安徽合肥市瑶海区2017年中考数学模拟试卷含答案
2017年合肥市中考数学一模试卷
持续走低,某商业街的商铺今年1月份的出租价格为a元/平方米,2月份比1
月份下降了5%,若3,4月份的出租价格按相同的百分率x继续下降,则4月份
该商业街商铺的出租价格为: ()
A.(1﹣5%)a(1﹣2x)元B.(1﹣5%)a(1﹣x)2元C.(a﹣5%)(a﹣2)x
(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法 ”的问卷调查,求第二小组至少有1个班级被选
中的概率.
第5页(共29页)
六、解答题(满分12分)
21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别
【解答】 解:根据三角形外角性质,可得∠3=∠1+∠4,
∴∠4=∠3﹣∠1=95°﹣50°=45°,
∵a∥b,
∴∠2=∠4=45°.
故选:C.
第9页(共29页)
5.下列运算中,正确的是()
A.3x3?2x2=6x6B.(﹣x2y)2=x4yC.(2x2)3=6x6D.x5÷x=2x4
【考点】 整式的除法;幂的乘方与积的乘方;单项式乘单项式.
(3)在(2)的条件下,计算点A所经过的路径的长度.
18.如图,在平面直角坐标系中,直线l:y=x﹣1
与x轴交于点A,如图所示依
次作正方形A1 1 1,正方形
2 2 2 1,⋯,正方形An
n n n﹣1,使得点A1、A2、
B C O
A B C C
B C C
在直线l上,点C、C、C⋯C在y轴正半轴上,请解决下列问题:
2017年安徽省合肥市瑶海区中考数学三模试卷
2017年安徽省合肥市瑶海区中考数学三模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)计算(﹣3)×2的结果是()A.5 B.﹣5 C.6 D.﹣62.(4分)下列各式计算正确的是()A.a2+2a3=3a5B.a•a2=a3C.a6÷a2=a3D.(a2)3=a53.(4分)我国“一带一路”的朋友圈越来越大,今年前4个月对“一带一路”沿线国家外贸进出口2.27万亿元,同比增长25.1%,高于同期我国整体外贸增速,其中2.27万亿元用科学记数法表示是()A.2.27×104元 B.2.27×108元 C.227×1010元 D.2.27×1012元4.(4分)如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.5.(4分)如图所示,AB∥CD,AD与BC相交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=()A.70°B.40°C.35°D.30°6.(4分)某企业今年3月份产值为m万元,4月份比3月份减少了8%,预测5月份比4月份增加9%,则5月份的产值是()A.(m﹣8%)(m+9%)万元 B.(1﹣8%)(1+9%)m万元C.(m﹣8%+9%)万元D.(m﹣8%+9%)m万元7.(4分)初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是( )A .9,8B .9,8.5C .8,8D .8,8.58.(4分)如图,将一张直角三角形纸片BEC 的斜边放在矩形ABCD 的BC 边上,恰好完全重合,BE 、CE 分别交AD 于点F 、G,BC=6,AF :FG :GD=3:2:1,则AB 的长为( )A .1B .C .D .29.(4分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AC=6,BD=8.动点E 从点B 出发,沿着B ﹣A ﹣D 在菱形ABCD 的边上运动,运动到点D 停止.点F 是点E 关于BD 的对称点,EF 交BD 于点P ,若BP=x ,△OEF 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D.10.(4分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.3.2 B.2 C.1.2 D.1二、填空题(共4小题,每小题5分,满分20分)11.(5分)分解因式:2x2+4x+2=.12.(5分)某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是元.13.(5分)如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧的长度为.14.(5分)如图,在△ABC中,∠ACB=90°,AC=BC,AD平分∠BAC交BC于点D,以AD为边作正方形ADEF,过点F作FG⊥CA交CA的延长线于点G,连接FB交DE于点H,下列结论:①∠BAF=∠GAF;②四边形CBFG是矩形;③AB=FH;④AF2=FH•BC其中正确的结论有(把所有正确结论的序号都写在横线上)三、解答题15.(8分)解不等式组,并把解集在数轴上表示出来.16.(8分)观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.17.(8分)每个小方格是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系的位置如图所示.(1)以O为位似中心,在第一象限内将菱形OABC放大为原来的2倍得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标;(2)将菱形OABC绕原点O顺时针旋转90°菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到点B2的路径长.18.(8分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.19.(10分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且PA⊥y轴于点A,已知A=18.(0,﹣6),且S△CAP(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.20.(10分)已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB 的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长.21.(12分)在社区举办的“520”大型亲子活动中,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝区域中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母(不考虑其他因素,仅从数学角度思考),已知在某分期比赛中有A、B、C三组家庭进行比赛.(1)选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率;(2)如果任选一个宝宝(假如选A组家庭),通过列表或树状图的方法,求选手至少正确找对宝宝父母其中一人的概率.22.(12分)农民购买农机设备政府会给予一定额度的补贴,其中购买Ⅰ、Ⅱ型农机设备的金额与政府补贴的金额存在表所示的函数对应关系:(1)分别求出y1和y2的函数解析式;(2)张大伯打算共用10万元购买Ⅰ、Ⅱ两型农机设备.请你帮助张大伯设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.23.(14分)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC的内心.(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求+的值.2017年安徽省合肥市瑶海区中考数学三模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)计算(﹣3)×2的结果是()A.5 B.﹣5 C.6 D.﹣6【解答】解:∵(﹣3)×2=﹣6,∴(﹣3)×2的结果是﹣6.故选:D.2.(4分)下列各式计算正确的是()A.a2+2a3=3a5B.a•a2=a3C.a6÷a2=a3D.(a2)3=a5【解答】解:(A)a2与2a3不是同类项,故A不正确;(C)原式=a4,故C不正确;(D)原式=a6,故D不正确;故选(B)3.(4分)我国“一带一路”的朋友圈越来越大,今年前4个月对“一带一路”沿线国家外贸进出口2.27万亿元,同比增长25.1%,高于同期我国整体外贸增速,其中2.27万亿元用科学记数法表示是()A.2.27×104元 B.2.27×108元 C.227×1010元 D.2.27×1012元【解答】解:2.27万亿=2270000000000=2.27×1012,故选:D.4.(4分)如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.【解答】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选A.5.(4分)如图所示,AB∥CD,AD与BC相交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=()A.70°B.40°C.35°D.30°【解答】解:∵AB∥CD,∴∠1=∠D,∴∠BED=∠2+∠D=30°+40°=70°,∵EF是∠BED的平分线,∴∠BEF=∠BEF=35°,故选:C.6.(4分)某企业今年3月份产值为m万元,4月份比3月份减少了8%,预测5月份比4月份增加9%,则5月份的产值是()A.(m﹣8%)(m+9%)万元 B.(1﹣8%)(1+9%)m万元C.(m﹣8%+9%)万元D.(m﹣8%+9%)m万元【解答】解:由题意可得,5月份的产值是:m(1﹣8%)(1+9%)万元,故选B.7.(4分)初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是()A.9,8 B.9,8.5 C.8,8 D.8,8.5【解答】解:投掷实心球的成绩最多的是9,共有14人,所以,众数是9,这40名同学投掷实心球的成绩从小到大排列,第20,21人的成绩是8,所以中位数是8.故选A8.(4分)如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF:FG:GD=3:2:1,则AB的长为()A.1 B.C.D.2【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠A=∠D=90°,∵∠E=90°,∴∠EFG+∠EGF=90°,∴∠AFB+∠DGC=90°,∵∠AFB+∠ABF=90°,∴∠ABF=∠DGC,∴△AFB∽△DCG,∴,∵AF:FG:GD=3:2:1,∴AF=3,DG=1,∴AB2=AF•DG=3,∴AB=.故选C.9.(4分)如图,菱形ABCD的对角线AC与BD交于点O,AC=6,BD=8.动点E 从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止.点F 是点E关于BD的对称点,EF交BD于点P,若BP=x,△OEF的面积为y,则y 与x之间的函数图象大致为()A.B.C.D.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,①当BP≤4时,∵点F是点E关于BD的对称点,∴EF⊥BD,∴EF∥AC,∴△FEB∽△CBA,∴=,即=,∴EF=x,∵OP=4﹣x,∴△OEF的面积y=EF•OP=×x(4﹣x)=﹣x2+3x,∴y与x之间的函数图象是抛物线,开口向下,过(0,0)和(4,0);②当4<BP<8时,同理可得,EF=12﹣x,OP=x﹣4,∴△OEF的面积y=EF•OP=×(12﹣x)(x﹣4)=﹣x2+9x﹣24,∴y与x之间的函数图象的形状与①中的相同,开口向下,且过(4,0)和(8,0);故选:D.10.(4分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.3.2 B.2 C.1.2 D.1【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故选C.二、填空题(共4小题,每小题5分,满分20分)11.(5分)分解因式:2x2+4x+2=2(x+1)2.【解答】解:原式=2(x2+2x+1)=2(x+1)2,故答案为:2(x+1)2.12.(5分)某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是300元.【解答】解:设商品的定价为x元,根据题意得:0.75x+25=0.9x﹣20,解得:x=300.故答案为:300.13.(5分)如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧的长度为.【解答】解:连接OA、OC,如图.∵五边形ABCDE是正五边形,∴∠E=∠D==108°.∵AE、CD与⊙O相切,∴∠OAE=∠OCD=90°,∴∠AOC=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,∴的长为=.故答案为.14.(5分)如图,在△ABC中,∠ACB=90°,AC=BC,AD平分∠BAC交BC于点D,以AD为边作正方形ADEF,过点F作FG⊥CA交CA的延长线于点G,连接FB交DE于点H,下列结论:①∠BAF=∠GAF;②四边形CBFG是矩形;③AB=FH;④AF2=FH•BC其中正确的结论有①②④(把所有正确结论的序号都写在横线上)【解答】解:∵四边形ABCD是正方形,∴AD=AF,∠DAF=90°,∴FG⊥CG,∴∠G=∠C=90°,∴∠CAD+∠GAF=90°,∠GAF+∠AFG=90°,∴∠CAD=∠AFG,∴△AFG≌△DAC,∴FG=AC=BC,∠ADC=∠FAG,∴∠G+∠C=180°,∴FG∥BC,∴四边形BCGF是平行四边形,∵∠G=90°,∴四边形BCGF是矩形,故②正确,∴CG∥BF,∴∠GAF=∠AFB,∵∠DAH+∠BAF=90°,∠DAB=∠DAC,∴∠BAF=∠GAF,∴∠BAF=∠AFB,故①正确,∴BA=BF,易知FH<BF,故③错误,∵∠GFB=∠AFE=90°,∴∠GFA=∠BFE,∵∠G=∠E=90°,∴△GFA≌△EFH,∴=,∵EF=AF,GF=AC,∴AF2=FH•AC.故答案为①②④.三、解答题15.(8分)解不等式组,并把解集在数轴上表示出来.【解答】解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:16.(8分)观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×30+1=312;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【解答】解:(1)根据题意得:32×30+1=312;故答案为:30;312;(2)根据题意得:2n(2n﹣2)+1=(2n﹣1)2,∵左边=22n﹣2n+1+1,右边=22n﹣2n+1+1,∴左边=右边.17.(8分)每个小方格是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系的位置如图所示.(1)以O为位似中心,在第一象限内将菱形OABC放大为原来的2倍得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标;(2)将菱形OABC绕原点O顺时针旋转90°菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到点B2的路径长.【解答】解析:(1)如图所示:由点B1在坐标系中的位置可知,B1(8,8);(2)如图所示:∵OB===4,∴BB2的弧长==2π.答:点B旋转到点B2的路径长为2π.18.(8分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.【解答】解:连接AE,在Rt△ABE中,AB=3m,BE=m,则AE==2m,又∵tan∠EAB==,∴∠EAB=30°,在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE×sin∠EAF=2×=3m.答:木箱端点E距地面AC的高度为3m.19.(10分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且PA⊥y轴于点A,已知A=18.(0,﹣6),且S△CAP(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.【解答】解:(1)令一次函数y=kx+3中的x=0,则y=3,即点C的坐标为(0,3),∴AC=3﹣(﹣6)=9.=AC•AP=18,∵S△CAP∴AP=4,∵点A的坐标为(0,﹣6),∴点P的坐标为(4,﹣6).∵点P在一次函数y=kx+3的图象上,∴﹣6=4k+3,解得:k=﹣;∵点P在反比例函数y=的图象上,∴﹣6=,解得:n=﹣24.∴一次函数的表达式为y=﹣x+3,反比例函数的表达式为y=﹣.