函数及函数性质知识点总结

合集下载

函数的基本概念与性质知识点总结

函数的基本概念与性质知识点总结

函数的基本概念与性质知识点总结函数是数学中的一种重要概念,广泛应用于各个领域。

了解函数的基本概念和性质对于理解和应用数学具有重要意义。

本文将对函数的基本概念和性质进行总结。

一、函数的基本概念函数是一种映射关系,将一个集合的元素映射到另一个集合的元素。

在函数中,称第一个集合为定义域,第二个集合为值域。

用符号表示函数为:f:X→Y,其中 f 表示函数名,X 表示定义域,Y 表示值域。

1.1 定义域和值域函数的定义域是指函数输入的变量所能取到的值的集合。

值域是函数输出的变量所能取到的值的集合。

1.2 自变量和因变量在函数中,自变量是函数的输入变量,而因变量则是函数的输出变量。

1.3 函数图像函数的图像是函数在坐标平面上的表示,自变量作为 x 轴的取值,因变量作为y 轴的取值,函数图像表示了自变量和因变量之间的关系。

二、函数的性质函数具有许多重要性质,下面将对其中几个重要的性质进行介绍。

2.1 单调性函数的单调性描述了函数的增减特性。

当自变量增大时,如果函数值也增大,则函数是递增的;当自变量增大时,函数值减小,则函数是递减的。

2.2 奇偶性函数的奇偶性是指函数关于原点的对称性。

如果函数满足 f(-x) =f(x),则函数是偶函数;如果函数满足 f(-x) = -f(x),则函数是奇函数。

2.3 周期性函数的周期性意味着函数在某个特定的区间内具有重复的模式。

如果存在正数 T,使得对于任意 x,有 f(x + T) = f(x),则函数具有周期性。

2.4 极限函数的极限是指当自变量趋近于某个特定值时,函数趋于的稳定值。

极限有左极限和右极限之分。

2.5 连续性函数的连续性描述了函数图像的连贯性。

如果函数在某个区间内的每个点都存在极限,且极限与函数值相等,则函数是连续的。

三、小结函数是数学中的重要概念,理解函数的基本概念和性质对于学习和应用数学具有重要意义。

本文对函数的基本概念和性质进行了总结,包括函数的定义域和值域、自变量和因变量、函数图像等。

函数知识点总结(掌握函数的定义、性质和图像)

函数知识点总结(掌握函数的定义、性质和图像)

函数知识点总结(掌握函数的定义、性质和图像)(一)正比例函数和一次函数1、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx(k 不为零)①k 不为零②x 指数为1③b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经它可以看⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 注:y =kx+b 中的k ,b 的作用:1、k 决定着直线的变化趋势①k>0直线从左向右是向上的②k<0直线从左向右是向下的2、b决定着直线与y轴的交点位置①b>0直线与y轴的正半轴相交②b<0直线与y轴的负半轴相交(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位..轴交点坐标为与(方法:联立方程组求x、y例题:已知两直线y=x+6与y=2x-4交于点P,求P点的坐标?7、直线y=k1x+b1与y=k2x+b2的位置关系(1)两条直线平行:k1=k2且b1≠b2(2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2平行于轴(或重合)的直线记作.特别地,轴记作直线8、正比例函数与一次函数图象之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).9、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.. (22b c x +的图(1(2)x 的反比例取值范围: ①k≠0;②在一般的情况下,自变量x 的取值范围可以是不等于0的任意实数;③函数y 的取值范围也是任意非零实数。

