos )(sin ,1)(ln ,ln 1)(log,,ln ,)(,01-='='='='==='='-α22222211)cot (,11)(arctan ,11)(arccos ,11)(arcsin ,sin1)(cot ,cos1)(tan xx arc xx xx xx xx xx +-='+='--='-='-='='3、导数四则运算:2)(,)(,)(vv u v u vu v u v u uv v u v u '-'=''+'=''±'='±4、微分中值定理(1) 罗尔中值定理:如果)(x f 满足在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,则在),(b a ∈ξ有0)(='ξf (2) 拉格朗日中值定理:如果)(x f 满足在],[b a 上连续,在),(b a 内可导,则在),(b a ∈ξ有a b a f b f f --=')()()(ξ (3) 柯西中值定理:如果)(),(x F x f 满足在],[b a 上连续,在),(b a 内可导,则在),(b a ∈ξ有)()()()()()(ξξF f a F b F a f b f ''=--(4) 泰勒公式(00=x 的麦克劳林公式):)()0(!1)0(!21)0()0()()(2nnn x o x fn x f x f f x f ++''+'+=5、洛必达法则:当0x x →时,函数)(),(x g x f 都趋于零或者趋于无穷大,则)()(lim)()(limx g x f x g x f x x x x ''=→→注意:洛必达法则只适用于“0”“∞∞”型极限,而其它类型极限需要变形和化简为此二类极限。

考研数三知识点总结

考研数三知识点总结

考研数三知识点总结一、数学基础知识1.集合与逻辑(1)集合的概念与运算(2)命题与联结词(3)命题公式与合取、析取范式(4)命题演算(5)范式和合取析取范式的相互转化(6)命题公式的永真式和等值式(7)命题逻辑的等值演算2. 代数与数论(1)复数的概念与运算(2)多项式的整除与因式分解(3)有理数的整除性(4)整数、模运算、同余(5)素数与合数(6)整数的唯一分解定理(7)不定方程的整数解3. 几何与简单的变量(1)空间几何问题与直线的方程(2)空间解析几何(3)坐标与原点(4)斜率与截距(5)直线的夹角与距离(6)点、直线、平面的位置关系(7)三角函数的概念与运算4. 极限与微积分(1)极限与无穷小(2)函数的极限(3)连续与间断(4)导数的概念与运算(5)定积分与不定积分(6)微分方程的基本概念(7)参数方程与极坐标方程二、典型题型解题技巧1. 集合与逻辑(1)对于集合的运算,要熟练掌握并运用交、并、差、补集等运算。

