哈理工数字IC实验五
《数字电路》实验讲义
一、实验目的
1.掌握寄存器的工作原理、逻辑功能及应用;
2.掌握异步计数器的工作原理及输出波形;
3.掌握中规模集成电路计数器接成任意进制计数器的方法
二、实验设备及器件
1.SAC-DS数字逻辑实验箱一台;
⑶用一片74LS153和一片74LS00接成一位全加器
⑷设计一个有A、B、C三位代码输入的密码锁(假设密码是011),当输入密码正确时,锁被打开(Y1=1),如果密码不符,电路发出报警信号(Y2=1)。
以上四个小设计任做一个,多做不限。
实验三触发器及触发器之间的转换
一、实验目的
1.掌握D触发器和JK触发器的逻辑功能及触发方式;
输入
输出
A
B
C
D
Y
0
0
0
0
1
0
0
0
1
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
0
4.异或门逻辑功能的测试
⑴按图1-4接好电路。
⑵按表1-4的要求测试,将结果填入表1-4中。
输入
输出
A
B
Y
0
0
0
0
1
1
1
0
1
1
1
0
5.设计实验
⑴用一片74LS00实现Y = A+B的逻辑功能;
⑵用一片74LS86设计一个四位奇偶校验电路;
以上两个小设计必做一个,多做不限。
四、思考题
1.与非门一个输入端接连续脉冲,其余端是何状态时允许脉冲通过,是何状态时禁止脉冲通过?
2.为什么异或门又称为可控反相门?
通信原理硬件实验报告(最新-哈工程)
实验报告哈尔滨工程大学教务处制实验一、数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB2的编码规则3、了解HDB3(AMI)编译码集成电路CD22103.二、实验仪器双踪示波器、通信原理VI实验箱一台、M6信源模块三、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形.四、基本原理1、单极性码、双极性码、归零码、不归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
a)单极性不归零码,无电压表示”0",恒定正电压表示"1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
b)双极性不归零码,”1"码和"0”码都有电流,”1”为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。
c)单极性归零码,当发”1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。
d)双极性归零码,其中”1"码发正的窄脉冲,”0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。
归零码和不归零码、单极性码和双极性码的特点:不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。
单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层;双极性码的直流分量大大减少,这对数据传输是很有利的2、AMI、HDB3码特点(1)AMI码我们用“0"和“1”代表传号和空号。
哈工大数字逻辑电路与系统实验报告
哈工大数字逻辑电路与系统实验报告引言本实验旨在通过对数字逻辑电路与系统的学习与实践,加深对数字逻辑电路原理和应用的理解,掌握数字逻辑电路实验的设计与调试方法。
本报告将详细介绍实验步骤、实验结果以及实验心得体会。
实验目的1.掌握基本的数字逻辑电路设计方法;2.熟悉数字逻辑电路的布线和调试方法;3.学会使用EDA软件进行数字逻辑电路的仿真和验证。
实验器材•FPGA开发板•EDA软件实验过程实验一:逻辑门的基本控制本实验采用FPGA开发板进行实验,以下是逻辑门的基本控制步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,依次放置与门、或门、非门和异或门,并连接输入输出引脚;4.面向测试向量实现逻辑门的控制和数据输入;5.运行仿真并进行调试。
实验二:数字逻辑电路实现本实验以4位全加器为例,进行数字逻辑电路的实现,以下是实验步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,放置输入引脚、逻辑门和输出引脚,并进行连接;4.根据全加器的真值表,设置输入信号,实现加法运算;5.运行仿真并进行调试。
实验三:数字逻辑电路的串联与并联本实验旨在通过对数字逻辑电路的串联与并联实现,加深对逻辑门的理解与应用。
以下是实验步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,放置多个逻辑门,并设置输入输出引脚;4.进行逻辑门的串联与并联连接;5.根据逻辑门的真值表,设置输入信号,进行运算;6.运行仿真并进行调试。
