北师大版数学八年级下册2.6《一元一次不等式组》ppt课件
一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)
随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:
八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.
一元一次不等式与一次函数(第2课时)(课件)八年级数学下册(北师大版)
探究新知
解:设该单位参加这次旅游的人数是 x 人,选择甲旅行 社时,所需的费用为 y 1 元,选择乙旅行社时,所需的费 用为 y 2 元,则 y 1 = 200 × 0.75 x, 即 y 1 = 150 x; y 2 = 200 × 0.8(x - 1),即 y 2 = 160 x - 160.
探究新知
例 3 : 为绿 化 校园 , 某校 计 划购 进 A, B两 种 树苗 , 共 21 棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种 树苗x棵,购买两种树苗所需费用为y元. (1)y与x的函数关系式为________; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种
千米收取的费用比乙租赁公司多 D.除去月固定租赁费,甲租赁公司平均每
千米收取的费用比乙租赁公司少
随堂练习
4.某电信公司有甲、乙两种手机收费业务.甲种业务规定 月租费10元,每通话1 min收费0.3元;乙种业务不收月 租费,但每通话1 min收费0.4元.你认为何时选择甲种业 务对顾客更合算?何时选择乙种业务对顾客更合算?
情境导入
一次函数与一元一次不等式的关系是什么? 一次函数与一元一次不等式的关系: 任何一元一次不等式都可以化为ax+b>0或ax+b<0(a,b为 常数,a≠0)的形式,所以解一元一次不等式就可以看成当一次 函数的值大于或小于0时,求相应的自变量的取值范围. 从 图 象 上 看 , ax + b > 0 或 ax + b < 0 的 解 集 是 使 直 线 y = ax + b(a≠0)位于x轴的上方或下方的部分对应的x的取值范围.
探究新知
核心知识点一: 一元一次不等式与一次函数的综合应用
例1:某电信公司有甲、乙两种手机收费业务.甲种业务规 定月租费10元,每通话1min收费0.3 元;乙种业务不收月租 费,但每通话1min收费0.4 元. 你认为何时选择甲种业务对 顾客更合算?何时选择乙种业务对顾客更合算?
北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?
北师大版八年级数学下册.2《一元一次不等式》课件
1.回忆什么叫一元一次不等式?
不等式的两边都是整式,只含有一个未知数, 且未知数的最高次数是一次,这样的不等式叫一 元一次不等式.
你能说出解一元一次不等式的基本步骤吗?
去分母,去括号,移项,合并同类项,系数化为1.
思考:解一元一次不等式,在系数化为1时应注意些 什么?
要看未知数系数的符号,若未知数的系数是正数, 则不等号的方向不变;若未知数系数是负数,则不 等号的方向要改变.
1)从类型讲,这道应用题属于_行__程___问题。该类型 涉及到的量有_路__程__、_速__度__、__时__间___. 2)本题已给出的量:总路程__5_0_0_0_千米, 已走路程 _1_4_0_0__千米, 剩余路程_5_0_0_0_-_1_4_0_0_千米.“此后” 是从__6_月1_8__日到__9_月_1_5_日,共_9_0_天. 3)本题所求的量是__速__度__,若设他每天至少要行x 千米,则剩余路程可表示为_9_0_x__.根据以上各量之 间的关系可列式 _9_0_x_≥__5_0_0_0_-_1_4_0_0___. 4)他此后平均每天至少要行_4_0__千米。
解一元一次不等式每一步变形的根据是什么?
步骤
去分母 去括号 移项 合并同类项 系数化为1
根据
不等式的性质2 去括号法则 不等式的性质1 合并同类项法则 不等式的性质2或3
解一元一次不等式和解一元一次方程有哪些 相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程 或一元一次不等式变形为最简情势.
不同之处: (1)解法根据不同:解一元一次不等式的根据是不 等式的性质,解一元一次方程的根据是等式的性质. (2)最简情势不同,一元一次不等式的最简情势是 x>a或x<a ,一元一次方程的最简情势是x=a.
