仪表自动控制实验报告
自动控制原理实验报告
自动控制原理实验报告一、实验目的。
本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。
二、实验原理。
PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。
比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。
PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。
三、实验装置。
本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。
四、实验步骤。
1. 将PID控制器与被控对象连接好,并接通电源。
2. 调节PID控制器的参数,使其逐渐接近理想状态。
3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。
4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。
五、实验结果与分析。
经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。
因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。
六、实验总结。
通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。
同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。
七、实验心得。
本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。
只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。
八、参考文献。
[1] 《自动控制原理》,XXX,XXX出版社,2010年。
[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。
自动控制原理实验报告
自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。
实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。
实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。
实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。
实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。
在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。
结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。
我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。
总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。
通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。
这对我们今后的学习和工作都具有重要的意义。
自动控制实训实验报告
一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。
二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。
本实验主要研究典型环节的阶跃响应和频率响应。
1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。
阶跃响应可以反映系统的稳定性、快速性和准确性。
2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。
频率响应可以反映系统的动态性能和抗干扰能力。
三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。
四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录阶跃响应曲线。
(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。
2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入正弦信号,改变频率,观察并记录频率响应曲线。
(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。
3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。
(3)根据期望的性能指标,设计校正环节,并搭建校正电路。
(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。
(5)分析校正后的阶跃响应曲线,验证校正效果。
五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。
(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。
2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。
自动控制原理实验报告分析
自动控制原理实验报告分析自动控制原理实验报告分析引言:自动控制原理是现代工程领域中的重要学科,它研究的是如何设计和实现能够自动调节和控制系统的方法和技术。
在本次实验中,我们通过搭建一个简单的控制系统,来深入了解自动控制原理的基本概念和应用。
实验目的:本次实验的主要目的是通过实际操作,掌握自动控制原理的基本原理和方法,包括PID控制器的调节和系统的稳定性分析。
实验过程:首先,我们搭建了一个简单的温度控制系统。
该系统由一个加热器、一个温度传感器和一个PID控制器组成。
我们通过调节PID控制器的参数,使得系统能够稳定地控制温度在一个设定值附近。
然后,我们进行了一系列的实验操作。
首先,我们调节了PID控制器的比例、积分和微分参数,观察系统的响应情况。
随后,我们分别增大和减小了设定温度值,观察系统的稳定性和响应速度。
最后,我们还对系统进行了干扰实验,通过给系统施加一个外部干扰,观察系统的抗干扰能力。
实验结果:通过实验,我们得到了一系列的实验结果。
首先,我们发现当PID控制器的比例参数过大时,系统会出现超调现象,温度会波动较大。
而当比例参数过小时,系统的响应速度会变慢,温度调节不及时。
接着,我们发现当积分参数过大时,系统会出现积分饱和现象,温度无法稳定。
而当积分参数过小时,系统的稳定性会变差,温度波动较大。
最后,我们发现当微分参数过大时,系统会对噪声产生较大的响应,温度调节不平稳。
而当微分参数过小时,系统的响应速度会变慢,温度调节不及时。
讨论与分析:通过对实验结果的分析,我们可以得出以下结论:PID控制器的参数调节对系统的稳定性和响应速度有着重要的影响。
比例参数决定了系统对误差的响应程度,积分参数决定了系统对误差的积累程度,微分参数决定了系统对误差变化率的响应程度。
因此,在实际应用中,我们需要根据系统的特点和要求,合理选择PID控制器的参数,以达到最佳的控制效果。
结论:通过本次实验,我们深入了解了自动控制原理的基本概念和应用。
自动控制系统实验报告
自动控制系统实验报告
《自动控制系统实验报告》
摘要:本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性。
通过实验结果的分析和总结,得出了对于自动控制系统设计和优化的一些有益的结论。
1. 引言
自动控制系统是现代工程中的重要组成部分,它能够实现对系统的自动调节和控制,提高系统的稳定性、性能和鲁棒性。
因此,对自动控制系统的研究和实验具有重要意义。
2. 实验目的
本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性,为系统设计和优化提供参考依据。
3. 实验内容
本实验采用了XXX控制系统作为研究对象,通过对系统的参数调节和实验数据的采集,分析系统的稳定性、性能和鲁棒性等方面的特性。
4. 实验结果分析
通过实验数据的分析和处理,得出了系统的稳定性较好,在一定范围内能够实现对系统的有效控制;系统的性能表现良好,能够满足实际工程的需求;系统的鲁棒性较强,对外部扰动具有一定的抵抗能力。
5. 结论
通过本实验的研究,得出了对于自动控制系统设计和优化的一些有益的结论,为相关工程应用提供了一定的参考价值。
6. 展望
未来可以进一步深入研究自动控制系统的优化设计和应用,为工程实践提供更为有效的控制方案。
综上所述,通过对自动控制系统的实验研究,得出了一些有益的结论,为相关工程应用提供了一定的参考价值。
希望本实验的研究成果能够为自动控制系统的设计和优化提供一定的指导和帮助。
仪表实验报告
实验一温度控制系统(一)一、实验目的1、了解温度控制系统的组成环节和各环节的作用。
2、观察比例、积分、微分控制规律的作用,并比较其余差及稳定性。
3、观察放大倍数P、积分时间I、微分时间dt对控制系统(闭环特性)控制品质的影响。
二、温度控制系统的组成电动温度控制系统是过程控制系统中常见的一种,其作用是通过一套自动控制装置,见图1,使炉温自动维持在给定值。
图1 温度控制系统炉温的变化由热电偶测量,并通过电动温度变送器转化为标准信号4~20mA直流电流信号,传送到电子电位差计进行记录,同时传送给电动控制器,控制器按偏差的大小、方向,通过预定控制规律的运算后,输出4~20mA直流电流信号给可控硅电压调整器,通过控制可控硅的导通角,以调节加到电炉(电烙铁)电热元件上的交流电压,消除由于干扰产生的炉温变化,稳定炉温,实现自动控制。
三、实验内容1、在相同扰动作用下,作出两条不同比例度的纯比例温度控制动态曲线,综合分析比例度对控制系统的影响。
2、在相同扰动作用下,作出两条相同比例度不同积分时间的比例积分温度控制动态曲线,分析积分时间对控制系统的影响3、作出比例积分微分温度控制动态曲线,综合分析微分时间对控制系统的影响。
4、观察小比例度时的温度两只动态曲线,综合分析原因。
四、实验步骤1、观察系统各环节的结构、型号、电路的连接,熟悉可控硅电压调整器和电动控制器上各开关、旋钮的作用。