大学函数重要知识点总结

大学函数重要知识点总结

大学函数重要知识点总结一、函数的定义和性质1. 函数的定义函数是一个从一个集合到另一个集合的映射关系,通常表示为f: X -> Y,其中X为定义域,Y为值域。

2. 函数的性质(1)定义域和值域:函数的定义域是所有定义在函数上的自变量的集合,值域是所有函数值的集合。

(2)单值性:每个自变量对应唯一的函数值。

(3)奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

(4)周期性:如果存在正数T,使得f(x+T)=f(x),则称函数f(x)为周期函数。

(5)上下界:如果在一定的定义域内,函数f(x)的值都在一个范围内,则称函数有上下界。

(6)单调性:如果在一定的定义域内,函数f(x)的值随着自变量x的增大而增大(或减小),则称函数具有单调性。

二、基本初等函数1. 常数函数常数函数的表达式为f(x)=C,C为常数。

2. 一次函数一次函数的表达式为f(x)=kx+b,k为斜率,b为截距。

3. 幂函数幂函数的表达式为f(x)=x^a,a为实数。

4. 指数函数指数函数的表达式为f(x)=a^x,a为正实数且不等于1。

5. 对数函数对数函数的表达式为f(x)=log_a(x),a为正实数且不等于1。

包括正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

三、函数的运算1. 基本初等函数的四则运算(1)加法和减法:f(x)=g(x)±h(x)(2)乘法:f(x)=g(x)·h(x)(3)除法: f(x)=g(x)/h(x),其中h(x)≠02. 复合函数如果存在函数u(x)和v(x),则复合函数为:f(x)=u(v(x))。

3. 反函数如果两个函数f和g满足f(g(x))=x和g(f(x))=x,那么f和g互为反函数,且g=f^-1。

4. 函数的求导对函数进行求导可以得到函数的导数,导数表示函数在某一点的变化速度。

5. 函数的积分对函数进行积分可以得到函数的不定积分和定积分,不定积分是函数的原函数,定积分表示函数在一定范围内的面积或体积。

高中数学-函数概念及其性质知识总结

高中数学-函数概念及其性质知识总结

数学必修1函数概念及性质(知识点陈述总结)(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注重:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注重:求出不等式组的解集即为函数的定义域。

)2.构成函数的三要素:定义域、对应关系和值域再注重:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y= f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。

函数知识点总结

函数知识点总结

函数知识点总结函数是数学中一个非常重要的概念,它在数学的各个领域以及实际生活中都有着广泛的应用。

为了更好地理解和掌握函数,下面对函数的相关知识点进行总结。

一、函数的定义函数是一种特殊的对应关系,给定一个非空数集 A,对 A 中的任意一个数 x,按照某种确定的对应关系 f,在另一个非空数集 B 中都有唯一确定的数 y 与之对应,就称 f 是集合 A 到集合 B 的一个函数。

记作y = f(x),x ∈ A。

其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;y 叫做函数值,与 x 相对应的 y 的值叫做函数值,函数值的集合{f(x) | x ∈A}叫做函数的值域。

二、函数的表示方法1、解析法用数学表达式表示两个变量之间的对应关系,如 y = 2x + 1。

2、列表法列出表格来表示两个变量之间的对应关系,例如,某公司员工的工资表。

3、图象法用图象表示两个变量之间的对应关系,如一次函数 y = x + 1 的图象是一条直线。

三、函数的性质1、单调性函数的单调性是指函数在定义域内的某个区间上,当自变量增大(或减小)时,函数值随之增大(或减小)的性质。

如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

2、奇偶性设函数 f(x)的定义域为 D,如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),那么函数 f(x)就叫做奇函数;如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),那么函数 f(x)就叫做偶函数。

3、周期性对于函数 y = f(x),如果存在一个不为零的常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x)都成立,那么就把函数 y = f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。