北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)
创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式
不等式的基本性质教学课件--北师大版初中数学八年级(下)
(2) 1 x
3
<
1 y (不等式的基本性质 2 )
3
(3)-x > -y (不等式的基本性质 3 )
(4)x-m < y-m (不等式的基本性质 1 )
3、下列各题是否正确?请说明理由
(1)如果a>b,那么ac>bc
×
(2)如果a>b,那么ac2 >bc2
×
(3)如果ac2>bc2,那么a>b
√
a c
>
b c
a c
<
b c
知识讲授
不等式的基本性质 3 :
不等式的两边都乘(或除以)同一个负数, 不等号的方向 改变 .
即:若a b且c 0, 则a c<b c , 若a b且c 0,则a c> b c ,
ac <
b c
a c
>
b c
例题讲授
例1 将下列不等式化成“x>a”或“x<a”的情势:
-4<3 -4×2< 3×2 -4÷2< 3÷2 -4×(-2)> 3×(-2)
-4÷(-2)> 3÷(-2)
6×0 = 3×0
知识讲授
不等式的基本性质 2 :
不等式的两边都乘(或除以)同一个正数,不 等号的方向 不变 .
即:若a b且c 0, 则a c> b c , 若a b且c 0,则a c<b c ,
2
能力提升
1、单项选择:
(1)由 x>y 得 ax>ay 的条件是(B )
A.a ≥0 B.a > 0 C.a< 0 D.a≤0 (2)由 x>y 得 ax≤ay 的条件是( D ) A.a>0 B.a<0 C.a≥0 D.a≤0
北师大版八年级下册数学《不等关系》一元一次不等式和一元一次不等式组研讨说课复习课件
4. 用“<”或“>”号填空.
(1)-2_<___2;
(2)-3_<___-2;
(3)12_>___6;
(4)0__>__-8;
(5)-a__<__a (a>0); (6)-a__>__a(a<0).
5.用不等式表示下列问题中数量之间的关系.
(1)小陈的体重(x)至少100斤. x≥100
(2)这支铅笔的价钱(y)至多3元. y≤3
(3)一辆轿车在某公路上的行驶速度是 x km/h,已知 x≤100 这辆轿车在该公路上行驶的速度不超过100 km/h. (4)一块正方形的苗圃地,边长为y(m),周长不少于 36 m . 4y≥36 (5)某隧道限速为60km/h,一辆车在隧道中行驶 的速度为v(km/h)的轿车因超速被交警处罚. v>60 (6)山亭3月8日最低气温1oC,最高气温是 13oC,薛城这一天某一时刻的气温是toC . 1oC ≤ toC ≤ 13oC
探究新知
不等式的概念:
观 察 由 上 述 问 题 得 到 的 关 系 式 : x>50 , s>60x , s<100x,a+b+c≤160 ,6+3x>30,它们有什么共同的特点?
结论
一般地,用不等号“>”(或“≥”),“<”(或
“≤”)连接的式子叫做不等式.
探究新知
不等号:
不等号
>
读作
大于
<
第二章 一元一次不等式与一元一次不等式组
不等关系
课件
情景导入
找出下列材料中的不等关系.
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义
第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
8年级 数学北师 大版下册课件第2章《一元一次不等式》
拓展提高
5x +1>3(x -1),
4.已知关于
x
的不等式组
1
3
x≤8- x+2a
2
2
恰好有两个整数解,求实
数 a 的取值范围.
解:解 5x+1>3(x-1)得 x>-2,
北师大版 八年级下册
2.6.1 一元一次不等式组 及其解法
新知导入
【思考】 什么叫一元一次不等式?
不等式的左右两边都是整式,只含有一个未知数,并且未知数的最 高次数是1,像这样的不等式,叫做一元一次不等式.
新知导入
解下列不等式,并在数轴上表示它们的解集:
① 2x-3<6-x ;
②1-4x≤5x-2.
解: ①移项、合并同类项,得3x <9. 两边都除以3,得x <3. 这个不等式的解集在数轴上的表示如图所示:
-1 0 1 2 3 4 5 6 7
新知导入
解下列不等式,并在数轴上表示它们的解集:
① 2x-3<6-x ;
②1-4x≤5x-2.
