超滤、纳滤膜分离技术在直饮水中的应用解析
膜(微滤、超滤、纳滤、反渗透)概述及其应用
膜(微滤、超滤、纳滤、反渗透)概述及其应用膜技术简介为了满足工业生产和饮用水方面的要求,各种膜的技术应运而生。
它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。
膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。
膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。
有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。
微滤(MF)又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。
微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。
无机膜材料有陶瓷和金属等。
鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。
对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。
可作为一般料液的澄清、保安过滤、空气除菌。
超滤(UF)是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000um分子量之间。
超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。
以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。
对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。
膜技术在水处理中的应用
膜技术在水处理中的应用随着人们对环境保护意识的提高,水处理技术也得到了广泛的关注和推广。
而在众多的水处理技术中,膜技术因为其高效、可靠、环保的特点,成为了越来越多水处理领域的首选。
在本文中,我们将探讨膜技术在水处理中的应用。
一、膜技术的原理和优势膜技术是利用膜分离原理,以膜为过滤介质,将水中的杂质、微生物、病毒等有害物质分离出来的一种水处理技术。
膜技术主要分为微滤、超滤、纳滤和反渗透四种类型,其应用范围也不尽相同。
相比于传统水处理技术,膜技术有以下优势:1.高效。
膜孔径小,分离效果好,能有效地去除水中的有害物质。
2.环保。
膜技术不需要任何化学药剂,可以减少水处理过程中的污染。
3.省水。
膜技术可以回收处理后的水,达到节水效果。
4.便捷。
膜技术操作简单,不需要大量的人力和物力成本。
5.可持续。
膜技术可以循环利用,投资收益高,且使用寿命长。
二、膜技术在水处理中的应用1.饮用水处理膜技术在饮用水处理中的应用是最为广泛的。
膜技术可以有效地去除水中的重金属、有机物、微生物等有害物质,使水变得更加清澈、透明、安全。
膜技术可以借助反渗透膜加工饮用水,将水中的各种离子、微生物、悬浮物、色度等物质分离出来,制备出高质量的饮用水。
世界上很多国家、地区都采用了这种技术来提供高质量的饮用水。
2.污水处理膜技术在污水处理中的应用也越来越广泛。
膜技术可以有效地去除污水中的各种杂质、微生物和悬浮物,取代传统沉淀、过滤等处理方式,大大提高了污水处理效率和水质。
膜技术可以应用于城市污水处理厂、工业废水处理等领域,达到排放标准。
3.海水淡化随着全球人口的增长和干旱地区的扩大,海水淡化技术也越来越重要。
而膜技术可以应用于海水淡化领域,将海水中的盐、微生物等有害物质去除,制备出淡水。
海水淡化可以缓解干旱地区的用水问题,改善当地居民的生活条件,提高经济发展水平。
三、膜技术的发展前景膜技术作为一种高效、环保的水处理技术,已经快速发展和应用。
简述生活饮用水深度处理技术与应用解析
简述生活饮用水深度处理技术与应用解析生活饮用水与人体是息息相关的。
随着工业的发展,现在的工业对水已经进行了深度处理,然后在被用到设备上。
而就生活饮用水而言则不一样。
有的人认为饮用水不能进行深度处理,原因是深度处理过后会把水中的有益的元素过滤掉。
有的则认为可以进行深度处理,不然担心水质不达标准。
就这个问题做了相关的分析,具体分析如下:随着水污染日益严重,大量的污染物尤其是有机污染物通过不同的方式进入水体,饮用水水源受到日趋广泛的污染。
传统饮用水设备的混凝、过滤、消毒等自来水工艺是以去除水中的悬浮物、浊度、色度为主,对溶解性有机物去除能力相对不足,而且加氯消毒本身还形成了“三致物质”(致癌、致畸、致突变),直接影响饮用者的身体健康。
因此,最大可能地去除水中的微量有机污染物、消毒副产物等就是饮用水深度净化的目的。
水的深度处理在国外应用较为普遍,我国在饮用水深化处理方面还处于起步阶段,大部分老水厂均未采用深度处理,只有部分新水厂采用了深度处理。
人们开发了许多技术如活性炭吸附、臭氧氧化、臭氧和活性炭联用和各种膜技术等对饮用水进行深度处理。
臭氧与活性炭滤池联用。
这种方法是基于活性炭能有效去除水中小分子有机物,但对大分子有机物的去除有限。
水先经臭氧氧化,使水中大分子有机物分解成小分子有机物,这样就提高了有机物进入活性炭微孔内部的可能性,可以充分利用活性炭的吸附表面,且延长了活性炭的使用周期。
同时后续的活性炭可以吸附臭氧氧化过程中产生的大量中间产物,包括解决了臭氧无法去除的三氯甲烷,并保证了最后出水的生物稳定性。
但是该技术设备昂贵,运行耗电量大的问题同样不容忽视。
活性炭具有良好的吸附和过滤功能,对水中的致癌物与致突变物具有良好的去除效果。
但由于活性炭的再生问题使制水成本大幅度提高,在我国的使用受到一定的限制。
臭氧可以破坏致病微生物,能保证彻底消毒而没有毒性副产物的产生。
