北师大版八年级数学下册全册课件【完整版】

合集下载

【北师大版】数学八年级下册(全册)课件(共310张)(2020年制作)

【北师大版】数学八年级下册(全册)课件(共310张)(2020年制作)

∵DE平分∠ADC,EC⊥DC, A
B
EF⊥FD
D
C
∴CE=EF
F
又CE=BF
E
∴EF=BE,而EF⊥AF,BE⊥AB
∴E在∠DAB的平分线上
A
B
即AE平分∠DAB
例2、还记角得平在全分等线三的角形判定D 的应用
中证明的一个习题吗?如
C
图所示,已知:在∆ABC
中,分别以AC、BC为边
M
,向外作正∆ACD、正
2020/4/15
该课件由【语文公社】 友情提供
想一想
1、上面剪出的等腰三角形是轴对称图形吗?
2、把剪出的等腰三角形ABC沿折痕对折,找出 其中重合的线段和角。
3、由这些重合的线段和角,你能发现等腰三角 形的哪些性质呢?说一说你的猜想。
我们可以发现等腰三角形的性质
性质1:等腰三角形的两个底角相等(简写为
【北师大版】数学八年级下册(全册)课件(共 310张)(2020年制作)
精选各省级优秀课原创获奖课件
如果您现在暂时不需要,记得收藏此网页! 因为再搜索到我的机会为零!
错过我,就意味着永远失去~
一次下载,终生使用
2020/4/15
该课件由【语文公社】 友情提供
学习目标
A
B
C
解:(1)存在这样的点P为∠A、∠B的
平分线的交点。(2)这个距离为3
不要忘了 悟 字
角平分线的性质和判定是怎样的? 三角形的角平分线的性质
添加辅助线 . 作图
综合应用 .
用心想一想,马到功成
小明在证明“等边对等角”时,通过作等腰三角 形底边的高来证明。过程如下:
已知:在△ABC中, AB=AC.

最新北师大版八年级数学下册《直角三角形》精品教学课件

最新北师大版八年级数学下册《直角三角形》精品教学课件

∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.

北师大版八年级数学下册全册教学课件

北师大版八年级数学下册全册教学课件

1.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系教学重点和难点:重点:对不等式概念的理解难点:怎样建立量与量之间的不等关系。

从问题中来,到问题中去。

1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆。

(1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式?(2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式?(3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)改变l 的取值再试一试,在这个过程中你能得到什么启发? 分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l ,圆的面积可以表示为22⎪⎭⎫ ⎝⎛ππl 。

(1) 要使正方形的面积不大于25㎝2,就是 25)4(2≤l ,即25162≤l 。

(2) 要使圆的面积大于100㎝2,就是22⎪⎭⎫ ⎝⎛ππl >100, 即 π42l >100 (3) 当l =8时,正方形的面积为)(416822cm =,圆的面积为)(1.54822cm ≈π, 4<5.1,此时圆的面积大。

当l =12时,正方形的面积为)(9161222cm =,圆的面积为)(5.1141222cm ≈π, 9<11.5,此时还是圆的面积大。

(4) 不论怎样改变l 的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l㎝的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即π42l >162l 2. (1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m 的地方作为测量部位。

某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m ?(只列关系式)(2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m 以外的安全区域。

已知导火线的燃烧速度为0.2m/s ,人离开的速度为4m/s ,导火线的长度x (m )应满足怎样的关系式? 答案:(1)设这棵树生长x 年其树围才能超过2.4m ,则5+3x >240。