2、控制系统闭环特性的测定:在以下实验中使用的P1 ,P2 ,I1,I2 ,dt1,Cr1的具体数值由各套实验装置具体提供。
(1)考察比例作用将δ置于某值P1 ,积分时间置最大(I=999),微分时间dt置于提供值不变,Cr1置于7,将干扰开关从“短”切向“干扰”,产生一个阶跃干扰(此时为反向干扰),同时在记录仪的记录线上作一记号,以记录阶跃干扰加入的时刻,观察并记录在纯比例作用下达到稳定的时间及余差大小。
(2)考察积分作用保持P=P1不变,置I=I1,同时在记录仪的记录线上作一记号,以记录积分作用加入的时刻,注意观察积分作用如何消除余差,直到过程基本稳定。
自动控制原理实验报告
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
自动控制原理实验报告分析
自动控制原理实验报告分析1. 引言自动控制原理是现代工程中非常重要的一门学科。
它研究如何设计和分析能够实现自动化控制的系统,以满足特定的性能要求。
通过实验,我们可以验证控制系统的性能,并深入理解自动控制原理的基本概念和工作原理。
本文将对自动控制原理实验进行详细分析和总结。
2. 实验目的本次实验的目的是研究PID(比例-积分-微分)控制器在温度控制系统中的应用。
通过调节PID控制器的参数,我们可以观察到不同控制参数对系统稳定性、响应速度和超调量等性能指标的影响。
3. 实验步骤本次实验使用了一个温度控制系统。
我们需要调节PID控制器的三个参数(比例增益、积分时间和微分时间)来实现温度的稳定控制。
具体的实验步骤如下:3.1 准备工作在进行实验之前,我们需要确保实验所需的设备和软件已经准备就绪。
这包括温度传感器、温度控制器、计算机等。
3.2 连接系统将温度传感器连接到温度控制器,并将温度控制器连接到计算机。
确保连接正确并稳定。
3.3 设置初始参数在实验开始前,我们需要设置PID控制器的初始参数。
一般情况下,我们可以先将比例增益和积分时间设置为较小的值,微分时间设置为0。
3.4 开始实验启动温度控制系统,并记录温度的变化。
观察温度的稳定性、响应速度和超调量等指标,并记录下来。
3.5 调节参数根据实验结果,我们可以调节PID控制器的参数来改善系统的性能。
通过增大比例增益可以提高系统的响应速度,但可能会导致较大的超调量。
增大积分时间可以减小超调量,但可能会降低系统的稳定性。
调节微分时间可以改善系统的稳定性和响应速度。
3.6 重复实验根据实验结果,我们可以不断调节PID控制器的参数,并进行多次实验,以得到更好的控制效果。
4. 实验结果分析根据实验的记录数据,我们可以对实验结果进行分析。
通过观察温度的变化曲线以及性能指标的大小,我们可以得出如下结论:•较大的比例增益可以提高系统的响应速度,但会导致较大的超调量。
•较大的积分时间可以减小超调量,但会降低系统的稳定性。
自动控制实验报告
自动控制实验报告自动控制实验报告「篇一」一、实验目的1、掌握直流稳压电源的功能、技术指标和使用方法;2、掌握任意波函数新号发生器的功能、技术指标和使用方法;3、掌握四位半数字万用表功能、技术指标和使用方法;4、学会正确选用电压表测量直流、交流电压。
二、实验原理(一)GPD—3303型直流稳压电源主要特点:1、三路独立浮地输出(CH1、CH2、FIXED)2、 CH1、CH2稳压值0―32 V,稳流值0―3。
2A3、两路串联(SER/IEDEP),两路并联(PARA/IEDEP)(二)RIGOL DG1022双通道函数/任意波函数信号发生器主要特点1、双通道输出,可实现通道耦合,通道复制2、输出五种基本波形:正弦波、方波、锯齿波、脉冲波、白噪声,并内置48种任意波形三、实验仪器1、直流稳压电源1台2、数字函数信号发生器1台3、数字万用表1台4、电子技术综合试验箱1台四、实验数据记录与误差分析1、直流电压测量(1)固定电源测量:测量稳压电源固定电压2.5V、3.3V、5V;误差分析:E1=|2.507—2.5|÷2。
5×100%=0.28%E2=|3.318—3。
3|÷3.3×100%=0.55%E3=|5.039—5|÷5×100%=0.78%(2)固定电源测量:测量实验箱的固定电压±5V、±12V、—8V;误差分析:E1=|5.029—5|÷5×100%=0.58%E2=|5.042—5|÷5×100%=0.84%E3=|11.933—12|÷12×100%=0.93%E3=|11.857—12|÷12×100%=0.56%E3=|8.202—8|÷8×100%=2.5%(3)可变电源测量;误差分析:E1=|6.016—6|÷6×100%=0.27%E2=|12.117—12|÷12×100%=0.98% E3=|18.093—18|÷18×100%=0.51%(4)正、负对称电源测量;2、正弦电压(有效值)测量(1)正弦波fs=1kHz;(2)正弦波fs=100kHz;3、实验箱可调直流信号内阻测量4、函数信号发生器内阻(输出电阻)的测量;自动控制实验报告「篇二」尊敬的各位领导、同事:大家好!在过去的一年多里,因为有公司领导的关心和指导,有热心的同事们的努力配合和帮助,所以能较圆满的完成质检部门的前期准备工作和领导交代的其他工作,作为质检专责我的主要工作职责就掌握全厂的工艺,负责全厂的质量工作,审核化验结果,并定期向上级领导做出汇报,编写操作规程并组织实施,编写质量和实验室的管理制度以及实验设备的验收等工作。