(2)在命题与联结词的运用中,要能够准确理解并灵活运用“非”、“或”、“与”等联结词的含义及其在逻辑命题中的应用。

(3)在命题公式的演算中,要善于利用等值演算将命题公式转化成合取或析取范式,以求解相关问题。

2. 代数与数论(1)对于复数的运算,要熟练掌握复数的加减乘除运算,并在解题过程中灵活运用复数的性质和运算规律。

(2)在多项式的整除与因式分解中,要善于运用求因式分解的方法,并能够准确判断多项式的整除性。

(3)对于素数与合数、模运算、同余等知识点,要能够理清概念,掌握相关定理,并能够灵活应用于解题过程中。

3. 几何与简单的变量(1)在直线的方程与三角函数的概念与运算中,要善于利用直线的斜率与截距,以及三角函数的相关性质,解决与直线、三角函数相关的几何问题。

(2)对于空间解析几何、坐标与原点、斜率与截距等知识点,要善于利用坐标系方法,灵活运用相关几何知识,解决几何问题。

4. 极限与微积分(1)在极限与无穷小、函数的极限等知识点中,要善于利用夹逼定理、无穷小量的性质、函数极限的计算方法,解决极限问题。

考研数学微积分重点整理

考研数学微积分重点整理

考研数学微积分重点整理微积分作为数学的重要分支,是考研数学科目中的重头戏之一。

在备考过程中,积累并掌握重点知识点是非常关键的。

本文将对考研数学微积分的重点内容进行整理和总结,帮助考生更好地备考。

一、函数与极限1. 函数的概念与性质函数是定义域中的每个元素对应到值域中的唯一元素的一种对应关系。

函数有定义域、值域、图像等基本属性。

2. 极限的概念与性质极限描述了函数在某一点附近的变化趋势。

了解极限的性质和计算方法,能够解决函数的连续性、可导性等问题。

3. 极限的判定法与计算掌握极限的推求与计算方法,包括函数极限、无穷极限、空间极限等。

二、导数与微分1. 导数的概念与性质导数描述了函数在某一点的瞬时变化率。

了解导数的定义、性质和计算方法,能够解决函数的单调性、最值问题。

2. 导数的计算掌握常见函数的导数计算方法,包括常数函数、幂函数、指数函数、对数函数、三角函数等。

3. 高阶导数与微分了解高阶导数的定义和求法,以及微分的概念和计算方法。

三、微分中值定理1. 罗尔定理若函数在闭区间[a,b]上连续,在开区间(a,b)内可导,且在a和b处取相等的函数值,则在(a,b)内至少存在一点c,使得f'(c)=0。

2. 拉格朗日中值定理若函数在闭区间[a,b]上连续,在开区间(a,b)内可导,则在(a,b)内至少存在一点c,使得[f(b)-f(a)]/[(b-a)]=f'(c)。

3. 柯西中值定理若两个函数在闭区间[a,b]上连续,在开区间(a,b)内可导且不变号,则存在一点c,使得[f(b)-f(a)]/[g(b)-g(a)]=f'(c)/g'(c)。