(2)令一次函数y=﹣x+3中的y=0,则0=﹣x+3,解得:x=,即点B的坐标为(,0).设点Q的坐标为(m,﹣m+3).∵△OCQ的面积是△BCO面积的2倍,∴|m|=2×,解得:m=±,∴点Q的坐标为(﹣,9)或(,﹣3).20.(10分)已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB 的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长.【解答】证明:(1)∵AB、CE是⊙O内的两条相交弦,∴AM•MB=EM•MC;(2)∵M是OB中点,圆半径R=4,∴OM=MB=2,∴AM=6,∵CD是直径,∴∠CED=90°,∴CE2=CD2﹣DE2,∴CE==7,设EM=x,6×2=x•(7﹣x),解得x=3或x=4,∵EM>MC,∴EM=4.21.(12分)在社区举办的“520”大型亲子活动中,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝区域中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母(不考虑其他因素,仅从数学角度思考),已知在某分期比赛中有A、B、C三组家庭进行比赛.(1)选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率;(2)如果任选一个宝宝(假如选A组家庭),通过列表或树状图的方法,求选手至少正确找对宝宝父母其中一人的概率.【解答】解:(1)∵3组家庭都由爸爸、妈妈和宝宝3人组成,∴选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率=;(2)设三个爸爸分别为A,B,C,对应的三个妈妈分别为A′,B′,C′,对应的三个宝宝分别为A″,B″,C″,以A″为例画树形图得:由树形图可知任选一个宝宝,最少正确找对父母其中一人的情况有5种,所以其概率=.22.(12分)农民购买农机设备政府会给予一定额度的补贴,其中购买Ⅰ、Ⅱ型农机设备的金额与政府补贴的金额存在表所示的函数对应关系:(1)分别求出y 1和y 2的函数解析式; (2)张大伯打算共用10万元购买Ⅰ、Ⅱ两型农机设备.请你帮助张大伯设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.【解答】解:(1)由题意可得,0.4=1×k ,得k=0.4,即y 1与x 的函数关系式为y 1=0.4x ,,解得,,即y 2与x 的函数关系式为y 2=;(2)设购买Ⅱ型农机设备投资t 万元,购买Ⅰ型农机设备投资(10﹣t )万元,共获补贴Q 万元,Q=y 1+y 2=0.4(10﹣t )﹣=,∴当t=3时,Q 取得最大值,此时Q=,10﹣t=10﹣3=7, 答:投资7万元购买Ⅰ型农机设备,投资3万元购买Ⅱ型农机设备,共获最大补贴万元.23.(14分)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I 为△ABC 的内心.(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求+的值.【解答】解:(1)如图1中,作IE⊥AB于E.设ID=x.∵AB=AC=3,AI平分∠BAC,∴AD⊥BC,BD=CD=1,在Rt△ABD中,AD===2,∵∠EBI=∠DBI,∠BEI=∠BDI=90°,BI=BI,∴△BEI≌△BDI,∴ID=IE=x,BD=BE=1,AE=2,在Rt△AEI中,∵AE2+EI2=AI2,∴22+x2=(2﹣x)2,∴x=,∴ID=.(2)如图2中,连接BI、CI.∵I是内心,∴∠MAI=∠NAI,∵AI⊥MN,∴∠AIM=∠AIN=90°,∵AI=AI,∴△AMI≌△ANI(ASA),∴∠AMN=∠ANM,∴∠BMI=∠CNI,设∠BAI=∠CAI=α,∠ACI=∠BCI=β,∴∠NIC=90°﹣α﹣β,∵∠ABC=180°﹣2α﹣2β,∴∠MBI=90°﹣α﹣β,∴∠MBI=∠NIC,∴△BMI∽△INC,∴=,∴NI2=BM•CN,∵NI=MI,∴MI2=BM•CN.(3)过点N作NG∥AD交MA的延长线于G.∴∠ANG=∠AGN=30°,∴AN=AG,NG=AN,∵AI∥NG,∴=,∴=,∴+=.。
(完整word版)2017安徽中考数学试卷(含答案).docx
2017 年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共 10 个小题 , 每小题 4 分,满分 40 分)每小题都给出 A 、 B 、 C 、 D 四个选项,其中只有一个是正确的.1.1的相反数是()21 1A .C. 2D . -22B .22. 计算 ( a 2 )2的结果是()A . a 6B . a 6C . a 5D . a 53. 如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4. 截至 2016 年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过 1600 亿美元 . 其中 1600 亿用科学计数法表示为( )A. 16 1010 B. 1.6 1010C.1.6 1011D . 0.16 10125. 不等式 3 2x0 的解集在数轴上表示为()A .B . C. D .6. 直角三角板和直尺如图放置. 若 1 20 ,则 2 的度数为()A. 60B.50 C.40 D.307. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100 名学生进行统计,并绘成如图所示的频数直方图. 已知该校共有1000 名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A. 280B.240C.300D.2608. 一种药品原价每盒25 元,经过两次降价后每盒16 元. 设两次降价的百分率都为x ,则 x 满足()A.16(12x) 25B.25(12x) 16 C.16(1 x) 225D.25(1x)2169. 已知抛物线y ax 2bx c 与反比例函数y b的图象在第一象限有一个公共点,其横坐标为 1. 则一次x函数 y bx ac 的图象可能是()A.B. C.D.10. 如图,在矩形ABCD 中, AB 5 , AD 3.动点 P 满足S PAB 1 S矩形ABCD.则点P到A,B两点距3离之和 PA PB 的最小值为()A.29B.34 C. 5 2D.41二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11.27 的立方根是.12. 因式分解:a2b 4ab 4b =.13.如图,已知等边 ABC 的边长为6,以 AB 为直径的⊙ O 与边 AC , BC 分别交于 D , E 两点,则劣弧DE 的长为.14. 在三角形纸片ABC 中, A 90 , C 30 , AC 30cm.将该纸片沿过点 B 的直线折叠,使点A 落在斜边 BC 上的一点 E 处,折痕记为BD (如图1),剪去CDE 后得到双层BDE (如图2),再沿着边BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为cm.三、(本大题共 2 小题,每小题 8 分,满分 16 分)1115. 计算:| 2 | cos60( ).16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四 . 问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 元,还盈余 3 元;每人出 7 元,则还差 4 元 . 问共有多少人?这个物品的价格是多少?请解答上述问题 .四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. 如图,游客在点 A 处坐缆车出发,沿 A B D 的路线可至山顶 D 处.假设 AB 和 BD 都是直线段,且AB BD 600m ,75 ,45 ,求DE的长.(参考数据:sin750.97 , cos75 0.26 ,2 1.41 )18.如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点ABC 和DEF (顶点为网格线的交点),以及过格点的直线l .( 1)将ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;( 2)画出DEF 关于直线 l 对称的三角形;( 3)填空:C E.五、(本大题共 2 小题,每小题 10 分,满分 20 分)19.【理解】我知道, 123n n( n1),那么 122232n2果等于多少呢?2在 1 所示三角形数中,第 1 行圈中的数1,即12;第 2 行两个圈中数的和 2 2 ,即 22;⋯⋯;第 n 行 n 个圈中数的和n n n ,即n2.,三角形数中共有n(n 1)个圈,所有圈中n个n2数的和 122232n2.【律探究】将桑拿教学数两次旋可得如所示的三角形数,察三个三角形数各行同一位置圈中的数(如第 n1行的第一个圈中的数分n 1 ,2,n),每个位置上三个圈中数的和均.由此可得,三个三角形数所有圈中数的和:3(122232n2 ).因此,122232n2=.【解决】根据以上,算12223220172的果.123201720. 如图,在四边形ABCD 中, AD BC ,B D , AD 不平行于 BC ,过点 C 作 CE / / AD 交ABC 的外接圆 O 于点 E ,连接 AE .(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分BCE .六、(本题满分 12 分)21.甲、乙、丙三位运动员在相同条件下各射靶10 次,每次射靶的成绩如下:甲: 9, 10, 8, 5,7, 8, 10, 8, 8,7;乙: 5, 7,8, 7, 8, 9, 7, 9, 10, 10;丙: 7, 6,8, 5, 4, 7, 6, 3, 9, 5.( 1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定. 求甲、乙相邻出场的概率 .七、(本题满分 12 分)22. 某超市销售一种商品,成本每千克40 元,规定每千克售价不低于成本,且不高于80 元 . 经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价 x (元/千克)506070销售量 y (千克)1008060( 1)求y与x之间的函数表达式;( 2)设商品每天的总利润为W (元),求 W 与x之间的函数表达式(利润=收入 - 成本);(3)试说明( 2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分 14 分)23.已知正方形 ABCD ,点 M 为边 AB 的中点.( 1)如图 1,点G为线段CM上的一点,且AGB90 ,延长 AG , BG 分别与边 BC ,CD 交于点 E ,F.①求证: BE CF ;②求证: BE 2BC CE .( 2)如图 2,在边BC上取一点E,满足BE2BC CE ,连接AE交CM于点G,连接BG延长交CD 于点 F ,求 tan CBF 的值.2017 年中考数学参考答案一、 1-5: BABCD 6-10: CADBD14、 40或80 3二、 11、 312、 b (a - 2) 13、 p23三、 15、解:原式1 3 = -2 .= 2?216、解:设共有 x 人,根据题意,得 8x - 3 = 7x + 4 ,解得 x = 7 ,所以物品价格为 8? 7 3 = 53 (元 ).答:共有7 人,物品的价格为 53 元 .四、 17、解:在 Rt △BDF 中,由 sin b =DF得,BDDF = BD ?sin b2 300 2 ≈ 423 (m).600? sin 45° 600 ?2在 Rt △ ABC 中,由 cos a =BC可得,ABBC = AB ?cosa 600? cos75° 600? 0.26 156(m).所以 DE = DF + EF = DF + BC = 423+156 = 579 (m). 18、 (1)如图所示; (2)如图所示; (3)45五、 19、2n +1(2 n +1)?n (n +1)1n (n +1)( 2n +1)134526 20、 (1)证明:∵ ∠B =∠ D , ∠B = ∠E ,∴ ∠D = ∠E ,∵ CE ∥ AD , ∴∠ E +∠DAE = 180°.∴ ∠D +∠ DAE = 180°,∴ AE ∥ CD . ∴四边形 AECD 是平行四边形 .(2) 证明:过点 O 作 OM ^ EC , ON ^ BC ,垂足分别为 M 、 N .∵四边形 AECD 是平行四边形,∴AD = EC .又 AD = BC ,∴ EC = BC ,∴ OM = ON ,∴ CO 平分 ∠BCE .六、 21、解: (1)平均数中位数 方差甲 2乙丙6(2) 因为 2 < 2.2 < 3 ,所以 s 甲2 < s 乙2 < s 丙2 ,这说明甲运动员的成绩最稳定.(3) 三人的出场顺序有 (甲乙丙 ), ( 甲丙乙 ), (乙甲丙 ) ,(乙丙甲 ), (丙甲乙 ) , (丙乙甲 )共 6 种,且每一种结果 出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙 ),(乙甲丙 ),( 丙甲乙 ), (丙乙甲 )共 4 种,所以 甲、乙相邻出场的概率 P = 4 = 2 .6 3ììy = - 2x + 200 .七、 22.解: (1) 设 y = kx + b ,由题意,得 í,解得 í,∴所求函数表达式为?60k + b = 80?b = 200(2) W = (x - 40)(- 2 x + 200) = - 2 x 2+ 280 x - 8000 .2(3) W = - 2x 2 + 280x - 8000 = - 2( x - 70)+1800 ,其中 40 #x80 ,∵ - 2 < 0,∴当 40 ? x70 时, W 随 x 的增大而增大,当70 < x ? 80 时, W 随 x 的增大而减小,当售价为 70 元时,获得最大利润,这时最大利润为 1800 元.八、 23、 (1)①证明:∵四边形ABCD 为正方形,∴AB = BC ,,∠ABC = ∠BCF = 90°又,∴,又,∴ ∠BAE =∠CBF ,∠AGB = 90° ∠BAE +∠ABG = 90°∠ABG +∠CBF = 90°∴ △ ABE ≌△ BCF (ASA) ,∴ BE = CF .②证明:∵ ,点 M 为 AB 中点,∴ MG = MA = MB ,∴ ∠GAM = ∠AGM ,∠AGB = 90°又∵ ∠CGE = ∠AGM ,从而 ∠CGE = ∠CGB ,又 ∠ECG = ∠GCB ,∴ △CGE ∽△ CBG , ∴CE = CG,即 CG 2 = BC ?CE ,由 ∠CFG = ∠GBM = ∠CGF ,得 CF = CG . CG CB由①知, BE = CF ,∴ BE = CG ,∴ BE 2 = BC ?CE . (2) 解: ( 方法一 )延长 AE , DC 交于点 N ( 如图 1) ,由于四边形ABCD 是正方形,所以 AB ∥ CD ,∴ ∠N = ∠EAB ,又 ∠CEN = ∠BEA ,∴ △CEN ∽△ BEA , 故 CE =CN,即 BE ?CN AB?CE , BE BA∵ AB = BC , BE 2 = BC ?CE ,∴ CN = BE ,由 AB ∥ DN 知, CN = CG =CF,AM GM MB又 AM = MB ,∴ FC = CN = BE ,不妨假设正方形边长为1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2 =1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,∴ BE=5 - 1 ,22 BC2FCBE 5 - 1于是 tan ∠CBF ===,BCBC2( 方法二 )不妨假设正方形边长为 1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2= 1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,即 BE = 5 - 1 ,222作 GN ∥ BC 交 AB 于 N ( 如图 2) ,则 △ MNG ∽△ MBC ,∴MN=MB= 1,NGBC 25 y ,∵GN =AN,即2 y y +1设 MN = y ,则 GN = 2 y , GM =2 ,=BE AB 5 - 1 12解得 y =1 ,∴ GM = 1,从而 GM = MA = MB ,此时点 G 在以 AB 为直径的圆上, 2 5 2∴ △ AGB 是直角三角形,且 ,∠AGB = 90° 由 (1) 知 BE = CF ,于是 tan ∠CBF =FC = BE= 5 - 1 .BC BC 2。
2017安徽中考数学试卷(含答案).