【北师大版】初二八年级数学下册《4.3.3 分组分解法及分解因式的方法》课件PPT

【北师大版】初二八年级数学下册《4.3.3  分组分解法及分解因式的方法》课件PPT

知1-练
7 把下列各式分解因式:
(1)1+x+x2+x;
(2)xy2-2xy+2y-4;
(3)a2-b2+2a+1.
解: (1)原式=(1+x)+(x2+x) =(1+x)+x(x+1) =(1+x)(1+x) =(1+x)2.
(2)原式=(xy2-2xy)+(2y-4) =xy(y-2)+2(y-2) =(y-2)(xy+2).
x
骣 ççç桫x-
4 x
÷÷÷
2 【中考·宜宾】把代数式3x3-12x2+12x分解因式,
结果正确的是( D )
A.3x(x2-4x+4)
B.3x(x-4)2
C.3x(x+2)(x-2)
D.3x(x-2)2
知2-练
3 【2016·潍坊】将下列多项式因式分解,结果中 不含有因式a+1的是( C ) A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+1
解:(1) m3-2m2-4m+8 =m2(m-2)-4(m-2) =(m-2)(m2-4) =(m-2)(m+2)(m-2) =(m+2)(m-2)2.
(2) x2-2xy+y2-9 =(x-y)2-32 =(x-y+3)(x-y-3).
知2-练
1 知识小结
分解因式时通常采用一“提”、二“公”、三 “分”、四“变”的步骤,即首先看有无公因式可 提,其次看能否直接利用乘法公式;如前两个步骤 不能实施,可用分组分解法,分组的目的是使得分 组后有公因式可提或可利用公式法继续分解,若上 述方法都行不通,则可以尝试用配方法、换元法、 待定系数法、试除法、拆项(添项)等方法.
知2-练
4 观察“探究性学习”小组的甲、乙两名同学进行因式 分解: 甲:x2-xy+4x-4y=(x2-xy)+(4x-4y)(分成两组) =x(x-y)+4(x-y)(分别提公因式) =(x-y)(x+4). 乙:a2-b2-c2+2bc=a2-(b2+c2-2bc)(分成两组) =a2-(b-c)2(直接运用公式) =(a+b-c)(a-b+c). 请你在他们解法的启发下,把下列各式分解因式: (1)m3-2m2-4m+8; (2)x2-2xy+y2-9.

新北师大八年级数学下册全册ppt课件

新北师大八年级数学下册全册ppt课件
法一:作底边上的中线
已知: 如图,在△ABC中,AB=AC. 求证: ∠B= ∠C.
证明: 作底边的中线AD, 则BD=CD. 在△BAD和△CAD中 AB=AC ( 已知 ), BD=CD ( 已作 ), AD=AD (公共边), B
A
D
C
还有其他的 证法吗?
最新北师大版(BS)八年级数学下册
内含大量动画全真演绎教学内容 打造中学数学高效课堂的首选教学课件
可效课堂首选课件
八年级数学下(BS) 教学课件
第一章 三角形的证明
1.1 等腰三角形
第1课时 三角形的全等和等腰三角形的性质
导入新课 讲授新课 当堂练习 课堂小结
二 等腰三角形的性质及其推论
问题引入 问题1:你还记得我们探索过的等腰三角形的性质吗?
定理:等腰三角形的两个底角相等. 推论:等腰三角形顶角的平分线,底边上的中线 底边 上的高互相重合(三线合一). 问题2:你能利用已有的公理和定理证明这些结论吗?首发 打造中学高效课堂首选课件
定理:等腰三角形的两个底角相等(等边对等角). A 等腰三角形的两个底角相等. 已知:△ABC中,AB=AC, B C 求证:∠B=C.
如何证明两个 角相等呢?
可以运用全等三 角形的性质“对 应角相等”来证
思考:如何构造两个全等的三角形?首发 打造中学高效课堂首选课件
议一议:在七下学习轴对称时,我们利用折叠的方
法说明了等腰三角形是轴对称图形,且两个底角相
等,如下图,实际上,折痕将等腰三角形分成了两
个全等的三角形.由此,你得到了什么解题的启发?首发 打造中学高效课堂首选课件
问题3 在八上的―平行线的证明‖这一章中,我们学 了哪8条基本事实?
1.两点确定一条直线;

北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件

北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件

新课讲授
典例分析
例 如图,已知△ABC,△BDE都是等边三角形. 求证:AE=CD.
分析:要证AE=CD,可通过证AE,CD所在的两个三角 形全等来实现,即证△ABE≌△CBD,条件可从 等边三角形中去寻找.
新课讲授
证明:∵△ABC和△BDE都是等边三角形, ∴AB=BC,BE=BD,∠ABC=∠DBE=60°. AB=CB, 在△ABE与△CBD中, ABE=CBD, BE=BD, ∴△ABE≌△CBD(SAS). ∴AE=CD.
第一章 三角形的证明
1 等腰三角形
课时2 等腰三角形的特殊性质及等边三角形的性质
学习目标
等腰三角形中相等的线段 等边三角形的性质.(重点、难点)
新课导入
等腰三角形有哪些性质?
1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,即等腰三角形
顶角的平分线、底边上的中线及底边上的高线互相 重合.
新课讲授
典例分析
例 求证:等腰三角形两腰上的中线相等.
分析:先根据命题分析出题设和结论,画出图形,写 出已知和求证,然后利用等腰三角形的性质和 三角形全等的知识证明.
新课讲授
解:如图,在△ABC中,AB=AC,CE和BD分别是AB 和AC上的中线, 求证:CE=BD.
证明:∵AB=AC,CE和BD分别是AB 和AC上的中线,
新课讲授
知识点2 等边三角形的性质
1.等边三角形的定义是什么? 2.想一想
等边三角形是特殊的等腰三角形,那么等边三角 形的内角有什么特征呢?
新课讲授
定理 等边三角形的三个内角都相等,并且每个角 都等于60°.
新课讲授
典例分析
例 已知:如图, 在△ABC中,AB= AC=BC. 求证:∠A= ∠ B = ∠ C = 60°. ∵AB = AC, ∴∠ B = ∠ C (等边对等角). 又∵AC = BC, ∴∠A= ∠ B (等边对等角). ∴∠A= ∠ B = ∠ C. 在△ABC中,∠A+∠ B+∠ C = 180°. ∴∠A= ∠ B = ∠ C = 60°.

北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

第一章 | 复习
针对第8题训练
1.在直角三角形中,一条直角边长为a,另一条边长为2a,那么
它的三个内角之比为( D ) A.1∶2∶3 B.2∶2∶1 C.1∶1∶2 D.以上都不对
2.如图1-10,△ABC中,∠ACB=90°,BA的垂直平分线交
CB边于点D,若AB=10,AC=5,则图中等于60°的角的个数为
第一章 | 复习
6.直角三角形的性质及判定 性质(1):在直角三角形中,如果一个锐角等于30°,那么它 所对的直角边等于斜边的___一__半____; 性质(2):直角三角形的两个锐角互余. 判定:有两个角互余的三角形是直角三角形. 7.勾股定理及其逆定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 __平__方___. 逆定理:如果三角形两边的平方和等于第三边的平方,那么 这个三角形是_直__角______三角形.
第二章 | 复习
考点攻略
►考点一 不等式的性质 例1 >

< <
[易错地带] 不等式两边都乘(或除以)同一个复数时,不等号的 方向要改变。
第二章 | 复习
►考点二 一元一次不等式(组)的解法 例2
第二章 | 复习 [技巧总结]
第二章 | 复习
难易度

1,2,3,4,5,6,7,8,11,12,13,14, 15,17,18,19,20

9,10,21,22

16,23,24
第一章 | 复习
知识与 技能
全等三角形
等腰三角形 及直角三角

直角三角形 和勾股定理
及逆定理
线段的垂直 平分线及角
平分线
逆命题
反证法
2,16,17,22,24 1,4,10,14,20,21,23,24

八年级下册北师大版数学课件全册

八年级下册北师大版数学课件全册

C.ax+bx-a=x(a+b) -a
D.ab+ac-a2=a(b+c-a) • 2.判断下列各题从左到右的变形,哪些是分解
• (1)(因x式+?y哪)些2=不x是2+?为2什x么y?+y2;

• (2)y2-16=(y+4)(y-4);

• • • •
(3)x2-4x+5=(x-2)2+1; (4)m2-2m+1=(m-1)2; (5)a2-25+a-1=(a+5)(a-5)+a-1; (6)x2-5x-6=(x-6)(x+1).
• (3)8a³ b² -12ab³ c+ab=ab·8a² b-ab·12b² c+ab·1

=ab(8a² b-12b² c+1)
(4)-24x³ +12x² -28x=-(24x³ -12x² +28x)
=-(4x·6x-4x·3x+4x·7)
=-4x(6x² -3x+7)
• 你知道吗?
当多项式的第一项的系数 是负数时,通常先提出 “-”号,使括号内第一项 的系数成为正数,在提出 “-”号时,多项式各项都
• 解这个不等式,得

n≤16.6/3
• ∵在这一问题中n只能取正整数
• ∴小颖可能买1~5枝笔
• 答:小颖还可能买1枝,2枝,3枝,4枝,5枝笔
• 你知道吗?
• 这些不等式的左右两边都是整式,只含一个未知数,并且未知数的最高次数
是1,像这样的不等式,叫做一元一次不等式
5、一元一次不等式与一次函数
号左边的式子与等号右边的式子互换,就得到:
ma+mb+mc=m(a+b+c), x2+(m+n)x+mn=(x+m)(x+n), a2-b2=(a+b)(a-b), a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2, a3+b3=(a+b)(a2-ab+b2), a3-b3=(a-b)(a2+ab+b2).