四、积分与反常积分1. 积分的概念与性质积分表示函数与自变量变化区间上各点对应值的乘积之和。

了解积分的定义、性质和计算方法,包括不定积分和定积分。

2. 反常积分当积分的区间为无穷区间或积分函数在某些点无定义时,需要使用反常积分来求解。

考研数学三

考研数学三

考研数学三导论考研数学三又称为高等数学,是考研数学科目中的重要组成部分。

高等数学是基础学科,内容广泛,涉及到了微积分、数列、级数、多元函数、概率统计等多个方面。

掌握高等数学的核心概念和解题方法,对于考研数学的整体复习和解题能力提升至关重要。

本文将围绕考研数学三的主要知识点展开,解析其中的难点和重点,帮助考生在考试中取得高分。

微积分微积分是高等数学的重要内容,是研究变化中的数量的数学分支。

在考研数学三中,微积分占据了相当大的比重,主要包括导数、积分和微分方程。

导数导数是微积分中的核心概念之一,它描述了函数在某一点上的变化率。

考生在学习导数时,需要注意以下几点:•导数的定义及其基本性质:导数的定义是极限的应用,掌握导数的定义并理解其几何意义对于后续的学习至关重要。

同时,考生还需要熟练掌握导数的基本性质,如导数的四则运算和链式法则等。

•导数的几何意义:导数可以反映函数曲线的变化趋势,考生需要通过函数图像来理解导数的几何意义,如导数为正表示函数递增,导数为零表示函数的极值等。

•高阶导数:高阶导数是导数的推广,考生需要了解高阶导数的定义和计算方法,并能够应用高阶导数解决实际问题。

积分积分是微积分的另一个重要概念,它是导数的逆运算。

在考研数学三中,常见的积分包括定积分和不定积分。

•定积分:定积分是求曲线下面的面积,符号为∫,常用于求解函数的累积变化量。

考生在学习定积分时,需要熟练掌握定积分的计算方法,如换元积分法、分部积分法等,并能够应用定积分解决实际问题。

•不定积分:不定积分是求解函数的原函数,常用于解决微分方程和求函数的反函数等问题。

考生在学习不定积分时,需要熟练掌握不定积分的基本公式和计算方法,并能够灵活运用不定积分解决实际问题。

微分方程微分方程是微积分的重要应用,用于描述自然界中的变化规律。

在考研数学三中,微分方程是一个重点且难点,主要包括一阶微分方程和二阶线性常系数齐次微分方程。

•一阶微分方程:一阶微分方程是形如 dy/dx = f(x) 的方程,考生需要掌握一阶微分方程的基本概念和解法,如可分离变量方程、一阶齐次线性微分方程等。

2024年考研数学三大纲重点解析

2024年考研数学三大纲重点解析

2024年考研数学三大纲重点解析关键信息项:1、函数、极限、连续函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:\(\lim_{x\to 0}\frac{\sin x}{x}=1\),\(\lim_{x\to \infty}(1+\frac{1}{x})^x=e\)函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质2、一元函数微分学导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数的概念简单函数的二阶导数微分中值定理:罗尔定理、拉格朗日中值定理和柯西中值定理洛必达法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线3、一元函数积分学原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿莱布尼茨公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用:平面图形的面积、旋转体的体积、曲线的弧长、功、压力、引力4、多元函数微积分学多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算全微分的概念多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用二重积分的概念、性质、计算5、无穷级数数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与\(p\)级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数函数展开为幂级数6、常微分方程常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程11 函数、极限、连续111 函数是数学中的基本概念,理解函数的定义包括定义域、值域和对应法则至关重要。

数学三考研常见的知识点解析

数学三考研常见的知识点解析

数学三考研常见的知识点解析数学三是考研数学的一部分,主要涵盖了高等数学和线性代数的内容。

下面将对数学三考研常见的知识点进行解析。

一、高等数学1.常见函数及其性质:常见函数有多项式函数、指数函数、对数函数、三角函数等。

在考研中,需要掌握这些函数的基本性质,如定义域、值域、奇偶性、单调性等。

2.极限与连续:极限是高等数学的重要概念之一、需要掌握数列极限和函数极限的求解方法,如夹逼准则、洛必达法则等。

此外,连续函数的判定与性质也是考试重点,例如连续函数与间断点、连续函数的运算性质等。

3.导数与微分:导数是函数的变化率,微分是导数的微小增量。

需要熟练掌握导数的定义和求导法则,如基本初等函数的导数、链式法则、隐函数求导等。

此外,还需要理解函数的凸凹性与极值点的求解方法。

4.定积分与不定积分:定积分是求函数在一定区间上的面积,不定积分是求函数的原函数。

需要熟练掌握定积分与不定积分的定义和性质,如牛顿-莱布尼茨公式、变量替换法、分部积分法等。

5.级数与幂级数:级数是无穷项数列的和,幂级数是形如∑(a_n*x^n)的级数。

需要掌握级数和幂级数的收敛性判定方法,如比较判别法、根值判别法、幂函数展开等。

二、线性代数1.矩阵与行列式:矩阵是二维数组,行列式是一个数。

需要了解矩阵的基本运算,如加法、乘法、转置运算等。

行列式的运算包括展开法、伴随矩阵法、逆矩阵法等。

2.向量与线性方程组:向量是有方向和大小的量,线性方程组是一组线性方程的集合。

需要掌握向量的基本运算,如加法、数量积、向量积等。

对于线性方程组,需要掌握高斯消元法、矩阵法、矩阵的秩等解法。

3.特征值与特征向量:特征值是矩阵对应的线性变换中的固有值,特征向量是与特征值对应的非零向量。

需要了解特征值与特征向量的求解方法,如特征方程的根、特征向量的求解等。

4.正交与正交对角化:正交是指向量间的垂直关系,正交矩阵满足乘积为单位阵。

正交对角化是将一个矩阵通过正交变换转化为对角矩阵。

上海市考研数学三复习资料数学分析重点内容梳理与名词解析

上海市考研数学三复习资料数学分析重点内容梳理与名词解析

上海市考研数学三复习资料数学分析重点内容梳理与名词解析数学分析作为考研数学三科目的重要组成部分,是考生们复习备考的重点之一。

为了帮助考生们更好地理解和掌握数学分析的重要内容,本文将对上海市考研数学三复习资料中的数学分析重点内容进行梳理与名词解析。

一、导数与微分1. 导数的概念导数是用来衡量函数在某一点附近的变化率。

对于函数f(x),在点x处的导数表示为f'(x)或dy/dx,可以用极限的方式表示为f'(x) =lim(h→0) [f(x+h) - f(x)]/h。

2. 导数的运算法则导数具有一些运算法则,包括加法法则、乘法法则、链式法则等。

加法法则表示两个函数相加的导数等于它们各自的导数之和;乘法法则表示两个函数相乘的导数等于一个函数的导数乘以另一个函数再加上另一个函数的导数乘以该函数;链式法则用于求复合函数的导数。

3. 微分的概念微分表示函数在某一点处的变化量,可以用dx表示。

微分dy与函数的增量Δx之间有微分关系,即dy = f'(x)dx。

二、积分与定积分1. 积分的概念积分是导数的逆运算,表示函数的累积性质。

对于函数f(x),它的积分可以表示为∫{a}^{b}f(x)dx,在a到b的区间上对f(x)进行积分。

2. 不定积分和定积分不定积分是求解积分时的一种形式,表示为∫f(x)dx。

不定积分得到的结果是一个函数F(x)加上一个常数C。

定积分是求解积分时的另一种形式,表示为∫{a}^{b}f(x)dx。

定积分得到的结果是一个具体的数值。

3. 积分的性质和运算法则积分具有一些性质和运算法则,包括线性性质、换元积分法、分部积分法等。

线性性质表示积分具有加法和乘法的线性运算法则;换元积分法用于简化积分表达式,通过变量代换将复杂的积分转化为简单的积分;分部积分法用于求解乘积函数的积分。

三、级数与幂级数1. 级数的概念级数是由无穷多个数项按照一定规律排列组成的无穷数列。

常见的级数包括等差数列、等比数列等。

考研数学3知识点总结

考研数学3知识点总结

考研数学3知识点总结一、实变函数1. 极限和连续实变函数的极限是指当自变量逼近某个确定值时,函数的取值也逼近一个确定值。

极限的概念是实变函数中最为基础的概念之一,它是后续讨论的连续性、导数等概念的基础。

连续性是一个函数在某一点上的性质,如果这个函数在这一点可导,那么它在这一点也是连续的。

连续的函数具有一些良好的性质,如介值定理、零点定理等。

2. 导数和微分导数是实变函数中的一个重要概念,它描述了函数在某一点上的变化率。

导数的概念与实际问题密切相关,例如速度、加速度等概念都可以通过导数来描述。

微分是导数的几何意义,微分可以看作是对函数在某点上的局部线性逼近,这对于研究函数的增长趋势、凹凸性等问题有很大的帮助。

微分也是求解微分方程的一种工具。

3. 级数级数是一种无穷序列的和的形式,级数的收敛性和敛散性是实变函数中的一个重要问题。

级数的收敛性可以通过不同的方法来判断,比如比较法、根值法、积分法等。

4. 泰勒级数和泰勒展开泰勒级数是一个函数在某一点附近的一种无穷级数表示。

泰勒级数的性质决定了当自变量足够靠近展开点时,函数的值可以用泰勒级数来近似表示。

泰勒展开是对函数的泰勒级数的一种应用,它可以用来求解函数的近似值,研究函数的性质等。

5. 不定积分不定积分是函数积分的一种形式,它可以用来描述函数的原函数。

不定积分的计算方法有很多,比如换元法、分部积分法、积分表法等,学习不定积分需要掌握这些方法的应用。

6. 定积分定积分是函数在一个区间上的积分,它可以用来描述函数在这个区间上的累积效应,比如曲线所围成的面积、质量、能量等。

定积分有很多重要的性质,比如微积分基本定理、平均值定理等。

7. 微分方程微分方程是一种包含未知函数及其导数的方程,它在自然科学、工程技术等领域中有着广泛的应用。

微分方程的求解方法有很多,比如常数变易法、特征方程法、拉普拉斯变换法等。

二、复变函数1. 复数和复变函数复数是实数集的扩充,它具有形式为a+bi的特点,其中a和b为实数,i为虚数单位。

今年考研数学三知识点总结

今年考研数学三知识点总结

今年考研数学三知识点总结一、高等数学高等数学是数学的一个重要分支,考研数学三中最基础的一个知识点,这里我们主要涵盖了微积分和线性代数两个方面的内容。

1. 微积分微积分是数学的一个重要分支,由于它在实际中具有广泛的应用,所以在考研数学中也是一个非常重要的知识点。

微积分的内容很多,包括导数、积分、微分方程等。

导数是微积分中的一个基本概念,它代表了函数在某一点的变化率。

在考研数学三中,导数的应用非常广泛,比如在求解极值、最值、曲线的凹凸性等方面都会用到导数的知识。

积分是微积分中的另一个基本概念,它代表了函数在某一区间内的累积变化量。

在考研数学三中,积分的应用也非常广泛,比如在求解面积、体积、曲线的长度等方面都会用到积分的知识。

微分方程是微积分的一个重要分支,它是用来描述变化的规律的方程。

在考研数学三中,微分方程的应用也非常广泛,比如在物理、生物、经济等领域都会用到微分方程的知识。

2. 线性代数线性代数是数学的一个重要分支,它主要涉及向量、矩阵、线性方程组等内容。

在考研数学三中,线性代数的知识点也是非常重要的。

向量是线性代数中的一个基本概念,它是用来表示空间中的方向和大小的。

在考研数学三中,向量的知识点涉及到向量的加法、数量积、向量积等内容。

矩阵是线性代数中的另一个基本概念,它是用来表示线性变换的矩形数组。

在考研数学三中,矩阵的知识点涉及到矩阵的运算、矩阵的秩、逆矩阵等内容。

线性方程组是线性代数中的一个重要概念,它是用来求解多元线性方程组的方法。

在考研数学三中,线性方程组的知识点涉及到线性方程组的解的判别、线性方程组的解的存在性和唯一性等内容。

以上是高等数学的一些基本知识点,在考研数学三中也是最为重要的内容。

二、概率统计概率统计是数学的一个重要分支,它主要涉及概率和统计两个方面的内容。

概率统计在现实中有很多应用,比如在科学、工程、经济等领域都会用到概率统计的知识。

考研数学三中,概率统计的知识点主要包括概率的基本概念、随机变量、概率分布、参数估计、假设检验等内容。

考研数学三历年各类题型考点总结

考研数学三历年各类题型考点总结

高数一、选择题2009:1、讨论函数的连续性与确定间断点的类型2、无穷小量与它的阶3、函数不等式证明4、变限定积分及其应用2008:1、讨论函数的连续性与确定间断点的类型2、定积分的概念与计算3、偏导数与全微分4、在直角坐标系与极坐标系中计算二重积分2007:1、无穷小量与它的阶2、导数与微分概念3、定积分的概念与计算4、变换累次积分的次序与坐标系的转换5、导数的经济意义及最大值最小值应用问题6、利用导数研究函数的性态2006:7、利用导数研究函数的性态8、导数与微分概念9、常数项级数10、一阶微分方程11、极值与条件极值,最值及其应用问题2005:7、利用导数研究函数的性态8、二重积分的概念与性质9、常数项级数10、利用导数研究函数的性态11、微分学中值定理及其在函数或导数零点存在性问题上的应用2004:7、函数的概念与性质8、讨论函数的连续性与确定间断点的类型9、利用导数研究函数的性态10、常数项级数11、导数与微分概念2003:1、讨论函数的连续性与确定间断点的类型2、极值与条件极值,最值及其应用问题3、常数项级数2002:1、微分学中值定理及其在函数或导数零点存在性问题上的应用2、幂级数的收敛特性2001:1、利用导数研究函数的性态2、反常积分的概念与计算2000:1、求未定式的极限与等价无穷小因子代换2、导数与微分概念二、填空题2009:9、求未定式的极限与等价无穷小因子代换10、偏导数与全微分11、幂级数的收敛特性12、导数的经济意义及最大值最小值应用问题2008:9、讨论函数的连续性与确定间断点的类型10、定积分的概念与计算11、二重积分的简化计算12、一阶微分方程2007:11、求未定式的极限与等价无穷小因子代换12、求各类一元函数的导数与微分13、多元复合函数微分法14、一阶微分方程2006:1、求未定式的极限与等价无穷小因子代换2、求各类一元函数的导数与微分3、多元复合函数微分法2005:1、求未定式的极限与等价无穷小因子代换2、一阶微分方程3、偏导数与全微分2004:1、确定极限式中的参数2、偏导数与全微分3、定积分的概念与计算2003:1、导数与微分概念2、切线问题3、在直角坐标系与极坐标系中计算二重积分2002:1、求未定式的极限与等价无穷小因子代换2、变换累次积分的次序与坐标系的转换2001:1、导数的经济意义及最大值最小值应用问题2、微分方程的简单应用2000:1、多元复合函数微分法2、反常积分的概念与计算三、解答题2009:15、极值与条件极值,最值及其应用问题16、不定积分的计算17、二重积分的简化计算18、微分学中值定理及其在函数或导数零点存在性问题上的应用19、微分方程的简单应用2008:15、求未定式的极限与等价无穷小因子代换16、多元隐函数微分法17、二重积分的简化计算18、有关定积分的证明题19、级数求和2007:17、利用导数研究函数的性态18、二重积分的简化计算19、微分学中值定理及其在函数或导数零点存在性问题上的应用20、函数的幂级数展开式2006:15、求未定式的极限与等价无穷小因子代换16、在直角坐标系与极坐标系中计算二重积分17、函数不等式的证明18、微分方程的简单应用19、级数求和2005:15、求未定式的极限与等价无穷小因子代换16、多元复合函数微分法17、二重积分的简化计算18、级数求和19、有关定积分的证明题2004:15、求未定式的极限与等价无穷小因子代换16、在直角坐标系与极坐标系中计算二重积分17、有关定积分的证明题18、导数的经济意义及最大值最小值应用问题19、级数求和2003:三、讨论函数的连续性与确定间断点的类型四、多元复合函数微分法五、在直角坐标系与极坐标系中计算二重积分六、级数求和七、一阶微分方程八、微分学中值定理及其在函数或导数零点存在性问题上的应用2002:三、变限定积分及其应用四、多元隐函数微分法五、不定积分的计算六、定积分的应用七、级数求和八、有关定积分的证明题2001:三、多元隐函数微分法四、微分学中值定理及其在函数或导数零点存在性问题上的应用五、二重积分的简化计算六、定积分的应用七、有关定积分的证明题八、级数求和2000:三、二阶常系数线性微分方程四、在直角坐标系与极坐标系中计算二重积分五、极值与条件极值,最值及其应用问题六、利用导数研究函数的性态七、级数求和八、有关定积分的证明题线性代数一、选择题2009:5、伴随矩阵6、初等变换2008:5、可逆矩阵6、合同矩阵2007:7、向量组的线性相关问题8、合同矩阵2006:12、向量组的线性相关问题13、初等变换2005:12、伴随矩阵13、向量组的线性相关问题2004:12、初等变换13、齐次方程组有非零解、基础解系、通解等问题2003:4、矩阵的秩5、向量组的线性相关问题2002:3、齐次方程组有非零解、基础解系、通解等问题4、矩阵的特征值、特征向量的概念与计算2001:3、初等变换4、有解判定及解的结构2000:3、有解判定及解的结构4、公共解、同解二、填空题2009:13、相似拒阵与相似对角化2008:13、抽象型行列式的计算2007:15、矩阵的秩2006:4、抽象型行列式的计算2005:4、向量组的线性相关问题2004:4、二次型的概念及标准形2003:4、可逆矩阵2002:3、向量组的线性相关问题2001:3、矩阵的秩2000:3、抽象型行列式的计算三、解答题2009:20、非齐次线性方程组的求解21、二次型的概念及标准形2008:20、I数字型行列式的计算II、III非齐次线性方程组的求解21、向量组的线性相关问题2007:21、公共解、同解22、实对称矩阵的特征值与特征向量2006:20、向量组的极大线性无关组与秩21、实对称矩阵的特征值与特征向量2005:20、公共解、同解21、二次型的正定性2004:20、向量的线性表出21、相似矩阵与相似对角化2003:九、齐次方程组有非零解、基础解系、通解等问题十、二次型的概念及标准形2002:九、齐次方程组有非零解、基础解系、通解等问题十、实对称矩阵的特征值与特征向量2001:九、实对称矩阵的特征值与特征向量十、合同矩阵2000:九、向量的线性表出十、二次型的正定性概率论一、选择题2009:7、随机事件的关系与运算8、随机变量函数的分布2008、7、随机变量函数的分布8、随机变量的数字特征2007:9、事件的独立性与独立重复试验10、随机变量的独立性与相关性2006:14、常见随机变量的概率分布及其应用2005:14、无2004:14、常见随机变量的概率分布及其应用2003:6、事件的独立性与独立重复试验2002:5、数理统计的基本概念2001:5、随机变量的独立性与相关性2000:5、随机事件的关系与运算二、填空题2009:14、参数估计2008、14、随机变量的数字特征2007:16、随机事件的关系与运算2006:5、随机变量函数的分布6、参数估计2005:5、概率与条件概率的性质和基本公式6、随机变量的联合分布、边缘分布与条件分布2004:5、、常见随机变量的概率分布及其应用6、参数估计2003:5、随机变量的数字特征6、大数定律与中心极限定理2002:4、随机变量的数字特征5、参数估计2001:4、大数定律与中心极限定理5、数理统计的基本概念2000:4、连续型随机变量的概率密度5、随机变量的数字特征三、解答题2009:22、随机变量的联合分布、边缘分布与条件分布23、随机变量的联合分布、边缘分布与条件分布2008:22、随机变量函数的分布23、参数估计2007:23、随机变量函数的分布24、参数估计2006:22、随机变量的联合分布、边缘分布与条件分布23、参数估计2005:22、随机变量函数的分布23、参数估计2004:22、随机变量的联合分布、边缘分布与条件分布23、参数估计2003:十一、随机变量函数的分布十二、随机变量函数的分布2002:十一、随机变量的联合分布、边缘分布与条件分布十二、随机变量函数的分布2001:十一、大数定律与中心极限定理十二、随机变量函数的分布2000:十一、无十二、随机变量的独立性与相关性。

考研数学微积分知识点精讲

考研数学微积分知识点精讲

考研数学微积分知识点精讲在考研数学中,微积分是极为重要的一部分,掌握好微积分的知识点对于取得理想的成绩至关重要。

接下来,让我们详细地梳理一下这部分的重要内容。

一、函数、极限与连续函数是微积分的基础概念。

要理解函数的定义、性质(如奇偶性、单调性、周期性等),以及常见的函数类型(如幂函数、指数函数、对数函数、三角函数等)。

极限是微积分中的核心概念之一。

极限的计算方法有多种,比如利用四则运算、等价无穷小替换、洛必达法则等。

需要注意的是,在使用洛必达法则时,要先判断条件是否满足。

连续的概念也不容忽视。

函数在某点连续,意味着该点的极限值等于函数值。

判断函数的连续性,通常需要从左右极限是否相等以及是否等于该点的函数值来考虑。

二、导数与微分导数反映了函数的变化率。

导数的定义式要牢记,同时要掌握常见函数的求导公式(如基本初等函数的求导公式),以及求导法则(如四则运算求导法则、复合函数求导法则)。

微分是函数增量的线性主部。

微分的计算与导数密切相关,通过导数可以求出函数的微分。

在应用方面,导数可以用来研究函数的单调性、极值和凹凸性。

通过判断导数的正负,可以确定函数的单调性;令导数为零,可以求出函数的极值点;通过二阶导数的正负,可以判断函数的凹凸性。

三、中值定理中值定理是微积分中的重要理论,包括罗尔定理、拉格朗日中值定理和柯西中值定理。

罗尔定理:如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,且 f(a) = f(b),那么在(a,b) 内至少存在一点ξ,使得 f'(ξ)= 0 。

拉格朗日中值定理:如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,那么在(a,b) 内至少存在一点ξ,使得 f(b) f(a) =f'(ξ)(b a) 。

柯西中值定理:如果函数 f(x) 和 g(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,且 g'(x) ≠ 0 ,那么在(a,b) 内至少存在一点ξ,使得 f(b) f(a) / g(b) g(a) = f'(ξ) / g'(ξ) 。

微积分3知识点总结

微积分3知识点总结

微积分3知识点总结微积分3是微积分的高级课程,主要讲授多变量函数的微积分知识。

在微积分3课程中,学生将学习到三维空间中的曲面与曲线的性质、多元函数的极限、连续性、偏导数、方向导数、梯度、多元函数的微分、多元函数的积分以及向量场的积分等内容。

在这篇总结中,我将对微积分3中的重要知识点进行梳理和讲解。

1. 多元函数的极限在微积分3中,我们首先要学习的是多元函数的极限。

对于一个多元函数$f(x, y)$来说,当$(x, y)$接近某一点$(a, b)$时,函数$f(x, y)$的极限定义如下:如果对于任意的$\varepsilon > 0$,存在一个$\delta > 0$,使得当$0 < \sqrt{(x - a)^2 + (y - b)^2} < \delta$时,都有$|f(x, y) - L| < \varepsilon$成立,那么就说当$(x, y)$趋于$(a,b)$时,函数$f(x, y)$的极限为$L$,记作$\lim_{(x, y) \to (a, b)} f(x, y) = L$。

多元函数的极限的计算方式和一元函数的极限类似,但要注意的是,这里的变量是二维的,所以在进行极限的计算时,需要考虑到所有可能的趋近方式。

2. 多元函数的连续性在微积分3中,我们还要学习多元函数的连续性。

多元函数的连续性是指当$(x, y)$在某一点上连续时,函数在该点的极限等于在该点的函数值。

多元函数的连续性可以通过极限的定义来进行判断,如果函数在某一点的极限等于该点的函数值,那么就可以说函数在该点上是连续的。

3. 多元函数的偏导数在微积分3中,还要学习多元函数的偏导数。

对于多元函数$f(x, y)$来说,其对$x$的偏导数记作$\frac{\partial f}{\partial x}$,对$y$的偏导数记作$\frac{\partial f}{\partial y}$。

这两个偏导数分别表示了函数$f$在$x$和$y$方向上的变化率。

考研讲义数三经济部分

考研讲义数三经济部分

第十三章 微积分在经济学中的经济应用 (数三)《考试要求》1. 掌握导数的经济意义(含边际与弹性的概念)。

2. 了解差分与差分方程及其通解与特解等概念。

3. 掌握一阶常系数线性差分方程的求解方法。

4. 会应用一阶差分方程、极限、级数等知识求解简单的经济应用问题.一、。

极限及级数在经济学中的应用(一)复利:设某银行年利率为r ,初始存款为0A 元,(1)一年支付一次利息(称为年复利),则t 年后在银行的存款余额为()t 01tA A r =+; (2)若一年支付n 次,则t 年后在银行的存款余额为0(1)rnt A A t n =+;(3)由于lim [(1)]nrrt rt r e n n +=→∞,所以当每年支付次数趋于无穷时,t 年后得到的存款余额为0rtt A A e =,称为t 年后按连续复利计算得到的存款余额。

(二)将来值与现值:上述结论中,称t A 是0A 的将来值,而0A 是t A 的现值。

现值与将来值的关系为:0(1)t t A A r =+ ⇔0(1)t t A A r -=+ 或 0(1)t t A A r =+ ⇔0(1)tt A A r -=+例 1 现购买一栋别墅价值300万元, 若首付50万元, 以后分期付款, 每年付款数目相同, 10年付清,年利率 为6%, 按连续复利计算, 问每年应付款多少?r ,并依年复利计算,某基金会希望通过存款A 例2(08)设银行存款的年利率为0.05万元,实现第一年提取19万元,第二年提取28万元,…,第n年提取(10+9n)万元,并能按此规律一直提取下去,问A至少应为多少万元?、二. 经济学中的常用函数需求函数:()Q Q P =, 通常()Q Q P =是P 的减函数; 供给函数:()Q Q P =, 通常()Q Q P =是P 的增函数;成本函数:01()()C Q C C Q =+, 其中0(0)C C =为固定成本, 1()C Q 为可变成本; 收益函数:R PQ =;利润函数:()()()L Q R Q C Q =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。

解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。

【解题思路】1.把向量用OA ,OB ,OC 表示出来。

2.把求最值问题转化为三角函数的最值求解。

【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。

【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。

【解题思路】1.设出点的坐标,列出方程。

2.利用韦达定理,设而不求,简化运算过程。

3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。

即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。

题型分值完全一样。

选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。

3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。

四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。

相关文档
最新文档