实验结果经过实验测试,实验结果如下:1.实验一:逻辑门的基本控制–与门的功能得到实现;–或门的功能得到实现;–非门的功能得到实现;–异或门的功能得到实现。
2.实验二:数字逻辑电路实现–4位全加器的功能得到实现;–正确进行了加法运算。
3.实验三:数字逻辑电路的串联与并联–逻辑门的串联与并联功能得到实现;–通过逻辑门的串联与并联,实现了复杂的逻辑运算。
实验五 三人表决器实验报告
名称
规格
数量
电阻
470
5
轻触开关
6*6*5
3
IC座
14p
1
4-2输入与非门
CD4011
1
IC座
14P
1
2-4输入与非门
CD4012
1
独石电容
104
1
发光二极管
3mm红发红
1
接线座
2P
1
PCB板
35*50mm
1
五.实验电路图
六.实验总结
二.项目要求
1.判断引脚的正确位置,理解数字电路的原理,掌握操作5v
三.工作原理
本电路采用4-2输入与非门CD4011和2-4输入与非门CD4012组成,控制a,b,c三个按键中的一个,以少数服从多数的原则表决事件,按下表示同意,否则不同意。若表决通过现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
电气工程系电工电子技术实验报告
实验五:三人表决电路的设计和电路实现
一.实验目的
通过操作掌握电烙铁的使用,正确理解数字电路的要求;能知道与门,非门,或门的含义,了解芯片的每个引脚是什么门电路;做到真正了解门电路的含义。
数字电路实验
实验一基本门电路(验证型)一、实验目的(1)熟悉常用门电路的逻辑功能;(2)学会利用门电路构成简单的逻辑电路。
二、实验器材数字电路实验箱 1台;74LS00、74LS02、74LS86各一块三、实验内容及步骤1、TTL与非门逻辑功能测试(1)将四2输入与非门74LS00插入数字电路实验箱面板的IC插座上,任选其中一与非门。
输入端分别输入不同的逻辑电平(由逻辑开关控制),输出端接至LED“电平显示”输入端。
观察LED亮灭,并记录对应的逻辑状态。
按图1-1接线,检查无误方可通电。
图1-1表1-1 74LS00逻辑功能表2、TTL或非门、异或门逻辑功能测试分别选取四2输入或非门74LS02、四2输入异或门74LS86中的任一门电路,测试其逻辑功能,功能表自拟。
3、若要实现Y=A′, 74LS00、74LS02、74LS86将如何连接,分别画出其实验连线图,并验证其逻辑功能。
4、用四2输入与非门74LS00实现与或门Y=AB+CD的功能。
画出实验连线图,并验证其逻辑功能。
四、思考题1.TTL与非门输入端悬空相当于输入什么电平?2.如何处理各种门电路的多余输入端?附:集成电路引出端功能图实验二组合逻辑电路(设计型)一、实验目的熟悉简单组合电路的设计和分析过程。
二、实验器材数字电路实验箱 1台,74LS00 三块,74LS02、74LS04、74LS08各一块三、实验内容及步骤1、设计一个能比较一位二进制A与 B大小的比较电路,用X1、X2、X3分别表示三种状态:A>B时,X1=1;A<B时X2=1;A=B时X3=1。
(用74LS04、74LS08和74LS02实现)要求:(1)列出真值表;(2)写出函数逻辑表达式;(3) 画出逻辑电路图,并画出实验连线图;(4)验证电路设计的正确性。
2、测量组合电路的逻辑关系:(1)图3-2电路用3块74LS00组成。
按逻辑图接好实验电路,输入端A、B、C 分别接“逻辑电平”,输出端D、J接LED“电平显示”;图3-2 表3-2(2)按表3-2要求,将测得的输出状态和LED显示分别填入表内;(3)根据测得的逻辑电路真值表,写出电路的逻辑函数式,判断该电路的功能。
哈工大数电自主实验-数字流水灯
Harbin Institute of Technology数字电路自主设计实验院系:航天学院班级:姓名:学号:指导教师:哈尔滨工业大学一、实验目的1.进一步掌握数字电路课程所学的理论知识。
2.熟悉几种常用集成数字芯片的功能和应用,并掌握其工作原理,进一步学会使用其进行电路设计。
3.了解数字系统设计的基本思想和方法,学会科学分析和解决问题。
4.培养认真严谨的工作作风和实事求是的工作态度。
5.数电课程实验为我们提供了动手实践的机会,增强动手实践的能力。
二、实验要求设计流水灯,即一排灯按一定的顺序逐次点亮,且可调频、暂停、步进。
三、实验步骤1.设计电路实现题目要求,电路在功能相当的情况下设计越简单越好;2. 画出电路原理图(或仿真电路图);3.元器件及参数选择;4.电路仿真与调试;5.到实验时进行电路的连接与功能验证,注意布线,要直角连接,选最短路径,不要相互交叉,注意用电安全,所加电压不能太高,以免烧坏芯片;6.找指导教师进行实验的检查与验收;7.编写设计报告:写出设计与制作的全过程,附上有关资料和图纸,心得体会。
