第4节 第2课时 一元一次不等式的应用
9.2 一元一次不等式 第2课时 新人教版七年级数学下册教学课件
探究新知
素养考点 2 一元一次不等式解答货币问题 例2 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本 2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几支笔?
解:设她还可能买n支笔,根据题意得 3n+2.2×2≤21,
解得 n≤ . 因为在这个问题中n只能取正整数,所以小颖还可能买1支、2支、 3支、4支或5支笔.
例1 去年广州空气质量良好(二级以上)的天数与全年 天数(365天)之比达到60%,如果到明年(365天)这样 的比值要超过70%,那么明年空气质量良好的天数要比 去年至少增加多少?
分析:题目蕴含的不等关系为 明年这样的比值要超70% ,
转 化 为 不 等 式,即 明年空气明质年量天良数好的天数>70%
连接中考
某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分, 小华得分要超过120分,他至少要答对的题的个数为( C )
A.13
B.14
C.15 D.16
课堂检测
基础巩固题
1.某商品原价500元,出售时标价为900元,要保持利润不低
于26%,则最低可打 ( B)
A. 六折 B. 七折
C. 八折
答:明年要比去年空气质量良好的天数至少增加 37天,
才能使这一年空气质量良好的天数超过全年天数的70% .
巩固练习
在一次知识竞赛中,有10道抢答题,答对一题得10分,答错一 题扣5分,不答得0分,小玲有一道题没有答,成绩仍然不低于 60分,她至少答对几道题?
解:设小玲答对的题数是x,则答错的题数是9-x, 根据题意,得10x-5(9-x)≥60, 解这个不等式,得x≥7. 答:她至少答对7道题.
D. 九折
2. 某次知识竞赛共20道题,每一题答对得10分,答错或不答
2019春七年级数学下册8.2.3解一元一次不等式第2课时一元一次不等式的应用习题课件PPT-文档资料
9.某品牌自行车的进价为每辆800元,标价为每辆1200元.店庆期间, 商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%, 则最多可打____折七.
10.为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并 买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购 买金额不超过200元,且买的球拍尽可能多,那么小明应该买多少个球 拍?
方法技能: 列不等式解应用题的一般步骤:(1)审题:弄清题意和题目中的数量关 系;(2)设未知数:一般直接设未知数,怎样问怎样设;(3)列不等式:找 出一个能反映未知量和已知量间的不等关系列出不等式;(4)解不等式, 并根据实际问题确定符合题意的解;(5)作答. 易错提示: 列不等式解应用题时,要理解掌握题中常用的表示不等关系的关键词 语:(1)“不大于”、“不超过”、“至多”等表示“小于或等于”,用 “≤”表示,不要出现漏掉“等于”的情况;(2)“不小于”、“不低于”、 “至少”、“最少”等表示“大于或等于”,用“≥”表示,不要出现 漏掉“等于”的情况.
第2课时 一元一次不等式的应用
知识点 一元一次不等式的应用 1.小刚准备用自己的零花钱买一台英语复读机,他现在已存有45元 ,计划从现在起每个月存30元,直到他至少有300元,则可以用于计算所 需月数x的不等式是( A) A.30x+45≥300 B.30x-45≥300 C.30x-45>300 D.30x+45>300 2.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得 1分.某队预计在2019~2019赛季全部32场比赛中最少得到48分,才有希 望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x 应满足的关系式是( A) A.2x+(32-x)≥48 B.2x-(32-x)≥48 C.2x+(32-x)≤48 D.2x≥48
2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星
第一节.不等关系教学目标:1、知识与技能目标①理解不等式的意义。
②能根据条件列出不等式。
③能用实际生活背景和数学背景解释简单不等式的意义。
2、过程与方法目标经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。
3、情感与态度目标感受生活中存在着的大量不等关系,通过用不等式解决实际问题,使学生进一步认识数学与人类生活的密切联系,激发学生学习数学的信心和兴趣。
教学重点:①通过探寻实际问题中的不等式关系,认识不等式。
②根据实际问题建立合理的不等关系。
教学过程一. 创设情景,引入新课展示图片(目的:感受生活中的不等关系):(1)甲乙两名同学升高、体重不相等;(2)汤老师的年龄和体重基本都大于你们的(3)跷跷板二.问题提出师:相等关系是用等式表示的,不等关系呢?生:不等式师:你学过那些不等号呢?生:>,<,≤,≥,≠三.小试牛刀(学生初步感受不等式表示不等关系)1. a是负数2. m与2的和小于33. c的两倍不大于a与b的差4. x的平方是非负数师:不大于,不小于表示的含义四.不等式的定义a<0 m+2<3 2c≤a-b x²≥0五.概念辨析指出下列式子是否为不等式?(概念基本辨析)(1)a+1>3 (2)x²+y²(3)2m≠n-1 (4)x+3=2x六.随堂练习1. x 的3倍与8的和比x的5倍大2. x除以2的商加上2至少为53. a与b两数和的平方不小于34. m与4的和的20%至多为9七.实际运用(1)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高三边之和不得超过160cm。