采用臭氧消毒取代氯气消毒可杜绝有机氯化物的生成,而且可直接去除水中有机氯化物。
膜技术在饮用水处理中的应用
膜技术在饮用水处理中的应用膜技术是通过选择性渗透原理,利用膜作为介质将水和污染物分离的技术。
膜材料通常可以分为有机膜和无机膜两大类。
有机膜包括聚醚酯膜、聚胺酯膜、聚碳酸酯膜等;无机膜包括陶瓷膜、炭化膜、金属膜等。
这些膜材料具有不同的孔径、渗透性和分离效果,可以根据不同的水质要求进行选择。
膜技术在饮用水处理中具有很多优点。
膜技术可以有效去除水中的悬浮物、胶体、有机物、无机盐和微生物等污染物。
膜技术对水质要求较低,可以适用于各种不同的水源,如表面水、地下水、海水等。
膜技术具有操作简单、能耗低、占地面积小的特点,可以实现连续处理和自动化控制,减轻人工操作负担,降低运行成本。
1. 微滤和超滤:微滤和超滤是膜技术的基础应用。
微滤和超滤膜具有较大的孔径,可以去除水中的悬浮物、胶体、细菌等微生物,有效提高水质。
微滤和超滤广泛应用于净水厂、给水设备、水源污染治理等领域。
2. 反渗透:反渗透是膜技术在饮用水处理中的重要应用之一。
反渗透膜具有极小的孔径,可以有效去除水中的溶解性无机盐、重金属、有机物等。
反渗透技术可以广泛应用于海水淡化、地下水处理、饮用水净化等领域。
3. 纳滤:纳滤是一种介于微滤和超滤之间的膜分离技术。
纳滤膜的孔径较小,可以去除水中的有机物、胶体、微生物等,同时保留溶解性无机盐。
纳滤技术可以应用于矿泉水处理、工业废水处理等领域。
4. 电渗析:电渗析是利用电场和离子选择性膜对水中的离子进行选择性分离和浓缩的技术。
电渗析技术可以有效去除水中的重金属离子、无机盐等。
电渗析技术广泛应用于工业废水处理、电镀废液处理等领域。
除了以上几个方面,膜技术还可以与其他水处理技术相结合,如吸附、氧化、高级氧化等,形成多种复合膜技术,提高饮用水的处理效果。
膜技术在饮用水处理中的应用具有广泛的前景和巨大的潜力。
随着技术的不断发展和成熟,膜技术将在解决饮用水资源短缺和水污染问题方面发挥越来越重要的作用。
我们还应加强相关研究,不断创新和完善膜技术,促进其更好地在饮用水处理领域的应用。
膜技术在水处理中的应用与发展
膜技术在水处理中的应用与发展一、膜技术的原理膜技术是一种利用半透膜对混合液体进行分离的技术,其原理是利用膜的孔径和表面特性来选择性地分离和浓缩混合物中的组分。
膜分离一般包括微滤、超滤、纳滤和反渗透等方式,通过不同的孔径和选择性来分离不同大小和性质的溶质。
膜技术比传统的过滤、沉淀和溶剂萃取等方法更加高效、节能,而且可以进行连续操作,因此在水处理领域有着广泛的应用前景。
二、膜技术在水处理中的应用膜技术在饮用水处理中有着广泛的应用,包括微滤膜和超滤膜用于去除水中浮游颗粒、胶体、细菌等微生物颗粒,纳滤膜用于去除水中的溶解性无机盐和有机物,反渗透膜用于去除水中的离子和微生物,使得水质更加纯净、清澈。
膜技术还可以有效去除水中的重金属、有机物和臭味物质,提高了饮用水的品质和安全性。
在污水处理中,膜技术可以对污水进行固液分离,去除污水中的悬浮物、胶体、微生物、颗粒物等,同时也可以去除污水中的有机物、药物残留、重金属离子等,并且可以实现废水回用,达到资源化利用和减少排放的目的。
膜技术在污水处理中有着广泛的应用前景,可以有效解决城市和工业污水处理中的难题。
海水淡化是指将海水中的盐分去除,得到淡水的过程。
而反渗透膜作为海水淡化中的核心技术,因其高效、低能耗和不受水质变化影响等特点,已成为海水淡化的首选技术。
通过反渗透膜可以将海水中的盐分去除,得到高品质的淡水,并且可以实现规模化的应用,有效解决了淡水资源的短缺问题。
1. 膜技术将更加智能化随着信息技术和自动化技术的发展,膜技术将更加智能化和自动化,如传感器的应用、在线监测与控制系统的建立等,将有效提高膜技术的操作效率和稳定性,降低运行成本和维护难度。
未来膜技术将更加注重节能和环保,如利用新型材料和结构设计,降低膜的运行压力和能耗;开发绿色和可再生的膜材料,提高膜的抗污性和寿命,减轻膜处理过程中的二次污染,实现更加可持续的水资源利用。
随着技术不断发展和成本的降低,膜技术将更加广泛应用于城市供水、工业用水、农村饮用水、废水处理、海水淡化等领域,为解决全球水资源问题贡献更大的力量。
超滤、纳滤双膜法给水厂设计
超滤、纳滤双膜法给水厂设计随着人口的增加和经济的发展,对清洁水资源的需求日益增加。
给水厂作为供应居民和工业用水的重要设施,对水质的要求越来越高。
超滤和纳滤双膜法作为一种先进的水处理技术,被广泛应用于给水厂的设计中。
超滤和纳滤是利用膜分离技术进行水处理的方法,通过特制的膜材料,将水中的悬浮物、胶体、微生物和大部分溶解有机物截留在膜表面,从而实现对水质的净化。
相比传统的混凝沉淀和过滤工艺,超滤和纳滤具有操作简便、效果稳定、水质稳定等优势。
在给水厂的设计中,超滤和纳滤双膜法可以应用于原水处理、二次处理和深度处理等环节。
首先是原水处理。
原水中常常含有悬浮物、胶体、微生物和有机物等杂质,使用超滤和纳滤膜可以有效去除这些杂质,使得原水质量得到有效提升。
另外,超滤和纳滤膜还可以提供良好的阻隔效果,防止水中的微生物和有机物进入下一步处理过程,保证后续处理的顺利进行。
其次是二次处理。
在原水处理后,需要对水进行进一步的净化和消毒。
超滤和纳滤膜可以有效去除水中的微生物和有机物,提供清洁的水源供给消毒工艺使用。
与传统的滤池相比,超滤和纳滤膜具有更好的过滤效果和更高的水质稳定性,可以有效降低二次处理的难度和复杂度。
最后是深度处理。
在给水厂的设计中,为了进一步提高水质,常常需要进行深度处理。
超滤和纳滤膜具有优异的去除微生物和有机物的能力,可以实现对水质的深度净化。
此外,超滤和纳滤膜还可以去除水中的重金属离子、溶解有机物和胶体颗粒等,提供更高质量的水源。
在给水厂设计中,超滤和纳滤双膜法具有许多优势。
首先,膜分离技术操作简便,不需要使用化学药剂,减少了对环境的污染。
其次,超滤和纳滤膜具有高效的过滤效果和稳定的水质,可以提供稳定的水源供给。
此外,超滤和纳滤膜的模块化设计,使得设备更加紧凑,节约了占地面积。
然而,超滤和纳滤膜技术也存在一些挑战。
首先,膜的污染问题需要定期清洗和维护,以保证膜的正常运行。
其次,超滤和纳滤膜的投资和运行成本相对较高,需要综合考虑经济性和技术可行性。
膜分离技术在环境工程中的应用
膜分离技术在环境工程中的应用膜分离技术在环境工程中的应用引言:随着环境污染问题的日益突出,环境工程领域对于高效、经济、绿色的处理技术需求日益增长。
膜分离技术作为一种新兴的分离技术,在环境工程中得到了广泛的应用。
膜分离技术具有高选择性、高通透性、操作简便以及可持续利用的特点,可以应用于水处理、废气处理、固液分离等多个领域。
本文将就膜分离技术在环境工程中的应用进行详细介绍。
一、膜分离技术在水处理中的应用水是生命之源,但随着经济和人口的发展,水资源的供应变得紧张,水污染问题日益突出。
膜分离技术作为一种高效的水处理技术,被广泛应用于饮用水处理、污水处理和海水淡化等领域。
1.1 饮用水处理膜分离技术在饮用水处理中具有净化水质、去除悬浮物和微生物的优势。
常见的膜分离技术包括超滤、微滤和纳滤等。
超滤膜可以有效去除水中的大分子有机物、胶体物质和微生物,微滤膜则可去除较大颗粒、浑浊物质和细菌,而纳滤膜可以去除更小的有机物、无机盐和微生物。
膜分离技术能够高效地去除水中的污染物,提高饮用水的水质。
1.2 污水处理膜分离技术在污水处理中被广泛应用于深度处理和回用。
通过采用超滤和反渗透等膜分离技术,将污水中的悬浮物、微生物、有机物和盐分等污染物去除,可达到国家污染物排放标准要求。
而对于高浓度有机废水处理,采用微生物膜反应器(MBR)结合膜分离技术,能够实现高效处理和回用,降低环境污染。
1.3 海水淡化海水淡化是一个既能解决水资源短缺问题,又能提供居民和工业用水的重要途径。
膜分离技术在海水淡化中是首选技术之一。
通过采用反渗透膜,将海水中的盐分和微生物去除,可获得符合人类饮用和工业用水标准的淡水。
膜分离技术在海水淡化中具有节能、高效和环保等优点,成为水资源利用的重要手段。
二、膜分离技术在废气处理中的应用废气是工业生产中产生的污染物之一,其中包括有害气体和颗粒物等。
膜分离技术在废气处理中的应用,主要体现在气体分离和气体净化方面。
纳滤膜技术的进展和应用前景
纳滤膜技术的进展和应用前景随着人们对水质要求的不断提高,水处理技术也在不断创新发展。
其中,纳滤膜技术是近年来备受关注的一种水处理技术。
该技术可将水中的悬浮固体、胶体、有机物和微生物等物质过滤出来,以达到净化水质的目的。
本文将围绕纳滤膜技术的进展和应用前景,从以下几个方面进行探讨。
一、技术原理纳滤膜技术是一种通过膜分离的水处理技术。
与传统的微滤、超滤和反渗透等技术相比,纳滤膜的膜孔直径更小,一般在1-100纳米之间,可将水中的颗粒等极小物质完全过滤掉。
其过滤机理主要是利用膜多孔性和截留效应来实现对水中物质的筛选和过滤。
同时,也可以通过改变膜孔的大小和形状,来使膜对不同物质呈现出不同的过滤和截留效果。
二、技术进展在纳滤膜技术的研发和应用过程中,科研人员们通过改进材料制备工艺、优化膜孔的精度和形状,并加强制程监测等手段,进一步提高了纳滤膜的过滤效率和使用寿命,并实现了对水质的更细化处理。
1.纳滤膜材料的发展纳滤膜材料的种类和性能对技术的发展起到了至关重要的作用。
近年来,随着高分子材料的不断改进和应用,以及无机材料的开发和应用,纳滤膜的材料种类和性能不断得到提升和改进。
例如,聚砜、聚脲、聚吡咯、聚乙烯醇、卟啉等材料的应用,使得纳滤膜的选择性、通透性和抗污染性能得到了显著提高。
2.纳滤膜的稳定性和抗污染性研究纳滤膜的稳定性和抗污染性决定了其在实际应用中的使用寿命和效果。
因此,在纳滤膜的研发和应用过程中,对其稳定性和抗污染性的研究和优化也一直是科研人员们的研究重点。
目前,研究者通过改进膜结构,增强膜材料的特性以及引入类固醇、聚合物和酸等物质,提高了膜的稳定性和抗污染性。
3.纳滤膜组装和工艺在纳滤膜应用中,纳滤膜的组装和工艺也直接影响着纳滤膜的使用效果和寿命。
因此,科研人员们一直在探索并改进纳滤膜的组装和工艺,以提高其性能和使用寿命。
目前,纳滤膜的制备工艺也在不断改进,包括离子交换法、表面聚合法、自组装法和化学还原法等。
几种膜分离技术的原理和特点
几种膜分离技术的原理和特点
几种膜分离技术的原理和特点如下:
1. 反渗透技术:
原理:利用半透膜,在一定压力下,使溶液中的溶剂和溶质进行分离。
特点:操作压力高,可去除水中的离子、有机物、重金属、细菌等杂质,具有较高的脱盐率,常用于海水淡化、超纯水制备等领域。
2. 超滤技术:
原理:利用半透膜,在压力的作用下,使溶液中的溶质和溶剂分离。
特点:操作压力较低,适用于分子量较大的溶质和颗粒物的分离,常用于过滤大分子杂质、细菌、病毒等,广泛应用于医药、食品、环保等领域。
3. 纳滤技术:
原理:利用半透膜,在压力的作用下,使溶液中的小分子溶质和溶剂通过膜,而大分子溶质被截留。
特点:适用于分离分子量在一定范围内的溶质和溶剂,常用于分离低分子量有机物、无机盐等,在医药、化工、食品等领域有广泛应用。
4. 电渗析技术:
原理:利用电场的作用,使溶液中的离子通过电场作用定向迁移,从而实现溶质和溶剂的分离。
特点:适用于分离带电的离子,常用于海水淡化、酸碱回收等领域。
5. 渗透汽化技术:
原理:利用半透膜,使液体中的组分在一定条件下转化为蒸汽,
从而实现组分的分离。
特点:适用于有机物和无机物的分离,常用于脱水和脱盐等过程,在化工、环保等领域有广泛应用。
这些膜分离技术具有不同的原理和特点,可根据实际需求选择合适的分离技术。
直饮水瞙滤工艺p
直饮水瞙滤工艺
国内很多地区已经开始关注管道直饮水,现在使用的三种工艺:超滤工艺,纳滤工艺,反渗透工艺.
反渗透:
反渗透膜的孔径小于1nm,能有效去除水中的二价、一价离子,去除率达95%~99%,对无机污染及有机污染均能有效去除。
整个处理工艺流程较为简单,初期建设成本相对较低。
但用作直接饮用水净化的缺点是将水中有益于人体健康的无机离子几乎全部去除,出水硬度低,不太符合健康饮水的要求。
纳滤:
纳滤膜的孔径介于超滤膜与反渗透膜之间,为0.01um-0.002um,能有效去除水中的二价离子,对一价离子的去除率达20%~40%,能保留部分一价离子,同时有效去除水中的有机污染(可截留分子量300以上杂质),出水矿化度及硬度较低,产品水的回收率较低,但可通过多个膜组件组合获得较高回收率,可达75%左右。
预处理主要为活性炭和精滤,整个处理工艺流程较为简单,初期建设成本相对较低。
超滤:
超滤是国际上近几年发展起来的一种膜分离技术。
其分离机理主要依靠物理的筛分作用,可以除去水中直径为0.005-10UM的微小物质,可以除去水中的胶体粒子、细菌、病毒,改善水质的感官性状,降低浊度,依靠臭氧的氧化作用,可除去水中的有机物等,同时保留对人体有益的微量元素。
工作压力小,水的回收率高。
但超滤膜孔径较大,为保证出水水质,其后续消毒措施有严格的要求,因此其工艺较为复杂,设备多,初期建设成本相对较高。
膜分离技术在水处理环境工程中的有效利用
膜分离技术在水处理环境工程中的有效利用膜分离技术是一种有效的水处理技术,广泛应用于水处理环境工程中。
它采用特殊的膜材料,通过渗透、过滤和离子交换等机制,将水中的污染物、悬浮物、溶解物等分离出去,从而实现水的净化和回收利用。
膜分离技术具有高效、节能、环保等优点,因此被广泛应用于饮用水、废水处理、海水淡化、水膜反应器等领域。
在饮用水处理中,膜分离技术可以有效去除水中的细菌、病毒、悬浮物等微量有害物质,提高水的品质。
常用的膜分离技术包括超滤、微滤和纳滤等。
超滤膜可以去除大部分的悬浮物和胶体物质,微滤膜可以去除细菌和病毒,纳滤膜可以去除大部分的溶解性有机物和无机盐。
通过组合使用不同的膜技术,可以实现对不同水质的处理需求。
在废水处理中,膜分离技术可以实现水的回收利用和资源化利用。
通过采用逆渗透膜技术,可以将废水中的有益成分如水分、有机物和无机盐等分离出来,实现废水的回收和再利用。
膜生物反应器技术也是一种常用的废水处理技术,它通过在膜表面固定生物膜,将水中的有机物通过生物降解转化为二氧化碳和水,从而实现废水的处理和净化。
在海水淡化中,膜分离技术是一种高效、节能的海水淡化方法。
采用反渗透膜技术,可以将海水中的盐分和溶解性有机物分离出去,得到淡水。
相比传统的蒸发结晶法和多效蒸发法,膜分离技术具有能耗低、占地面积小等优点,是一种更加经济和可行的海水淡化方法。
膜分离技术也可以应用于工业废水和生活污水的处理和回用,实现水资源的再利用。
膜分离技术在水膜反应器中的应用也是一种有效的水处理方法。
水膜反应器是一种集膜分离和化学反应于一体的新型反应器。
它通过在膜表面固定催化剂,实现液相反应物和气相反应物的接触,进而实现反应物的转化。
在水膜反应器中,膜分离技术不仅可以实现反应物的转化,还可以实现反应物的分离和回收,提高反应的效率和产品的纯度。
膜分离技术在水处理环境工程中具有广泛的应用前景。
它能够有效地从水中分离出污染物和杂质,实现水的净化和回收利用,对于解决当前的水资源短缺和水污染问题具有重要的意义。
反渗透膜,纳滤膜,超滤膜原理及应用解析
反渗透膜,纳滤膜,超滤膜原理及应用反渗透过程:反渗透是利用反渗透膜选择性的只能通过溶剂(通常是水而截留离子物质的性质,以膜两侧静压差为推动力克服溶剂渗透压使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。
反渗透同NF 、UF 一样均属于压力驱动型膜分离技术,其操作压差一般为15~105MPa ,截留组分为(110X10—10m 小分子物质。
除此之外还可以从液体混合物中去处全部悬浮物、溶解物和胶体,例如从水溶液中将水分离出来以达到分离、纯化等目的。
一.反渗透基本原理1随着超低压反渗透膜的开发已可在小于1MPa 压力下进行部分脱盐适用于水的软化和选择性分离。
2.分离机反渗透膜的选择透过性与组分在膜中的溶解、吸附和扩散有关因此除与膜孔的大小、结构有关外还与膜的化学、物理性质有密切关系即与组分和膜之间的相互作用密切相关。
由此可见,反渗透分离过程中化学因素(膜及其表面特性起主导作用。
3.反渗透的应用反渗透技术的大规模应用主要是苦咸水和海水淡化此外被大量用于纯水制备及生活用水处理以及难于用其他方法分离混合物。
反渗透工业应用包括(1海水脱盐;(2饮用水生产(3纯水生产。
二.纳滤基本原理纳滤技术是反渗透膜过程为适应工业软化水的需求及降低成本的经济性不断发展的新膜品种,以适应在较低操作压力下运行,进而实现降低成本演变发展而来的。
我国于二十世纪90年代初期开始研制纳滤膜.与国外相比,我国纳滤技术整体上只能说是刚刚开始膜的研制、组器技术和应用开发等都刚起步。
1.纳滤过程:纳滤(NF是介于反渗透很超滤之间的一种压力驱动型膜分离技术。
它具有两个特性:①对水中的分子量为数百的有机小分子成分具有分离性能;②对于不同价态的阴离子存在Donnan 效应。
物料的荷电性.离子价数荷浓度对膜的分离效应有很大影响。
(道(Donnan模型一道南(Donnan效应Donnan 模型以Donnan 平衡为基础用来描述荷电膜的脱盐过程一般纳滤膜多为荷电膜,所以该模型更多用来描述纳滤过程要用于饮用水和工业用水的纯化,废水净化处理,工艺流体中有价值成分的浓缩等方面,其操作压差为05~2OMPa(或0345~1035MPa 截留分子量界限为200~1000(或200~500 ,分子大小为1nm 的溶解组分的分离。
直饮水工艺
直饮水工艺
目前我公司应用的比较成熟的直饮水核心处理工艺有超滤、纳滤和RO-反渗透等三种膜处理工艺。
1、臭氧-活性炭-超滤工艺系统
常见的臭氧活性炭超滤工艺流程如下图所示:
超滤处理能较好地保持水体中对人体有益的无机离子及矿物质,在提倡健康饮水的今天,超滤是目前直饮水处理的主导工艺。
但由于超滤膜切割分子量相对较高,为确保出水水质,超滤工艺对原水水质预处理及后续消毒措施有严格要求,因此其工艺为复杂,设备较多,初期投资会相对较高。
目前超滤工艺主要应用于住宅小区的直饮水处理,为居民饮用、烹饪提供优质净水。
2、纳滤工艺系统
目前常使用的纳滤工艺流程如下图所示:
该工艺只要是利用纳滤膜对水体中较高分子量物质、各种离子的超强去除能力,达到净化饮用的目的,纳滤是介于超滤与反透膜之间的一种工艺。
纳滤膜工艺预处理只要为活性炭和精滤,整个处理工艺流程较为简单,初期建设成本相对较低。
目前,纳滤工艺被我公司广泛应用于北方地区的工程案例中。
3、反渗透(RO)工艺系统
反渗透(RO)工艺流程如下图所示:
该工艺主要是利用RO-反渗透膜对水体重较高分子量物质、各种离子的超强去除能力,达到净化饮用水的目的,其处理出水基本上为纯净水,RO-反渗透工艺预处理主要为活性炭和精滤,整个处理工艺流程较为简单,初期建设成本相对较低。
膜分离技术原理及在水处理行业中的应用
膜分离技术原理及在水处理行业中的应用膜分离技术是一种利用膜的选择性透过性来实现物质分离的技术。
它基于膜的微孔、孔隙或膜表面的特殊性质,将混合物分离成不同组分。
膜分离技术在水处理行业中具有广泛的应用,包括海水淡化、废水处理、饮用水净化等。
膜分离技术的原理主要包括压力驱动、浓度差驱动和电场驱动三种方式。
其中,压力驱动是最常见的方式,通过施加压力使溶液在膜上形成透过通道,使溶质分子通过膜孔或孔隙,而较大的溶质分子则被截留在膜上。
浓度差驱动是利用溶液中溶质浓度差异产生的渗透压差,使溶质从高浓度一侧通过膜向低浓度一侧扩散。
电场驱动则是利用电场作用力使带电溶质分子在膜上迁移。
在水处理行业中,膜分离技术被广泛应用于海水淡化。
海水淡化是指将海水中的盐分去除,使其成为可供人类使用的淡水。
膜分离技术中的反渗透膜(RO膜)是海水淡化的核心技术。
RO膜具有高选择性和高通量的特点,能够有效去除海水中的盐分和其他杂质,得到高质量的淡水。
海水淡化技术已经在世界各地得到广泛应用,解决了许多地区的淡水资源短缺问题。
此外,膜分离技术还被应用于废水处理。
废水处理是指将工业生产和生活排放的废水经过处理后达到排放标准或再利用的过程。
膜分离技术可以有效去除废水中的悬浮物、有机物、重金属等污染物,提高废水的处理效果。
膜分离技术在废水处理中的应用包括微滤、超滤、纳滤和反渗透等不同的膜分离过程,根据废水的特性选择合适的膜分离工艺。
此外,膜分离技术还可以用于饮用水净化。
饮用水净化是指将自然水源中的杂质去除,使其符合饮用水卫生标准的过程。
膜分离技术可以去除水中的悬浮物、细菌、病毒等微生物,提高饮用水的安全性和质量。
膜分离技术在饮用水净化中的应用包括微滤、超滤和纳滤等不同的膜分离过程,根据水源的特性选择合适的膜分离工艺。
总之,膜分离技术是一种在水处理行业中广泛应用的分离技术。
它通过利用膜的选择性透过性,将混合物分离成不同组分。
膜分离技术在海水淡化、废水处理和饮用水净化等方面具有重要的应用价值,可以提高水资源的利用效率和水质的安全性。
纳滤处理管道直饮水的阐述
蚀、 、 渗漏 结垢 、 、 沉淀 屋顶水箱未经常清洗消毒等。纯净水 、 蒸 馏水等在生产过程中把对人体有害 的成分 去除的同时 ,也把 对人体有益 的微量元素去除掉 了, 以太纯净的水对人体健康 所 不利 。桶装水在使用过程中存在二次污染 的问题 , 如饮水机本 身 的污染 、 昆虫进入 出水 口、 空气直接进入水桶产生 的污染等。
管理下 , 用户打开水龙头 就能 喝上 快捷经济 、 健康舒适的高
析和纳滤膜试验 , 才能确定合 理的纳滤膜及其工艺 系统 。 该 工艺 主要 是利用纳 滤膜对水体 中的较高 分子量 物质 、 各种离子超强去除 , 达到净水饮用 的 目的。
品质直饮水。
高品质 的生活 ,高档次 的住宅必然 配备高档次的配套服 务 ,管道直饮水所提倡 的决不仅仅是技术 上的先进和硬件上 的完 善,它更 注重 的是让用户真正体 会到高品质的饮水环境 所带来 的生活水平的提高 。 管道 直饮水作为住宅小 区饮用水 的一种配套设施 ,发展
滤膜。
且价格也较为 昂贵。此外 ,因为每桶桶装水 一般 都会使用几 天, 水质 的新鲜度和 口感都会受到一定影 响。而住宅小 区管道 直饮水 的实施就克服了上述缺点 ,在专业 运营管理公司 的统
一
在饮水处理污染水 源水 ,设 计人员需要进行必要 的原水 水质分
() 1 固体悬浮物 : 泥沙、 铁锈 、 肉眼可见物。
2 管道直 饮水产 生 的背景
随着我国人 民生 活水 平 日益提高 ,人们对饮用水 的要求
也越来越严格 。水环境 日益恶化导致 出现常规水 处理工艺无
() 2 微生物 : 细菌 、 病毒 、 藻类等溶解无机物 ; 碳酸钙 、 碳酸 镁、 硫酸铜 、 氯化物 、 硝酸盐 等。
超滤-纳滤双膜组合工艺在高品质饮用水处理中的研究
超滤-纳滤双膜组合工艺在高品质饮用水处理中的研究超滤-纳滤双膜组合工艺在高品质饮用水处理中的研究随着人们对高品质饮用水需求的不断增加,水处理技术的研究和创新也日益重要。
超滤和纳滤作为一种能够有效去除水中悬浮物、颗粒、有机物等杂质的膜分离技术,被广泛应用于饮用水处理过程中。
而超滤-纳滤双膜组合工艺则是近年来发展起来的一种高效深度过滤技术,具有较高的膜污染抵抗能力和水质处理效果,值得深入研究和探索。
双膜组合工艺的基本原理是将超滤和纳滤两种不同孔径的膜过滤器连接在一起,通过层次性过滤过程去除饮用水中的杂质。
超滤膜孔径较大,一般为0.01-0.1微米,能够去除水中的大颗粒物、悬浮物、胶体等大分子物质,保证了出水的基本无菌性和澄清透明度。
而纳滤膜则具有较小的孔径,一般为0.001-0.01微米,进一步去除水中微量溶解物、有机物以及微生物等细胞级别的污染物,使水质更加纯净。
在双膜组合工艺中,超滤膜起到了第一道过滤的作用,能够有效去除水中的悬浮物和大分子有机物。
它具有较高的通量和较好的抗污染能力,能够长时间稳定工作。
而纳滤膜则起到了第二道过滤的作用,进一步去除超滤膜无法过滤掉的微量溶解物和有机物,保证出水的高纯度和无菌性。
在双膜组合工艺的实际应用中,需要通过一系列的预处理措施来保护膜的正常工作。
常见的预处理方法包括混凝沉淀、砂滤、活性炭吸附、臭氧氧化等。
这些预处理手段能够有效去除水中的浑浊度、色度、氯气、臭味、重金属、有机物等有害物质,减少对膜的污染和损伤,保护膜的使用寿命。
超滤-纳滤双膜组合工艺在高品质饮用水处理中具有明显的优势。
首先,它能够高效去除水中的杂质和污染物,使水质更加纯净。
其次,双膜组合工艺具有较好的膜污染抵抗能力,膜的使用寿命长,维护成本低。
此外,双膜组合工艺还具有操作简便、投资成本相对较低等优点。
然而,双膜组合工艺在实际应用中还存在一些问题和挑战。
首先,膜的污染和堵塞问题是目前亟待解决的难题。
膜分离技术在饮用水处理中的应用
膜分离技术在饮用水处理中的应用随着人们对水质要求的不断提高,越来越多的人关注饮用水的安全问题,而膜分离技术则成为水处理领域中广泛应用且备受关注的技术之一。
膜分离技术是一种通过物理方式将水分离成不同的组分的方法。
在饮用水处理中,膜分离技术可以去除水中的悬浮物、细菌、病毒等各种有害物质,使水质达到标准,保障人们饮用水的安全。
膜分离技术的种类和原理同时,膜分离技术根据其分离方式可以分为微滤、超滤、纳滤和反渗透等几种类型。
其中常用的膜包括微孔滤膜、超滤膜、纳滤膜和反渗透膜。
微滤膜:是以孔径0.1~10微米的过滤膜作分离膜。
采用网格式的过滤膜,用极小的孔隙过滤掉水中的悬浮物质和一些有害物质,对细菌和有机物的去除效果不是很理想。
超滤膜:孔径在5~100纳米之间的,以形态选择性为主要分离原理的滤膜,能够去除水中的大分子有机物质、细菌和重金属离子等,对病毒去除效果有限。
纳滤膜:亚微米级的孔径滤膜,主要用于水中有机物质分离和重金属离子的去除。
对细菌和病毒也有一定的去除效果。
反渗透膜:也称为超滤透析膜,具有孔径在10^-3~10^-1纳米之间的滤膜。
其分离效能好且能去除水中的几乎所有有害物质,包括细菌、大分子化合物、病毒和重金属等。
以上各种膜分离技术在生产实践中的应用都各有所长,根据不同水质和应用场景可以进行选择和组合使用。
饮用水处理中的膜分离技术通常采用混合工艺,将不同的膜分离技术组合起来使用,在保证水质的同时,减少了一次性使用的化学药品的使用量。
一些快速滤池代替了慢速过滤池,与加氯等化学处理技术相结合,更有效地去除了水中的细菌和病毒。
同时,反渗透技术也常被应用于饮用水浸出中各种物质的纯化和提纯过程中。
其中,反渗透技术可高效地清除水中的矿化物和一些挥发性物质,使得水更加纯净。
膜分离技术在饮用水处理中的优点与传统的饮用水处理方法相比,膜分离技术具有很多优点,如:1.去除效果好:膜分离技术可以去除水中细菌、有机物质等有害物质,基本保证水质安全。
水处理中膜分离技术的应用
水处理中膜分离技术的应用一、本文概述随着工业化和城市化的快速发展,水资源的短缺和水环境污染问题日益严重,这使得水处理技术成为了当前研究的热点领域。
在众多水处理技术中,膜分离技术以其高效、节能、环保等优点,受到了广泛关注和应用。
本文旨在探讨膜分离技术在水处理领域的应用现状、发展趋势以及面临的挑战,以期为水处理技术的发展提供有益的参考和启示。
本文将简要介绍膜分离技术的基本原理和分类,以便读者对膜分离技术有一个初步的了解。
接着,文章将重点分析膜分离技术在水处理中的应用,包括饮用水净化、工业废水处理、海水淡化等方面,并通过实例分析展示膜分离技术的实际应用效果。
文章还将对膜分离技术的发展趋势进行展望,包括新型膜材料的研发、膜组件的优化设计、操作条件的优化控制等方面。
文章也将探讨膜分离技术在应用过程中面临的挑战,如膜污染、膜寿命短等问题,并提出相应的解决策略和建议。
本文将对膜分离技术在水处理领域的应用进行总结和评价,以期为读者提供全面、深入的了解和认识,推动膜分离技术在水处理领域的进一步发展和应用。
二、膜分离技术原理膜分离技术,作为一种高效、节能、环保的分离技术,已在水处理领域得到广泛应用。
其基本原理是利用膜的选择性透过性,实现对不同尺寸、形状和电荷的溶质分子的分离。
膜分离技术中的膜,根据其孔径大小,可以分为微滤膜、超滤膜、纳滤膜和反渗透膜等。
在膜分离过程中,溶液在压力驱动下,通过膜的一侧,而溶质分子则因膜的选择性阻挡作用,被截留在膜的另一侧,从而实现溶液的分离和纯化。
微滤膜主要截留颗粒和悬浮物,超滤膜则可以截留大分子有机物和胶体,纳滤膜和反渗透膜则能够截留更小的溶质分子,如无机盐、重金属离子和有机物等。
膜分离技术的优点在于操作简便、分离效率高、能耗低、无需添加化学药剂等。
同时,膜材料的选择范围广,可以根据不同的处理需求,选择适合的膜材料和膜分离工艺。
然而,膜分离技术也存在一些局限性,如膜污染、膜通量下降等问题,需要在实际应用中加以解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华中科技大学硕士学位论文超滤、纳滤膜分离技术在直饮水中的应用姓名:黄国贤申请学位级别:硕士专业:环境工程指导教师:刘满20060501华中科技大学硕士学位论文摘要本文在总结目前国内外管道直饮水技术的基础上,结合纳滤、超滤膜分离技术的有关理论,分析了管道直饮水系统的设计要点。
结合纳滤、超滤应用于佛山市丽景花园、供水大厦及新城区优质水厂的工程实践,工艺运行中的水质监测及分析,总结了纳滤、超滤膜工艺的运行经验,并将桶装水与直饮水进行了经济对比。
研究结果表明:1.在总结丽景花园纳滤膜分离技术、供水大厦超滤膜分离技术设计及运行情况的基础上,初步确定了直饮水工程设计参数。
2.管网设计采用循环管网,变频恒压供水,管材采用不锈钢复合管,是直饮水管道系统设计的基本要点。
3.在丽景花园膜滤装置产水量与排水量保持2:l比例;正常情况下,产水量约为30L/min:排水量约为15¨【11in;进水量约为47L/mill。
在供水大厦膜滤装置产水量与排水量保持1:l比例;正常情况下,产水量约为14mnin:排水量约为12L/min;进水量约为28Mnm。
4.采用臭氧一活性炭一超滤作为丽景花园管道直饮水工艺,浊度去除率为55.9%,cODMn的去除率为65.8%,在去除水中污染物的同时保留了人体所需的有益元素,有效改善了饮用水的口感,出水水质优于《饮用净水水质标准》(cJ94.1999)。
4个月内膜压差增加O.03MPa,增长缓慢,膜污染小。
5.采用活性炭一纳滤联合工艺作为佛山市供水大厦管道直饮水工艺,出水水质符合《饮用净水水质标准》(cJ94-1999)。
出水浊度去除率60%v83%,脱盐率为81t}缸91%,因为纳滤膜本身带有负电荷,通过静电捧斥作用阻碍阴离子通过,为保持溶液的电中性,阳离子的渗透也受到阻碍,从而对电导率有相当程度的截留。
3个月内膜压差增加O.01MPa。
6.在运行中。
由于高浓度臭氧一次投加导致不锈钢材料的薄弱部位腐蚀,在焊缝处析出的铁及亚铁离子被臭氧氧化为黑色Fe203粉末,经水流带到饮水机,影响出水水质,应改为低浓度臭氧间歇投加。
华中科技大学硕士学位论文7.通过工艺方案比选,技术经济比较并结合项目的独有特点,新城区优质水厂采用活性炭与超滤膜组合工艺。
通过国际性公开竞标,膜组件采用加拿大zerloIl公司提供的zecweed浸没式超滤系统。
8.管道直饮水的价格仅为桶装水的一半,对住宅小区特别适用。
丽景花园采用的零价全权委托运营管理模式被证明适合于管道直饮水系统的运行管理。
关键词:直饮水纳滤超滤工程应用经济分析H华中科技大学硕士学位论文Abstract。
Ihisthesissm咖arizesdomesticandlmematloml舰atmclltfordirectdnnkingwater锄disbasedonseparationttleoryofnano矗l删on舭dumDfil仃ation.nan“yses血ekeypointofthedes啦basedonn】|1ning0f曲ect赫趟ngwatefsystcminFoShallL玎INGgardenFlatwhichisequippcd州mul们矗l扛拍on越dinW撕r_supplyM姐sionwhichiseq山ppedwi山nan06l廿ation,柚dcom糟sts1llep酊cewmIpⅢmedw砒eLThere乳dtshows血at:,1.Asetofdesi弘param酏嘲、】l髓chb船edon州cctsofF0shanLIJINGgardenFIatandWjtef-supplyM锄sionwasfixedon.2.DistributionSyst嘲isci枷lated.pl珊【pis如quencyvariable姐dnlesupplyofwaterisofconstantpressure.Matedaloftl|_beisstainl鹪sSteclConlpound.Anof吐lesearetllekeypoimOfdi8仃ibutionSystemdesign.3.h1LIJINGgard吼flat,thcpropom∞ofproductionw搬toabandonedwa主cris2:1,aJldproduction啪teris30Ulllin,ab锄doned啪船is15L加jn,prj岫qwa栅is47L/min;whileinwa睇supplym蛆sion,n豫p∞州ionofpfo蛐nwat。