2017安徽中考数学试卷(含答案).2017年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共10个小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是() A .12- B .12- C .2D .-22.计算22()a -的结果是() A .6aB .6a -C .5a -D .5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B. C. D .4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为()A.101610? B .101.610? C.111.610? D .120.1610?5.不等式320x ->的解集在数轴上表示为()A .B . C. D .6.直角三角板和直尺如图放置.若120∠=?,则2∠的度数为()A.60? B .50? C.40? D.30?7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A .280B .240C .300D .2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足() A .16(12)25x += B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是()A. B . C. D .10.如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ?=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为()A .29B .34 C.52 D .41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是.12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ?的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为.14.在三角形纸片ABC 中,90A ∠=?,30C ∠=?,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ?后得到双层BDE ?(如图2),再沿着边BDE ?某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|cos60()3--??-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=?,45β=?,求DE 的长.(参考数据:sin750.97?≈,cos750.26?≈,2 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ?和DEF ?(顶点为网格线的交点),以及过格点的直线l .(1)将ABC ?向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出DEF ?关于直线l 对称的三角形;(3)填空:C E ∠+∠= ?.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++= .【解决问题】根据以上发现,计算222212320171232017++++++++的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ?的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形;(2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:平均数中位数方差甲 8 8 乙 8 8 2.2 丙 63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=?,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =;②求证:2BE BC CE =?.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =?,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD 二、11、312、()22b a -13、p 14、40或8033三、15、解:原式12322=?=-. 16、解:设共有x 人,根据题意,得8374x x -=+,解得7x =,所以物品价格为87353?=(元). 答:共有7人,物品的价格为53元. 四、17、解:在Rt BDF △中,由sin DFBDb =得, 2sin 600sin 4560030024232DF BD b=°≈(m).在Rt ABC △中,由cos BCABa =可得,cos 600cos756000.26156BC AB a =°(m). 所以423156579DE DF EF DF BC =+=+=+=(m). 18、(1)如图所示;(2)如图所示;(3)45五、19、21n +()()1212n n n ++?()()11216n n n ++ 134520、(1)证明:∵B D =∠∠,B E =∠∠,∴D E =∠∠,∵CE AD ∥,∴180E DAE +=∠∠°.∴180D DAE +=∠∠°,∴AE CD ∥. ∴四边形AECD 是平行四边形.(2)证明:过点O 作OM EC ^,ON BC ^,垂足分别为M 、N . ∵四边形AECD 是平行四边形,∴AD EC =.又AD BC =,∴EC BC =,∴OM ON =,∴CO 平分BCE ∠.六、21、解:(1) 平均数中位数方差甲 2 乙丙6(2)因为2 2.23<<,所以222s s s <<甲乙丙,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P ==. 七、22.解:(1)设y kx b =+,由题意,得501006080k b k b ì+=?í+=??,解得2200k b ì=-?í=??,∴所求函数表达式为2200y x =-+.(2)()()240220022808000W x x x x =--+=-+-.(3)()22228080002701800W x x x =-+-=--+,其中4080x #,∵20-<,∴当4070x ?时,W 随x 的增大而增大,当7080x得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC =,90ABC BCF ==∠∠°,又90AGB =∠°,∴90BAE ABG +=∠∠°,又90ABG CBF +=∠∠°,∴BAE CBF =∠∠,∴ABE BCF △≌△(ASA),∴BE CF =.②证明:∵90AGB =∠°,点M 为AB 中点,∴MG MA MB ==,∴GAM AGM =∠∠,又∵CGE AGM =∠∠,从而CGE CGB =∠∠,又ECG GCB =∠∠,∴CGE CBG △∽△,∴CE CGCG CB=,即2CG BC CE =?,由CFG GBM CGF ==∠∠∠,得CF CG =. 由①知,BE CF =,∴BE CG =,∴2BE BC CE =?. (2)解:(方法一) 延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥,∴N EAB =∠∠,又CEN BEA =∠∠,∴CEN BEA △∽△,故CE CNBE BA=,即BE CN AB CE ??,∵AB BC =,2BE BC CE =?,∴CN BE =,由AB DN ∥知,CN CG CFAM GM MB==,又AM MB =,∴FC CN BE ==,不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1512x -= ,2512x --=(舍去),∴512BE BC -=,于是51tan 2==∠,(方法二)不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1512x -=,2512x --=(舍去),即512BE -=,作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC ==,设MN y =,则2GN y =,5GM y =,∵GN ANBE AB =,即1221512y y +=-,解得125y =,∴12GM =,从而GM MA MB ==,此时点G 在以AB 为直径的圆上,∴AGB △是直角三角形,且90AGB =∠°,由(1)知BE CF =,于是51 tan 2== ∠.。
合肥市2017年中考数学试题及答案(Word版)
合肥市2017年中考数学试题及答案(试卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,共40分) 1.12的相反数是 A .12 B .12- C .2 D .-22.计算()23a-的结果是A .6a B .6a - C .5a - D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为A .101610⨯ B .101.610⨯ C .111.610⨯ D .120.1610⨯ 5.不等式420x ->的解集在数轴上表示为6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为【 】A .60︒B .50︒C .40︒D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A .280B .240C .300D .2608. 一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足A .()161225x +=B .()251216x -=C .()216125x += D .()225116x -= 9. 已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为 1,则一次函数y bx ac =+的图像可能是10.如图,在矩形ABCD 中,AB =5,AD =3,动点P满足13PAB ABCDS S =V 矩形,则点P 到A ,B 两点距 离之和PA +PB 的最小值为【 】AC .二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________.13.如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 ___________.14. 在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1), 剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图 形中有一个是平行四边形,则所得平行四边形的周长为 ___________cm 。
2017年安徽省合肥市瑶海区中考数学二模试卷有答案
2017年安徽省合肥市瑶海区中考数学二模试卷一、选择题(每小题4分,共40分)1.(4分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.22.(4分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是()A.7.44×104B.7.44×108C.74.4×1012D.7.44×10133.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.4.(4分)下列计算结果等于a5的是()A.a3+a2B.a3•a2C.(a3)2D.a10÷a25.(4分)如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π6.(4分)已知某公司10月份的销售额为500万元,如果该公司后期每月的销售额月平均增长率为x,那么第四季销售总额用代数式可表示为(单位:万元)()A.500(1+x)2 B.500+500x+500x2C.500+500(1+x)+500(1+2x)D.500+500(1+x)+500(1+x)27.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或108.(4分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36 B.48 C.60 D.7210.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0 B.a<0 C.0<a<2 D.a≤0或a=2二、填空题(每小题5分,满分20分)11.(5分)计算: +=.12.(5分)当a=2017时,代数式的值为.13.(5分)合肥市初中毕业学业体育考试项目分必考项1项和选考项2项,在8个选考项目中,张明同学可在立定跳远、跳绳和坐位体前屈三个项目模考中基本拿满分,现计划从这三个项目中任选两项作为中考选考项,则跳绳能被选上的概率为.14.(5分)如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下判断:①PA+PB+PC+PD的最小值为10;②若△PAB≌△PDC,则△PAD≌△PBC;③若S1=S2,则S3=S4;④若△PAB∽△PDA,则PA=2.4其中正确的是.三、解答题(每小题8分,满分16分)15.(8分)解不等式:≥.16.(8分)观察下列关于自然数的等式:(1)1﹣=12×①(2)2﹣=22×②(3)3﹣=32×③…根据上述规律解决下列问题:(1)写出第4个等式:=;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.四、解答题(每小题8分,满分16分)17.(8分)如图,在9×8的正方形的网格中,△ABC的三个顶点和点O都在格点上.(1)画出△ABC关于直线l成轴对称△A1B1C;(2)将△ABC以点A为旋转中心逆时针旋转90°,画出旋转后的△AB2C2.18.(8分)某品牌羽绒服按成本提高50%作为标价,由于换季,商家决定降价销售,促销措施为:买一件以八折(标价的80%)出售,买两件或两件以上七折(标价的70%)出售.已知顾客买一件商家能获利28元,若顾客同时买两件,商家每件还能获利多少元?五、(每小题10分,满分20分)19.(10分)2017年初,合肥市积极推进共享单车服务(如图1),努力创造绿色环保出行,图2是某品牌单车的车架示意图,其中ED=40cm,∠DEF=60°,∠F=45°,求传动轮轴心E到后轮轴心F的距离EF的长.(结果精确到1cm,参考数据:≈1.41,≈1.73)20.(10分)如图,矩形ABCD中,AD=5,AB=10,分别以AD、BC为斜边向矩形外作Rt△ADF ≌Rt△CBE,延长FA、EB交于点G.(1)求证:△ADF∽△BAG;(2)若DF=4,请连接EF并求出EF的长.六、(本题满分12分)21.(12分)2016年合肥市初中生学业质量绿色指标综合评价在合肥12个县(市)、区312所学校进行,某校八年级根据比例被随机抽取了40名学生参与了语文、数学、英语、科学等四个科目的测试,根据这40位同学的数学成绩,绘制了如下条形统计图.(1)结合以上信息完成下表:平均成绩(分)中位数(分)众数(分)86.85(2)根据评价标准,96分以上(含96分)可评为优秀,该校八年级共有学生500名若全部参加测试,估计有多少学生的成绩能达到优秀?(3)张明同学的数学成绩为88分,他认为自己成绩超过平均分,排名应该处于中上等水平,这种说法对吗?为什么?七、(本题满分12分)22.(12分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形O EDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为(直接写出结果).八、(本题满分14分)23.(14分)【阅读理解】我们知道,在正比例函数y=ax(a>0)中y随x的增大而增大,当x 取最小值时y有最小值;在反比例函数y=(k>0)中,当x>0时y随x的增大而减小,当x取最大值时y有最小值,那么当x>0时函数y=ax+(a>0,k>0)是否存在最值呢?下面以y=2x+为例进行探究:∵x>0,∴y=2x+=2(x+)=2[+]=[﹣6++6]=2[+6]=2+12∴当﹣=0,即x=3时y有最小值,这时y最小=12.【现学现用】已知x>0,当x=时,函数y=x+有最值(填“大”或“小”),最值为.【拓展应用】A、B两城市相距400千米,限速为300千米/小时的高铁从A城到B城的运行成本(万元)由可变成本和固定成本两部分构成,每小时的可变成本与行驶速度v(千米/小时)的平方成正比,且比例系数k,固定成本为每小时4万元,在试运行过程中经测算,当行驶速度为100千米/小时时,可变成本为每小时1万元.(1)试把每小时运行总成本y(万元)表示成速度v(千米/小时)的函数;(2)为了使全程运行成本z最低,高铁行驶的速度应为多少?2017年安徽省合肥市瑶海区中考数学二模试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.2【解答】解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.2.(4分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是()A.7.44×104B.7.44×108C.74.4×1012D.7.44×1013【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.3.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.【解答】解:A.圆柱的左视图是长方形,不合题意;B.长方体的左视图是长方形,不合题意;C.圆锥的左视图是三角形,符合题意;D.三棱柱的左视图是长方形,不合题意;故选:C.4.(4分)下列计算结果等于a5的是()A.a3+a2B.a3•a2C.(a3)2D.a10÷a2【解答】解:A、不是同底数幂的乘法,故A不符合题意;B、a3•a2=a5,故B符合题意;C、(a3)2=a6,故C不符合题意;D、a10÷a2=a8,故D不符合题意;故选:B.5.(4分)如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π【解答】解:连接OA,OB.则OA⊥PA,OB⊥PB∵∠APB=60°∴∠AOB=120°∴劣弧AB的长是:=2π.故选C.6.