函数知识点总结高中

函数知识点总结高中

函数知识点总结高中一、函数的定义1. 函数的定义函数是自变量和因变量之间的一种映射关系。

一般地,如果对于集合A中的每一个元素x,在集合B中有唯一确定的元素y与之对应,则称y是x的函数值,称这种对应关系为函数,记作y=f(x)。

2. 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

在定义函数的时候,需要确定函数的定义域和值域。

3. 函数的性质函数的性质包括奇偶性、周期性、单调性等,这些性质可以通过函数的图像来判断。

二、函数的图像1. 函数的图像函数的图像是函数在平面直角坐标系上的表示,对于一元函数y=f(x),可以通过画出函数的图像来直观地理解函数的性质和规律。

2. 基本初等函数的图像常见的初等函数包括线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像特征。

三、函数的性质1. 奇偶性函数的奇偶性是指函数的图像是否关于原点对称。

如果对于任意x∈D,有f(-x)=f(x),则函数f(x)是偶函数;如果对于任意x∈D,有f(-x)=-f(x),则函数f(x)是奇函数。

2. 周期性周期函数的函数值随自变量的变化而重复出现。

周期函数可以用来描述一些具有规律性变化的现象,如正弦函数、余弦函数等。

3. 单调性函数的单调性是指函数在定义域上的增减性。

如果对于任意x1<x2,有f(x1)<f(x2),则函数f(x)是单调增加的;如果对于任意x1<x2,有f(x1)>f(x2),则函数f(x)是单调减少的。

4. 极限和连续性函数的极限和连续性是函数的重要性质,它们可以用来描述函数在某一点的趋势和变化规律。

四、常见函数1. 线性函数线性函数是最简单的一种函数,它的图像是一条直线,表示为y=kx+b,其中k是斜率,b是截距。

2. 二次函数二次函数是一种常见的函数,它的图像是一个抛物线,表示为y=ax^2+bx+c,其中a、b、c为常数且a≠0。

高中数学最全必修一函数性质详解及知识点总结及题型详解

高中数学最全必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射集合A ,B 是平面直角坐标系上的两个点集,给定从A→B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x→11-x ,则集合A 中的元素最多有几个?写出元素最多时的集合A.2、函数。

构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设是一次函数,且,求)(x f 34)]([+=x x f f )(x f 配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形[()]f g x ()f x [()]f g x ()g x 式时,常用配凑法。

但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。

()f x ()g x 例2 已知 ,求 的解析式221)1(xx x x f +=+)0(>x ()f x 三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。

与配凑法一样,要[()]f g x ()f x 注意所换元的定义域的变化。

例3 已知,求x x x f 2)1(+=+)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数的图象关于点对称,求的解析式)(2x g y x x y =+=与)3,2(-)(x g 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设求,)1(2)()(x x f x f x f =-满足)(x f 例6 设为偶函数,为奇函数,又试求的解析式)(x f )(x g ,11)()(-=+x x g x f )()(x g x f 和六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

高中所有函数图像及其性质知识点

高中所有函数图像及其性质知识点

高中函数的全部总结一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

函数的概念与性质知识点

函数的概念与性质知识点

函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合}|)({A x x f ∈叫做函数的值域,值域是集合B 的子集.2函数的三要素:定义域、对应关系、值域.求函数定义域的原则:(1)若()f x 为整式,则其定义域是R ;(2)若()f x 为分式,则其定义域是使分母不为0的实数集合;(3)若()f x 是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合;(4)若()0f x x =,则其定义域是}{0x x ≠;(5)若()()0,1x f x a a a =>≠,则其定义域是R ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是}{0x x >;(7)若x x f tan )(=,则其定义域是},2|{Z k k x x ∈+≠ππ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.5函数的单调性:(1)单调递增:设任意D x x ∈21,(I D ⊆,I 是()f x 的定义域),当12x x <时,有12()()f x f x <.特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意D x x ∈21,(I D ⊆,I 是()f x 的定义域),当12x x <时,有12()()f x f x >.特别的,当函数在它的定义域上单调递增时,该函数称为减函数.6单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 7复合函数的单调性:同增异减.8函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:I x ∈∀,都有))(()(M x f M x f ≥≤;I x ∈∃0使得M x f =)(0,那么称M 是函数的最大(小)值.9函数的奇偶性:偶函数:一般地,设函数)(x)ff=-,(xf-,且)y=的定义域为I,如果I(xx∈∀,都有Ix∈那么函数叫做偶函数;偶函数的图象关于y轴对称;偶函数)y=满足(xf xff==x-;|))(|()(xf奇函数:一般地,设函数)f(x)x=f--,∀,都有If(xy=的定义域为I,如果Ix∈-,且)x∈(那么函数叫做奇函数;奇函数的图象关于原点对称;若奇函数)fy=的定义域中有零,则其函数图象必(x过原点,即(0)0f=.10幂函数:一般地,函数αxy=叫做幂函数,其中x是自变量,α是常数.11幂函数()f x xα=的性质:①所有的幂函数在()1,1;0,+∞都有定义,并且图象都通过点()②如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是增函数;③如果0α<,则幂函数的图象在区间()0,+∞上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地逼近y轴,当x趋向于+∞时,图象在x轴上方无限地逼近x轴;④在直线1x的右侧,幂函数图象“指大图高”;=⑤幂函数图象不出现于第四象限.。