设行李的长、宽、高分别为 a cm、b cm、c cm,请你列出行李的长、宽、高满足的关系式(2)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。
某树栽种时的树围为6cm,以后树围每年增加约3cm。
人教版七年级数学下册课件 第九章 不等式与不等式组 一元一次不等式 第2课时 一元一次不等式的应用
购买数量(件)
A
第一次 第二次
B
购买总费用(元)
2
1
55
1
3
65
解:(1)设 A 种商品的单价为 x 元,B 种商品的单价为 y 元,根据题 意,可得2xx++3yy= =5655, , 解得xy==1250,,
答:A 种商品的单价为 20 元,B 种商品的单价为 15 元
(2)设第三次购买商品A种a件,则购买B种商品(12-a)件,根据题意, 可得a≥2(2y=y=59940000,,
解得xy==13
500, 200,
答:每台 A 型电脑
的价格为 3 500 元,每台 B 型打印机的价格为 1 200 元
(2)设学校购买 a 台 B 型打印机,则购买 A 型电脑为(a-1)台,根据题 意,得 3 500(a-1)+1 200a≤20 000,解得 a≤5.答:该学校至多能购买 5 台 B 型打印机
9.某大型超市从生产基地购进一批水果,运输过程中质量损失10%, 假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水 果的售价在进价的基础上应至少提高( B )
A.40% B.33.4% C.33.3% D.30%
10.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件, 后改进了工作方式,结果提前一天完成了加工任务,马师傅在两天后每天 至少加工__4_0_个零件.
∵m=20a+15(12-a)=5a+180,∴当a=8时所花钱数最少,即购买 A商品8件,B商品4件
(1)求每台A型电脑和每台B型打印机的价格分别是多少元? (2)如果学校购买A型电脑和B型打印机的预算费用不超过20 000元,并 且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至 多能购买多少台B型打印机?
【学练优】八年级数学下册2.4一元一次不等式的应用(第2课时)教案(新版)北师大版
【学练优】⼋年级数学下册2.4⼀元⼀次不等式的应⽤(第2课时)教案(新版)北师⼤版⼀元⼀次不等式的应⽤1.会在实际问题中寻找数量关系列⼀元⼀次不等式并求解;2.能够列⼀元⼀次不等式解决实际问题.(重点,难点)⼀、情境导⼊如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠?⼆、合作探究探究点:⼀元⼀次不等式的应⽤【类型⼀】商品销售问题某商品的进价是120元,标价为180元,但销量较⼩.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打⼏折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x折该商品获得的利润=该商品的标价×x10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x的值即可.解:设可以打x折出售此商品,由题意得:180×x10-120≥120×20%,解得x≥8.答:最多可以打8折出售此商品.⽅法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型⼆】竞赛积分问题某次知识竞赛共有25道题,答对⼀道得4分,答错或不答都扣2分.⼩明得分要超过80分,他⾄少要答对多少道题?解析:设⼩明答对x道题,则答错或不答的题⽬为(25-x)道,根据得分要超过80分,列出不等关系求解即可.解:设⼩明答对x道题,则他答错或不答的题⽬为(25-x)道.根据他的得分要超过80分,得:4x-2(25-x)>80,解得x>2123.因为x应是整数⽽且不能超过25,所以⼩明⾄少要答对22道题.答:⼩明⾄少要答对22道题.⽅法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“⾄多”“⾄少”等.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型三】安全问题采⽯场爆破时,点燃导⽕线后⼯⼈要在爆破前转移到400⽶外的安全区域.导⽕线燃烧速度是每秒1厘⽶,⼯⼈转移的速度是每秒5⽶,导⽕线⾄少要多少⽶?解析:根据时间列不等式,导⽕线燃烧时间>⼯⼈要在爆破前转移到400⽶外的安全区域时间.解:设导⽕线的长度需要x⽶,1厘⽶/秒=0.01⽶/秒,由题意得x0.01>4005,解得x>0.8.答:导⽕线⾄少要0.8⽶.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】分段计费问题⼩明家每⽉⽔费都不少于15元,⾃来⽔公司的收费标准如下:若每户每⽉⽤⽔不超过5⽴⽅⽶,则每⽴⽅⽶收费1.8元;若每户每⽉⽤⽔超过5⽴⽅⽶,则超出部分每⽴⽅⽶收费2元,⼩明家每⽉⽤⽔量⾄少是多少?解析:当每⽉⽤⽔5⽴⽅⽶时,花费5×1.8=9元,则可知⼩明家每⽉⽤⽔超过5⽴⽅⽶.设每⽉⽤⽔x⽴⽅⽶,则超出(x-5)⽴⽅⽶,根据题意超出部分每⽴⽅⽶收费2元,列⼀元⼀次不等式求解即可.