(4分)已知某公司10月份的销售额为500万元,如果该公司后期每月的销售额月平均增长率为x,那么第四季销售总额用代数式可表示为(单位:万元)()A.500(1+x)2 B.500+500x+500x2C.500+500(1+x)+500(1+2x)D.500+500(1+x)+500(1+x)2【解答】解:10月份的销售额为500万元,11月份的销售额为500(1+x)万元,12月份的销售额为500(1+x)2万元,则第四季销售总额用代数式可表示为:500+500(1+x)+500(1+x)2,故选:D.7.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或10【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选C.8.(4分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°【解答】解:如图,当OE在∠BOD内部时,若∠DOE=∠COB=15°,则由OD=OC,∠DOE=∠COB,OB=OE可得,△ODE≌△OCB,故DE=CB,此时∠BOE=45°﹣15°﹣15°=15°;当OE'在∠BOD外部时,则由OD=OC,∠DOE'=∠COB,OB=OE可得,△ODE'≌△OCB,故DE'=CB,此时∠BOE'=45°﹣15°+15°=45°;故选:B.9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36 B.48 C.60 D.72【解答】解:∵D、E分别为AB、AC的中点,∴DE∥BC,∴△DOE∽△BOC,∴,∴OB=8,OD=6,∴BC=10,∴△BOC是直角三角形,∴△BOC的面积是24,∴△BEC的面积是36,△BDE的面积是18,∴△ABC的面积是72,故选D10.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0 B.a<0 C.0<a<2 D.a≤0或a=2【解答】解:由题意可知:y=a时,对应的x有唯一确定的值,即直线y=a与该函数图象只有一个交点,∴a≤0或a=2故选(D)二、填空题(每小题5分,满分20分)11.(5分)计算: +=8.【解答】解: +=4+4=8.故答案为:8.12.(5分)当a=2017时,代数式的值为.【解答】解:当a=2017时,∴原式===故答案为:13.(5分)合肥市初中毕业学业体育考试项目分必考项1项和选考项2项,在8个选考项目中,张明同学可在立定跳远、跳绳和坐位体前屈三个项目模考中基本拿满分,现计划从这三个项目中任选两项作为中考选考项,则跳绳能被选上的概率为.【解答】解:画树状图如下:共有6种情况,跳绳能被选上的有4种情况,所以,P(跳绳能被选上)==.故答案为:.14.(5分)如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下判断:①PA+PB+PC+PD的最小值为10;②若△PAB≌△PDC,则△PAD≌△PBC;③若S1=S2,则S3=S4;④若△PAB∽△PDA,则PA=2.4其中正确的是①②③④.【解答】解:①当点P是矩形ABCD两对角线的交点时,PA+PB+PC+PD的值最小,根据勾股定理得,AC=BD=5,所以PA+PB+PC+PD的最小值为10,故①正确;②若△PAB≌△PCD,则PA=PC,PB=PD,所以P在线段AC、BD的垂直平分线上,即P是矩形ABCD两对角线的交点,所以△PAD≌△PBC,故②正确;③若S1=S2,易证S1+S3=S2+S4,则S3=S4,故③正确;④若△PAB~△PDA,则∠PAB=∠PDA,∠PAB+∠PAD=∠PDA+∠PAD=90°,∠APD=180°﹣(∠PDA+∠PAD)=90°,同理可得∠APB=90°,那么∠BPD=180°,B、P、D三点共线,P是直角△BAD斜边上的高,根据面积公式可得PA=2.4,故④正确.故答案为①②③④.三、解答题(每小题8分,满分16分)15.(8分)解不等式:≥.【解答】解:≥1﹣,去分母得:2(2x﹣1)≥6﹣3(5﹣x),去括号得:4x﹣2≥6﹣15+3x,移项合并得:x≥﹣7.16.(8分)观察下列关于自然数的等式:(1)1﹣=12×①(2)2﹣=22×②(3)3﹣=32×③…根据上述规律解决下列问题:(1)写出第4个等式:4﹣=42×;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.【解答】解:(1)根据题意,第4个等式为4﹣=42×,故答案为:4﹣,42×;(2)第n个等式为n﹣=n2×,左边===n2•=右边,∴第n个等式成立.四、解答题(每小题8分,满分16分)17.(8分)如图,在9×8的正方形的网格中,△ABC的三个顶点和点O都在格点上.(1)画出△ABC关于直线l成轴对称△A1B1C;(2)将△ABC以点A为旋转中心逆时针旋转90°,画出旋转后的△AB2C2.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△AB2C2即为所求.18.(8分)某品牌羽绒服按成本提高50%作为标价,由于换季,商家决定降价销售,促销措施为:买一件以八折(标价的80%)出售,买两件或两件以上七折(标价的70%)出售.已知顾客买一件商家能获利28元,若顾客同时买两件,商家每件还能获利多少元?【解答】解:设该品牌羽绒服的成本价为x元,根据题意得:80%×(1+50%)x﹣x=28,解得:x=140,∴140×(1+50%)×70%﹣140=7(元).答:若顾客同时买两件,商家每件还能获利7元.五、(每小题10分,满分20分)19.(10分)2017年初,合肥市积极推进共享单车服务(如图1),努力创造绿色环保出行,图2是某品牌单车的车架示意图,其中ED=40cm,∠DEF=60°,∠F=45°,求传动轮轴心E到后轮轴心F的距离EF的长.(结果精确到1cm,参考数据:≈1.41,≈1.73)【解答】解:如图2中,作DH⊥EF于H.在Rt△EDH中,∵sin∠DEH=,∴DH=DE×sin40°=40×=20cm,∵cos∠DEH=,∴EH=DE×cos60°=40×=20cm,在Rt△DHF中,∵∠F=45°,∴HF=DH=20cm,∴EF=EH+HF=20+20≈55cm,∴传动轮轴心E到后轮轴心F的距离EF的长约为55cm.20.(10分)如图,矩形ABCD中,AD=5,AB=10,分别以AD、BC为斜边向矩形外作Rt△ADF ≌Rt△CBE,延长FA、EB交于点G.(1)求证:△ADF∽△BAG;(2)若DF=4,请连接EF并求出EF的长.【解答】解:(1)∵四边形ABCD为矩形,∴∠DAB=90°,即∠DAF+∠BAG=90°,又∵∠DAF+∠ADF=90°,∴∠ADF=∠BAG,同理∠ECB=∠GBA,∵△ADF≌△CBE,∴∠ECB=∠DAF,∴∠DAF=∠GBA,∵在△ADF和△BAG中,,∴△ADF∽△BAG;(2)连接EF,如图,∵在Rt△ADF中,AD=5,DF=4,∴AF==3,∵△ADF∽△BAG,∴==,∠AGB=∠AFD=90°,∴AG=8,BG=6,∴FG=AF+AG=11,EG=EB+BG=DF+BG=4+6=10,∴在Rt△EFG中,EF==.六、(本题满分12分)21.(12分)2016年合肥市初中生学业质量绿色指标综合评价在合肥12个县(市)、区312所学校进行,某校八年级根据比例被随机抽取了40名学生参与了语文、数学、英语、科学等四个科目的测试,根据这40位同学的数学成绩,绘制了如下条形统计图.(1)结合以上信息完成下表:平均成绩(分)中位数(分)众数(分)86.859090(2)根据评价标准,96分以上(含96分)可评为优秀,该校八年级共有学生500名若全部参加测试,估计有多少学生的成绩能达到优秀?(3)张明同学的数学成绩为88分,他认为自己成绩超过平均分,排名应该处于中上等水平,这种说法对吗?为什么?【解答】解:(1)40名学生的数学成绩分别为:68,68,68,68,78,78,78,78,78,78,78,80,80,80,88,88,88,88,88,90,90,90,90,90,90,90,90,90,96,96,96,96,96,96,100,100,100,100,100,则中位数为90,众数为90;故答案为:90;90;(2)根据题意得:500×≈138,则估计有138名学生可达到游戏;(3)这种说法不对,∵全班的中位数为90分,张明的成绩为88分,∴他的成绩排名应该是中游偏下.七、(本题满分12分)22.(12分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形OEDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为5(直接写出结果).【解答】解:(1)∵∠BAC=60°,∴∠EOF=120°,∵OE=OF,∴=;(2)当AD平分∠BAC时,四边形OEDF是菱形,理由:∵AD平分∠BAC,∴DE=DF,∠BAD=30°,∵AD是⊙O的直径,∴∠DEA=90°,∴∠EDA=60°,∵OE=OD,∴△OED是等边三角形,即ED=OE,∴OE=OF=DE=DF,∴四边形OEDF是菱形;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF有最小值,如图,过O作OH⊥EF于H,在Rt△ADB中,∵∠ABC=45°,AB=10,∴AD=BD=10,即此时,⊙O的直径为10,∵∠EOH=∠EOH=∠BAC=60°,∴EH=OE•sin∠EOH=5×=,由垂径定理可得EF=2EH=5.线段EF的最小值为5,故答案为:5.八、(本题满分14分)23.(14分)【阅读理解】我们知道,在正比例函数y=ax(a>0)中y随x的增大而增大,当x 取最小值时y有最小值;在反比例函数y=(k>0)中,当x>0时y随x的增大而减小,当x 取最大值时y有最小值,那么当x>0时函数y=ax+(a>0,k>0)是否存在最值呢?下面以y=2x+为例进行探究:∵x>0,∴y=2x+=2(x+)=2[+]=[﹣6++6]=2[+6]=2+12∴当﹣=0,即x=3时y有最小值,这时y最小=12.【现学现用】已知x>0,当x=1时,函数y=x+有最大值(填“大”或“小”),最值为2.【拓展应用】A、B两城市相距400千米,限速为300千米/小时的高铁从A城到B城的运行成本(万元)由可变成本和固定成本两部分构成,每小时的可变成本与行驶速度v(千米/小时)的平方成正比,且比例系数k,固定成本为每小时4万元,在试运行过程中经测算,当行驶速度为100千米/小时时,可变成本为每小时1万元.(1)试把每小时运行总成本y(万元)表示成速度v(千米/小时)的函数;(2)为了使全程运行成本z最低,高铁行驶的速度应为多少?【解答】解:【现学现用】∵y=x+=(﹣)2+2,∴当=时,y有最大值2,∴x=1时,y有最大值2,故答案为1,大,2.【拓展应用】(1)∵当v=100时,kv2=1,k=,∴y=+4(0<v≤300).(2)由(1)可知y=+4,∴z=(+4)•=+=(﹣)2+16≥16,∴当=时,即v=200时,z有最小值16,∴为了使全程运行成本z最低,高铁行驶的速度应为200千米/小时.。
安徽省2017届中考数学一模试卷(解析版)
2017年安徽省中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.14.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<28.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.59.如图,在扇形AOB 中,∠AOB=90°,=,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣410.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是( )A .abc <0B .a ﹣b +c <0C .b 2﹣4ac >0D .3a +c >0二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x 2+1的最小值是 .12.(5分)如图,点A 、B 、C 在⊙O 上,∠A=36°,则∠O= .13.(5分)如图,△ABC 与△A ′B ′C ′都是等腰三角形,且AB=AC=5,A ′B ′=A ′C ′=3,若∠B +∠B ′=90°,则△ABC 与△A ′B ′C ′的面积比为 .14.(5分)如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB ,AC 于点E 、G ,连接GF ,有下列结论:①∠AGD=112.5°;②tan ∠AED=+1;③四边形AEFG 是菱形;④S △ACD =S △OCD .其中正确结论的序号是 .(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°|16.(8分)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B 的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.2017年安徽省滁州市全椒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选A.【点评】此题主要考查了反比例函数图象上点的坐标特征.把已知点的坐标代入可求出k值,即得到反比例函数的解析式.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)【考点】二次函数的性质.【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴其顶点坐标为(1,﹣1),故选D.【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k的顶点坐标为(h,k)是解题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1【考点】特殊角的三角函数值.【分析】根据AB=2BC直接求sinB的值即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA===;∴∠A=30°∴∠B=60°∴sinB=故选C.【点评】本题考查了锐角三角函数的定义,解决本题时,直接利用正弦的定义求解即可.4.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个实线的同心圆,故选:C.【点评】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率公式可得答案.【解答】解:∵﹣3,﹣2,﹣1,1,2,3的六张卡片中,大于﹣2的有﹣1,1,2,3这4张,∴所抽卡片上的数大于﹣2的概率是=,故选:D.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米【考点】解直角三角形的应用﹣坡度坡角问题.【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得tan∠A=,AB=10m,可解出直角边BC,即得到位置升高的高度.【解答】解:由题意得,BC:AC=1:2.∴BC:AB=1:.∵AB=6m,∴BC=m.故选B.【点评】本题主要考查坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化.7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<2【考点】抛物线与x轴的交点.【分析】根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故选:C.【点评】本题考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.8.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质;矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF的长度.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=CD=6,BC=AD=8,∴BD==10,∵BE=6,∴DE=10﹣6=4,∵AB∥CD,∴=,即=,解得,DF=4,则CF=CD﹣DF=6﹣4=2,故选:A.【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.9.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4【考点】扇形面积的计算;正方形的性质.【分析】连接OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣△ODC的面积,依此列式计算即可求解.【解答】解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.【点评】此题考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0【考点】二次函数图象与系数的关系.【分析】A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B.由二次函数的图象可知当x=﹣1时y<0,据此分析即可;C.利用抛物线与x轴的交点的个数进行分析即可;D.由对称轴x=﹣=1,可得b=﹣2a,又由B知a﹣b+c<0,可得3a+c<0,可判断.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B.当x=﹣1时,y<0,则a﹣b+c<0,故B正确,不符合题意;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D.∵对称轴x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴3a+c<0,故D错误,符合题意;故选D.【点评】本题考查了二次函数图象与系数的关系.关键是熟记二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=x2+1的最小值是1.【考点】二次函数的最值.【分析】根据二次函数解析式得特点可知,当x=0时取得最小值1.【解答】解:由二次函数y=x2+1得到:该抛物线的开口方向向上,且顶点坐标是(0,1).所以二次函数y=x2+1的最小值是1.故答案是:1.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.如图,点A、B、C在⊙O上,∠A=36°,则∠O=72°.【考点】圆周角定理.【分析】根据同弧所对的圆心角是圆周角的2倍得出结论.【解答】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°,【点评】本题考查了圆周角与圆心角的关系,属于基础题,比较简单,明确在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.13.