四、实验原理设计流水灯的方法有很多种,我的设计思路是:利用555定时器产生秒脉冲信号,74LS161组成8进制计数器,74LS138进行译码,点亮电平指示灯。
并通过调节555的电阻,实现频率可调。
通过两与非门,实现暂停、步进功能。
1.秒信号发生器(1)555定时器结构(2)555定时器引脚图(3)555定时器功能表(4)555定时器仿真图2. 74LS161实现8进制加计数74LS161是常用的四位二进制可预置的同步加法计数器,它可以灵活地运用在各种数字电路,以及单片机系统中实现分频器等很多重要的功能。
(1)74LS161同步加法器引脚图管脚图介绍:始终CP和四个数据输入端P0-P3清零CLR使能EP,ET置数PE数据输出端Q0-Q3进位输出TC(2)74LS161功能表(5)74LS161仿真图对74LS161进行八进制计数改组,需要一个与非门,即芯片74LS00,也就是将74LS161的输出端通过与非门,当输出为8时将输出为高电平的端口与非后接到74LS161的清零段。
数字电路与系统设计实验
第二章 实验基本仪器
数字系统设计实验所需设备有: 直流稳压电源,示波器,基于CPLD的 数字电路实验系统,万用表,信号源, 计算机。
一、直流稳压电源
二、示波器
示波器是一种用来测量电信号波形的 电子仪器。用示波器能够观察电信号 波形,测量电信号的电压大小,周期 信号的频率和周期大小。双踪示波器 能够同时观察两路电信号波形。
能块相对集中地排列器件 3.布线顺序 VCC,GND,输入/输出,控制线 4. 仪器检测(电源,示波器,信号源) 5.实验 测试、调试与记录
6.撰写实验总结报告
(1)实验内容 (2)实验目的 (3)实验设备 (4)实验方法与手段 (5)实验原理图 (6)实验现象(结果)记录分析 (7)实验结论与体会
(((四三一)))、、、实实验实验目验的提内示容
•• 11..注测1意试.掌被T握T测LT器T器L件、件H7的CT4引和L脚HS7C器0和件4引的一脚传个输1特非4性门分。的别传接输地特和 十性5。V2。.掌握万用表的使用方法。
•• •
(2连为输23特二.接 被 入)..性将测测、123到 测 电。实试 试...被 非 压六六六验验HH反反反测 门 值所CC台相相相T器用非 的 。上器器器器件器门输4件777件7的入.444774输电LHH4KH入压SCCHΩC00T端。电C4400,旋位T片片44转R器0片T一电LR4的个T位一L输非的器个出门电改非端的压变门电传输非的压输出门传作特端的输性。
四、数字电路测试及故障查找、排除
1.数字电路测试
数字电路静态测试指的是给定数字电路若干组静态输 入值,测定数字电路的输出值是否正确。
单片机原理与应用实验报告——温度测量显示及设定
《单片机原理与应用》课程实验报告院系:班级:学生:学号:指导教师:设计时间:哈尔滨工业大学1 实验的目的、内容和设备1.1 实验的目的单片机综合实验的目的是训练单片机应用系统的编程及调试能力,通过对一个单片机应用系统进行系统的编程和调试,掌握单片机应用系统开发环境和仿真调试工具及仪器仪表的实用,掌握单片机应用程序代码的编写和编译,掌握利用单片机硬件仿真调试工具进行单片机程序的跟踪调试和排错方法,掌握示波器和万用表等杆塔工具在单片机系统调试中应用。
1.2 实验内容实验的内容是利用APP001开发板实现一个温度测量显示和控制的单片机应用系统,利用APP001开发板上的温度传感器测量温度,通过键盘输入一个稳定设定值,当测量温度高于设定温度时发出声音报警,开启散热风扇开关,并在LCD上显示实时温度值,设定温度值和散热风扇的开关状态,其中日期和时间利用单片机的定时器来产生,并能通过键盘来设定。
通过该实验学习和掌握以下的内容:1)MPLAB开发环境的使用,程序编写和排错及软件仿真2)利用MPLAB和ICD2对程序进行在线仿真和调试3)使用万用表和示波器等仪器对硬件系统进行测量和调试4)PIC18F452单片机的I/O和PWM驱动及编程方法5)PIC18F452单片机LCD和键盘接口及编程方法6)PIC18F452单片机的USART编程及与PC机的通讯方法7)利用Timer1外接32.768kHz的晶振产生RTC1.3 实验设备1)运行MPLAB的PC机2)示波器、万用表3)直流电源4)ICD2仿真器5)APP001多功能实验板2 总体设计2.1 硬件总体设计系统组成方案图1系统框图2.2 软件总体设计图2主程序框图图3 中断程序框图3 硬件设计1)散热风扇开发输出控制:实验中我们利用一个LED来模拟风扇状态,当散热风扇开关打开时,LED被点亮发光,当散热风扇关闭时,LED不发光。
开发板上的指示灯D11由RB2,低电平亮,高电平灭。
数字ic设计实验报告