6.3三角形的中位线-北师大版八年级数学下册课件(共15张PPT)

6.3三角形的中位线-北师大版八年级数学下册课件(共15张PPT)
北师大版八年级下册第六章第三节 三角形的中位线
目录
content
01 学 习 目 标 02 课 堂 学 习 03 课 堂 小 结 04 当 堂 检 测
学习目标 1 经历探索三角形中位线定理的过程,发展合情推理能力。
2
证明三角形中位线定理,发展演绎推理能力;运用三角形中位线 定理解决简单问题
02
1. 如图1所示,在△ABC中,D、E分别是AB、CA的中点,并且 ∠ADE=70°,∠A=80°,则∠C= 30°. 2. 如图2所示,在△ABC中,D、E、F分别是BC、CA 、AB的中 点,△ABC的周长是18cm,则△DEF的周长是 9 cm.
3.如图3,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点,
C.3
D.4
感谢聆听!
∠ABD=20°,∠BDC=70°,则∠NMP的度数为 25
.
【例1】如图4,点E、F、G、H分别为四边形ABCD的边AB、BC、CD、AD的中点, 试判断四边形EFGH的形状,并说明理由.
归纳与小结:1.在此四边形问题的解决中,依然运用了
思想,将四边形问题
成三角形问题,具体做法为连接

2.本例中点四边形EFG点四边形的形状都是
.
【例2】求证:三角形的一条中位线与第三边上的中线互相平分. 已知:如图,△ABC的中,D、E分别是边AB、AC的中点,AF是BC边上的中线 求证: DE与AF互相平分
03
课堂小结
Life isn't about waiting for the storm to pass. it's about learning to dance
三.课堂小结
1.三角形中位线的定义:连接

北师大版数学 八年级下册 第一章第3课时 等腰三角形的判定与反证法 优秀课件

北师大版数学 八年级下册 第一章第3课时 等腰三角形的判定与反证法 优秀课件

由题得AB=15×2=30(海里)
N B 72° 36° C
∵ ∠A= ∠C
∴ BC=AB=30 (海里)
36°
A
2、如图, △ABC中, ∠A=36°,AB=AC, BD平分 ∠ABC, DE∥BC, EF平分∠AED,问在这个图形中,有 那几个等腰三角形?请分别写出来.
A
△ABC、 △BCD 、△EBD、 △EDF 、△FAE 、△ADE、 △ABD
的形式.而已知中的角平分线和平 行线告诉我们图形中有等腰三角形
M
D
出现,因此,找到问题的突破口. B
N C
4、已知五个正数的和等于1,用反证法证明:这五个数 中至少有一个大于或等于1/5.
证明: 设这五个正数为a1、a2、a3、a4、a5 假设这五个数中没有一个大于或等于1/5,即都小于1/5, 那么这五个数的和a1+a2+a3+a4+a5就小于1. 这与已知这五个数的和a1+a2+a3+a4+a5=1相矛盾. 因此, 假设不成立,即这五个数中至少有一个大于或等于 1/5成立.
36°
F
E 36°72°D
73263°°6°
B
72°
C
想一想
小明说, 在一个三角形中,如果两个角不相等, 那么这两个角所对的边也不相等.
即在△ABC中, 如果∠B≠∠C, 那么AB≠AC.
A
B
C
你认为这个结论成立吗? 如果成立, 你能证明它吗?
小明是这样想的:
如图, 在△ABC中, 已知∠B≠∠C, 此时, AB与AC要
B
C
在△ABD和 △ACD中
D
∵∠B=∠C. ∠ADB=∠ADC.AD=AD

北师大版八年级下册数学《直角三角形的性质与判定》课件(5)