解: ②移项、合并同类项,得-9x ≤ -3. 两边都除以-9,得 x ≥ 1.
根据题意得: 4(x+5)>100, ① 4(x-5)<68. ②
新知讲解
未知数x同时满足①②两个条件,把①②两个不等式合在一起
4(x+5)>100, 4(x-5)<68.
这个式子有什么特点?
(1)每个不等式为一元一次不等式; (2)所有不等式只含有同一个未知数; (3)不等式的数量是两个.
北师大版八年级数学下册课件:2
(3)x取哪些值时, 2x-5<0 ?
当x<2.5时, 2x-5<0
y
4 3 2 1
-2 -1-O1 -2 -3 -4 -5
y=2x-5
(2.5,0)
12 34 5 x
学习探究一
观察一次函数y=2x-5的图象,回答下列问题:
(4)x取何值时, 2x-5=1 ? 当 x=3时, 2x-5=1 (5)x取哪些值时, 2x-5>1 ? 当 x>3时, 2x-5>1 (6)x取哪些值时,2x-5<1 ? 当 x<3时, 2x-5<1
情境引入
兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m, 哥哥每秒跑4m.
(1)何时弟弟跑在哥哥前面? (2)何时哥哥跑在弟弟前面?
解:(2)设哥哥起跑y秒时哥哥在弟弟前面. 4y>3y+9 解得:y>9
所以,从哥哥起跑,9秒之后哥哥跑在弟弟前面.
学习目标
1.通过观察函数图象、求方程的解和不等式的解集,从中体会一元一 次方程、一元一次不等式与一次函数的内在联系;
(2)____x_>_9____时,哥哥跑在弟弟前面.
(3)_弟__弟___先跑过20m,_哥__哥___先跑过100m.
问题解决
思路二:代数法
(1)何时弟弟跑在哥哥前面?
哥哥: y1=4x
弟弟: y2=3x+9
由y1<y2得,4x<3x+9
解得:x<9
所以,从哥哥起跑,9秒之前弟弟跑在哥哥前面.
2.通过具体问题初步体会一次函数的变化规律与一元一次不等式解集 的联系;
3.利用数形结合的思想,多角度解决一元一次不等式的问题,体会数 学思想方法的应用.
一元一次不等式(组)的解法课件(共22张PPT)
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).
北师大版八年级下册数学《不等式的解集》一元一次不等式和一元一次不等式组说课研讨教学复习课件
3×4 + 2X ≤ 30
表示不等式的解集 你能用什么办法把不等式 x>5的解集和 不等式x-5≤-1的解集表示在数轴上?
x>5
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x≤4
将不等式的解集表示在数轴上时,要注意:
1)指示线的方向,“>”向右,“<”向左. 2)有“=”用实心点,没有“=”用空心圈.
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 2 在数轴上表示不等式的解集
思考:如何在数轴上表示出不等式x>2的解集呢? 先在数轴上标出表示2的点A; 则点A右边所有的点表示的数都大于2,而点A左边 所有的点表示的数都小于2;
因此可以像图那样表示不等式的解集x>2.
A -1 0 1 2 3 4 5 6
课堂检测
能力提升题
2、根据不等式的基本性质确定不等式2-x<1的解集,并把解集表
示在数轴上. 解:根据不等式的基本性质1,不等式的两边同时减去2得-x<-1; 根据不等式的基本性质3,不等式的两边同时除以-1得x>1. 这个不等式的解集在数轴上表示为:
课堂检测
拓广探索题
1、不等式2x-3≥-1的解集在数轴上表示为( A )
-3 -2 -1 0 1 2 3 4 5 6 7 8
根据不等式的基本性质求不等式的解集,
并把解集表示在数轴上.