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【考点】解直角三角形;等腰三角形的性质.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9,故答案为:25:9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.14.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD=S△OCD.其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【考点】翻折变换(折叠问题);菱形的性质;解直角三角形.【分析】根据翻转变换的性质、正方形的性质进行计算,判断即可.【解答】解:∵四边形ABCD是正方形,∴∠ADB=45°,由折叠的性质可知,∠ADE=∠BDE=22.5°,∴∠AGD=180°﹣90°﹣22.5°=112.5°,①正确;设AE=x,∵△BEF是等腰直角三角形,∴BE=EF=AE=x,∴x+x=1,解得,x=﹣1,∴tan∠AED==+1,②正确;由同位角相等可知,GF∥AB,EF∥AC,∴四边形AEFG是平行四边形,由折叠的性质可知,EA=EF,∴四边形AEFG是菱形,③正确;=2S△OCD,④错误,由正方形的性质可知,S△ACD故答案为:①②③.【点评】本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:2cos60°﹣|﹣4sin45°|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简即可得到结果.【解答】解:原式=2×﹣=1﹣.【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A 按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.【考点】轨迹;等腰三角形的性质;旋转的性质.【分析】由△ABD绕点A按逆时针方向旋转,AB与AC重合知旋转角为45°,根据弧长公式可得答案.【解答】解:∵△ABD绕点A按逆时针方向旋转,AB与AC重合,∴旋转角为45°,∴的长为=π.【点评】本题主要考查旋转的性质、弧长公式,熟练掌握旋转的性质得出旋转角度数是解题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17.如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.【考点】垂径定理;勾股定理.【分析】作OH⊥AB于H,根据垂径定理得AH=BH=AB=,再在Rt△BOH中,根据勾股定理得OH=1,由AC=AB得AC=,则CH=AH﹣AC=,然后根据勾股定理可计算出OC的长.【解答】解:作OH⊥AB于H,如图,∵OH⊥AB,∴AH=BH,∴AH=BH=AB=×2=,在Rt△BOH中,OB=2,BH=,∴OH==1,∵AC=AB=×2=,∴CH=AH﹣AC=﹣=,在Rt△OHC中,OC==.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.18.某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.【考点】列表法与树状图法.【分析】(1)由已确定A打第一场,再从其余三队中随机选取一队,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、C两队进行比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵已确定A打第一场,再从其余三队中随机选取一队,∴恰好选中D队的概率;(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两队进行比赛)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2017•全椒县一模)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)【考点】解直角三角形的应用.【分析】延长BA,CD交于点P,解直角三角形得到AP=PD•cos30°和BC的长,通过△PAD∽△PCB,得出=,代入数据即可得到结论.【解答】解:如图,延长BA,CD交于点P,∵∠PAD=∠PCB=90°,∠ADC=120°,∴∠P=30°,∵AD=3,∴PD=6,AP=PD•cos30°=3,BC=(18﹣2)÷2+2=10.∵∠P=∠P,∠PAD=∠PCB=90°,∴△PAD∽△PCB,∴=,∴PC==10m,∴CD=PC﹣PD=10﹣6≈11.32m.则应设计11.32m高的灯柱,才能取得最理想的照明效果.【点评】本题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确的作出辅助线构造相似三角形是解题的关键.20.(10分)(2017•全椒县一模)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;菱形的性质;坐标与图形变化﹣平移;解直角三角形.【分析】(1)根据菱形性质得出AC⊥OB,OD=BD,AD=CD,解直角三角形即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.【解答】解:(1)连接AC,交y轴于D,∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD,∵OB=4,tan∠BOC=.∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2);(2)B、C落在反比例函数的图象上,设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.【点评】本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.六、解答题(本题满分12分)21.(12分)(2017•全椒县一模)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M 于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.【考点】切线的判定;坐标与图形性质.【分析】(1)由点A的坐标可知OA的长度,根据∠ABO的度数可知,AB的长度为4,利用勾股定理即可求出OB的长度,从而求出B的坐标.(2)连接OC、MC、证明∠OCB为直角,根据D为OB的中点,可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求证MC⊥CD.【解答】解:(1)∵A的坐标为(0,2)∴OA=2,∵∠ABO=30°,∠AOB=90°,∴AB=2OA=4,∴由勾股定理可知:OB=2,∴B(2,0)(2)连接OC,MC∵OA是⊙M的直径,∴∠ACO=90°,∴∠OCB=90°,在Rt△OCB中,D为OB的中点,∴CD=OB=OD,∴∠DCO=∠DOC,∵MC=MO,∴∠OCM=∠COM∵∠MOC+∠DOC=∠AOB=90°,∴∠MCO+∠DCO=∠MCD=90°即MC⊥CD∴直线CD是⊙M的切线.【点评】本题考查切线的判定,解题的关键是连接MC、OC、根据直角三角形斜边上中线的性质,圆周角定理,等腰三角形的性质求出MC⊥CD,本题属于中等题型.七、解答题(本题满分12分)22.(12分)(2017•全椒县一模)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.【考点】二次函数综合题.【分析】(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵抛物线顶点坐标为(1,﹣2),∴可设抛物线解析式为y=a(x﹣1)2﹣2,∵OA=3,且点A在x轴的正半轴上,∴A(3,0),∴0=a(3﹣1)2﹣2,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,∴B(0,﹣),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴y=x﹣;(2)∵点P为线段AB上的一个动点,且PE⊥x轴,∴点E的横坐标为x,∵点E在抛物线上,∴E点的坐标为(x, x2﹣x﹣);(3)∵点P为线段AB上的一点,∴P(x, x﹣),则E(x, x2﹣x﹣),∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,=PE•x+PE•(3﹣x)=PE•(x+3﹣x)=PE=(﹣x2+x)=﹣x2+x=﹣(x﹣∴S△ABE)2+,∵﹣<0,∴当x=时,S有最大值,最大值为,△ABE∴△ABE面积的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积及方程思想等知识.在(1)中求得B点坐标是解题的关键,在(2)中注意E点横坐标与P点横坐标相同是解题的关键,在(3)中用P点坐标表示出△ABE的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.八、解答题(本题满分14分)23.(14分)(2017•全椒县一模)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC 绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是矩形,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标【解答】解:(1)图1,四边形OA′B′C′的形状是矩形;∵点A的坐标为(﹣8,0),点B(﹣8,6),∴AB∥OC,∵BC∥x轴,∴四边形OABC是平行四边形.又OC⊥OA,∴平行四边形OABC的形状是矩形;当α=90°时,P与C重合,如图1,BP=8,BQ=BP+OC=8+6=14,∴,即是矩形的长与宽的比,则.故答案为矩形,;(2)①图2,∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴,即,∴CP=,BP=BC﹣CP=.同理△B′CQ∽△B′C′O,∴,∴∴CQ=3,BQ=BC+CQ=11.∴,∴;②图3,在△OCP和△B′A′P中,,∴△OCP≌△B′A′P(AAS).∴OP=B′P.设B′P=x,在Rt△OCP中,(8﹣x)2+62=x2,解得x=.=××6=.∴S△OPB′(3)存在这样的点P和点Q,使BP=BQ.点P的坐标是P1(﹣9﹣,6),P2(﹣,6).理由:过点Q作QH⊥OA′于H,连接OQ,则QH=OC′=OC,∵S △POQ =PQ •OC ,S △POQ =OP •QH ,∴PQ=OP .设BP=x ,∵BP=BQ ,∴BQ=2x ,如图4,当点P 在点B 左侧时,OP=PQ=BQ +BP=3x ,在Rt △PCO 中,(8+x )2+62=(3x )2,解得x 1=1+,x 2=1﹣(不符实际,舍去). ∴PC=BC +BP=9+,∴P (﹣9﹣,6).如图5,当点P 在点B 右侧时,∴OP=PQ=BQ ﹣BP=x ,PC=8﹣x .在Rt △PCO 中,(8﹣x )2+62=x 2,解得x=.∴PC=BC ﹣BP=8﹣=, ∴P (﹣,6),综上可知,存在点P (﹣9﹣,6)或(﹣,6),使BP=BQ .。
安徽合肥市瑶海区2017年中考数学模拟试卷含答案
2017年九年级数学中考模拟试卷一、选择题:1.下列说法正确的是()A.有理数的绝对值一定是正数B.如果两个数的绝对值相等,那么这两个数相等C.如果一个数是负数,那么这个数的绝对值是它的相反数D.绝对值越大,这个数就越大2.下列运算正确的是()A.a2•a3=a6B.(a2)4=a6C.a4÷a=a3D.(x+y)2=x2+y23.据统计部门预测,到2020年武汉市常住人口将达到约14500000人,14500000用科学记数法表示为( )A.0.145×108B.1.45×107C.14.5×106D.145×1054.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A. B. C. D.5.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A. B. C. D.6.若关于x,y的多项式0.4x2y-7mxy+0.75y3+6xy化简后不含二次项,则m=( )7.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少8.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④9.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.16D.810.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米 B.9米 C.13米 D.15米二、填空题:11.一元一次不等式﹣x≥2x+3的最大整数解是.12.因式分解:x2﹣49= .13.如图,正方形ABCD内接于⊙O,AD=2,弦AE平分BC交BC于P,连接CE,则CE的长为.14.如图所示,一束光线从点A(3,3)出发,经过y轴上的C反射后经过点B(1,0),则光线从A点到B点经过的路线长是.三、计算题:15.计算:16.解方程:3x2+5(2x+1)=0四、解答题:17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.18.已知在直角坐标平面内,抛物线y=x2+bx+c经过点A(2,0)、B(0,6).(1)求抛物线的表达式;(2)抛物线向下平移几个单位后经过点(4,0)?请通过计算说明.19.据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒.问此车是否超过了该路段16米/秒的限制速度?(参考数据:≈1.4,≈1.7)20.如图,一次函数y=﹣x+5的图象与反比例函数y=kx-1(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积;(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=kx-1(k≠0)的值时,写出自变量x的取值范围.21.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.五、综合题:22.在平面直角坐标系中,二次函数y=x2+mx+2m﹣7的图象经过点(1,0).(1)求抛物线的表达式;(2)把﹣4<x<1时的函数图象记为H,求此时函数y的取值范围;(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.23.如图①,在平面直角坐标系中,点A(0,3).点B(-3,0),点C(1,0),点D(0,1).连AB, AC,BD.(1)求证:BD⊥AC;(2)如图②,将△BOD绕着点0旋转,得到△B'OD'当点D'落在AC上时,求AB'的长;(3)试直接写出(2)中点B的坐标.参考答案1.C2.C.3.B4.A5.A6.B7.D8.C9.C10.A11.答案为:﹣112.答案为:(x﹣7)(x+7).13.答案为.14.答案为:2+8.15.答案略;16.17.【解答】解:如图所示:18.【解答】解:(1)把A(2,0),B(0,6)代入y=x2+bx+c得解得b=﹣5,c=6,∴抛物线的表达式为y=x2﹣5x+6(2)把x=4代入y=x2﹣5x+6得y=16﹣20+6=2.2﹣0=2.故抛物线向下平移2个单位后经过点(4,0).19.由题意得,在Rt△BCD中,∵∠B DC=90°,∠BCD=45°,CD=100米,∴B D=CD=100米.在Rt△ACD中,∵∠ADC=90°,∠ACD=60°,CD=100米,∴A D=CD·tan∠ACD=100(米).∴AB=AD-BD=100-100≈70(米).∴此车的速度为(米/秒).∵17.5>16,∴此车超过了该路段16米/秒的限制速度.20.21.【解答】解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),补全统计图,如图所示:(2)根据题意得:2000××100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人;(3所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.22.【解答】解:(1)∵二次函数y=x2+mx+2m﹣7的图象经过点(1,0),∴1+m+2m﹣7=0,解得m=2.∴抛物线的表达式为y=x2+2x﹣3;(2)y=x2+2x﹣3=(x+1)2﹣4.∵当﹣4<x<﹣1时,y随x增大而减小;当﹣1≤x<1时,y随x增大而增大,∴当x=﹣1,y最小=﹣4.当x=﹣4时,y=5.∴﹣4<x<1时,y的取值范围是﹣4≤y<5;(3)y=x2+2x﹣3与x轴交于点(﹣3,0),(1,0).新图象M如右图红色部分.把抛物线y=x2+2x﹣3=(x+1)2﹣4的图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣(x+1)2+4(﹣3≤x≤1),当直线y=x+b经过(﹣3,0)时,直线y=x+b与图象M有两个公共点,此时b=3;当直线y=x+b与抛物线y=﹣(x+1)2+4(﹣3≤x≤1)相切时,直线y=x+b与图象M有两个公共点,即﹣(x+1)2+4=x+b有相等的实数解,整理得x2+3x+b﹣3=0,△=32﹣4(b﹣3)=0,解得b=.结合图象可得,直线y=x+b与图象M有三个公共点,b的取值范围是3<b<.23.。
2017年安徽省中考数学试卷-答案
安徽省2017年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】B 【解析】12的相反数是12-,添加一个负号即可,故选:B 。
【考点】相反数的概念2.【答案】A【解析】原式6a =,故选:A 。
【考点】幂的乘方法则3.【答案】B【解析】一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆,故选B 。
【考点】几何体的三视图的确定4.【答案】C【解析】1 600亿用科学记数法表示为111.610⨯,故选:C 。
【考点】用科学计数法表示较大的数5.【答案】D【解析】移项,得:24x ->-,系数化为1,得:2x <,故选:D 。
【考点】不等式的解法及在数轴上表示不等式的解集6.【答案】C【解析】如图,过E 作EF AB ∥,则AB EF CD ∥∥。
∴13∠=∠,24∠=∠。
∵3460∠+∠=︒,∴1260∠+∠=︒。