解:设⼩明家每⽉⽤⽔x⽴⽅⽶.∵5×1.8=9<15,∴⼩明家每⽉⽤⽔超过5⽴⽅⽶.则超出(x-5)⽴⽅⽶,按每⽴⽅⽶2元收费,列出不等式为5×1.8+(x-5)×2≥15,解不等式得x≥8.答:⼩明家每⽉⽤⽔量⾄少是8⽴⽅⽶.⽅法总结:分段计费问题中的费⽤⼀般包括两个部分:基本部分的费⽤和超出部分的费⽤.根据费⽤之间的关系建⽴不等式求解即可.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型五】调配问题有10名菜农,每⼈可种甲种蔬菜3亩或⼄种蔬菜2亩,已知甲种蔬菜每亩可收⼊0.5万元,⼄种蔬菜每亩可收⼊0.8万元,要使总收⼊不低于15.6万元,则最多只能安排多少⼈种甲种蔬菜?解析:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.甲种蔬菜有3x亩,⼄种蔬菜有2(10-x)亩.再列出不等式求解即可.解:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4⼈种甲种蔬菜.⽅法总结:调配问题中,各项⼯作的⼈数之和等于总⼈数.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型六】⽅案决策问题为了保护环境,某企业决定购买10台污⽔处理设备.现有A、B两种型号的设备,其中每台的价格、⽉处理污⽔量及年消耗费如下表.经预算,该企业购买设备的资⾦不⾼于105万元.(1)请你设计该企业有⼏种购买⽅案;(2)若企业每⽉产⽣的污⽔量为2040吨,为了节约资⾦,应选择哪种购买⽅案.解析:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台,列出不等式求解即可,x的值取整数;(2)如图表列出不等式求解,再根据x的值选出最佳⽅案.解:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台.12x+10(10-x)≤105,解得x≤2.5,∵x 取⾮负整数,∴x可取0,1,2,有三种购买⽅案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资⾦为12×1+10×9=102(万元);当x=2时,购买资⾦为12×2+10×8=104(万元).答:为了节约资⾦,应选购A型1台,B型9台.⽅法总结:此题将现实⽣活中的事件与数学思想联系起来,属于最优化问题,在确定最优⽅案时,应把⼏种情况进⾏⽐较.变式训练:见《学练优》本课时练习“课后列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引⼊,激发学⽣的学习兴趣,让学⽣积极参与,讲练结合,引导学⽣找不等关系列不等式.在教学过程中,可通过类⽐列⼀元⼀次⽅程解决实际问题的⽅法来学习,让学⽣认识到列⽅程与列不等式的区别与联系.。
《一元一次不等式组》教案
《一元一次不等式组》教案《一元一次不等式组》教案1教学建议一、知识结构本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.二、重点、难点分析本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的根本性质对不等式进行变形、求不等式组中各个不等式解集的公共局部.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的根底.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.1、在构成不等式组的几个不等式中①这几个一元一次不等式必须含有同一个未知数;②这里的“几个〞并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.2、当几个不等式的解集没有公共局部时,我们就说这个不等式组无解.3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种根本情况:①其中第〔4〕个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。
所以说这个不等式组无解或说其解集为空集。
②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。
三、教法建议1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共局部.求公共局部的过程一定要结合数轴来讲。
2.这节课的讲解自始至终要突出解不等式组的根本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的根底,因此讲新课之前要复习提问这些内容。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
( A)
A.1 B.2 C.3 D.4
3.(2021·金华)一个不等式的解在数轴上表示如图,则这个不等式可以
是
( B)
A.x+2>0 B.x-2<0 C.2x≥4 D. 2-x<0
2x+1≥-3,
4.(2018·毕节)不等式组x<1
的解集在数轴上表示正确的是
( D)
5x+2>3(x-1),
5.不等式组12x-1≤7-32x
14.(2018·三黔模拟)若关于 x 的不等式 3x-m+1>0 的最小整数解为 3,
则 m 的取值范围是_7_≤7≤mm<<1100__.
x-2 x-1
15.(2020 遂宁)若关于 x 的不等式组
4
<x-m≤2-x
则 m 的取值范围是_1_≤1≤mm<44__.
16.(2021·绥化)某学校计划为“建党百年,铭记党史”演讲比赛购买 奖品.已知购买 2 个 A 种奖品和 4 个 B 种奖品共需 100 元;购买 5 个 A 种奖品和 2 个 B 种奖品共需 130 元.学校准备购买 A,B 两种奖品共 20 个,且 A 种奖品的数量不小于 B 种奖品数量的25,则在购买方案中最少费 用是_ 330 __元.
17.阅读下面材料,完成学习任务: 小美和小明特别喜欢钻研数学问题,经常找数学王老师出题目给他们思 考.有一天,王老师交给他们一个问题:求不等式2xx+-31>0 的解集.
1 小美说:2x-1>0 的解集是 x>2,x+3>0 的解集是 x>-3,但要求出 2xx+-31>0 的解集,太难了,我解不出来.
9.(2020·攀枝花)世纪公园的门票是每人 5 元,一次购门票满 40 张, 每张门票可少 1 元.若少于 40 人时,一个团队至少要有__3333_ _人进公
一元一次不等式的应用 教学设计
.一元一次不等式(二)本节课是义务教育课程标准实验教科书(北师大版)八年级下册第二章《一元一次不等式与一元一次不等式组》的第4节第2课时的内容.一方面,在本节课之前,学生已经学习了一元一次不等式的概念和不等式的基本性质,知道解一元一次不等式的依据是不等式的三个基本性质,并且会解简单的一元一次不等式,而且能在数轴上表示其解集.另一方面,利用一元一次不等式解决实际问题也是继利用一元一次方程和一元一次方程组解决实际问题的进一步学习,为以后把实际问题转化成数学问题的思维的培养打下一定的基础,因此本节课在教材中具有承上启下的作用.二、学情分析在方程与方程组的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础.另外,在本章的前面几节课,学生已经学会了解一元一次不等式,为今天的问题解决打下了一个基础.三、教学任务分析本节课的目标为:【知识与技能】(1)进一步熟练掌握一元一次不等式的解法.(2)利用一元一次不等式解决简单的实际问题.【过程与方法】通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解来对实际问题的解决,训练学生的分析问题和建立数学模型的能力.【情感态度价值观】(1)通过利用一元一次不等式解决实际问题,使学生认识数学与实际生活的密切联系,以激发学生学习数学的兴趣和信心.(2)通过小组间的合作与交流,培养学生自主参与的学习态度,合作交流的学习方法.【教学重点】一元一次不等式的实际应用问题.【教学难点】将实际问题抽象成数学问题的思维过程.四、教法与学法分析【教法分析】当前,教师不再是古人所推崇的“传道”、“授业”的师长,而是课堂教学活动的组织者、指导者、参与者.其作用在于营造师与生、生与生交往互动的氛围,为学生提供参与、创造、表现和成功的机会,有效地组织、指导、调控学生学习的兴趣.因此本节课我们将采用启发式、讨论式结合的教学方式,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我构建.在学生的展示交流中,对同一个问题去发现不同的解决方法,并对不同的方法进行比较.【学法分析】现代课堂教学的重点由如何“教会”转向如何“学会”,本节课学生通过观察、分析、归纳等过程,得到解决问题的方法.再通过小组合作、交流展示等环节,让学生在这个过程中成为课堂的主导者.让整个课堂洋溢在轻松和谐、探索进取的气氛中,而我则在其中当好课堂教学的组织者和参与者.五、教学过程分析根据本节课的教学目标以及教学重难点,本节课一共设置了以下七个教学环节:环节一:引用名言,引入新课著名数学家华罗庚先生曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
9.2 一元一次不等式 第2课时
解得 x≥0.5 答:导火索的长度至少取0.5 m.
3.(广州·中考)某商店5月1日举行促销优惠活动,当天 到该商店购买商品有两种方案,方案一:用168元购买会 员卡成为会员后,凭会员卡购买商店内任何商品,一律按 商品价格的8折优惠;方案二:若不购买会员卡,则购买 商店内任何商品,一律按商品价格的9.5折优惠.已知小敏 5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时, 实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围时, 采用方案一更合算?
解决较复杂问题时,常需要分不同情况进行讨论.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/72021/9/7Tuesday, September 07, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/72021/9/72021/9/79/7/2021 1:32:23 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/72021/9/72021/9/7Sep-217-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/72021/9/72021/9/7Tuesday, September 07, 2021
想一想:小玲有几种答题可能? 小玲有3种答题可能,分别是 答对7道题,答错2道题,有1道题未答; 答对8道题,答错1道题,有1道题未答; 答对9道题,有1道题未答.
【跟踪训练】
1.我班几个同学合影留念,每人交0.70元.已 知一张彩色底片0.68元,扩印一张相片0.50元, 每人分一张,在将收来的钱尽量用掉的前提下, 这张相片上的同学最少有几人?
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
有 3 个整数解,则 a 的取值范围为
( A)
A.1<a≤2
B.1<a<2
C.1≤a<2
D.1≤a≤2
6 . (2019 · 鄂 州 第 12 题 3 分 ) 若 关 于 x , y 的 二 元 一 次 方 程 组
x-3y=4m+3,
x+5y=5
的解满足 x+y≤0,则 m
的取值范围是__mm≤≤--22__.
③学校购买篮球和足球共 40 个.
(1)
若④购买篮球的个数不少于足球个数的23,则最少可购买篮球
116 6
个;
【分层分析】(1)设购买篮球 x 个,则由题干③可得购买足球((440 0--x)
个,由题干④可列不等式为
2 xx≥≥3((4400--xx)),解此不等式得
x) xx≥≥1166.
(2)若⑤购买篮球的费用不超过购买足球的费用,则最多可购买篮球115
(2)若此不等式组的解集为-4≤x<1,则 a 的值为--22; 【分层分析】(2)由题意得1a.-25168=0--m4 m,即 a=--22;
重难点 2:一元一次不等式的应用
(一题多设问)某校为举行体育比赛活动,准备购买若干个足球和篮
球作为奖品,已知①篮球的单价为 100 元/个,②足球的单价为 60 元/个,
第四节 一元一次不等式 (组)及其应用
【考情分析】湖北近 3 年主要考查:1.一元一次不等式(组)的解法及解集 表示,考查形式有:①求不等式(组)的解集;②求不等式(组)的解集并在 数轴上表示;③求不等式组的整数解;④确定不等式组中字母参数的取 值范围.2.一元一次不等式的应用,考查形式有:①利用不等式判断哪种 方案合算;②与方程(组)、函数结合确定方案问题,设题背景有购买问题、 销售费用问题,以解答题为主
新北师大版八年级下册数学 《一元一次不等式(2)》教案
2.4 一元一次不等式(二)●教学目标(一)教学知识点能利用一元一次不等式解决一些简单的实际问题.(二)能力训练要求通过学生独立思考,培养学生用数学知识解决实际问题的能力.(三)情感与价值观要求通过学生自主探索,培养学生学数学的好奇心与求知欲,使他们能积极参与数学学习活动,锻炼克服困难的意志,增强自信心.●教学重点1.用数学知识去解决简单的实际问题.●教学难点能结合具体问题发现并提出数学问题.●教学方法在教师的引导下,学生探索的方法.●教学过程Ⅰ.提出问题,引入新课[师]上节课,我们学习了什么叫一元一次不等式,以及如何解一些简单的一元一次不等式,下面大家先回忆一下.[生]不等式的两边都是整式,只含有一个未知数,且未知数的最高次数是一次,这样的不等式叫一元一次不等式.解一元一次不等式的一般步骤和解一元一次方程的一般步骤相似,大致有:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化成1.[师]很好.在解不等式的过程中,有需要注意的问题吗?[生]有.在去分母和系数化成1这两步中,如果两边同时乘以或除以同一个负数,要注意改变不等号的方向.[师]非常棒.下面我们做一个练习检查一下,看大家的动手能力如何.1.解不等式:51(x+15)≥21-31(x -7) [生]解:去分母,得6(x+15)≥15-10(x -7),去括号,得6x +90≥15-10x+70,移项、合并同类项,得16x ≥-15,两边同除以16,得x ≥-1615. [师]做得很好.请看第2题.2.判断下面解法的对错. 解不等式:312+x -615-x <2 解:去分母,得2(2x+1)-5x -1<2,去括号,得4x+2-5x -1<2移项、合并同类项,得-x <1两边都乘以-1,得x >-1.[师]请大家先独立思考、再互相讨论,指出上面的解法有无错误,若有请指出来.[生]第一,在去分母时,分子应作为一个整体,应加括号,是(5x -1),而非-5x -1,第二,整数2也应乘以公分母.[师]这位同学的分析很精彩.请大家改正.[生]解:去分母,得2(2x+1)-(5x -1)<12去括号,得4x+2-5x+1<12,移项、合并同类项,得-x <9,两边都乘以-1,得x >-9.[师]刚才这位同学提出的改正方案也正是解此类不等式需要注意的问题,本节课我们要加以巩固.Ⅱ.新课讲授[做一做][师]这类题型我们掌握得已很好了,下面我们来学习有关不等式的应用题. 