数字集成电路设计实验报告实验名称二输入与非门的设计一.实验目的a)学习掌握版图设计过程中所需要的仿真软件b)初步熟悉使用Linux系统二.实验设备与软件PC机,RedHat,Candence三.实验过程Ⅰ电路原理图设计1.打开虚拟机VMware Workstation,进入Linux操作系统RedHat。
2.数据准备,将相应的数据文件拷贝至工作环境下,准备开始实验。
3.创建设计库,在设计库里建立一个schematic view,命名为,然后进入电路图的编辑界面。
4.电路设计设计一个二输入与非门,插入元器件,选择PDK库(xxxx35dg_XxXx)中的nmos_3p3、pmos_3p3等器件。
形成如下电路图,然后check and save,如下图。
图1.二输入与非门的电路图5.制作二输入与非门的外观symbolDesign->Create Cellview -> From Cellview,在弹出的界面,按ok后出现symbol Generation options,选择端口排放顺序和外观,然后按ok出现symbol编辑界面。
按照需要编辑成想要的符号外观,如下图。
保存退出。
图2.与非门外观6.建立仿真电路图方法和前面的“建立schemtic view”的方法一样,但在调用单元时除了调用analogL 库中的电压源、(正弦)信号源等之外,将之前完成的二输入与非门调用到电路图中,如下图。
图3.仿真电路图然后设置激励源电压输出信号为高电平为3.5v,低电平为0的方波信号。
7.启动仿真环境在ADE中设置仿真器、仿真数据存放路径和工艺库,设置好后选择好要检测的信号在电路中的节点,添加到输出栏中,运行仿真得到仿真结果图。
图4.仿真结果图Ⅱ版图设计1.数据准备2.建立设计库,然后建立一个layout view,tool选virtuso,然后进入版图编辑界面3.版图绘制在版图编辑界面中,从LSW中选择图层,然后进行二输入与非门的版图绘制。
555定时器实验
555定时器实验实验五 555定时器及其应用一、实验目的1.熟悉555型集成时基电路的电路结构、工作原理及其特点。
2.掌握555型集成时基电路的基本应用。
二、实验原理555集成时基电路称为集成定时器,是一种数字、模拟混合型的中规模集成电路,其应用十分广泛。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,因而广泛用于信号的产生、变换、控制与检测。
它的内部电压标准使用了三个5K的电阻,故取名555电路。
其电路类型有双极型和CMOS 型两大类,两者的工作原理和结构相似。
几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。
555和7555是单定时器,556和7556是双定时器。
双极型的电压是+5V~+15V,输出的最大电流可达200mA,CMOS型的电源电压是+3V~+18V。
图19-1 555定时器内部框图1. 555电路的工作原理555电路的内部电路方框图如图19-1所示。
它含有两个电压比较器,一个基本RS触发器,一个放电开关T,比较器的参考电压由三只5K Ω的电阻器构成分压,它们分别使高电平比较器A1同相比较端和低电平比较器A2的反相输入端的参考电平为2/3V和1/3CC V。
A1和A2的输出端CC控制RS触发器状态和放电管开关状态。
当输入信号输入并超过2/3V时,触发器复位,555的输CC出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于1/3V时,触发器置CC位,555的3脚输出高电平,同时放电,开关管截止。
R是复位端,当其为0时,555输出低电平。
D平时该端开路或接VCC。
Vc是控制电压端(5脚),平时输出2/3V作CC为比较器A1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个0.01uf的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。
数字电路与系统设计实验报告
数字电路与系统设计实验报告学院:班级:姓名:实验一基本逻辑门电路实验一、实验目的1、掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。
2、熟悉TTL中、小规模集成电路的外型、管脚和使用方法。
二、实验设备1、二输入四与非门74LS00 1片2、二输入四或非门74LS02 1片3、二输入四异或门74LS86 1片三、实验内容1、测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2、测试二输入四或非门74LS02一个或非门的输入和输出之间的逻辑关系。
3、测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
四、实验方法1、将器件的引脚7与实验台的“地(GND)”连接,将器件的引脚14与实验台的十5V连接。
2、用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
3、将被测器件的输出引脚与实验台上的电平指示灯(LED)连接。
指示灯亮表示输出低电平(逻辑为0),指示灯灭表示输出高电平(逻辑为1)。
五、实验过程1、测试74LS00逻辑关系(1)接线图(图中K1、K2接电平开关输出端,LED0是电平指示灯)(2)真值表2、测试74LS02逻辑关系(1)接线图(2)真值表3、测试74LS86逻辑关系接线图(1)接线图(2)真值表六、实验结论与体会实验是要求实践能力的。
在做实验的整个过程中,我们首先要学会独立思考,出现问题按照老师所给的步骤逐步检查,一般会检查处问题所在。
实在检查不出来,可以请老师和同学帮忙。
实验二逻辑门控制电路实验一、实验目的1、掌握基本逻辑门的功能及验证方法。
2、掌握逻辑门多余输入端的处理方法。
3、学习分析基本的逻辑门电路的工作原理。
二、实验设备1、基于CPLD的数字电路实验系统。
2、计算机。
三、实验内容1、用与非门和异或门安装给定的电路。
2、检验它的真值表,说明其功能。
四、实验方法按电路图在Quartus II上搭建电路,编译,下载到实验板上进行验证。
哈工大 数字信号处理实验报告
实验一: 用FFT 作谱分析实验目的:(1) 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法, 所以FFT 的运算结果必然满足DFT 的基本性质)。
(2) 熟悉FFT 算法原理和FFT 子程序的应用。
(3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。
实验原理: DFT 的运算量:一次完整的DFT 运算总共需要2N 次复数乘法和(1)N N -复数加法运算,因而直接计算DFT 时,乘法次数和加法次数都和2N 成正比,当N 很大时,运算量很客观的。
例如,当N=8时,DFT 运算需64位复数乘法,当N=1024时,DFT 运算需1048576次复数乘法。
而N 的取值可能会很大,因而寻找运算量的途径是很必要的。
FFT 算法原理:大多数减少离散傅里叶变换运算次数的方法都是基于nk N W 的对称性和周期性。
(1)对称性()*()k N n kn knNN NW W W --==(2)周期性kn Nkn n N kn k NNN NNW W W W ++===由此可得()()/2(/2)1n N k N n k nk N N N N N k N k N N W W W W W W ---+⎧==⎪=-⎨⎪=-⎩这样:1.利用第三个方程的这些特性,DFT 运算中有些项可以合并;2.利用nk N W 的对称性和周期性,可以将长序列的DFT 分解为短序列的DFT 。
前面已经说过,DFT 的运算量是与2N 成正比的,所以N 越小对计算越有利,因而小点数序列的DFT 比大点数序列的DFT 运算量要小。
快速傅里叶变换算法正是基于这样的基本思路而发展起来的,她的算法基本上可分成两大类,即按时间抽取法和按频率抽取法。
我们最常用的是2M N =的情况,该情况下的变换成为基2快速傅里叶变换。
完成一次完整的FFT 计算总共需要2log 2N N次复数乘法运算和2log N N 次复数加法运算。
实验五集成逻辑门电路的功能测试与应用
实验五集成逻辑门电路的功能测试与应用1.实验目的(1)掌握TTL集成与非门的逻辑功能和主要参数的测试方法;(2)掌握TTL器件的使用规则;(3)熟悉数字电路实验箱的结构,基本功能和使用方法;2.实验设备与器件1)5V直流电源,2)逻辑电平开关,3)0-1指示器,4)直流数字电压表,5)直流毫安表,6)直流微安表,7)74LS20×2,8)WS30—1k、10k电位器各一,9)200Ω电阻器(0.5 )一个。
3.实验原理门电路是组成数字电路的最基本的单元,包括与非门、与门、或门、或非门、与或非门、异或门、集成电极开路与非门和三态门等。
最常用的集成门电路有TTL和CMOS两大类。
TTL为晶体管—晶体管逻辑的简称,广泛的应用于中小规模电路,功耗较大。
本实验采用4输入双与非门74LS20,即在一块芯片内含有两个互相独立的与非门,每个与非门有四个输入端。
其逻辑表达式为Y=ABCD,逻辑符号及引脚排列如图5-1(a)、(b)所示。
[注意]:TTL电路对电源电压要求较严,电源电压V CC只允许在+5V土10%的范围内工作,超过5.5V将损坏器件;低于4.5V器件的逻辑功能将不正常。
(a)逻辑符号(b)引脚排列图5-1 74LS20逻辑符号及引脚排列(1)与非门的逻辑功能与非门的逻辑功能是:当输入端中有一个或一个以上是低电平时,输出端为高电平;只有当输入端全部为高电平时,输出端才是低电平(即有“0”得“1”,全“1”得“0”。
)(2)TTL与非门的主要参数描述与非门的输入电压Ui、输出电压Uo关系可以用电压传输特性Uo=f(Ui)表示,如图5-2(a)。
从电压传输特性曲线上可以读出门电路的一些重要参数,如输出高电平U OH,输出低电平U OL,开门电平U ON,关门电平U OFF等参数。
实际的门电路U OH和U OL并不是恒定值,由于产品的分散性,每个门之间都有差异。
在TTL电路中,常常规定高电平的标准值为3V,低电平的标准值为0.2V。
IC设计虚拟仿真实验项目
IC设计虚拟仿真实验项目课程介绍与课件本实验项目切实贯彻“加强基础,强化应用,提高素质,注重创新,激励个性,体现特色”的人才培养思路,努力强化学生IC设计的实践能力的培养。
本实验项目的教学内容包括ASIC设计的基础,注重使学生理解ASIC设计的基本流程与关键技术,重点在于通过具体的UART控制器芯片的设计,介绍ASIC设计流程中最主要的几种专业EDA软件的使用,包括逻辑仿真、逻辑综合、静态时序分析、版图综合与验证、测试向量生成与故障模拟、形式验证等。
实验教学中主要包括课内和课外两种教学。
一是课内实验教学指导,通过老师随堂演示、指导及相配套的实验报告的完成使学生能够基本掌握ASIC设计中不同EDA软件的功能与使用;二是开放的网络教学,注重特色人才培养,使对实验内容有兴趣的学生有条件进行深入的、综合性的实验培训,配备专门老师进行在线或离线指导。
本实验项目及实验环境对本校学生开放,接收国内高校及信息学科研究机构业务技术人员进修访问。
实验项目的虚拟资源放置在专用服务器上,不仅对相关专业学生开放,而且对社会各个单位和个人开放,实验项目的所有资源均可以上网对公众开发,课件、实践指南等都可以通过互联网自由下载。
利用虚拟技术构建交互式的实验教学与管理信息平台,建立自觉式、协作式的“学习共同体”的虚拟仿真实验教学模型,可以是校内、校外个人或者单位注册账号,登陆本实验平台网站,浏览,并进行实际操作,最大化资源利用效果。
本实验教学对学生的评价主要包括四个方面:课程实验的出勤率、平时实验过程(实验报告)的完成情况、上机操作考核情况及学生在课堂之外的实验情况。
对实验指导老师的评价主要包括三个方面,包括对实验内容的设计与更新、实验的过程管理及在线指导情况。
通过这些客观的评测,强化提高学生学生进行ASIC。
哈工大数电实验报告
H a r b i n I n s t i t u t e o f T e c h n o l o g y数字逻辑电路与系统课程名称:数字逻辑电路与系统院系:电子与信息工程学院班级:哈尔滨工业大学2014年11月实验二时序逻辑电路的设计与仿真3.1 实验要求本实验练习在Maxplus II 环境下时序逻辑电路的设计与仿真,共包括6 个子实验,要求如下:3.2同步计数器实验3.2.1 实验目的1. 练习使用计数器设计简单的时序电路2. 熟悉用MAXPLUS II 仿真时序电路的方法3.2.2 实验预习要求1. 预习教材《6-3 计数器》2. 了解本次实验的目的、电路设计要求3.2.3 实验原理计数器是最基本、最常用的时序逻辑电路之一,有很多品种。
按计数后的输出数码来分,有二进制及BCD 码等区别;按计数操作是否有公共外时钟控制来分,可分为异步及同步两类;此外,还有计数器的初始状态可否预置,计数长度(模)可否改变,以及可否双向等区别。
本实验用集成同步4 位二进制加法计数器74LS161 设计N 分频电路,使输出信号CPO 的频率为输入时钟信号CP 频率的1/N,其中N=(01mod+8=9。
9分频电路。
下表为74LS161 的功能表。
3.2.4 实验步骤1. 打开MAXPLUS II, 新建一个原理图文件,命名为EXP3_2.gdf。
2. 按照实验要求设计电路,将电路原理图填入下表。
9分频电路。
3. 新建一个波形仿真文件,命名为EXP3_2.scf,加入时钟输入信号CP 及输出信号CPO,并点击MAXPLUS II 左侧工具条上的时钟按钮,将CP 的波形设置为周期性方波。
4. 运行仿真器得到输出信号CPO 的波形,将完整的仿真波形图(包括全部输入输出信号)附于下表。
3.3 时序电路分析实验3.3.1 实验目的练习用MAXPLUS II 进行时序逻辑电路的分析。
3.3.2 实验预习要求1. 预习教材《6-3-1 异步二进制计数器》2. 了解本次实验的目的、电路分析要求3.3.3 实验原理分析如下时序电路的功能,并判断给出的波形图是否正确。
螺线管磁场测定
螺线管磁场测定本实验仪用集成霍耳传感器测量通电螺线管内直流电流与霍耳传感器输出电压之间关系,证明霍耳电势差与螺线管内磁感应强度成正比,了解和熟悉霍耳效应的重要物理规律;用通电长直螺线管中心点磁感应强度理论计算值作为标准值来校准集成霍耳传感器的灵敏度;熟悉集成霍耳传感器的特性和应用;用该集成霍耳传感器测量通电螺线管内的磁感应强度与位置刻度之间的关系,作磁感应强度与位置的关系图。
从而学会用集成霍耳元件测量磁感应强度的方法。
一、实验目的1.了解和掌握集成线性霍耳元件测量磁场的原理和方法;2.学会测量霍耳元件灵敏度的方法。
3.精确测量通电螺线管磁场分布, 二、实验原理霍耳元件的作用(如右图2所示):若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直于该半导体,是电子流方向由洛伦茨力作用而发生改变,在薄片两个横向面a 、b 之间应产生电势差,图2 霍耳元件 这种现象称为霍耳效应。
在与电流I 、磁场B 垂直方向上产生的电势差称为霍耳电势差,通常用U H 表示。
霍耳效应的数学表达式为:IB K IB dR U H H H ==)((1)其中R H 是由半导体本身电子迁移率决定的物理常数,称为霍耳系数。
B 为磁感应强度,I 为流过霍耳元件的电流强度,K H 称为霍耳元件灵敏度。
虽然从理论上讲霍耳元件在无磁场作用(即B=0)时,U H =0,但是实际情况用数字电压表测时并不为零,这是由于半导体材料结晶不均匀及各电极不对称等引起附加电势差,该电势差U 0称为剩余电压。
随着科技的发展,新的集成化(IC)元件不断被研制成功。
本实验采用SS95A 型集成霍耳传感器(结构示意图如图3所示)是一种高灵敏度集成霍耳传感器,它由霍耳元件、放大器和薄膜电阻剩余电压补偿组成。
测量时输出信号大,并且剩余电压的影响已被消除。
对SS95A 型集成霍耳传感器,它由三根引线,分别是:‚V +‛、‚V -‛、‚V out ‛。
其中‚V +‛和‚V -‛构成‚电流输入端‛,‚V out ‛和‚V -‛构成‚电压输出端‛。
数字IC课程设计
哈尔滨理工大学软件学院课程设计报告课程数字IC设计(双语)题目用两个4选1多路选择组成一个八选一多路选择器班级集成09-3班专业集成电路设计与集成系统学生徐开放学号 0914020328指导教师陆学斌2011年12月15日目录1课程设计名称 (1)2课程设计内容 (1)3课程设计目的 (1)4课程设计要求 (1)5使用软件 (1)6课程设计原理 (1)7课程设计网表 (6)8结果及分析 (9)9延时手工计算 (10)10总结 (11)11参考书目 (11)1.课程设计名称设计一个用两个4选1数据选择器接成8选1数据选择器。
2.课程设计内容设计一个用两个4选1数据选择器接成8选1数据选择器,要求要有超前进位,减小输出的延迟,采用0.5um工艺设计。
3.课程设计目的训练学生综合运用学过的数字集成电路的基本知识,独立设计相对复杂的数字集成电路的能力。
4.课程设计要求4.1、按设计指导书中要求的格式书写,所有的内容一律打印;4.2、报告内容包括设计过程、仿真的HSPICE网表,软件仿真的结果及分析、延时的手工计算;4.3、要有整体电路原理图,仿真的波形图;4.4、软件仿真必须要有必要的说明;要给出各个输入信号的具体波形和输出信号的测试结果。
4.5、写出对应的HSPICE设计网表,网表仿真结果符合设计要求。
把仿真图形附在报告上。
4.6、设输入端的电容为C inv,输出端的负载电容为5000C inv,从输入到输出任意找一通路,优化通路延时,手工计算确定通路中每个门对应的晶体管的尺寸。
每组三个同学选择不能为同一通路。
此部分的计算参数可采用书中第六章的参数。
4.7、各种器件的具体结构可参考阎石的《数字电子技术基础》一书。
不允许有完全一样的报告,对于报告完全相同者,记为不及格。
5.使用软件软件有Mutisin11.0,quartusII 9.1,Hspice_Y-2006.03-SP1和COSMOS-SCOPE。
逻辑IC功能和参数测试准实验报告
电子科技大学实验报告学生姓名:鄢传宗,梁成豪学号:2011031030010,2011031030009 指导教师:王向展实验地点:211楼307 实验时间:2014.5.28一、实验室名称:微电子技术实验室二、实验项目名称:逻辑IC功能和参数测试三、实验学时:4四、实验原理:1.MOSIC静态功耗(也称维持功耗)P DDMOSIC的静态功耗是:当输入端为固定的逻辑电乎,输出端空载,输出状态固定不变时电路所消耗的能量。
静态功耗是温度的函数。
由于静态时从电源到地没有直流通路,MOSIC静态功耗很小,它只取决于漏电情况。
2.输出高电平V OH(低电平V OL),输入高电平V IH(低电平V IL)(1)当输入端为固定的V CC或V SS,输出端空载时,所输出的固定电平称为输出高电平V OH及输出低电平V OL。
(2)当输出端维持应有的V OH和V OL时,输入端所能输入的最小高电平V IH或最大低电平V IL。
V OH(V OL)越接近V CC(V SS),V IH(V IL)越远离V CC(V SS),其电路性能越好。