∵120∠=︒,∴240∠=︒,故选C 。
【考点】矩形,平行线,直角三角板的相关性质7.【答案】A【解析】由题可得,抽查的学生中参加社团活动时间在810~小时之间的学生数为100302410828----=(人),∴281000280100⨯= (人),即该校五一期间参加社团活动时间在810~小时之间的学生数大约是280人,故选:A 。
【考点】频数分布直方图的意义8.【答案】D【解析】第一次降价后的价格为:25(1)x ⨯-;第二次降价后的价格为:225(1)x ⨯-。
∵两次降价后的价格为16元,∴225(1x)16-=,故选D 。
【考点】一元二次方程解决实际问题9.【答案】B【解析】∵抛物线2y ax bx c =++与反比例函数b y x=的图象在第一象限有一个公共点,∴0b >,∵交点横坐标为1,∴a b c b ++=,∴0a c +=,∴0ac <,∴一次函数y bx ac =+的图象经过第一、二、三象限,故选:B 。
【考点】二次函数与反比例函数的性质10.【答案】D【解析】设ABC △中AB 边上的高是h 。
【中考模拟2017】安徽省合肥市 2017年九年级数学中考模拟试卷 三(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)则这个周共盈利( )A.715元B.630元C.635元D.605元2.下列运算正确的是()A.3a2﹣a2=3B.(a2)3=a5C.a3•a6=a9D.(2a2)2=4a23.地球七大洲的总面积约是149 480 000km2,对这个数据保留3个有效数字可表示为( )A.149km2B.1.5×108km2C.1.49×108km2D.1.50×108km24.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是()A.文 B.明 C.城 D.市5.某种细菌直径约为0.00000067mm,若将0.000 000 67mm用科学记数法表示为6.7×10n mm(n为负整数),则n的值为()A.﹣5B.﹣6C.﹣7D.﹣86.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx27.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查8.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是( )A.AC:BC=AD:BDB.AC:BC=AB:ADC.AB2=CD·BCD.AB2=BD·BC9.如图,在Rt△AOB中,两直角边OA,OB分别为x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A/O/B,若反比例函数y=kx-1的图象恰好经过斜边A/B的中点,S△ABO=4,tan∠BAO=2.则k的值为 .A.3B.4C.6D.810.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.二、填空题:11.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是.12.分解因式:mn2﹣6mn+9m= .13.如图,AB,AC,BD是☉O的切线,P,C,D为切点,如果AB=5,AC=3,则BD的长为 .14.如图,正五边形的边长为2,连对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,则MN= ;三、计算题:15.计算:.16.解方程:(3-x)2+x2=5四、解答题:17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.18.已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.19.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).20.如图,Rt△ABO的顶点A是双曲线y=kx-1与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S=1.5.△ABO(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.21.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?22.如图,直线y=-x+b与反比例函数y=-3x-1的图象相交于点A(a,3),且与x轴相交于点B.(1)求a、b的值;(2)若点P在x轴上,且△AOP的面积是△AOB的面积的一半,求点P的坐标.23.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.参考答案1.D2.C3.C4.B.5.C6.A7.B8.D9.C10.B12.答案为:m(n﹣3)2.13.答案:214.答案为:3-;15.解:原式=2+3﹣﹣﹣3+1=1.16.解:9-6x+x2+x2=5 x2-3x+2=0 (x-1)(x-2)=0 x1=1 x2=217.【解答】解:如图所示:18.【解答】解:(1)y=x2﹣2x+1=(x﹣1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如下图所示:由图象可知当x>2时,y的取值范围是y>1.19.【解答】解:作AG⊥CD,垂足为G.易得AG=BD,在Rt△AGC中,CG=AG•tan30°=6×=2米,可得CD=CG+GD=(2+1.5)米,在Rt△CED中,CE===(4+)米.答:拉线CE的长为(4+)米.20.略21.解:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=0.75;由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=0.5,∵P1=0.75,P2=0.5,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.22.略23.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.。
【中考模拟2017】安徽省合肥市 2017年九年级数学中考模拟试卷 六(含答案)
2017年九年级数学中考模拟试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2的绝对值是()A.2B.﹣2C.D.﹣2.若(-5a m+1b2n-1)·(2a n b m)=-10a4b4,则m-n的值为( )A.-1B.1C.-3D.33.为了响应中央号召,2012年某市加大财政支农力度,全市农业支出累计约达到53000万元,其中53000万元(保留三位有效数字)用科学记数法可表示为()A.5.3×107元B.5.30×107元C.530×108元D.5.30×108元4.如图所示图形中,不是正方体的展开图的是()A. B. C. D.5.化简÷(1+)的结果是( )6.按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A.abc﹣1B.x2﹣2C.3x2+2xy4D.m2+2mn+n27.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户B.20户C.22户D.24户8.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()A.ΔADE∽ΔAEFB.ΔECF∽ΔAEFC.ΔADE∽ΔECFD.ΔAEF∽ΔABF9.已知关于x的一次函数,其中实数k满足0<k<1,当自变量x在1≤x≤2范围内时,此函数的最大值为( )A.1B.2C.kD.2k-k-110.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣二、填空题:11.关于x对不等式(2a-b)x+a-5b>0的解集是x<1,则关于x的不等式2ax-b>0的解集是12.分解因式:x3﹣2x2+x= .13.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.14.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为.三、计算题:15.计算:|1-|+3tan30°-()0-(-)﹣1.16. (2x+1)2+15=8(2x+1)四、解答题:17.在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°.画出旋转后的图形.18.已知二次函数y= 2x2 -4x-6.(1)用配方法将y= 2x2 -4x-6化成y=a (x-h) 2 +k的形式;并写出对称轴和顶点坐标。
2017年安徽省中考数学试卷含答案
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前安徽省2017年初中毕业学业水平考试数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.12的相反数是( ) A .12 B .12- C .2 D .2- 2.计算32()a -的结果是( ) A .6aB .6a -C .5a -D .5a 3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A B C D4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为( ) A .101610⨯B .101.610⨯C .111.610⨯D .120.1610⨯ 5.不等式420x ->的解集在数轴上表示为( )A B CD 6.直角三角板和直尺如图放置.若120∠=,则2∠的度数为( )A .60B .50C .40D .307.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 ( ) A .280 B .240 C .300D .260 8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( )A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A B CD10.如图,在矩形ABCD 中,5AB =,3AD =,动点P 满足13PAB ABCD S S =△矩形.则点P 到,A B 两点距离之和PA PB +的最小值为( )ABC.D第Ⅱ卷(非选择题 共110分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)11.27的立方根是 .12.因式分解:244a b ab b -+= .13.如图,已知等边ABC △的边长为6,以AB 为直径的O 与边,AC BC 分别交于,D E 两点,则劣弧DE 的长为 .14.在三角形纸片ABC 中,90A ∠=,30C ∠=,30cm AC =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过BDE △某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm .三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)计算:11|2|cos60()3--⨯-.16.(本小题满分8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.17.(本小题满分8分)如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600m AB BD ==,75α=,45β=,求DE 的长. (参考数据:sin 750.97,cos750.26,2 1.41≈≈≈)18.(本小题满分8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC △和DEF △(顶点为网格线的交点),以及过格点的直线l .(1)将ABC △向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出DEF △关于直线l 对称的三角形; (3)填空:C E ∠+∠= .19.(本小题满分10分) 【阅读理解】我们知道,(1)1232n n n ++++⋅⋅⋅+=,那么2222123n +++⋅⋅⋅+结果等于多少呢? 在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n ++⋅⋅⋅+个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n +++⋅⋅⋅+.图1【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1,2,n n -),发现每个位置上三个圆圈中数的和均为.由此可得,这三个三角形数阵所有圆圈中数数学试卷 第5页(共16页) 数学试卷 第6页(共16页)的总和为:22223(123)n +++⋅⋅⋅+=.因此,2222123n +++⋅⋅⋅+= .【解决问题】根据以上发现,计算222212320171232017+++⋅⋅⋅++++⋅⋅⋅+的结果为 .20.(本小题满分10分)如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作CE AD ∥交ABC △的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.21.(本小题满分12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)(2依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由; (3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.22.(本小题满分12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数(1)求y 与之间的函数表达式;(2)设商品每天的总利润为W元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?23.(本小题满分14分)已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=,延长,AG BG 分别与边,BC CD 交于点,E F .①求证:BE CF =;②求证:2BE BC CE =;-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共16页) 数学试卷 第8页(共16页)(2) 如图2,在边BC 上取一点E ,满足2BE BC CE =,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan CBF ∠的值.安徽省2017年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B 【解析】12的相反数是12-,添加一个负号即可,故选:B 。
2017年合肥市中考数学一模试卷
2017年合肥市中考数学一模试卷2017年合肥市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣的相反数是()A.B.﹣C.D.﹣2.如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是()A.主视图是轴对称图形B.左视图是轴对称图形C.俯视图是轴对称图形D.三个视图都不是轴对称图形3.总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为()A.160×108B.16×109 C.1.6×1010D.1.6×10114.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°5.下列运算中,正确的是()A.3x3•2x2=6x6B.(﹣x2y)2=x4y C.(2x2)3=6x6D.x5÷x=2x46.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图 B.频数分布直方图A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab= .12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的(从“平均数、众数、中位数、方差”中选择答案)13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是km/h.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB=∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF =2S△AMN以上结论中,正确的是(请把正确结论的序号都填上)三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.16.用配方法解一元二次方程:x2﹣6x+6=0.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形AnBnCnCn﹣1,使得点A1、A2、A3…An在直线l上,点C1、C2、C3…Cn在y轴正半轴上,请解决下列问题:(1)点A6的坐标是;点B6的坐标是;(2)点An 的坐标是;正方形AnBnCnCn﹣1的面积是.五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)20.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:组号分组频数一9.6≤x<9.71二9.7≤x<9.82三9.8≤x<9.9a四9.9≤x<108五x=103(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h 的取值范围.2017年安徽省合肥市蜀山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.﹣的相反数是()A.B.﹣C.D.﹣【考点】相反数.【分析】根据相反数的定义,可以得知负数的相反数为负,绝对值没变,此题得解.【解答】解:﹣(﹣)=,故选A.2.如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是()A.主视图是轴对称图形B.左视图是轴对称图形C.俯视图是轴对称图形D.三个视图都不是轴对称图形【考点】简单组合体的三视图;轴对称图形.【分析】根据从正面看得到的图形是主视图,左边看得到的图形是左视图,从上边看得到的图形是俯视图,再根据轴对称图形的定义可得答案.【解答】解:如图所示:左视图是轴对称图形.故选:B.3.总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为()A.160×108B.16×109 C.1.6×1010D.1.6×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将160亿用科学记数法表示为:1.6×1010.故选:C.4.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【考点】平行线的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3﹣∠1=95°﹣50°=45°,∵a∥b,∴∠2=∠4=45°.故选:C.5.下列运算中,正确的是()A.3x3•2x2=6x6B.(﹣x2y)2=x4y C.(2x2)3=6x6D.x5÷x=2x4【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.【解答】解:A、3x3•2x2=6x5,故选项错误;B、(﹣x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;D、x5÷x=2x4,故选项正确.故选:D.6.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图 B.频数分布直方图C.条形统计图 D.扇形统计图【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:这七天空气质量变化情况最适合用折线统计图,故选:A.7.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE :S△CDE=1:3,则S△DOE :S△AOC的值为()A.B.C.D.【考点】相似三角形的判定与性质.【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S△BDE :S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE :S△AOC==,故选D.8.随着电子商务的发展,越来越多的人选择网上购物,导致各地商铺出租价格持续走低,某商业街的商铺今年1月份的出租价格为a元/平方米,2月份比1月份下降了5%,若3,4月份的出租价格按相同的百分率x继续下降,则4月份该商业街商铺的出租价格为:()A.(1﹣5%)a(1﹣2x)元B.(1﹣5%)a(1﹣x)2元C.(a﹣5%)(a﹣2)x 元D.a(1﹣5%﹣2x)元【考点】列代数式.【分析】根据降价后的价格=降价前的价格(1﹣降价的百分率),二月份的价格为a(1﹣5%),3,4每次降价的百分率都为x,后经过两次降价,则为(1﹣5%)a(1﹣x)2.【解答】解:由题意得,4月份该商业街商铺的出租价格为(1﹣5%)a(1﹣x)2元故选B.9.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有4个D.tan∠CAD=【考点】相似三角形的判定;矩形的性质;解直角三角形.【分析】由AE=AD=BC,又AD∥BC,所以==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【解答】解:A、∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,共有4个,故C正确,不符合题意;D、设AD=a,AB=b由△BAE∽△ADC,有=.∵tan∠CAD===,故D错误,符合题意.故选D.10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F 分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:()A.B.C.D.【考点】动点问题的函数图象.【分析】根据等边对等角得出∠B=∠C,再证明∠BED=∠CDF=135°﹣∠BDE,那么△BED∽△CDF,根据相似三角形对应边成比例求出y与x的函数关系式,结合函数值的取值范围即可求解.【解答】解:∵∠BAC=90°,AB=AC=3,∴∠B=∠C=45°,BC=3.∴∠BDE+∠BED=180°﹣∠B=135°,∵∠EDF=45°,∴∠BDE+∠CDF=180°﹣∠EDF=135°,∴∠BED=∠CDF,∴△BED∽△CDF,∴=.∵BD=2CD,∴BD=BC=2,CD=BC=,∴=,∴y=,故B、C错误;∵E,F分别在AB,AC上运动,∴0<x≤3,0<y≤3,故A错误.故选D.二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab= 2ab(b+2)(b﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2ab(b2﹣4)=2ab(b+2)(b﹣2),故答案为:2ab(b+2)(b﹣2)12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的中位数(从“平均数、众数、中位数、方差”中选择答案)【考点】统计量的选择.【分析】根据题意和平均数、众数、中位数、方差的含义可以解答本题.【解答】解:由题意可得,11个班级中取前5名,故只要知道参加决赛的11个班级最终成绩的中位数即可,故答案为:中位数.13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是72 km/h.【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验.【解答】解:设乙车的速度为xkm/h,,解得,x=60,经检验x=60是原分式方程的根,∴1.2x=1.2×60=72,故答案为:72.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB=∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF =2S△AMN以上结论中,正确的是①②③④(请把正确结论的序号都填上)【考点】相似三角形的判定与性质;正方形的性质.【分析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故②正确;根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;由△AMN∽△BME,得到,推出△AMB∽△NME,根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,根据相似三角形的性质得到EF=MN,于是得到S△AEF =2S△AMN故④正确.【解答】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故②正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH,∴∠ANM=∠AEB,∴∠AEB=∠AEF=∠ANM;故①正确;∵AC⊥BD,∴∠AOM=∠ADF=90°,∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO,∴△OAM∽△DAF,故③正确;连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME,∴△AMN∽△BME,∴,∴,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°,∵∠EAN=45°,∴∠NAE=∠NEA=45°,∴△AEN是等腰直角三角形,∴AE=AN,∵△AMN∽△BME,△AFE∽△BME,∴△AMN∽△AFE,∴=,∴EF=MN,∵AB=AO,∴S△AEF =S△AHE=HE•AB=EF•AB=MN AO=2×MN•AO=2S△AMN.故④正确.故答案为:①②③④.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.16.用配方法解一元二次方程:x2﹣6x+6=0.【考点】解一元二次方程﹣配方法.【分析】移项后两边配上一次项系数一半的平方,写成完全平方式,再开方即可得.【解答】解:∵x2﹣6x=﹣6,∴x2﹣6x+9=﹣6+9,即(x﹣3)2=3,则x﹣3=±,∴x=3.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.【考点】作图﹣旋转变换;轨迹;作图﹣平移变换.【分析】(1)利用点平移的坐标规律写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;(3)先计算出OA,然后利用弧长公式计算.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA==2,所以点A所经过的路径的长度==π.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形AnBnCnCn﹣1,使得点A1、A2、A3…An在直线l上,点C1、C2、C3…Cn在y轴正半轴上,请解决下列问题:(1)点A6的坐标是A6(32,31);点B6的坐标是(32,63);(2)点An 的坐标是(2n﹣1,2n﹣1);正方形AnBnCnCn﹣1的面积是22n﹣2.【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点Bn 是线段CnAn+1的中点,由此即可得出点Bn的坐标,然后根据正方形的面积公式即可得到结论.【解答】解:(1)观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),A5(16,15),A6(32,31),…,∴An(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:点Bn 是线段CnAn+1的中点,∴点Bn的坐标是(2n﹣1,2n﹣1),∴B6的坐标是(32,63);故答案为:(32,31),(32,63);(2)由(1)得An(2n﹣1,2n﹣1﹣1)(n为正整数),∴正方形An BnCnCn﹣1的面积是(2n﹣1)2=22n﹣2,故答案为:(2n﹣1,2n﹣1)(n为正整数).五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用60°的正切值可表示出FG长,进而利用∠ACG的正切函数求AG 长,加上1.6m即为主教学楼的高度AB.【解答】解:在Rt△AFG中,tan∠AFG=,∴FG==,在Rt△ACG中,tan∠ACG=,∴CG==AG.又∵CG﹣FG=24m,即AG﹣=24m,∴AG=12m,∴AB=12+1.6≈22.4m.20.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:组号分组频数一9.6≤x<9.71二9.7≤x<9.82三9.8≤x<9.9a四9.9≤x<108五x=103(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由总班数20﹣1﹣2﹣8﹣3即可求出a的值;(2)由(1)求出的a值,即可求出第三小组对应的扇形的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二小组至少有1个班级被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)a=20﹣1﹣2﹣8﹣3=6;(2)第三小组对应的扇形的圆心角度数=×360°=108°;(3)画树状图得:由树状图可知共有20种可能情况,其中第二小组至少有1个班级被选中的情况数有14种,所以第二小组至少有1个班级被选中的概率==.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.【考点】反比例函数综合题.【分析】(1)由平行线分线段成比例可求得CD的长,则可求得A、B、C、的坐标,再利用待定系数法可求得函数解析式;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,结合函数图象可求得答案;(3)由B、C的坐标可求得BC的长,当BC=BP时,则可求得P点坐标,当BC=PC 时,可知点C在线段BP的垂直平分线上,则可求得BP的中点坐标,可求得P 点坐标.【解答】解:(1)∵CD⊥OA,∴DC∥OB,∴===,∴CD=2OB=8,∵OA=OD=OB=3,∴A(3,0),B(0,4),C(﹣3,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为y=﹣x+4,∵反比例函数y=的图象经过点C,∴k=﹣24,∴反比例函数的解析式为y=﹣;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段AC(包含A点,不包含C点)所对应的自变量x的取值范围,∵C(﹣3,8),∴0<﹣x+4≤﹣的解集为﹣3≤x<0;(3)∵B(0,4),C(﹣3,8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP﹣PB=5﹣4=1,∴P点坐标为(0,9)或(0,﹣1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0,8),∴P点坐标为(0,12);综上可知存在满足条件的点P,其坐标为(0,﹣1)或(0,9)或(0,12).七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.【考点】切线的性质.【分析】(1)连接OC,由CD是⊙O切线,得到OC⊥CD,根据平行线的性质得到∠EAC=∠ACO,有等腰三角形的性质得到∠CAO=∠ACO,于是得到结论;(2)连接BC,由三角函数的定义得到sin∠CAE==,得到∠CAE=30°,于是得到∠CAB=∠CAE=30°,由AB是⊙O的直径,得到∠ACB=90°,解直角三角形即可得到结论;(3)根据余角的性质得到∠DCB=∠ACO根据相似三角形的性质得到结论.【解答】(1)证明:连接OC,∵CD是⊙O切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠A=CAO,即AC平分∠BAE;(2)解:连接BC,∵AE⊥CE,AC=2CE=6,∴sin∠CAE==,∴∠CAE=30°,∴∠CAB=∠CAE=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴cos∠CAB==,∴AB=4,∴⊙O的半径是2;(3)CD2=BD•AD,证明:∵∠DCB+∠BCO=90°,∠ACO+∠BCO=90°,∴∠DCB=∠ACO,∴∠DCB=∠ACO=∠CAD,∵∠D=∠D,∴△BCD∽△CAD,∴,即CD2=BD•AD.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h 的取值范围.【考点】二次函数的应用.【分析】(1)利用抛物线的顶点F的坐标为(6,2.8),将点(0,2)代入解析式求出即可;(2)利用当x=9时,y=﹣(x﹣6)2+2.8=2.6,当y=0时,﹣(x﹣6)2+2.8=﹣0.4,分别得出即可;(3)设抛物线解析式为y=a(x﹣6)2+h,由点C(0,2)得解析式为y=(x ﹣6)2+h,再依据x=18时y≤0即可得h的范围.【解答】解:(1)由题意可得抛物线的顶点F的坐标为(6,2.8),设抛物线的解析式为y=a(x﹣6)2+2.8,将点C(0,2)代入,得:36a+2.8=2,解得:a=﹣,∴y=﹣(x﹣6)2+2.8;(2)当x=9时,y=﹣(9﹣6)2+2.8=2.6>2.24,当x=18时,y=﹣(18﹣6)2+2.8=﹣0.4<0,∴这次发球可以过网且不出边界;(3)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,2)代入,得:36a+h=2,即a=,∴此时抛物线解析式为y=(x﹣6)2+h,根据题意,得: +h≤0,解得:h≥,又∵h>2.32,∴h≥答:球既能过网又不会出界的h的取值范围是h≥.2017年4月21日第31页(共31页)。
合肥市瑶海区2017-2018学年八年级上期中考试数学试题有答案[精品]
2017-2018学年度八年级第一学期期中考试数学试卷(满分:150分 时间120分钟)注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分)1. 下列语句中,不是命题的是:A. 两直线平行,同位角相等B.不相等的角就不是对顶角C. 互补的两个角不相等D.作线段AB2. 三角形的三边分别为3,1-2a,8,则a 的取值范围是:A. -6<a<-3B. a<-5或a>-2C. 2<a<5D. -5<a<-23. 点P 在第二限内,若点P 到x 轴的距离是3,到y 轴的距离是4,那么点P 点的坐标为:A. (-2,0)B.(-3,-4)C.(-3,4)D.(3,-4)4. 如果P (m+3,2m+4)在y 轴上,那么点P 的坐标是:A. (-2,0)B.(0,-2)C.(1,0)D.(0,1)5. 函数x y 3=的图象可由函数43-=x y 的图象沿y 轴:A. 向上平移4个单位得到B. 向下平移4个单位得到C. 向左平移4个单位得到D. 向右平移4个单位得到6. 在下列条件中,①C B A ∠=∠+∠;②3:2:1::=∠∠∠C B A ;③C B A ∠=∠=∠3121;④C B A ∠=∠=∠2;⑤C B A ∠=∠=∠32,能确定ABC ∆为直角三角形的条件有:A. 5个B. 4个C. 3个D. 2个7. 直线11:b x k y +=1与直线c x k y +=22:1在同一平面直角坐标系中的图象如图所示,则关于x 的不等式c x k b x k +<+21的解集为:A. 1>xB. 1<xC. 2->xD. 2-<x第7题图8. 如图所示的图形中,BD AE ⊥于E ,是几个三角形的高:A. 3B.4C.5D.6第8题图9. 对于一次函数1-+=k kx y ,下列叙述正确的是 :A. 当10<<k 时 ,函数图象经过第一、二、三象限B. 当0>k 时,y 随x 的增大而减小C. 当1<k 时,函数图象一定经过第三、四象限D. 函数图象一定经过点(-1,2)10. 在长方形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B →C →D 做匀速运动,那么ABP ∆的面积S 与P 运动的路程之间的函数图象大致为:10题图A BC D 二、填空题(本大题共4小题,每小题5分,满分20分)11. 函数2-=x x y 中自变量x 的取值范围是 12. 在平面直角坐标系中,已知线段AB ∥x 轴,点A 的坐标是(-2,3)且AB=4,则点B 的坐标是 .13. 已知直线42-+=m mx y 不经过第二象限,则m 的取值范围是14. 甲、乙两个人以相同前往距离A 地10m 的会展中心参观,图中1甲与2乙分别表示甲、乙两人前往目的地所走的路程S (m )随时间t (分)变化的函数图象,以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8m 后遇到甲;④甲出发24分钟后被乙追上;其中正确的有 (填序号).三、(本大题共2小题,每小题8分,满分16分)15. 已知一次函数的图像经过A (-1,-5)和B (1,1)两点. 第14题图(1)求这个一次函数的解析式;(2)若点C ()1,+-a a 在这个一次函数的图象上,求a 的值.16. ABC ∆在平面直角坐标系中的位置如图所示.(1) 将ABC ∆向右平移4个单位长度,再向下平移3个单位长度,画出平移后的111C B A ∆; 并写出顶点111C B 、、A 各点的坐标;(2) 计算111C B A ∆的面积.四、(本大题共2小题,每小题8分,满分16分)17. 如图,已知AB ∥CD ,AE 交CD 于点C ,AE DE ⊥,垂足为E ,37=∠A ˚,求D ∠的度数.18. 一次函数b kx y +=的图象与x y -=6的图象交与点(5,a ),且与直线32-=x y 平行, 请求出这个一次函数的表达式.五、(本大题共2小题,每小题10分,满分20分)19. 若等腰三角形的周长是80cm(1)写出腰长)(cm y 与底边长)(cm x 的函数关系式;(2)写出自变量取值范围;(3)画出此函数图象.20. 已知:如图,BD ,CE 是的两条角平分线,它们相交于点0,BC OF ⊥于点F .求证:A BEC BOF ∠-∠=∠21六、(本题满分12分)21. 直线6-=kx y 经过点A (4,0),直线33+-=x y 与x 轴交于点B ,且两直线交于C.(1)求 的值(2)求ABC ∆的面积七、(本题满分12分)22. (1)如图1,AD 是ABC ∆的一条中线,求证:ACD ABD S S ∆∆=(2)请运用第(1)题的结论解答下列问题:如图2,ABC ∆三边的中线CF BE 、、AD 交于一点G 。