自动控制原理实验报告
自动控制原理实验报告实验目的本次自动控制原理实验的目的是通过对传统反馈控制系统的模拟和实现,了解并掌握基本的控制原理和控制器设计方法,进一步深化对自动控制理论的理解。
实验装置本次实验使用的是一台水位控制系统,该系统由电源、电机、计量储水罐、信号检测器、PID控制器、水泵等组成。
电源将电能转换为机械能,通过水泵将水流入到计量储水罐中,信号检测器对储水罐中的水位进行检测并反馈给PID控制器,PID控制器对信号进行处理并控制电机的转速,从而实现对水位的控制。
实验步骤1. 确定实验参数在进行实验之前,首先需要确定实验的一些参数,如PID控制器的比例系数、积分系数以及微分系数等。
这需要根据具体实验情况进行设定,以确保控制系统具有良好的稳定性和响应能力。
2. 实施控制将水泵开启,令水流入计量储水罐中,同时PID控制器对信号进行处理,调节电机的转速以控制水位。
实验过程中需要注意及时进行系统动态的监控和调整,以确保控制系统的稳定性和故障排除。
3. 结束实验并分析结果实验结束后,需要对实验结果进行分析,包括控制系统的响应速度、稳定性以及对参数的灵敏度等。
通过对实验数据的收集和分析,可以进一步提高对自动控制理论的理解和应用能力。
实验结果分析本次实验中,我们实现了对水位的控制,并对PID控制器的参数进行了设定和调整。
实验结果表明,我们所设计的控制系统具有较好的稳定性和响应能力,并且对参数的灵敏度较高。
同时,通过实验数据的分析,我们也发现了一些问题和不足之处,如控制系统的动态响应速度过慢等,这需要我们在实际应用中加以改进和完善。
结论本次自动控制原理实验通过实现对水位的控制,进一步加深了对自动控制理论的理解,掌握了基本的控制原理和控制器设计方法。
同时,通过实验数据的分析和总结,也为今后在自动控制领域的实际应用提供了一定的参考和指导。
自动控制原理实验报告
自动控制原理实验报告摘要:本实验通过对自动控制原理的研究与实践,旨在深入了解自动控制系统的基本原理,以及相关的实验应用。
通过实验的设计与实施,我们在实践中学习了控制系统的结构、传递函数、稳定性、稳态误差等内容,并通过使用PID控制器对物理实验系统进行控制,从而对自动控制系统有了更加深入的理解。
引言:自动控制原理是现代工程控制领域的基础理论之一,在工业、交通、通信等领域都有广泛的应用。
自动控制原理实验是培养学生工程实践能力和动手能力的重要实践环节。
本实验通过对自动控制原理相关实验的设计与实践,让我们深入了解了自动控制系统的基本原理,并通过实际操作对理论知识进行了实际应用。
实验目的:1. 了解自动控制系统的基本结构和原理;2. 学习如何建立传递函数,并分析系统的稳定性;3. 熟悉PID控制器的参数调节方法;4. 掌握如何利用PID控制器对物理实验系统进行控制。
实验原理与方法:1. 实验装置搭建:我们搭建了一个简单的电路系统,包括输入信号源、控制器、执行器和输出传感器。
通过控制器对执行器的控制,实现对输出信号的调节。
2. 传递函数建立:使用系统辨识方法,通过对输入和输出信号的采集,建立系统的传递函数。
经过数据处理和分析,得到系统的传递函数表达式。
3. 稳定性分析:对系统的传递函数进行稳定性分析,包括零极点分析和Nyquist稳定性判据。
根据分析结果,判断系统的稳定性。
4. PID参数调节:根据传递函数和系统要求,使用PID控制器对系统进行调节。
根据实际情况进行参数调节,使得系统的响应达到要求。
实验结果与讨论:我们通过以上方法,成功地建立了控制系统的传递函数,并进行了稳定性分析。
通过对PID控制器参数的调节,使系统的稳态误差达到了要求。
通过实验,我们深刻理解了自动控制系统的基本原理,并学会了如何应用具体方法进行实际操作。
实验结论:通过自动控制原理的实验研究,我们对控制系统的基本原理有了更加深入的了解。
实践中,我们通过搭建实验装置、建立传递函数、进行稳定性分析和PID参数调节等实验操作,使得理论知识得到了更加全面的应用和巩固。
自动控制实验报告单
一、实验名称自动控制原理实验二、实验目的1. 熟悉并掌握自动控制原理实验的基本操作和实验设备的使用方法。
2. 通过对典型环节的时域响应、线性系统的矫正等实验,加深对自动控制理论的理解。
3. 培养学生分析问题、解决问题的能力,提高实验技能。
三、实验原理自动控制原理实验是自动控制专业一门重要的实验课程,旨在通过实验使学生掌握自动控制的基本原理和方法,提高学生的实验技能。
实验主要包括以下内容:1. 典型环节的时域响应:研究比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节的时域响应,了解参数变化对动态特性的影响。
2. 线性系统的矫正:通过串联校正、反馈校正和复合控制校正等方法,提高系统的稳定性、快速性和准确性。
四、实验仪器1. PC机一台2. TD-ACC(或TD-ACS)实验系统一套3. 模拟信号发生器4. 示波器5. 万用表五、实验内容及步骤实验一:典型环节的时域响应1. 实验内容:(1)比例环节(2)积分环节(3)比例积分环节(4)惯性环节(5)比例微分环节(6)比例积分微分环节2. 实验步骤:(1)连接实验电路,设置参数;(2)输入阶跃信号,观察并记录输出信号;(3)分析输出信号,比较理想响应与实际响应的差异;(4)改变参数,观察动态特性的变化。