函数知识点与公式总结

函数知识点与公式总结

函数知识点与公式总结一、函数的定义和性质函数的定义:函数是一个对应关系,它把一个集合的元素对应到另一个集合的元素。

一个简单的函数可以用如下的记号来表示:f:X→Y,表示一个函数f从集合X到集合Y的映射关系。

其中,X称为定义域,Y称为值域。

函数的性质:1. 定义域和值域:定义域是指函数的输入可以取的值的集合,值域是函数的输出可以取的值的集合。

2. 单调性:函数的单调性是指在定义域内,函数的增减趋势。

可以分为递增和递减两种情况。

3. 奇偶性:函数的奇偶性是指函数的图像是否关于原点对称。

如果对于任意x∈定义域,都有f(-x)=f(x),那么函数是偶函数;如果对于任意x∈定义域,都有f(-x)=-f(x),那么函数是奇函数。

4. 周期性:函数的周期性是指函数在一定范围内具有重复的性质。

5. 函数的图像:函数的图像是函数在直角坐标系中的点的集合,描述了函数的性质和特点。

二、常见的函数公式1. 线性函数线性函数是指函数的图像是一条直线的函数。

线性函数的一般形式为y=ax+b,其中a和b 是常数,a称为斜率,b称为截距。

2. 二次函数二次函数是指函数的图像是一个抛物线的函数。

二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是常数,a≠0。

3. 指数函数指数函数是以常数e为底数的幂函数,一般形式为y=a^x,其中a为底数,x为指数。

4. 对数函数对数函数是指以常数a为底数的对数函数,一般形式为y=log_a(x),其中a为底数,x为真数。

5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们描述了角度和弧度之间的关系。

6. 反比例函数反比例函数是指函数的图像是一条反比例曲线的函数,一般形式为y=k/x,其中k是常数。

7. 绝对值函数绝对值函数的一般形式为y=|x|,它表示x的绝对值,即x的正数部分。

8. 分段函数分段函数是指在定义域的不同区间上有不同函数式的函数,一般形式为f(x)=```{g(x),a≤x≤bh(x),b<x<c}```9. 复合函数复合函数是指一个函数的自变量(或生成元素)是另一个函数的值域,即f[g(x)],表示函数f和g的复合。