(1)x-2≥ -4
(2)2x ≤ 8
解:两边同时加2得:
解:两边同时除以2得:
x ≥ -2
x ≤4
-3 -2 -1 0 1 2
(3)-2x-2 > -10
1.6 一元一次不等式组 课件4(北师大版八年级下)
的喜 育 把 开并 意 枯 场激 义 燥 愉发 的 的 悦他 话 复 而们 题 习 有的 做 融 意爱 为 入 设 义国 新 到 计 。心 棵 新 意 和的课图 表引学 现入习 欲,中 ,让, 使学把 新生有 课欣教
11
背景分析
教学目标设计 课堂结构设计 教学媒体设计
教学过程设计
教学评价设计
针对刚刚得到的不等式组 x>160 ①
解决问题
通过动手操作、观察、讨 论等得出一元一次不等式 组解集的两种求法,进一 步提高学生应用已有知识 解决数学问题的能力。
情感态度与价值观目标
数学思考
经历一元一次不等式组 解集的探究过程,渗透 类比,化归和从特殊到 一般的思想。
让学生充分参与数学学 习活动,从而获得成功 的体验,建立良好的信 心。
六、教学评价设计
总之,在这节课 上,我始终以学 生为主体,创设 情境,激发学生 的学习兴趣,让 学生主动参与探 索新知识,联系 实际,让学生明
白知识来源于生 活,服务于生活, 让学生轻松快乐 的学习,我相信 有了快乐,数学 将燃烧发出生命 光彩。
附:板书设计
课题: §9.3一元一次不等式组(1)
教学评价设计
x<2 (4)x>3
0 12 3
无解
x>1 (8)x<-3
-3 -2 -1 0 1
大大小小找不着
无解
17
背景分析
教学目标设计 课堂结构设计 教学媒体设计
教学过程设计
教学评价设计
不等式组的解集类型:四种 大大取最大 小小取最小
大小小大中间找
大大小小找不着
言手能既生通 表能力进讨过 达力,一论问 能,又步,题 力 也 培 培 研 的设 。 挖 养 养 究 提计 掘 了 了 的 出意 了 学 学 学 ,图 学生生习掀 生实的高起 的际观潮了 语动察,学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)∵k=5>0,∴y随x的增大而增大,∴当x=44000时,
y最大=3820000,即生产N型号的合金产品44000套时,该厂所获利润最大,
最大利润是3820000元
5.(6分)解不等式组并将解集表示在数轴上.
解 :-5<x≤,图略
一元一次不等组的简单应用
6.(4分)某校学生志愿服务小组在“学雷锋”活动中买了一批 牛奶到敬老院慰问老人,如果分给每人4盒牛奶,那么还剩下 28盒牛奶;如果分给每人5盒牛奶,那么最后一位老人分得的 牛奶不足4盒,但至少有1盒,则这个敬老院最少有老人( B ) A.29人 B.30人 C.31人 D.32人 7.(4分)有一家宾馆,所有客房都是双人间,150人住不满, 160人住不下,则这家宾馆至少有房间__7_6_间.
某居民五月份用电190千瓦时, 一户居民一个月 电费价格(单位:
缴纳电费90元.
用电量的范围 元/千瓦时)
(1)求x和超出部分电费单价; 不超过160千瓦
(2)若该户居民六月份所缴电费
时的部分
x
不低于75元且不超过84元,
超过160千瓦时
求该户居民六月份的用电量范围. 的部分
x+0.15
解:(1)根据题意,得160x+(190-160)(x+0.15)=90, 解得x=0.45;则超出部分的电费单价是x+0.15= 0.6(元/千瓦时).答:x和超出部分电费单价分别是0.45 元/千瓦时和0.6元/千瓦时; (2)设该户居民六月份的用电量是a千瓦时.则 75≤160×0.45+0.6(a-160)≤84,解得165≤a≤180. 答:该户居民六月份的用电量范围是165千瓦时到180 千瓦时.
14.(8分)解不等式组 x-2 3+3≥x+1,
并将解集表示在数轴上.
1-3(x-1)<8-x,
解:-2<x≤1
15.(8分)解不等式组 32x+5>1-x x-1<34x-18
,并写出它的非负整数解.
解:解集为-<x<,它的非负整数解为0,1,2,3.