北师大版八年级下册数学《直角三角形的性质与判定》课件(5)
命题: 如果一个三角形两边的平方和等于 第三边的平方,那么这个三角形是直角三角 形。
勾股定理的逆定理
如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形.
已知:如图,在△ABC中, AC2+AB2=BC2 求证:△ABC是直角三角形.
勾股定理的逆定理
已知:如图,在△ABC中, AC2+AB2=BC2 求证:△ABC是直角三角形.
跃跃欲试
4、如果一个三角形的三边分别是5、 12、13,则这个三角形是 三角 形。
跃跃欲试
5.(游戏)判断对错。 1)对顶角相等 2)内错角相等,两直线平行
43))全如等x三角y形,对则应x角2 相y2等
跃跃欲试
1.如图,已知∠α=130°,则∠β 的度数为( )
A.30 B.40° C.50° D.65°
十任总统, 利用了梯形面积公式证明.
梯形的面积可以表示为
;
也可以表示为
.
验证方法四:青朱出入图
青出
青入 c
b
朱出
青方
朱方
青 出
a
朱入 青入
验证方法五:达·芬奇
A
a
B
F
O
Cb E D



A′ F′
B′
E′ C′
D′

勾股定理: 直角三角形两条直角边的平方和 等于斜边的平方。
如果将条件和结论反过来,命题还成立吗?
北师大版教材数学八年级下册第一章
1.2.1直角三角形(1)
直角三角形的两个锐角互余。
A
已知:在Rt △ABC中,
∠C=90°.
求证:∠A+∠B=90° B
C

新北师大八年级数学下册全册ppt课件

新北师大八年级数学下册全册ppt课件
∴ △BDC≌△CEB(ASA).
E
D
B 12 C
∴ BD=CE(全等三角形的对应边相等).首发 打造中学高效课堂首选课件
例2 证明: 等腰三角形两腰上的中线相等. A
已知:如图,在△ABC中,AB=AC,BM,CN 是△ABC两腰上的中线.
NM
求证: BM=CN.
证明:∵AB=AC(已知),∴∠ABC=∠ACB. B
结论:在等腰三角形中,注意对角的分类讨论.
① 顶角+2×底角=180° ② 顶角=180°-2×底角 ③ 底角=(180°-顶角)÷2
④0°<顶角<180° ⑤0°<底角<90°首发 打造中学高效课堂首选课件
课堂小结
定理 两角分别相等且其中一组等角的对边相等的两 个三角形全等(AAS).
全等三角形的对应边相等,对应角相等.首发 打造中学高效课堂首选课件
问题3 在八上的“平行线的证明”这一章中,我们学 了哪8条基本事实?
1.两点确定一条直线; 2.两点之间线段最短; 3.同一平面内,过一点有且只有一条直线与已知直线
垂直; 4.同位角相等,两直线平行; 5.过直线外一点有且只有一条直线与这条直线平行; 6.两边及其夹角分别相等的两个三角形全等; 7.两角及其夹边分别相等的两个三角形全等; 8.三边分别相等的两个三角形全等.首发 打造中学高效课堂首选课件
A
A
B
D GE
B C
DF E
C
图①
图②
证明:(1)如图①,过A作AG⊥BC于G.
∵AB=AC,AD=AE,
∴BG=CG,DG=EG,
∴BG-DG=CG-EG,∴BD=CE;
(2)∵BD=CE,F为DE的中点,∴BD+DF=CE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学下册全册课件 【完整版】
4. 角平分线
北师大版八年级数学下册全册课件 【完整版】
第一章 三角形的证明
北师大版八年级数学下册全册课件 【完整版】
1. 等腰三角形
北师大版八年级数学下册全册课件 【完整版】
2. 直角三角形
北师大版八年级数学下册全册课件 【完整版】
3. 线段的垂直平分线
北师大版八年级数学下册全册课 件【完整版】目录
0002页 0052页 0094页 0116页 0143页 0178页 0217页 0240页 027ቤተ መጻሕፍቲ ባይዱ页 0303页 0354页 0367页 0385页 0407页 0444页 0478页 0514页
第一章 三角形的证明 2. 直角三角形 4. 角平分线 复习题 1. 不等关系 3. 不等式的解集 5.一元一次不等式与一次函数 回顾与思考 第三章 图形的平移与旋转 2. 图形的旋转 4. 简单的图案设计 复习题 1. 因式分解 3. 公式法 复习题 1. 认识分式 3. 分式的加减法
相关文档
最新文档