初二函数知识点总结

初二函数知识点总结

初二函数知识点总结一、函数的概念及性质1. 函数是一种特殊的关系,它将每个自变量对应到唯一的因变量。

2. 函数的定义域是自变量的取值范围,值域是因变量的取值范围。

3. 函数可以用表格、图像或公式来表示。

4. 函数可以是线性的或非线性的。

二、函数的表示方法1. 表格法:将函数的自变量和因变量的对应关系以表格的形式呈现。

2. 图像法:通过绘制函数的图像来表示函数。

3. 公式法:用公式来表示函数,如y = 2x + 1。

三、函数的性质1. 定义域:函数有效的自变量的取值范围。

2. 值域:函数所有可能的因变量的取值范围。

3. 奇偶性:若函数满足f(x) = f(-x),则函数为偶函数;若函数满足f(x) = -f(-x),则函数为奇函数。

4. 单调性:函数整体是否呈现上升或下降的趋势。

5. 极值:函数在某个区间内的最大值或最小值。

6. 零点:函数取零值的自变量。

四、线性函数1. 线性函数的图像是一条直线,表达式为y = kx + b。

2. 斜率k表示线性函数的变化速率,截距b表示函数在x轴上的截距。

3. 线性函数的图像可以通过截距和斜率来确定。

五、二次函数1. 二次函数的图像是一个U形曲线,表达式为y = ax^2 + bx + c。

2. a决定了曲线开口的方向,正数则开口向上,负数则开口向下。

3. 顶点是二次函数的最值点。

六、指数函数1. 指数函数的图像是一条递增或递减的曲线,表达式为y = a^x。

2. a决定了曲线的增长速度,a大于1时曲线递增,0<a<1时曲线递减。

3. 指数函数的图像必过点(0,1)。

七、对数函数1. 对数函数是指数函数的反函数,表达式为y = loga(x)。

2. a决定了函数的增长速度,a大于1时曲线递增,0<a<1时曲线递减。

3. 对数函数的定义域为正实数。

八、常量函数1. 常量函数的图像是一条水平线,表达式为y = c。

2. 无论自变量的取值如何,常量函数的因变量始终为常数。

常见函数知识点总结

常见函数知识点总结

常见函数知识点总结函数是数学中的一个重要概念,它在数学和科学中有着广泛的应用。

在学习函数的过程中,有一些常见的知识点是需要掌握的,包括函数的定义、函数的性质、函数的图像、函数的分类、函数的运算、函数的应用等。

本文将对这些常见的函数知识点进行总结,希望能够帮助读者更好地理解和掌握函数的相关知识。

一、函数的定义函数是一种特殊的关系,它规定了每个自变量对应一个唯一的因变量。

具体来说,如果对于每一个自变量x,都有唯一的因变量y与之对应,那么我们就说y是x的函数,记作y=f(x)。

其中,x称为自变量,y称为因变量,f称为函数。

例如,f(x)=x^2就是一个函数,它表示自变量x的平方值作为因变量。

二、函数的性质1. 定义域和值域:函数的定义域是所有自变量可能取值的集合,值域是所有因变量可能取值的集合。

2. 奇偶性:如果对于任意的x,有f(-x)=-f(x),那么函数f(x)是奇函数;如果对于任意的x,有f(-x)=f(x),那么函数f(x)是偶函数。

3. 单调性:如果对于任意的x1<x2,有f(x1)<f(x2),那么函数f(x)是增函数;如果对于任意的x1<x2,有f(x1)>f(x2),那么函数f(x)是减函数。

4. 周期性:如果存在一个正数T,使得对于任意的x,有f(x+T)=f(x),那么函数f(x)是周期函数。

5. 对称性:如果对于任意的x1和x2,有f(x1)=f(x2),那么函数f(x)是对称函数。

三、函数的图像函数的图像是在坐标系中用曲线或点表示的。

常见的函数图像有直线、抛物线、三角函数曲线、指数函数曲线、对数函数曲线等。

在图像上,我们可以通过函数的性质来判断函数的奇偶性、单调性、周期性、对称性等。

例如,奇函数的图像关于原点对称,偶函数的图像关于y轴对称,增函数的图像是逐渐上升的,周期函数的图像有明显的重复规律等。

四、函数的分类1. 初等函数:包括多项式函数、有理函数、指数函数、对数函数、三角函数、反三角函数、指数对数函数等。

(完整版)基本初等函数知识点及函数的基本性质

(完整版)基本初等函数知识点及函数的基本性质

指数函数及其性质一、指数与指数幂的运算 (一)根式的概念1、如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a的n次方根用符号n 是偶数时,正数a 的正的n的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.2n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.3、根式的性质:na =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (二)分数指数幂的概念1、正数的正分数指数幂的意义是:0,,,m na a m n N +>∈且1)n >.0的正分数指数幂等于0. 2、正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质(0,,)r s r s a a a a r s R +⋅=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈5、0的正分数指数幂等于0,0的负分数指数幂无意义。

二、指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义; ○2 注意指数函数的底数的取值范围不能是负数、零和1.(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈ (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =(4)当1a >时,若21x x <,则)x (f )x (f 21< 四、底数的平移对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

数学函数知识点总结

数学函数知识点总结

数学函数知识点总结一、函数的定义与性质1. 函数的定义:函数是一个对应关系,即每一个自变量对应唯一的因变量。

数学上通常用f(x)来表示函数,其中x为自变量,f(x)为因变量。

2. 定义域和值域:函数的定义域是所有可能的自变量的取值范围,值域是因变量的所有可能取值的范围。

3. 函数的性质:函数可以是一元函数或多元函数。

一元函数是只有一个自变量的函数,多元函数则有多个自变量。

4. 常见的函数类型:多项式函数、反比例函数、指数函数、对数函数、三角函数等。

二、函数的运算1. 函数的加减乘除:根据函数的定义,函数之间可以进行加减乘除运算,即将对应位置的函数值进行运算。

2. 复合函数:复合函数是指将一个函数的输出作为另一个函数的输入进行运算的过程。

3. 反函数:如果一个函数f(x)的定义域为X,值域为Y,且对于任意y∈Y,都存在唯一的x∈X,使得f(x)=y,那么称函数f(x)的反函数为f^(-1)(y)=x。

反函数是原函数的逆运算。

三、函数的图像和性质1. 函数的图像:函数的图像是由自变量和因变量的对应关系所确定的曲线。

函数的图像可以通过数学软件或手绘得到。

2. 奇函数和偶函数:如果函数f(x)满足f(-x)=-f(x),则称函数f(x)为奇函数;如果函数f(x)满足f(-x)=f(x),则称函数f(x)为偶函数。

3. 周期函数:如果函数f(x)满足f(x+T)=f(x),其中T为常数,则称函数f(x)为周期函数,T为函数的周期。

4. 单调性:如果对于函数f(x)的定义域内的任意x1和x2,当x1<x2时都有f(x1)<f(x2),则称函数f(x)在该定义域内是单调递增的;反之,若对于任意x1和x2,当x1<x2时都有f(x1)>f(x2),则称函数f(x)在该定义域内是单调递减的。

四、函数的极限和连续性1. 函数的极限:当自变量x在某一点a附近取值,对应的因变量f(x)的取值接近一个常数L,那么称L为函数f(x)在点a处的极限,记为lim(x→a)f(x)=L。

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。

文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。

文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。

文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。

文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。

通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。

1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。

在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。

物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。

函数是数学体系中的核心和基础。

函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。

对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。

函数也是解决实际问题的重要工具。

在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。

在经济学、统计学、工程学等领域,函数的运用非常广泛。

函数概念的重要性不言而喻。

高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。

2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。

函数是数学中的核心概念之一,具有广泛的应用领域。

在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。

本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。

最全函数概念及基本性质知识点总结及经典例题

最全函数概念及基本性质知识点总结及经典例题

函数及基本性质一、函数的概念(1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.(2)函数的三要素:定义域、值域和对应法则.注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( )⑪3)5)(3(1+-+=x x x y ,52-=x y ;⑫111-+=x x y ,)1)(1(2-+=x x y ;⑬x x f =)(,2)(x x g =;⑭()f x =()F x =⑮21)52()(-=x x f ,52)(2-=x x f 。

A .⑪、⑫B .⑫、⑬ C .⑭D .⑬、⑮ 2:求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()635-=x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f ,131><x x 或 ④对数函数的真数大于零0,log )(>=x x x f a ,当对数或指数函数的底数中含变量时,底数须大于零且不等于1。

如:()212()log 25f x x x =-+⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.如:)2(log 22x y --=⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.如:()[]()x f x f 28,2,的定义域是的定义域为822≤≤x⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.例:求函数()())1lg(lg x k x x f -+-=的定义域。

函数的四大性质总结

函数的四大性质总结


(A)6
(B)-18
(C)-10
(D)10
4、函数 f x
x 1 a 是奇函数,则实数 a 的值为(

1 x2
(A)-1
(B)0
(C)1
(D)2
5、
Fx
1
2
2x
1
f
x(x
0)
是偶函数,且
f
x 不恒等于零,则
f
x(

(A)是奇函数
(B)是偶函数 (C)可能是奇函数也可能是偶函数 (D)非奇函数非偶函数
① f(x)关于(a,0)和(b,0)点对称,则 f(x)是周期函数,T=2
② f(x)关于直线 x=a 和 x=b 对称,则 f(x)是周期函数,T=2
③ f(x)关于点(a,0)和 x=b 点对称,则 f(x)是周期函数,T=4
专题训练
(一)函数的单调性
1、当 x 0, 1 ,下列式子中正确的是 2
(A) log x 1 x 1
(B)
1
1
x
1
1
x
2 2
(C) 1
3
x2
1
3
x2
(D) log 2 1 x 1
2、 f x x2 2a 1x 2在 ,4 上是减函数,则 a 的取值范围是(