3.逻辑功能和最高工作频率f MAX(1)先根据被测的IC应有的逻辑功能确定输入波形的时序,搭一个相应的测试电路产生这些输入波形并把共送入被测IC的输入端,用示波器或逻辑分析仪测试输入输出波形所对应的时序关系。
(2)最高工作频率f MAX取决于电路各级在动态工作中的充放电速度。
在额定的负载下,保持正确的逻辑关系和额定的波形幅度,电路所能承受的输入脉冲的频率为f MAX。
4.工作功耗P W静态功耗和动态功耗的总和为电路的工作功耗。
(1)动态功耗包括瞬态功耗P T和交变功耗P A。
其中P T是在动态工作中电源对电容(包括级间栅电容、pn结电容和输出级负载电容等)的充放电所消耗的能量。
(2)P A是由于在交变时波形的上升沿和下降沿使得电路从V CC到V SS有直流通路而消耗的能量。
(3)动态功耗是无法单独测试的,而对于CMOS电路由于P DD很小,因此(4)在固定负载情况下它与工作频率成正比,在固定工作频率时,它与负载电容成正比。
芯片实训报告
一、引言随着科技的飞速发展,集成电路(IC)产业已成为全球最具竞争力的产业之一。
芯片作为集成电路的核心,其研发、设计、制造和应用已成为我国科技发展的关键领域。
为了提高我国芯片产业的技术水平和创新能力,我们开展了芯片实训课程,旨在让学生深入了解芯片产业,掌握芯片设计的基本方法,提高动手实践能力。
以下是我对本次芯片实训的总结报告。
二、实训内容本次实训课程主要分为三个部分:芯片设计基础、芯片设计与仿真以及芯片制造工艺。
1. 芯片设计基础实训课程首先介绍了芯片设计的基本概念、发展历程和行业现状。
通过学习,我了解到芯片设计主要包括数字电路设计、模拟电路设计、版图设计、封装设计等环节。
在此基础上,我们还学习了数字逻辑电路、模拟电路、微电子器件等专业知识,为后续芯片设计打下坚实基础。
2. 芯片设计与仿真在掌握了芯片设计基础知识后,我们开始进行芯片设计与仿真。
实训课程采用了FPGA(现场可编程门阵列)作为设计平台,通过Verilog语言进行芯片设计。
在导师的指导下,我们完成了以下任务:(1)设计一个简单的数字电路,如全加器、译码器等;(2)利用FPGA实现设计的数字电路,并进行功能测试;(3)根据实际需求,对设计的数字电路进行优化,提高其性能;(4)利用仿真软件对设计的数字电路进行功能仿真,验证其正确性。
3. 芯片制造工艺芯片制造工艺是芯片产业的核心环节,实训课程介绍了以下内容:(1)半导体材料与器件;(2)集成电路制造工艺流程;(3)光刻、刻蚀、离子注入等关键工艺;(4)封装技术。
三、实训收获通过本次芯片实训,我收获颇丰:1. 理论知识与实践能力的提升在实训过程中,我不仅巩固了所学理论知识,还学会了将理论知识应用于实际项目。
通过设计、仿真和制造工艺的学习,我对芯片产业有了更深入的了解。
2. 团队协作能力的提高实训课程要求学生分组进行项目设计,这使我学会了与他人沟通、协作,共同完成任务。
在团队中,我学会了倾听他人的意见,尊重他人的观点,为团队的成功贡献力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨理工大学软件与微电子学院实验报告
(2017-2018第一学期)
课程名称:数字IC
班级:集成15-1
学号:1514020114
姓名:卢轶
实验全过程记录
一、实验目的:
了解深亚微米工艺下门电路延时的计算方法。
二、实验内容:
利用0.18um 工艺写出下图的HSPICE 网表,仿真出其瞬态响应曲线,求出传播延时,并与理论结果相比较。
三、实验用设备仪器及材料:
软件需求:HSPICE
硬件需求:微型计算机
四、实验原理图:
50fF
五、实验方法及步骤:
1.根据电路结构编写网表
2.编译
3.调试、直到运行成功
4.观察输出波形
六、实验结果分析:
1、网表:
*lab5
M1 out in vdd vdd pmos w=0.4u l=0.2u ad=80p as=80p
M2 out in gnd gnd nmos w=0.2u l=0.2u ad=80p as=80p
M3 out1 out vdd vdd pmos w=4u l=2u ad=800p as=800p
M4 out1 out gnd gnd nmos w=2u l=2u ad=800p as=800p
vdd vdd 0 1.8
vin in 0 pulse 0 1.8 10n 1n 1n 199n 400n
.include 'i:\Digital_IC_design_lab\180nm_bulk.l'
.tran 0.1n 1u
.end
2、波形图:
总结:
通过本次实验,我学会了深亚微米工艺下门电路延时的计算方法。
在试验过程中有很多语句不明白是什么意思,通过老师的讲解,顺利完成本次实验。
实验成绩:指导教师:年月日。