rtoabandonedwaterisl:1,趾dpr0血ctionwaterisl4Um哦aba耐onedwa盼isl2L,rnin,砸marywateris28L/min.4.Theremovalratcoftufbid时is55.9%,蛆d硅埠removalra:ceofCODMnis65.8%,membraIlespres8ureisomy矗sedbyO.03MPad嘣ng4mon吐塔w量Ien03-BAC—UFisIIsedinLIJINGgardenfl砒directd血曲ng聊岫‘trea咖ent.Itaccords、】l,ithstandardfordrink证gwater(CJ94-1999).5.TheremoValrateofturbid姆is60%一83%,锄dn地desamngratcofis81%曲1%,membraIlesprcs趴盯eisonlyri螗dby0.OlMPaduring3monthswhenPAC-UFisusedinLIJINGgardenflatdirectdlin蚰Ⅱgwater仃ea恤ent.n犯c优☆witIlsta:ndardfordr幽gwater(cJ94—1999).Becauseoft11estEmc即Illsione腩cl,canonish∞dedo圩inordertokeepneu自ral.6.Ifthestainlesssteeliscomlptedbyhi出deIls姆03,FeaIldFe2+canbetransfornledtoFe203,anditpollutesdrinkiIlgwateLIhesubm呱eismfIllinje曲on谢mIow-density03,ⅡI华中科技大学硕士学位论文7.Considered廿leproject’sparticlll岫,PAC・UFisadoptedingoodquaIitywaterwoksofnewcityzonetllroughcompareofcraftaIldeconom弘跚ldthemembraneissubmcrgcdZeeweedUFⅡlembraIlesuppliedbyZenoncompaIlyi11Ca芏lada.8.111epriceofd她ctdri啦ngwaterisjllstbaJfof也ep谢fiedwater.nem蚰agemodeofcaneblancheinLIJ玳GgardcnFlatis蚪r甜tobes曲able.KeyWbrds:D哦tdrinkingwatcrUl仃a棚订a_tionN柚0fil恤缸onEngineeringapphca畦onCostallalyzinglv华中科技大学硕士学位论文¨膜分离技术1绪论膜分离过程是以选择性透过膜为分离介质,在膜两侧加以某种推动力,使原料侧组分选择性地透过膜,从而达到分离或提纯的目的。
不同的膜分离过程中所用的膜具有一定结构、材质和选择特性;被隔开的两相可以是液态,也可以是气态;推动力可以是压力梯度、浓度梯度、电位梯度或温度梯度,所以不同的膜分离过程的分离体系和适用范围不同。
膜分离技术往往没有相交。
分离系数较大,节能、高效,无二次污染,可在常温下连续操作。
具体表现在:1.在膜分离过程中不发生相变,对比之下,蒸发、蒸馏、萃取、吸收、吸附等分离过程,都伴随着从液相或吸附相至气相的变化,而相变化的潜热是很大的,因此膜分离过程能耗较低。
2.在膜分离技术过程中不需要从外界加入其他物质,这样可以节省原料和化学药品。
3.膜分离过程是在常温下进行的,因而特别适用于对热敏感的物质,如对果汁、酶、药品等的分离、分级、浓缩与富集过程。
4.膜分离是一个高效的分离过程,不仅适用于有机物和无机物,从病毒、细菌到微粒的广泛分离,而且还适用于许多特殊溶液体系的分离,如一些共沸物或近沸点物质的分离等常规分离方法无法胜任的领域。
5.根据膜的选择透过性和膜孔径的大小不同,可有选择性地将不同粒径的物质浓缩分离,回收有用物质。
6.膜分离法分离装置简单,操作溶液且易控制,便于维修,占地小,处理效率高,而且通常可以直接衔接已有的水处理工艺流程。
表1-1分别列出了膜分离技术中的微滤、超滤、纳滤和反渗透的膜孔径、适用范围、技术特点及存在的不足。
图1.1为压力驱华中科技大学硕士学位论文粒子的粒径大小。
表1.1膜分离技术项目微滤(MF)超滤(uF)纳滤(NF)反渗透(RO)膜孔径0.1¨m~2岬m001岬 ̄0.1pmlnm加.05岫<1IlIn操作压力O.05MPa一0.3卜IPa0.04MPa一旬.4~IPaO.5~僻扣1.OⅣ田a1MPa砣~IPa被作为超滤、反渗大分子有机物、悬浮适用于硬度和有制备纯水透或纳滤的预处物、细菌、病毒和其机物高且浊度低适用范围理或活性炭过滤它微生物等。
的原水。
的后处理设施设备简单,操作方与微滤技术相似可对原水部分脱几乎可以去除水便,通水量大,工盐和软化,去除中一切杂质,包作压力低,制水效色度、细菌、溶括各种悬浮物、率高。
解性有机物和一胶体、溶解性有些金属离子等。
机物、无机盐、技术特点出水口感好,是细菌、微生物等。
一种适合于在优质饮用水生产中采用的膜过滤技术。
有机污染物的分与微滤技术相似。
常以徽滤或超滤工作压力高,制离效果较差。
作预处理工作压水率低,能耗大。
不足力较高,有一定的制水率。
微滤冲洗一般可与徽滤技术相似。
孔径介于超滤膜生活饮用水宜进用水反冲洗,必要和反渗透膜之行矿化处理。
备注时可采用化学清间。
洗。
2华中科技大学硕士学位论文图1.1压力驱动的膜工艺的分类及其对应的被分离粒子的大小膜法常用的技术有电渗析、反渗透、超滤、徽滤和纳滤等。
微滤、超滤不能脱除各种低分子物质,故单独使用时,出水质量仍较差,反渗透膜对低分子物质有较强的去除率,但在去除有害物质的同时也去除了水中大量有益的无机离子,出水呈酸性,不符合人体需要。
纳滤膜分离技术在有效去除水中有害物质的同时,还能保留大多数人体必须的无机离子,且出水pH值变化不大,这种水处理方法对我国目前的饮食结构而言,尤其是营养结构单一的人员来说,更易被接受,也更加合理。