实验二:线性系统的矫正1. 实验内容:(1)串联校正(2)反馈校正(3)复合控制校正2. 实验步骤:(1)根据期望的时域性能指标,推导出二阶系统的串联校正环节的传递函数;(2)搭建校正环节的实验电路;(3)输入阶跃信号,观察并记录输出信号;(4)分析输出信号,验证校正效果。
六、实验结果与分析实验一:典型环节的时域响应1. 比例环节:输出信号与输入信号成线性关系,无延时。
2. 积分环节:输出信号随时间逐渐增大,延时为积分时间常数。
3. 比例积分环节:输出信号先随时间增大,然后趋于稳定,延时为积分时间常数。
4. 惯性环节:输出信号随时间逐渐增大,延时为惯性时间常数。
自动控制实验报告
一、实验目的1. 熟悉并掌握自动控制实验系统的基本操作方法。
2. 了解典型线性环节的时域响应特性。
3. 掌握自动控制系统的校正方法,提高系统性能。
二、实验设备1. 自动控制实验系统:包括计算机、XMN-2自动控制原理模拟实验箱、CAE-PCI软件、万用表等。
2. 电源:直流稳压电源、交流电源等。
三、实验原理自动控制实验系统主要由模拟实验箱和计算机组成。
通过模拟实验箱,可以搭建不同的自动控制系统,并通过计算机进行实时数据采集、分析、处理和仿真。
四、实验内容及步骤1. 搭建比例环节实验(1)根据实验要求,搭建比例环节实验电路。
(2)设置输入信号,观察并记录输出信号。
(3)分析比例环节的时域响应特性。
2. 搭建积分环节实验(1)根据实验要求,搭建积分环节实验电路。
(2)设置输入信号,观察并记录输出信号。
(3)分析积分环节的时域响应特性。
3. 搭建比例积分环节实验(1)根据实验要求,搭建比例积分环节实验电路。
(2)设置输入信号,观察并记录输出信号。
(3)分析比例积分环节的时域响应特性。
4. 搭建系统校正实验(1)根据实验要求,搭建系统校正实验电路。
(2)设置输入信号,观察并记录输出信号。
(3)分析系统校正前后的时域响应特性。
五、实验结果与分析1. 比例环节实验结果实验结果显示,比例环节的输出信号与输入信号成正比关系,且响应速度较快。
2. 积分环节实验结果实验结果显示,积分环节的输出信号与输入信号成积分关系,且响应速度较慢。
3. 比例积分环节实验结果实验结果显示,比例积分环节的输出信号既具有比例环节的快速响应特性,又具有积分环节的缓慢响应特性。
4. 系统校正实验结果实验结果显示,通过校正后的系统,其响应速度和稳态误差均有所提高。
六、实验结论1. 通过本次实验,掌握了自动控制实验系统的基本操作方法。
2. 熟悉了典型线性环节的时域响应特性。
3. 学会了自动控制系统的校正方法,提高了系统性能。
七、实验感想本次实验让我深刻认识到自动控制理论在实际工程中的应用价值。
化工仪表及自动化实验报告
化工仪表及自动化实验报告篇一:实验三—化工仪表及自动化实验报告实验报告《化工仪表及自动化》姓名:学号:专业班级:承德石油高等专科学校机械系2014年3实验三、二阶双容水箱液位PID控制实验专业:化工设备维修技术学时:2 实验类型:(验证、综合、设计)实验地点:工业中心C306 一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。
2、分析P、PI和PID调节时的过程图形曲线。
3、定性地研究P、PI和PID调节器的参数对系统性能的影响。
实验要求:(必修、选修)二、实验器材CS2000型过程控制实验装置配置:C3000过程控制器、实验连接线。
三、实验原理图3-1 二阶单回路PID控制方框图图3-1为双容水箱液位控制系统。
这也是一个单回路控制系统,它与实验四不同的是有两个水箱相串联,控制的目的是使下水箱的液位高度等于给定值所期望的高度,具有减少或消除来自系统内部或外部扰动的影响功能。
显然,这种反馈控制系统的性能完全取决于调节器的结构和参数的合理选择。
由于双容水箱的数学模型是二阶的,故它的稳定性不如单容液位控制系统。
对于阶跃输入(包括阶跃扰动),这种系统用比例(P)调节器去控制,系统有余差,且与比例度成正比,若用比例积分(PI)调节器去控制,不仅可实现无余差,而且只要调节器的参数K和Ti调节得合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的控制作用,从而使系统既无余差存在,又使其动态性能得到进一步改善。
四、实验内容和步骤此实验以中水箱的液位为控制对象。
1、储水箱进水阀,主管路泵阀,副管路泵阀,关闭其他手阀,将储水箱灌满水。
打开上水箱进水阀,将上水箱通中水箱出水阀、中水箱出水阀打开至适当开度。
2、将中水箱的液位信号送至C3000过程控制器模拟量输入通道1,将模拟量输出通道12信号送电动调节阀,具体接线如下图所述:仪表回路的组态:点击menu——进入组态——控制回路——PID控制回路PID01的设置,给定方式设为:内给定;测量值PV设为:AI01,其余默认即可,量程0-100。
自动控制原理实验报告实验二-频率响应测试
自动控制原理实验报告实验二-频
率响应测试
自动控制原理实验报告实验二-频率响应测试是一个实验,用于测试一个系统的频率响应。
它包括了数学模型的描述,实验处理装置的设计,以及实验结果的分析。
实验前,我们需要对系统的频率响应特性进行数学模型分析,来确定具体实验中参数的取值,如时间常数、截止频率和放大器带宽等。
在实验中,根据实验要求,我们设计了一套实验处理装置,由PC机,通道放大器,放大器反馈回路,传感器,相应示波器以及控制软件组成。
在实验中,我们采用正弦信号作为输入,通过PC机的控制软件调节信号的频率和幅值,然后将信号输入到放大器中,放大器放大信号,输出到反馈回路中,反馈回路中的传感器检测反馈信号,将反馈信号输出到PC机,再通过相应示波器显示出来,以便观察系统的响应。
在实验中,我们对频率响应进行了测试,首先,我们使用定时器设置不同频率的正弦信号作为输入,观察系统的频率响应特性,并记录响应曲线;其次,我们使用扫频器模拟正弦信号,以每个正弦信号的频率进行不同振幅的扫描,观察系统的响应特性,并记录响应曲线;最后,我
们使用控制软件对系统进行调整,以提高系统的响应能力,并记录响应曲线。
实验结束后,我们对实验结果进行了分析,并将系统的频率响应与理论值进行比较,以验证实验结果的准确性。
根据分析结果,我们得出结论:系统的频率响应符合理论值,控制软件的调整有效提高了系统的响应能力。
总之,自动控制原理实验报告实验二-频率响应测试是一个有益的实验,它不仅帮助我们更好地了解系统的频率响应特性,而且也可以帮助我们更好地控制系统,以提高系统的响应能力。
自动控制原理实验报告
自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。
二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。
2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。
3. 将编写好的代码上传至Arduino UNO开发板。
4.将电源适配器连接至系统,确保实验装置正常供电。
5.启动实验系统并观察电机的转动情况。
6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。
五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。
通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。
2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。
这也是导致实际转动角度与目标角度存在差异的一个重要原因。
3.电源适配器的稳定性对电机的转动精度也有一定的影响。
六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。
同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。
为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。
实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。
仪表实习报告
仪表实习报告实习时间,2021年6月1日至2021年8月31日。
实习单位,某某仪表有限公司。
实习内容:在某某仪表有限公司的实习期间,我主要负责参与仪表的研发和生产工作。
在实习的第一周,我首先对公司的产品进行了全面的了解,包括各种仪表的功能、结构和使用方法。
随后,我参与了公司的研发项目,负责对新产品的设计和测试工作。
通过这些工作,我对仪表的原理和应用有了更深入的了解,并学会了如何运用各种工具和软件进行产品设计和测试。
在实习的过程中,我还参与了公司的生产线工作,包括仪表的组装和调试。
通过这些工作,我不仅学会了如何正确地组装和调试仪表,还学会了如何保证产品质量和生产效率。
同时,我还参与了公司的质量管理工作,学会了如何进行质量控制和质量检验,确保产品符合标准和要求。
实习收获:通过这次实习,我不仅学会了仪表的基本原理和应用,还学会了如何进行产品设计、测试和生产。
同时,我还学会了如何进行质量管理和质量控制,确保产品的质量和性能。
通过实习,我不仅提高了自己的专业能力,还学会了如何与团队合作,如何处理工作中的问题和挑战。
在实习的过程中,我还收获了许多宝贵的经验和教训,这些将对我的未来发展产生积极的影响。
我将继续努力学习,提高自己的专业能力,为公司的发展和进步贡献自己的力量。
实习总结:通过这次实习,我对仪表的原理和应用有了更深入的了解,提高了自己的专业能力。
同时,我还学会了如何进行产品设计、测试和生产,以及如何进行质量管理和质量控制。
在未来的工作中,我将继续努力学习,提高自己的能力,为公司的发展和进步做出更大的贡献。
感谢公司给我这次宝贵的实习机会,我将珍惜这次实习经历,努力提升自己,为公司的发展贡献自己的力量。
自动控制原理实验报告
⾃动控制原理实验报告实验⼀典型环节的模拟研究及阶跃响应分析1、⽐例环节可知⽐例环节的传递函数为⼀个常数:当Kp 分别为0.5,1,2时,输⼊幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满⾜理论值。
2、积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1µf (0.33µf ),利⽤MATLAB ,模拟阶跃信号输⼊下的输出信号如图: T=0.1 T=0.033与实验测得波形⽐较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满⾜理论条件。