16.(12分)为增强居民节约用电意识,某市对居民用电实行 “阶梯收费”,具体收费标准见表:
【综合运用】
17.(12分)(2014·黔南州)已知某厂现有A种金属70吨,B种金属52吨, 现计划用这两种金属生产M,N两种型号的合金产品共80 000套,已知 做一套M型号的合金产品需要A种金属0.6 kg,B种金属0.9 kg,可获利 润45元;做一套N型号的合金产品需要A种金属1.1 kg,B种金属0.4 kg, 可获利润50元.若设生产N种型号的合金产品套数为x,用这批金属生产 这两种型号的合金产品所获总利润为y元. (1)求y与x的函数关系式,并求出自变量x的取值范围; (2)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获 利润最大?最大利润是多少?
甲(kg) 乙(kg) 件数(件)
(2)安排生产A由;
B 4(40-x)
(3)设生产这批40件产品共可获利润y元,
40-x
将y表示为x的函数,并求出最大利润.
解:(1)8x 9(40-x) (2)由题意,得
85xx++49((4400--xx))≤≤226700,,∴22.5≤x≤25,∵x 为整数,
∴x=23,24,25,故共有三种方案.
方案一:A 产品 23 件,B 产品 17 件;
方案二:A 产品 24 件,B 产品 16 件;
方案三:A 产品 25 件,B 产品 15 件
(2)y=900x+1 100(40-x)=-200x+44 000,∵k<0,
∴当 x=23 时,y 最大=39 400(元)
1.(4分)不等式组的解集为( C ) A.-2<x<4 B.x<4或x≥-2 C.-2≤x<4 D.-2<x≤4 2.(4分)不等式组的解集是( D ) A.x≥8 B.x>2 C.0<x<2 D.2<x≤8 3.(4分)不等式组的解集是 -__1≤_x_<2 . 4.(4分)(2014·安顺)求不等式组的整数解是_-__1_,.0,1
2.6 一元一次不等式组(第2课时) 得分________ 卷后分________ 评价________
对于具有多种不等关系的问题,可通过 建立不等式组 来解决问题.解一元一次不等式组时,一般先求出其 中 每个不等式 的解集,利用 数轴 可以确定这些 解集的 公共部分 ,从而得出不等式组的解集.
解稍复杂的一元一次不等式组
A.a≥-1 B.a<-1 C.a≤1 D.a≤-1
11.在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资, 要求每组分配的人数相同,若每组比预定人数多分配1人,则总数会 超过100人;若每组人数比预定人数少分配1人,则总数不够90人, 那么预定每组分配的人数是(C ) A.10人 B.11人 C.12人 D.13人
解:(1)y=50x+45(80000-x)=5x+3600000,由题意得 不等式组的解集是40000≤x≤44000,
1.1x+0.6(80000-x)≤70000 0.4x+0.9(80000-x)≤52000
,
∴y与x的函数关系式是y=5x+3600000(40000≤x≤44000)
一、选择题(每小题 4 分,共 12 分)
9.若不等式组xx-+ba<>00,的解集为 2<x<3,则 a,b 的值分别为( A )
A.-2,3 B.2,-3 C.3,-2 D.-3,2
10.(2014·潍坊)若不等式组x1+-a2≥x>0x-2无解,则实数 a 的取值范围是( D )
二、填空题(每小题 4 分,共 8 分)
12.若不等式组x3>x+a,2<4x-1的解集是 x>3,则 a 的取值范围
是_a_≤3__.
13.(2014·内江)已知实数x,y满足2x-3y=4,并且 x≥-1,y<2,现有k=x-y,则k的取值范围是_1_≤k_<_3.
三、解答题(共40分)
利用不等式组进行方案设计
8.(10分)某公司有甲种原料260 kg,乙种原料270 kg,计划用这两种原料生
产A,B两种产品共40件,生产每件A种产品需甲种原料8 kg,乙种原料5 kg,
可获利润900元;生产每件B种产品需甲种原料4 kg,乙种原料9 kg,可获利
润1 100元,设安排生产A种产品x件. (1)完成下表: