北师大版数学八年级下册2.6《一元一次不等式组》ppt课件

合集下载

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:

八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件

八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件
(2)设商店所获利润为y(单位:元),购进篮球的个数为 x(单位:个),请写出y与x之间的函数关系式(不要 求写出x的取值范围).
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.

一元一次不等式与一次函数(第2课时)(课件)八年级数学下册(北师大版)

一元一次不等式与一次函数(第2课时)(课件)八年级数学下册(北师大版)
思考:10至25人的含义是什么?
探究新知
解:设该单位参加这次旅游的人数是 x 人,选择甲旅行 社时,所需的费用为 y 1 元,选择乙旅行社时,所需的费 用为 y 2 元,则 y 1 = 200 × 0.75 x, 即 y 1 = 150 x; y 2 = 200 × 0.8(x - 1),即 y 2 = 160 x - 160.
探究新知
例 3 : 为绿 化 校园 , 某校 计 划购 进 A, B两 种 树苗 , 共 21 棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种 树苗x棵,购买两种树苗所需费用为y元. (1)y与x的函数关系式为________; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种
千米收取的费用比乙租赁公司多 D.除去月固定租赁费,甲租赁公司平均每
千米收取的费用比乙租赁公司少
随堂练习
4.某电信公司有甲、乙两种手机收费业务.甲种业务规定 月租费10元,每通话1 min收费0.3元;乙种业务不收月 租费,但每通话1 min收费0.4元.你认为何时选择甲种业 务对顾客更合算?何时选择乙种业务对顾客更合算?
情境导入
一次函数与一元一次不等式的关系是什么? 一次函数与一元一次不等式的关系: 任何一元一次不等式都可以化为ax+b>0或ax+b<0(a,b为 常数,a≠0)的形式,所以解一元一次不等式就可以看成当一次 函数的值大于或小于0时,求相应的自变量的取值范围. 从 图 象 上 看 , ax + b > 0 或 ax + b < 0 的 解 集 是 使 直 线 y = ax + b(a≠0)位于x轴的上方或下方的部分对应的x的取值范围.
探究新知
核心知识点一: 一元一次不等式与一次函数的综合应用
例1:某电信公司有甲、乙两种手机收费业务.甲种业务规 定月租费10元,每通话1min收费0.3 元;乙种业务不收月租 费,但每通话1min收费0.4 元. 你认为何时选择甲种业务对 顾客更合算?何时选择乙种业务对顾客更合算?

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
分析 先求出不等式组的解集, 即x的取值范围, 然后根据不等式组 的整数解的个数确定其整数解, 再借助数轴进行直观分析得到b的 取值范围.
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?

北师大版八年级数学下册.2《一元一次不等式》课件

北师大版八年级数学下册.2《一元一次不等式》课件
2.4.2一元一次不等式
1.回忆什么叫一元一次不等式?
不等式的两边都是整式,只含有一个未知数, 且未知数的最高次数是一次,这样的不等式叫一 元一次不等式.
你能说出解一元一次不等式的基本步骤吗?
去分母,去括号,移项,合并同类项,系数化为1.
思考:解一元一次不等式,在系数化为1时应注意些 什么?
要看未知数系数的符号,若未知数的系数是正数, 则不等号的方向不变;若未知数系数是负数,则不 等号的方向要改变.
1)从类型讲,这道应用题属于_行__程___问题。该类型 涉及到的量有_路__程__、_速__度__、__时__间___. 2)本题已给出的量:总路程__5_0_0_0_千米, 已走路程 _1_4_0_0__千米, 剩余路程_5_0_0_0_-_1_4_0_0_千米.“此后” 是从__6_月1_8__日到__9_月_1_5_日,共_9_0_天. 3)本题所求的量是__速__度__,若设他每天至少要行x 千米,则剩余路程可表示为_9_0_x__.根据以上各量之 间的关系可列式 _9_0_x_≥__5_0_0_0_-_1_4_0_0___. 4)他此后平均每天至少要行_4_0__千米。
解一元一次不等式每一步变形的根据是什么?
步骤
去分母 去括号 移项 合并同类项 系数化为1
根据
不等式的性质2 去括号法则 不等式的性质1 合并同类项法则 不等式的性质2或3
解一元一次不等式和解一元一次方程有哪些 相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程 或一元一次不等式变形为最简情势.
不同之处: (1)解法根据不同:解一元一次不等式的根据是不 等式的性质,解一元一次方程的根据是等式的性质. (2)最简情势不同,一元一次不等式的最简情势是 x>a或x<a ,一元一次方程的最简情势是x=a.

北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式

不等式的基本性质教学课件--北师大版初中数学八年级(下)

不等式的基本性质教学课件--北师大版初中数学八年级(下)

(2) 1 x
3
<
1 y (不等式的基本性质 2 )
3
(3)-x > -y (不等式的基本性质 3 )
(4)x-m < y-m (不等式的基本性质 1 )
3、下列各题是否正确?请说明理由
(1)如果a>b,那么ac>bc
×
(2)如果a>b,那么ac2 >bc2
×
(3)如果ac2>bc2,那么a>b

a c
>
b c
a c
<
b c
知识讲授
不等式的基本性质 3 :
不等式的两边都乘(或除以)同一个负数, 不等号的方向 改变 .
即:若a b且c 0, 则a c<b c , 若a b且c 0,则a c> b c ,
ac <
b c
a c
>
b c
例题讲授
例1 将下列不等式化成“x>a”或“x<a”的情势:
-4<3 -4×2< 3×2 -4÷2< 3÷2 -4×(-2)> 3×(-2)
-4÷(-2)> 3÷(-2)
6×0 = 3×0
知识讲授
不等式的基本性质 2 :
不等式的两边都乘(或除以)同一个正数,不 等号的方向 不变 .
即:若a b且c 0, 则a c> b c , 若a b且c 0,则a c<b c ,
2
能力提升
1、单项选择:
(1)由 x>y 得 ax>ay 的条件是(B )
A.a ≥0 B.a > 0 C.a< 0 D.a≤0 (2)由 x>y 得 ax≤ay 的条件是( D ) A.a>0 B.a<0 C.a≥0 D.a≤0

北师大版八年级下册数学《不等关系》一元一次不等式和一元一次不等式组研讨说课复习课件

北师大版八年级下册数学《不等关系》一元一次不等式和一元一次不等式组研讨说课复习课件
A.两种客车总的载客量不少于500人 B.两种客车总的载客量不超过500人 C.两种客车总的载客量不足500人 D.两种客车总的载客量恰好等于500人
4. 用“<”或“>”号填空.
(1)-2_<___2;
(2)-3_<___-2;
(3)12_>___6;
(4)0__>__-8;
(5)-a__<__a (a>0); (6)-a__>__a(a<0).
5.用不等式表示下列问题中数量之间的关系.
(1)小陈的体重(x)至少100斤. x≥100
(2)这支铅笔的价钱(y)至多3元. y≤3
(3)一辆轿车在某公路上的行驶速度是 x km/h,已知 x≤100 这辆轿车在该公路上行驶的速度不超过100 km/h. (4)一块正方形的苗圃地,边长为y(m),周长不少于 36 m . 4y≥36 (5)某隧道限速为60km/h,一辆车在隧道中行驶 的速度为v(km/h)的轿车因超速被交警处罚. v>60 (6)山亭3月8日最低气温1oC,最高气温是 13oC,薛城这一天某一时刻的气温是toC . 1oC ≤ toC ≤ 13oC
探究新知
不等式的概念:
观 察 由 上 述 问 题 得 到 的 关 系 式 : x>50 , s>60x , s<100x,a+b+c≤160 ,6+3x>30,它们有什么共同的特点?
结论
一般地,用不等号“>”(或“≥”),“<”(或
“≤”)连接的式子叫做不等式.
探究新知
不等号:
不等号

读作
大于

第二章 一元一次不等式与一元一次不等式组
不等关系
课件
情景导入
找出下列材料中的不等关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)∵k=5>0,∴y随x的增大而增大,∴当x=44000时,
y最大=3820000,即生产N型号的合金产品44000套时,该厂所获利润最大,
最大利润是3820000元
5.(6分)解不等式组并将解集表示在数轴上.
解 :-5<x≤,图略
一元一次不等组的简单应用
6.(4分)某校学生志愿服务小组在“学雷锋”活动中买了一批 牛奶到敬老院慰问老人,如果分给每人4盒牛奶,那么还剩下 28盒牛奶;如果分给每人5盒牛奶,那么最后一位老人分得的 牛奶不足4盒,但至少有1盒,则这个敬老院最少有老人( B ) A.29人 B.30人 C.31人 D.32人 7.(4分)有一家宾馆,所有客房都是双人间,150人住不满, 160人住不下,则这家宾馆至少有房间__7_6_间.
某居民五月份用电190千瓦时, 一户居民一个月 电费价格(单位:
缴纳电费90元.
用电量的范围 元/千瓦时)
(1)求x和超出部分电费单价; 不超过160千瓦
(2)若该户居民六月份所缴电费
时的部分
x
不低于75元且不超过84元,
超过160千瓦时
求该户居民六月份的用电量范围. 的部分
x+0.15
解:(1)根据题意,得160x+(190-160)(x+0.15)=90, 解得x=0.45;则超出部分的电费单价是x+0.15= 0.6(元/千瓦时).答:x和超出部分电费单价分别是0.45 元/千瓦时和0.6元/千瓦时; (2)设该户居民六月份的用电量是a千瓦时.则 75≤160×0.45+0.6(a-160)≤84,解得165≤a≤180. 答:该户居民六月份的用电量范围是165千瓦时到180 千瓦时.
14.(8分)解不等式组 x-2 3+3≥x+1,
并将解集表示在数轴上.
1-3(x-1)<8-x,
解:-2<x≤1
15.(8分)解不等式组 32x+5>1-x x-1<34x-18
,并写出它的非负整数解.
解:解集为-<x<,它的非负整数解为0,1,2,3.
16.(12分)为增强居民节约用电意识,某市对居民用电实行 “阶梯收费”,具体收费标准见表:
【综合运用】
17.(12分)(2014·黔南州)已知某厂现有A种金属70吨,B种金属52吨, 现计划用这两种金属生产M,N两种型号的合金产品共80 000套,已知 做一套M型号的合金产品需要A种金属0.6 kg,B种金属0.9 kg,可获利 润45元;做一套N型号的合金产品需要A种金属1.1 kg,B种金属0.4 kg, 可获利润50元.若设生产N种型号的合金产品套数为x,用这批金属生产 这两种型号的合金产品所获总利润为y元. (1)求y与x的函数关系式,并求出自变量x的取值范围; (2)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获 利润最大?最大利润是多少?
甲(kg) 乙(kg) 件数(件)
(2)安排生产A由;
B 4(40-x)
(3)设生产这批40件产品共可获利润y元,
40-x
将y表示为x的函数,并求出最大利润.
解:(1)8x 9(40-x) (2)由题意,得
85xx++49((4400--xx))≤≤226700,,∴22.5≤x≤25,∵x 为整数,
∴x=23,24,25,故共有三种方案.
方案一:A 产品 23 件,B 产品 17 件;
方案二:A 产品 24 件,B 产品 16 件;
方案三:A 产品 25 件,B 产品 15 件
(2)y=900x+1 100(40-x)=-200x+44 000,∵k<0,
∴当 x=23 时,y 最大=39 400(元)
1.(4分)不等式组的解集为( C ) A.-2<x<4 B.x<4或x≥-2 C.-2≤x<4 D.-2<x≤4 2.(4分)不等式组的解集是( D ) A.x≥8 B.x>2 C.0<x<2 D.2<x≤8 3.(4分)不等式组的解集是 -__1≤_x_<2 . 4.(4分)(2014·安顺)求不等式组的整数解是_-__1_,.0,1
2.6 一元一次不等式组(第2课时) 得分________ 卷后分________ 评价________
对于具有多种不等关系的问题,可通过 建立不等式组 来解决问题.解一元一次不等式组时,一般先求出其 中 每个不等式 的解集,利用 数轴 可以确定这些 解集的 公共部分 ,从而得出不等式组的解集.
解稍复杂的一元一次不等式组
A.a≥-1 B.a<-1 C.a≤1 D.a≤-1
11.在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资, 要求每组分配的人数相同,若每组比预定人数多分配1人,则总数会 超过100人;若每组人数比预定人数少分配1人,则总数不够90人, 那么预定每组分配的人数是(C ) A.10人 B.11人 C.12人 D.13人
解:(1)y=50x+45(80000-x)=5x+3600000,由题意得 不等式组的解集是40000≤x≤44000,
1.1x+0.6(80000-x)≤70000 0.4x+0.9(80000-x)≤52000

∴y与x的函数关系式是y=5x+3600000(40000≤x≤44000)
一、选择题(每小题 4 分,共 12 分)
9.若不等式组xx-+ba<>00,的解集为 2<x<3,则 a,b 的值分别为( A )
A.-2,3 B.2,-3 C.3,-2 D.-3,2
10.(2014·潍坊)若不等式组x1+-a2≥x>0x-2无解,则实数 a 的取值范围是( D )
二、填空题(每小题 4 分,共 8 分)
12.若不等式组x3>x+a,2<4x-1的解集是 x>3,则 a 的取值范围
是_a_≤3__.
13.(2014·内江)已知实数x,y满足2x-3y=4,并且 x≥-1,y<2,现有k=x-y,则k的取值范围是_1_≤k_<_3.
三、解答题(共40分)
利用不等式组进行方案设计
8.(10分)某公司有甲种原料260 kg,乙种原料270 kg,计划用这两种原料生
产A,B两种产品共40件,生产每件A种产品需甲种原料8 kg,乙种原料5 kg,
可获利润900元;生产每件B种产品需甲种原料4 kg,乙种原料9 kg,可获利
润1 100元,设安排生产A种产品x件. (1)完成下表:
相关文档
最新文档