2011年湖南省数据库入门基础

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
i++; //不论A[i]是‘I’或‘O’,指针i均后移。}
if(j!=k) {printf(“序列非法\n”);return(false);}
else {printf(“序列合法\n”);return(true);}
}//算法结束。
int Judge(char A[])
//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。
{i=0; //i为下标。
j=k=0; //j和k分别为I和字母O的的个数。
5、约瑟夫环问题(Josephus问题)是指编号为1、2、…,n的n(n>0)个人按顺时针方向围坐成一圈,现从第s个人开始按顺时针方向报数,数到第m个人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此重复直到所有的人全部出列为止。现要求采用循环链表结构设计一个算法,模拟此过程。
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
while(A[i]!=‘\0’) //当未到字符数组尾就作。
{switch(A[i])
{case‘I’: j++; break; //入栈次数增1。
case‘O’: k++; if(k>j){printf(“序列非法\n”);exit(0);}
#include<stdlib.h>
typedef int datatype;
typedef struct node
{datatype data;
struct node *next;
}listnode;
typedef listnode *linklist;
void jose(linklist head,int s,int m)
{ p=(linklist)malloc(sizeof(listnode));
p->data=i;
p->next=head;
head=p;
}
r->next=head; /*生成循环链表*/
jose(head,s,m); /*调用函数*/
if (n<1) printf("n<0");
else
{/*建表*/
head=(linklist)malloc(sizeof(listnode)); /*建第一个结点*/
head->data=n;
r=head;
for (i=n-1;i>0;i--) /*建立剩余n-1个结点*/
count++;
}
pre->next=p->next; /*输出该结点,并删除该结点*/
printf("%4d",p->data);
free(p);
k1=pre->next; /*新的报数起点*/
}
printf("%4d",k1->data); /*输出最后一个结点*/
while(k1->next!=k1) /*当循环链表中的结点个数大于1时*/
{ p=k1; /*从k1开始报数*/
count=1;
while (count!=m) /*连续数m个结点*/
{ pre=p;
p=p->next;
写出G的拓扑排序的结果。
G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7
12、设有一组初始记录关键字为(45,80,48,40,22,78),要求构造一棵二叉排序树并给出构造过程。
13、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。
free(k1);
}
main()
{linklist head,p,r;
int n,s,m,i;
printf("n=");
scanf("%d",&n);
printf("s=");
scanf("%d",&s);
printf("m=",&m);
scanf("%d",&m);
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
26. .(1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild
27. (1)*ppos // 根结点 (2)rpos=ipos (3)rpos–ipos (4)ipos (5)ppos+1
{
lklist *p,*q,*t;
for(p=ha,hc=0;p!=0;p=p->next)
{ for(q=hb;q!=0;q=q->next) if (q->data==p->data) break;
if(q!=0){ t=(lklist *)malloc(sizeof(lklist)); t->data=p->data;t->next=hc; hc=t;}
}
}
2、有一种简单的排序算法,叫做计数排序(count sorting)。这种排序算法对一个待排序的表(用数组表示)进行排序,并将排序结果存放到另一个新的表中。必须注意的是,表中所有待排序的关键码互不相同,计数排序算法针对表中的每个记录,扫描待排序的表一趟,统计表中有多少个记录的关键码比该记录的关键码小,假设针对某一个记录,统计出的计数值为c,那么,这个记录在新的有序表中的合适的存放位置即为c。
(1) (3分)给出适用于计数排序的数据表定义;
(2) (7分)使用Pascal或C语言编写实现计数排序的算法;
(3) (4分)对于有n个记录的表,关键码比较次数是多少?
(4) (3分)与简单选择排序相比较,这种方法是否更好?为什么?
3、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。
void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
10、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
1、设有两个集合A和集合B,要求设计生成集合C=A∩B的算法,其中集合A、B和C用链式存储结构表示。
typedef struct node {int data; struct node *next;}lklist;
void intersection(lklist *ha,lklist *hb,lklist *&hc)
{linklist k1,pre,p;
int count=1;
pre=NULL;
k1=head; /*k1为报数的起点*/
while (count!=s) /*找初始报数起点*/
{pre=k1;
k1=k1->next;
count++;
}
27. (1)*ppos // 根结点 (2)rpos=ipos (3)rpos–ipos (4)ipos (5)ppos+1
8、两棵空二叉树或仅有根结点的二叉树相似;对非空二叉树,可判左右子树是否相似,采用递归算法。
int Similar(BiTree p,q) //判断二叉树p和q是否相似
//保留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath
11、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={<V1,V2>,<V1,V3>,<V1,V4>,<V2,V5>,<V3,V5>,<V3,V6>,<V4,V6>,<V5,V7>,<V6,V7>}
}
r[i]=x;
}
4、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)
(1)A和D是合法序列,B和C 是非法序列。
(2)设被判定的操作序列已存入一维数组A中。
void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
while(i<j){
while (i<j && r[j]>x) j=j-1; if (i<j) {r[i]=r[j];i=i+1;}
while (i<j && r[i]<x) i=i+1; if (i<j) {r[j]=r[i];j=j-1;}
}
}
6、我们可用“破圈法”求解带权连通无向图的一棵最小代价生成树。所谓“破圈法”就是“任取一圈,去掉圈上权最大的边”,反复执行这一步骤,直到没有圈为止。请给出用“破圈法”求解给定的带权连通无向图的一棵最小代价生成树的详细算法,并用程序实现你所给出的算法。注:圈就是回路。
7、(1)p->rchild (2)p->lchild (3)p->lchild (4)ADDQ(Q,p->lchild) (5)ADDQ(Q,p->rchild)
{if(p==null && q==null) return (1);
else if(!p && q || p && !q) return (0);
else return(Similar(p->lchild,q->lchild) && Similar(p->rchild,q-&gp->rchild (2)p->lchild (3)p->lchild (4)ADDQ(Q,p->lchild) (5)ADDQ(Q,p->rchild)
25. (1)t->rchild!=null (2)t->rchild!=null (3)N0++ (4)count(t->lchild) (5)count(t->rchild)
25. (1)t->rchild!=null (2)t->rchild!=null (3)N0++ (4)count(t->lchild) (5)count(t->rchild)
26. .(1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild
相关文档
最新文档