合肥市瑶海区2017-2018学年八年级上期中考试数学试题有答案[精品]
2017-2018学年度八年级第一学期期中考试数学试卷(满分:150分 时间120分钟)注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分)1. 下列语句中,不是命题的是:A. 两直线平行,同位角相等B.不相等的角就不是对顶角C. 互补的两个角不相等D.作线段AB2. 三角形的三边分别为3,1-2a,8,则a 的取值范围是:A. -6<a<-3B. a<-5或a>-2C. 2<a<5D. -5<a<-23. 点P 在第二限内,若点P 到x 轴的距离是3,到y 轴的距离是4,那么点P 点的坐标为:A. (-2,0)B.(-3,-4)C.(-3,4)D.(3,-4)4. 如果P (m+3,2m+4)在y 轴上,那么点P 的坐标是:A. (-2,0)B.(0,-2)C.(1,0)D.(0,1)5. 函数x y 3=的图象可由函数43-=x y 的图象沿y 轴:A. 向上平移4个单位得到B. 向下平移4个单位得到C. 向左平移4个单位得到D. 向右平移4个单位得到6. 在下列条件中,①C B A ∠=∠+∠;②3:2:1::=∠∠∠C B A ;③C B A ∠=∠=∠3121;④C B A ∠=∠=∠2;⑤C B A ∠=∠=∠32,能确定ABC ∆为直角三角形的条件有:A. 5个B. 4个C. 3个D. 2个7. 直线11:b x k y +=1与直线c x k y +=22:1在同一平面直角坐标系中的图象如图所示,则关于x 的不等式c x k b x k +<+21的解集为:A. 1>xB. 1<xC. 2->xD. 2-<x第7题图8. 如图所示的图形中,BD AE ⊥于E ,是几个三角形的高:A. 3B.4C.5D.6第8题图9. 对于一次函数1-+=k kx y ,下列叙述正确的是 :A. 当10<<k 时 ,函数图象经过第一、二、三象限B. 当0>k 时,y 随x 的增大而减小C. 当1<k 时,函数图象一定经过第三、四象限D. 函数图象一定经过点(-1,2)10. 在长方形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B →C →D 做匀速运动,那么ABP ∆的面积S 与P 运动的路程之间的函数图象大致为:10题图A BC D 二、填空题(本大题共4小题,每小题5分,满分20分)11. 函数2-=x x y 中自变量x 的取值范围是 12. 在平面直角坐标系中,已知线段AB ∥x 轴,点A 的坐标是(-2,3)且AB=4,则点B 的坐标是 .13. 已知直线42-+=m mx y 不经过第二象限,则m 的取值范围是14. 甲、乙两个人以相同前往距离A 地10m 的会展中心参观,图中1甲与2乙分别表示甲、乙两人前往目的地所走的路程S (m )随时间t (分)变化的函数图象,以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8m 后遇到甲;④甲出发24分钟后被乙追上;其中正确的有 (填序号).三、(本大题共2小题,每小题8分,满分16分)15. 已知一次函数的图像经过A (-1,-5)和B (1,1)两点. 第14题图(1)求这个一次函数的解析式;(2)若点C ()1,+-a a 在这个一次函数的图象上,求a 的值.16. ABC ∆在平面直角坐标系中的位置如图所示.(1) 将ABC ∆向右平移4个单位长度,再向下平移3个单位长度,画出平移后的111C B A ∆; 并写出顶点111C B 、、A 各点的坐标;(2) 计算111C B A ∆的面积.四、(本大题共2小题,每小题8分,满分16分)17. 如图,已知AB ∥CD ,AE 交CD 于点C ,AE DE ⊥,垂足为E ,37=∠A ˚,求D ∠的度数.18. 一次函数b kx y +=的图象与x y -=6的图象交与点(5,a ),且与直线32-=x y 平行, 请求出这个一次函数的表达式.五、(本大题共2小题,每小题10分,满分20分)19. 若等腰三角形的周长是80cm(1)写出腰长)(cm y 与底边长)(cm x 的函数关系式;(2)写出自变量取值范围;(3)画出此函数图象.20. 已知:如图,BD ,CE 是的两条角平分线,它们相交于点0,BC OF ⊥于点F .求证:A BEC BOF ∠-∠=∠21六、(本题满分12分)21. 直线6-=kx y 经过点A (4,0),直线33+-=x y 与x 轴交于点B ,且两直线交于C.(1)求 的值(2)求ABC ∆的面积七、(本题满分12分)22. (1)如图1,AD 是ABC ∆的一条中线,求证:ACD ABD S S ∆∆=(2)请运用第(1)题的结论解答下列问题:如图2,ABC ∆三边的中线CF BE 、、AD 交于一点G 。
合肥市瑶海区2017-2018学年八年级上期中考试数学试题有答案
2017-2018学年度八年级第一学期期中考试数学试卷(满分:150分 时间120分钟)注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分)1. 下列语句中,不是命题的是:A. 两直线平行,同位角相等B.不相等的角就不是对顶角C. 互补的两个角不相等D.作线段AB2. 三角形的三边分别为3,1-2a,8,则a 的取值范围是:A. -6<a<-3B. a<-5或a>-2C. 2<a<5D. -5<a<-23. 点P 在第二限内,若点P 到x 轴的距离是3,到y 轴的距离是4,那么点P 点的坐标为:A. (-2,0)B.(-3,-4)C.(-3,4)D.(3,-4)4. 如果P (m+3,2m+4)在y 轴上,那么点P 的坐标是:A. (-2,0)B.(0,-2)C.(1,0)D.(0,1)5. 函数x y 3=的图象可由函数43-=x y 的图象沿y 轴:A. 向上平移4个单位得到B. 向下平移4个单位得到C. 向左平移4个单位得到D. 向右平移4个单位得到6. 在下列条件中,①C B A ∠=∠+∠;②3:2:1::=∠∠∠C B A ;③C B A ∠=∠=∠3121;④C B A ∠=∠=∠2;⑤C B A ∠=∠=∠32,能确定ABC ∆为直角三角形的条件有:A. 5个B. 4个C. 3个D. 2个7. 直线11:b x k y +=1与直线c x k y +=22:1在同一平面直角坐标系中的图象如图所示,则关于x 的不等式c x k b x k +<+21的解集为:A. 1>xB. 1<xC. 2->xD. 2-<x第7题图8. 如图所示的图形中,BD AE ⊥于E ,是几个三角形的高:A. 3B.4C.5D.6第8题图9. 对于一次函数1-+=k kx y ,下列叙述正确的是 :A. 当10<<k 时 ,函数图象经过第一、二、三象限B. 当0>k 时,y 随x 的增大而减小C. 当1<k 时,函数图象一定经过第三、四象限D. 函数图象一定经过点(-1,2)10. 在长方形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B →C →D 做匀速运动,那么ABP ∆的面积S 与P 运动的路程之间的函数图象大致为:10题图A BC D 二、填空题(本大题共4小题,每小题5分,满分20分)11. 函数2-=x x y 中自变量x 的取值范围是 12. 在平面直角坐标系中,已知线段AB ∥x 轴,点A 的坐标是(-2,3)且AB=4,则点B 的坐标是 .13. 已知直线42-+=m mx y 不经过第二象限,则m 的取值范围是14. 甲、乙两个人以相同前往距离A 地10m 的会展中心参观,图中1甲与2乙分别表示甲、乙两人前往目的地所走的路程S (m )随时间t (分)变化的函数图象,以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8m 后遇到甲;④甲出发24分钟后被乙追上;其中正确的有 (填序号).三、(本大题共2小题,每小题8分,满分16分)15. 已知一次函数的图像经过A (-1,-5)和B (1,1)两点. 第14题图(1)求这个一次函数的解析式;(2)若点C ()1,+-a a 在这个一次函数的图象上,求a 的值.16. ABC ∆在平面直角坐标系中的位置如图所示.(1) 将ABC ∆向右平移4个单位长度,再向下平移3个单位长度,画出平移后的111C B A ∆; 并写出顶点111C B 、、A 各点的坐标;(2) 计算111C B A ∆的面积.四、(本大题共2小题,每小题8分,满分16分)17. 如图,已知AB ∥CD ,AE 交CD 于点C ,AE DE ⊥,垂足为E ,37=∠A ˚,求D ∠的度数.18. 一次函数b kx y +=的图象与x y -=6的图象交与点(5,a ),且与直线32-=x y 平行, 请求出这个一次函数的表达式.五、(本大题共2小题,每小题10分,满分20分)19. 若等腰三角形的周长是80cm(1)写出腰长)(cm y 与底边长)(cm x 的函数关系式;(2)写出自变量取值范围;(3)画出此函数图象.20. 已知:如图,BD ,CE 是的两条角平分线,它们相交于点0,BC OF ⊥于点F .求证:A BEC BOF ∠-∠=∠21六、(本题满分12分)21. 直线6-=kx y 经过点A (4,0),直线33+-=x y 与x 轴交于点B ,且两直线交于C.(1)求 的值(2)求ABC ∆的面积七、(本题满分12分)22. (1)如图1,AD 是ABC ∆的一条中线,求证:ACD ABD S S ∆∆=(2)请运用第(1)题的结论解答下列问题:如图2,ABC ∆三边的中线CF BE 、、AD 交于一点G 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年九年级数学中考模拟试卷
一、选择题:
1.下列说法正确的是()
A.有理数的绝对值一定是正数
B.如果两个数的绝对值相等,那么这两个数相等
C.如果一个数是负数,那么这个数的绝对值是它的相反数
D.绝对值越大,这个数就越大
2.下列运算正确的是()
A.a2•a3=a6B.(a2)4=a6C.a4÷a=a3D.(x+y)2=x2+y2
3.据统计部门预测,到2020年武汉市常住人口将达到约14500000人,14500000用科学记数法表示为( )
A.0.145×108
B.1.45×107
C.14.5×106
D.145×105
4.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()
A. B. C. D.
5.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()
A. B. C. D.
6.若关于x,y的多项式0.4x2y-7mxy+0.75y3+6xy化简后不含二次项,则m=( )
7.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合
B.八年级的学生人数为262名
C.八年级的合格率高于全校的合格率
D.九年级的合格人数最少
8.如图,在大小为4×4的正方形网格中,是相似三角形的是()
A.①和②
B.②和③
C.①和③
D.②和④
9.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()
A.4
B.8
C.16
D.8
10.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()
A.6.5米 B.9米 C.13米 D.15米
二、填空题:
11.一元一次不等式﹣x≥2x+3的最大整数解是.
12.因式分解:x2﹣49= .
13.如图,正方形ABCD内接于⊙O,AD=2,弦AE平分BC交BC于P,连接CE,则CE的长为.
14.如图所示,一束光线从点A(3,3)出发,经过y轴上的C反射后经过点B(1,0),则光线从A点到B点经过的路线长是.
三、计算题:
15.计算:
16.解方程:3x2+5(2x+1)=0
四、解答题:
17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.
18.已知在直角坐标平面内,抛物线y=x2+bx+c经过点A(2,0)、B(0,6).
(1)求抛物线的表达式;
(2)抛物线向下平移几个单位后经过点(4,0)?请通过计算说明.
19.据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道
路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒.问此
车是否超过了该路段16米/秒的限制速度?(参考数据:≈1.4,≈1.7)
20.如图,一次函数y=﹣x+5的图象与反比例函数y=kx-1(k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式与点B坐标;
(2)求△AOB的面积;
(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=kx-1(k≠0)的值时,写出自变量x的取值范围.
21.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:
请根据所给信息解答以下问题:
(1)请补全条形统计图;
(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?
(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.
五、综合题:
22.在平面直角坐标系中,二次函数y=x2+mx+2m﹣7的图象经过点(1,0).
(1)求抛物线的表达式;
(2)把﹣4<x<1时的函数图象记为H,求此时函数y的取值范围;
(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.
23.如图①,在平面直角坐标系中,点A(0,3).点B(-3,0),点C(1,0),点D(0,1).连AB, AC,BD.
(1)求证:BD⊥AC;
(2)如图②,将△BOD绕着点0旋转,得到△B'OD'当点D'落在AC上时,求AB'的长;
(3)试直接写出(2)中点B的坐标.
参考答案
1.C
2.C.
3.B
4.A
5.A
6.B
7.D
8.C
9.C
10.A
11.答案为:﹣1
12.答案为:(x﹣7)(x+7).
13.答案为.
14.答案为:2+8.
15.答案略;
16.
17.【解答】解:如图所示:
18.【解答】解:(1)把A(2,0),B(0,6)代入y=x2+bx+c
得解得b=﹣5,c=6,
∴抛物线的表达式为y=x2﹣5x+6
(2)把x=4代入y=x2﹣5x+6得y=16﹣20+6=2.2﹣0=2.
故抛物线向下平移2个单位后经过点(4,0).
19.由题意得,在Rt△BCD中,
∵∠B DC=90°,∠BCD=45°,CD=100米,∴B D=CD=100米.
在Rt△ACD中,∵∠ADC=90°,∠ACD=60°,CD=100米,
∴A D=CD·tan∠ACD=100(米).∴AB=AD-BD=100-100≈70(米).∴此车的速度为(米/秒).∵17.5
>16,∴此车超过了该路段16米/秒的限制速度.
20.
21.【解答】解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),
补全统计图,如图所示:
(2)根据题意得:2000××100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人;
(3
所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.
22.【解答】解:(1)∵二次函数y=x2+mx+2m﹣7的图象经过点(1,0),
∴1+m+2m﹣7=0,解得m=2.∴抛物线的表达式为y=x2+2x﹣3;
(2)y=x2+2x﹣3=(x+1)2﹣4.
∵当﹣4<x<﹣1时,y随x增大而减小;
当﹣1≤x<1时,y随x增大而增大,∴当x=﹣1,y最小=﹣4.
当x=﹣4时,y=5.∴﹣4<x<1时,y的取值范围是﹣4≤y<5;
(3)y=x2+2x﹣3与x轴交于点(﹣3,0),(1,0).新图象M如右图红色部分.
把抛物线y=x2+2x﹣3=(x+1)2﹣4的图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣(x+1)2+4(﹣3≤x≤1),
当直线y=x+b经过(﹣3,0)时,直线y=x+b与图象M有两个公共点,此时b=3;
当直线y=x+b与抛物线y=﹣(x+1)2+4(﹣3≤x≤1)相切时,直线y=x+b与图象M有两个公共点,
即﹣(x+1)2+4=x+b有相等的实数解,整理得x2+3x+b﹣3=0,△=32﹣4(b﹣3)=0,解得b=.
结合图象可得,直线y=x+b与图象M有三个公共点,b的取值范围是3<b<.
23.。