某种商品进价为200元,标价为300元出售,商场规定可以打折销售,但其利润不能少于5%.请你帮助售货员计算一下,这种商品做多可以按几折销售?[师]解不等式应用题也和解方程应用题类似,我们先回忆一下列方程解应用题应如何进行.[生]先审题,弄清题中的等量关系;设未知数,用未知数表示有关的代数式;列出方程,解方程;最后写出答案.[师]好,同学们回答的非常棒!我们设这种商品最多可以x折销售,那么有3002005%200x-≥,得x≥0.7,故这种商品做多可以打7折.你们做对了吗?投影片(§2.4.2 B)在85分或85分以上,所以关系式应为:4×答对题数-1×答错题数≥85请大家自己写步骤.[生]解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解这个不等式,得x≥22.所以,小明至少答对了22道题,他可能答对了22,23,24,25道题.[师]大家依据列方程解应用题的过程,对照上面解不等式应用题的步骤,总结一下两者的不同,并给出解一元一次不等式应用题的一般步骤,请互相交流.[生]第一步:审题,找不等关系;第二步:设未知数,用未知数表示有关代数式;第三步:列不等式;第四步:解不等式;第五步:根据实际情况写出答案.[师]非常好.请大家按照刚才的步骤解答例4.[生]解:设她还可以买n支笔,根据题意得3n+2.2×2≤21解这个不等式,得n ≤36.16 因为在这一问题中n 只能取正整数,所以,小颖还可以买1支,2支,3支,4支或5支笔.Ⅲ.课堂练习1.解:设至多可以打x 折,根据题意,得50040010%4000.88x x -≥∴≥ 所以至多可以打8.8折.2.解:设他还可以买x 根火腿肠,根据题意,得2x +3×5≤26解这个不等式,得x ≤5.5所以小明还可以买1根,2根,3根,4根或5根火腿肠.Ⅳ.课时小结根据前面我们做的练习和例题,我们来总结一下解一元一次不等式应用题的一般步骤.(1)审题,找不等关系;(2)设未知数;(3)列不等关系;(4)解不等式;(5)根据实际情况,写出全部答案.Ⅴ.课后作业教材 习题2.5Ⅵ.活动与探究x 取什么值时,代数式2x -5的值:(1)大于0?(2)不大于0?解:(1)根据题意,得2x -5>0解得x >25所以当x >25时,2x -5的值大于0. (2)根据题意,得2x -5≤0解得x ≤25. 所以当x ≤25时,2x -5的值不大于0. ●板书设计。
七年级下册《9.2 一元一次不等式》教案、导学案、同步练习
《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
【教学重点】:熟练并准确地解一元一次不等式。
【教学难点】:熟练并准确地解一元一次不等式。
【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
9.2一元一次不等式第2课时一元一次不等式的应用课件人教版七年级下册
D.60
B
)
体会解不等式过程中的化归思想与类比思想,体会分类讨论思想在用不等式解决实际问题中的应用。
A.18 B.19 C.20 D.21 依题意,得10×3+6m≥62.
为了不迟到,小李后来的速度至少是多少?
解:设安排x人种甲种蔬菜,则种乙蔬菜的人数为(10-x)人,
5A万.元16,个则8最B.多.只17有能个安1排多0少名人种菜甲种农蔬菜,? 每人可种甲种蔬菜3亩或乙种蔬菜2亩.已知甲种蔬菜每亩
15.(2020·长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害, 人民的生活受到了极大的影响.“一方有难,八方支援”, 某市筹集了大量的生活物资,用A,B两种型号的货车, 分两批运往受灾严重的地区.具体运输情况如下:
A型货车的辆数(单位:辆) B型货车的辆数(单位:辆) 累计运输物资的吨数(单位:吨)
4.某车工计划在15天内至少加工零件408个,前3天每天加工零件24个.该 车工若在规定的时间内完成任务,此后平均每天需要加工零件( A )
A.最少28个 B.最少29个 C.最多28个 D.最多29个
5.一种导火线的燃烧速度是0.7 cm/s, 一名爆破员点燃导火线后以5 m/s的速度跑到距爆破点130 m以外的安全 地带,则导火线的长度至少应超过__1_8_.2_c_m__.
备注:第一批、第二批每辆货车均满载
第一批 1 3 28
第二批 2 5 50
(1)求A,B两种型号货车每辆满载分别能运多少吨生活物资?