3、惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K=R f /R 1,T=R f C,(1)保持K=R f /R 1=1不变,观测T= 0.1秒,0.01秒(既R 1=100K,C=1µf ,0.1µf )时的输出波形。
利⽤matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较⼩,所以读数时误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2)保持T=R f C= 0.1s 不变,分别观测K=1,2时的输出波形。
仪表实习报告
仪表实习报告实习时间,2021年7月1日-2021年8月1日。
实习地点,某某仪表公司。
实习内容:在某某仪表公司的实习期间,我主要参与了仪表产品的生产、测试和质量控制工作。
在实习的第一周,我接受了公司的培训,了解了仪表产品的基本原理、生产流程和质量标准。
随后,我被安排到生产车间进行实际操作,学习了仪表产品的组装和调试技术。
在这个过程中,我不仅学到了很多专业知识,还锻炼了自己的动手能力和团队合作精神。
在实习的第二周,我开始参与仪表产品的测试工作。
我学习了如何使用测试设备对仪表产品进行各项性能测试,并且学会了如何分析测试数据,找出产品存在的问题并提出改进意见。
通过这一阶段的实习,我对仪表产品的性能和质量有了更深入的了解,也提高了自己的问题分析和解决能力。
在实习的最后一周,我参与了仪表产品的质量控制工作。
我学习了如何进行产品的抽样检验、质量评定和记录报告,了解了质量管理体系的运作流程和标准要求。
通过这段时间的实习,我深刻体会到了质量对于企业和产品的重要性,也提高了自己的责任心和细致性。
实习收获:通过这次实习,我不仅学到了很多专业知识和技能,还锻炼了自己的实际操作能力和问题解决能力。
在与同事的交流和合作中,我也学会了团队合作和沟通技巧。
同时,我对仪表产品的生产流程、测试方法和质量管理有了更深入的了解,为将来的工作打下了坚实的基础。
总结:这次仪表实习让我受益匪浅,不仅提高了我的专业能力,还培养了我的团队合作精神和责任意识。
我将会继续努力学习,不断提升自己,为将来的工作做好充分的准备。
感谢某某仪表公司给我这次宝贵的实习机会,我会珍惜并努力回报公司的信任和支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
1、通过实验对自控仪表和控制元器件有一具体认识。
2、了解自控原理,锻炼动手能力。
学习并安装不同的温度自控电路。
3、通过对不同电路的调试和数据测量,初步掌握仪表自控技术。
4、要求按流程组装实验电路,并测量加热反应釜温度随加热时间的变化。
5、要求待反应釜加热腔温度稳定后测量加热釜轴向温度分布规律。
二、实验原理
仪表自动控制在现代化工业生产中是极其重要的,它减少大量手工操作,使操作人员避免恶劣、危险环境,自动快速完成重复工作,提高测量精度,完成远程传输数据。
本实验就是仪表自动控制在化工生产和实验中非常重要的一个分支——温度的仪表自动控制。
图-1所示是本实验整套装置图。
按图由导线连接好装置,首先设置“人工智能控制仪”的最终温度,输出端输出直流电压用于控制“SSR”(固态继电器),则当加热釜温度未达到最终温度时“SSR”是通的状态,电路导通,给加热釜持续加热;当加热釜温度达到最终温度后“SSR”是不通的状态,电路断开,加热釜加热停止。
本实验研究的数据对象有两个:其一,测量仪表在加热釜开始加热后测量的升温过程,即温度随时间变化;其二,当温度达到最终温度并且稳定后,测量温度沿加热釜轴向的分布,即稳定温度随空间分布。
图-1 实验装置图
1、控温仪表,2测温仪表,3和4、测温元件(热电偶),5电加热釜式反应器,
6、保险
7、电流表,8固态调压器,9、滑动电阻,10、固态继电器(SSR),11、中间继电器,12、开关
实验装置中部分仪器的工作原理:
1,控温仪表:输出端输出直流电压控制SSR,当加热釜温度未达到预设温度时SSR使电路导通,持续加热;当达到最终温度后SSR使电路断开,加热停止。
2,测温仪表:与测温的热电偶相连,实时反馈加热釜内温度的测量值。
3、4,热电偶:分别测量加热腔和反应芯内的温度。
工作原理:热电阻是利用金属的电阻值随温度变化而变化的特性来进行温度测量。
它是由两种不同材料的导体焊接而成。
焊接的一端插入被测介质中,感受被测温度,称为热电偶的工作端或热端。
另一端与导线连接,称为自由端或冷端。
若将其两端焊接在一起,且两段存在温度差,则在这个闭路回路中有热电势产生。
如在回路中加一直流毫伏计,可见到毫伏计中有电势指示,电势的大小与两种不同金属的材料和温度有关,与导线的长短无关。
图2 热电偶工作原理
8,RSA固态调压器原理:通过电位器手动调节以改变阻性负载上的电压,来达到调节输出功率的目的(相当于一个滑动变阻器)。
输出端接加热回路,输入端接控温仪表。
10,SSR 固态继电器工作原理:固态继电器是一种无触点通断电子开关,为四端有源器件。
其中两个端子为输入控制端,另外两端为输出受控端。
在输入端加上直流或脉冲信号,输出端就能从关断状态转变成导通状态(无信号时呈阻断状态),从而控制较大负载。
可实现相当于常用的机械式电磁继电器一样的功能
(图3),即实现了用直流电控制交流电。
输出端接加热回路,输入端接控温仪表。
图3 固态继电器原理
11,中间继电器工作原理(如图4):中间继电器有常开、常闭两组触点。
电磁线圈不通电时,电磁铁T 不吸合,此时触点B,B’导通,称为常闭触点。
触点A,A’不导通称为常开触点。
反之,电磁线圈通电时,电磁铁T 吸合,触点B,B’的状态由闭合变为打开不导通,而触点 A,A’的状态由打开变为闭合而导通。
图-4 中间继电器工作原理图
图5 装置图
三、实验仪器
控温仪表(AI-T08),测温仪表(AI-T08),热电偶2个,中间继电器(C5×2 0910),固态继电器(SSR-10 DA),固态调压器(XSSVR-2410),电流表(69L9),开关,保险丝(RT18-32),导线若干,工具(螺丝刀2个),电加热釜式反应器。
四、实验步骤
1.根据实验流程图5组装仪表自动控制加热系统,注意在接线时用不同颜色的导线标识正负极,以便后期检查。
2.组装完毕后,经过指导教师检查后方可通电。
3.通电后设置控制仪表参数和温度。
设置目标温度为120℃,加热电流为1.0-1.5A。
4.打开加热电源,测定升温曲线。
每间隔1分钟进行一次记录,控制仪表和显示仪表都要记录。
注意加热釜温度上升很迅速。
)后,5.待加热釜内温度达到目标温度稳定在120℃(温度波动不超过1
再测量温度10分钟,则温度随时间变化测量完毕。
接下来测量轴向温度分布,
由下至上每间隔1厘米测一个点。
6.实验完毕后,拆除控制电路。
所用仪表、元器件、工具等放回原处。
五、实验数据记录
表-1 加热釜升温数据记录
表-2 加热釜轴向温度分布数据记录
9 101.9 29 101.3
10 104.8 30 98.3
11 106.6 31 94.3
12 108.7 32 88.3
13 110.8 33 88.0
14 112.2 34 85.5
15 113.5 35 79.4
16 114.4 36 67.7
17 115.2 37 55.7
18 115.6 38 51.8
19 115.8
六、数据处理
根据表1 、表2可以绘制加热釜升温图(图6)和图加热釜稳态轴向温度分布图(图7)。
图6 升温曲线
图7 加热釜稳态轴向温度分布图
由图6可以看出,随着加热的进行,加热釜的加热腔温度在前5分钟快速上升,并到达指定温度120℃,此后温度一直维持在120℃,伴随小幅度的上下波动,可求得此段平均温度为120.173℃,稍高与设定值120℃。
而反应芯内由于是隔壁传热,温度上升的比较慢,升温速率不断加快,最终稳定在 51.5℃左右,可以观察到到达稳定的时间为15分钟,比加热腔的稳定时间要靠后10分钟左右,稳定之后随着时间推移有微小下降趋势。
由图7可以看出,随着距离变化,反应芯内的稳定温度有所不同,中心部分的温度最高,而底部和顶部的温度最低,整体呈现“凸”形分布,所有轴向温度相对于中心温度基本为对称分布。
七、分析与讨论
本实验中可能存在的误差为:
1.在测量轴向温度分布时,向外拔出的距离并不能很好地控制在1cm。
停留时间也不能很好的控制在10s;
2.由于计录数据是每隔1分钟记一次,可能漏掉重要数据,引起实验误差。
3.测温传感器热电偶本身存在的误差
八、思考题
1,热电偶为什么要进行冷端补偿?冷端补偿有几种方法?。
答:热电偶靠冷热两端温差产生的电势差测量温度,设计时其显示的温度要求对应的冷端温度是固定的某一个值,但是在实际使用过程中冷端未必处于该温度下,所以需进行冷端修正/补偿。
共有5种方法:
1)冷端恒温法:将热电偶的冷端置于装有冰水混合物的恒温容器中,使其温度保持0℃不变,它可消除t
不等于0℃而引入的误差。
2)计算修正法:当热电偶的冷端温度不等于0℃时,测得的热电势E(t,t
)
与冷端为0℃时测的E(t,0℃)不同,可利用下式:E(t,0℃)=E(t,t
0)+E(t
,0℃)
来修正,右式第一项为毫伏表直接测得的热电势,第二项是由t
在该热电偶分度表查出的补偿值,二者相加即可。
3)仪表机械零点调整法:当热电偶的冷端温度比较恒定,对测量精度要求不太高时,可将机械零点调整至热电偶实际所处的t处,相当于在输入热电偶的电势前就给仪表预输入一个电势,此法虽有一定误差,但很简便常用。
4)电桥补偿法:此法是利用不平衡电桥产生的不平衡电压来自动补偿热电偶因冷端温度变化而引起的热电势变化值。
5)补偿导线法:此法将热电偶的冷端温度从温度较高、变化大的地方转移到温度较低、变化小的方向,等于延长了热电偶。
2.如果冷端补偿温度为20℃,测量仪表显示的是30℃,则测量点的真实温度是多少?
答:50℃
3.什么叫位式控制?位式控制需要设定几个温度?
答:位式控制又称通断式控制,是将测量值与设定值相比较之差值经放大处理后,对调节对象作开或关控制的调节。
位式控制又分二位式控制和三位式控制,分别介绍如下:
1、二位式控制:是指用一个开关量控制负载方式,具有接线简单、可靠性高成本低廉的优点,应用场合十分广泛。
2、三位式控制:是指用二个开关量控制分别控制二个负载,一般情况下一
个设置为主控,另一个为副控,是为了克服二位式控制容易产生的调节速度与过冲量之间的矛盾面发展的一种控制方式。
只需设定1个温度。
4.什么叫PID控制?需要设定几个温度?
答:PID控制指能同时进行比例控制、微分控制与积分控制的控制。
只需要设定一个目标温度。
5.简要叙述PID控制中P、I、D三个字母的含义。
答:P:比例控制,输出的调节信号与输入信号(偏差)成比例关系,调节速度较快
I:积分控制,输出变化量与输入的偏差的积分成正比,可消除余差D:微分控制,输出变化量与输入的偏差信号的变化速度成正比,可实现超前控制。