(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车. 2 km 后,计划发生变化,准备至少提前 2 天完成修路任务,以后几天内平均每天至少要修路多少?
7.在一次“新冠肺炎疫情防护”知识竞赛中,竞赛题共25道,
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
4.(2021·荆门第 15 题 3 分)关于 x 的不等式组1+32x≥x-1 恰有 2 个
整数解,则 a 的取值范围是 5≤5a≤<a<6. 6
2x≥x-1, ① 5.(2021·武汉第 17 题 8 分)解不等式组4x+10>x+1 ②请按下列步骤 完成解答. (1)解不等式①,得 x≥x≥--11; (2)解不等式②,得 x>x>--33;
3x-2≥1, (2021·通辽)若关于 x 的不等式组2x-a<5 有且只有 2 个整数 解,则 a 的取值范围是-1-<a1<a≤≤11..
【思路点拨】先求出不等式组的解集(用含字母 a 的代数式表示),再根 据不等式组有且只有 2 个整数解,可推出 a 的取值范围.
解含参不等式(组)的 8 个“母题”: (1)若不等式 ax>a 的解集是 x>1,则 a>0; (2)若不等式 x>a 的解集是 x>2,则 a=2;
第四节 一元一次不等式(组) 及其应用
命题点 1:一元一次不等式组的解法及解集表示(近 3 年考查 18 次)
x-1<-3, 1.(2020·黄石第 6 题 3 分)不等式组2x+9≥3 的解集是
(
C)
A.-3≤x<3
B.x≥-2
C.-3≤x<-2
D.x≤-3
x-4≤2(x-1),
某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和 篮球,用于学校球类比赛活动,每个足球的价格都相同,每个篮球的价 格也相同,已知篮球的单价比足球单价的 2 倍少 30 元,用 1 200 元购买 足球的数量是用 900 元购买篮球数量的 2 倍.
(1)足球和篮球的单价各是多少元? (2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球 和篮球的总费用不超过 15 500 元,学校最多可以购买多少个篮球?
八年级下册2、4、2一元一次不等式的实际应用习题新版北师大版
9 【教材P49习题T2拓展】【2021·赤峰】为传承优秀传 统文化,某地青少年活动中心计划分批次购进四大名 著:《西游记》、《水浒传》、《三国演义》、《红 楼梦》,第一次购进《西游记》50本,《水浒传》60 本,共花费6 600元;第二次购进《西游记》40本, 《水浒传》30本,共花费4 200元.
(ⅲ)当 a≥12 时,100a≥1 200,即成人票至少需要 1 200 元, 不合题意,舍去. 当 1≤a<10 时, (ⅰ)当 a=9 时,100×9+80b+60≤1 200,解得 b≤3, ∴b 最大=3,此时 a+b=12,费用为 1 200 元; (ⅱ)当 a=8 时,100×8+80b+60×2≤1 200,解得 b≤72, ∴b 最大=3,此时 a+b=11<12,不合题意,舍去;
8 【2021·益阳】为了改善湘西北地区的交通,我省正在修建 长(沙)-益(阳)-常(德)高铁,其中长益段将于 2021 年底建 成,开通后的长益高铁比现在运行的长益城际铁路全长缩 短了 40 千米,运行时间为 16 分钟;现乘坐某次长益城际 列车全程需要 60 分钟,平均速度是开通后的高铁的1330.
10 【2021·铜仁】某快递公司为了提高工作效率,计划购 买A,B两种型号的机器人来搬运货物.已知每台A型 机器人比每台B型机器人每天多搬运20吨,并且3台A 型机器人和2台B型机器人每天共搬运货物460吨.
(1)求每台A型机器人和每台B型机器人每天分别搬运货物 多少吨. 解:设每台 A 型机器人每天搬运货物 x 吨,每台 B 型机 器人每天搬运货物 y 吨. 依题意得x3- x+y=2y2=0, 460,解得xy==8100.0, 答:每台 A 型机器人每天搬运货物 100 吨,每台 B 型机 器人每天搬运货物 80 吨.
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
重难点 2:一元一次不等式的应用 在某次篮球联赛初赛阶段,每队共有 10 场比赛,每场比赛都要分出
胜负,每队胜一场得 2 分,负一场得 1 分,积分超过 15 分才能获得参加 决赛资格. (1)已知甲队在初赛阶段的积分为 18 分,求甲队初赛阶段胜、负各多少 场; (2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少 场?
4.对于带有单位的应用题,设未知数和答时要带单位. 评分说明: (1)正确地设未知数并列出方程或方程组得 2 分; (2)方程或方程组解答正确得 1 分,解答的具体过程不是得分点,可以省 略;
(3)写出“答”得 1 分; (4)正确地设未知数并列出不等式得 2 分; (5)解不等式的过程不是得分点,可以省略,正确地写出不等式的解得 1 分; (6)正确地写出“答”得 1 分.
(1)【教你审题】设甲队初赛阶段胜 x 场,负 y 场.
原题信息
整理后的信息
在某次篮球联赛初赛阶段,每队共 x+y=10
有 10 场比赛
每队胜一场得 2 分,负一场得 1 分, 2x+y=18
甲队在初赛阶段的积分为 18 分
解:设甲队初赛阶段胜 x 场,负 y 场,由题意得,
x+y=10, 2x+y=18,(2 分)
积分超过 15 分才能获得参加决赛 2a+(10-a)>15
资格,乙队要获得参加决赛资格
解:设乙队初赛阶段胜 a 场,则负(10-a)场,由题意得, 2a+(10-a)>15,(6 分) 解得 a>5.(7 分) 答:乙队在初赛阶段至少要胜 6 场.(8 分)
1.设未知数时,表示不等关系的文字如“至少”等不能出现,即应给出 肯定的未知数的设法. 2.对于不等式的应用,应注意一些关键词语,从而建立不等式模型,例 如“不少于≥”“不超过≤”“至少≥”“最多≤”“不高于≤”等. 3.不等式的应用还需要验根,题目中用字母表示的量要符合实际意义, 如人数是正整数,时间不能为负数等.
一元一次不等式(组)知识总结思维导图
一对一教育授课记录学员姓名授课教师所授科目数学学员年级七年级讲次第讲上课时间2014年06月14日共2课时总课时14:00—16:00教学标题一元一次不等式(组)知识体系图:教学目标1.会解一元一次不等式及会用一元一次不等式解应用题。
2.理解一元一次不等式组的概念及其解集,掌握一元一次不等式组的解法。
教学重难点解不等式(组)和解方程不同,要注意符号变化;取解集时,一般借助于数轴,既直观,又不会漏解。
教学提纲及掌握情况主要内容和方法(目标)考纲要求课堂掌握情况作业完成情况知识点一:一元一次不等式I II 1 2 3 4 5知识点二:一元一次不等式组I II 1 2 3 4 5方法:(详见第2-3页)I II 1 2 3 4 5课堂表现:签名确认:学员:班主任:教学主任:说明:1、考纲要求I、II :I 是考试大纲,针对老教材的;II是新课程标准,针对新教材的;2、课堂掌握情况以分值来评判各知识点或解题方法的掌握熟练程度,1,2,3,4,5代表5种分值,1代表了解,2代表理解,3代表基本掌握,4代表熟练掌握,5代表综合运用;3、作业完成情况指学生本堂课针对此知识点进行训练的作业完成情况。
【知识要点】 一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式:a a a a< >≤≥解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变) 合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 三、一元一次不等式组含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ห้องสมุดไป่ตู้
商品销售中的常用公式
标价 =(1+P%)进价(商家提高了P%, 然后标价) 售价 =标价×折扣率 利润 =售价-进价 利润率 =(利润÷进价)×100%
三、 例题解析,方法归纳
一次环保知识竞赛共有25道题,规定答对 一道题得4分,答错或不答一道题扣1分,在这 次竞赛中,小明被评为优秀(85分或85分以 上),小明至少答对了几道题?
4
一元一次不等式(2)
解一元一次不等式的一般步骤:
(1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)系数化成1; (6)根据题目对解及解集的要求作答.
二、合作探究,解决问题
某种商品进价为200元,标价300元出售, 商场规定可以打折销售,但其利润不能少
于5﹪.请你帮助售货员计算一下,此种商
四、练习提高
1. 某种商品进价为400元,出售时标价500元, 商场准备打折销售,但要保持利润不低于10﹪.
则至多可打几折?
2.小明准备用26元钱买火腿肠和方便面,已知一 根火腿肠2元钱,一盒方便面3元钱,他买了5盒 方便面,他还可能买多少根火腿肠?
解:设小明答对了x道题,得4x分,另有(25-x)道要 扣分,而小明评为优秀,即小明的得分应大于或等于 85 分,则 4x-(25-x) ≥85 解得 x≥22 答:小明至少答对了22道题,他可能答对22,23,24或 25道题。
解一元一次不等式应用题的步骤:
(1)审题,找不等关系; (2)设未知数; (3)列不等式; (4)解不等式; (5)根据实际情况,写出全部答案