(A) a 3 (B) a 3 (C) a 5 (D) a 3
3、设 P log2 3 , Q log3 2 , R log2 (log3 2) ,则( )
如果存在一个数 a,使得 f(x+a)=f(x)[记忆方法:括号里面相减等于一个定值 a],则 f (x)为周期函数,T=a。
周期函数有三种变形形式:

函数的概念知识点总结

函数的概念知识点总结

函数的概念知识点总结函数是数学中一个非常重要的概念,在很多学科领域都有广泛的应用。

本文将从定义、性质、符号与表示、反函数等角度总结函数的相关知识点。

一、函数的定义函数是一种将每一个元素都映射到唯一的结果上的关系。

具体地说,如果每个元素 x 都有一个对应的元素 y,则可以表示为:f(x) = y其中,f 表示函数,x 是自变量,y 是因变量。

函数的定义域是自变量可能的值域,值域是因变量可能的值域。

二、函数的性质1. 一对一性:对于每一个 x,在函数中有唯一的 y 与之对应。

也就是说,不会有两个不同的 x 具有相同的 y 值,于是存在一个逆映射,反映自变量 y 在函数中对应的自变量 x。

简单地讲就是,每一个 x 对应一个 y,而且每一个 y 也都对应着一个 x,不存在重复的值。

2. 映射性:函数把每个定义域内的元素映射到值域中且无遗漏。

也就是说,对于定义域内的任何一个元素,都能在值域中找到相应的元素,并且一个元素只能对应一个元素。

3. 连续性:若对于定义域中的任意一个数 x,当 x 的取值无限接近某个数 a 时,对应的函数值 f(x) 也无限接近一个数 L,则称函数 f 在 x = a 处连续,其数值为 L。

三、符号与表示一般情况下,我们用小写字母 x 来表示自变量,用小写字母 y或 f(x) 来表示函数值。

一些特别的函数如指数函数 e^x,对数函数logx,三角函数 sinx、cosx、tanx 等,则用特定的符号表示。

同时,在符号表示时,会出现一些特殊的符号。

1. ∞ 表示无穷大,一般情况下分正负无穷大。

2. ∑ 是求和符号,表示把一列数加起来的结果。

3. + 和 - 符号可能同时表示加法和减法。

4. / 和 ×符号可能同时表示除法和乘法。

四、反函数反函数是指,若函数 f 将 x 映射到 y,则函数 f 的逆映射将 y 映射回 x。

相应地,如果 g 为函数 f 的逆映射,则 g(f(x)) = x,f(g(y)) = y。

高一函数概念与性质知识点归纳

高一函数概念与性质知识点归纳

高一函数概念与性质知识点归纳在高一数学中,函数是一个非常重要的概念。

理解函数的概念及其性质,对于学习高中数学以及解决实际问题都具有重要的意义。

下面将对高一函数概念与性质的知识点进行归纳总结。

一、函数的定义函数是一个相互对应的关系,它将一个集合的元素(称为自变量)与另一个集合的元素(称为因变量)一一对应。

通常表示为:y = f(x)。

二、函数的图像与曲线函数的图像是自变量与因变量之间的关系在平面直角坐标系中的表现形式。

函数的图像通常为曲线,曲线上的点表示自变量和因变量之间的对应关系。

三、函数的性质1. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。

2. 奇偶性:如果函数满足对任意x,有f(-x) = f(x),则函数为偶函数;如果对任意x,有f(-x) = -f(x),则函数为奇函数。

3. 单调性:函数的单调性指的是函数在定义域上的取值的增减情况。

可以分为增函数和减函数。

4. 周期性:如果对任意x,有f(x+T) = f(x),其中T>0,则函数为周期函数,T称为函数的周期长度。

5. 极值与最值:函数在定义域内某一点上的函数值称为该点的函数值。

如果函数在某一区间内的函数值都小于(或大于)其他点的函数值,则该点对应的x值称为函数在该区间内的极小值(或极大值)。

函数在定义域上的极值称为最值。

6. 对称轴:函数的对称轴是指曲线关于某一直线对称。

四、基本函数与常用函数1. 一次函数:y = kx + b,其中k为斜率,b为常数。

2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数。

3. 幂函数:y = x^a,其中a为常数。

4. 指数函数:y = a^x,其中a为常数且a>0且a≠1。

5. 对数函数:y = loga(x),其中a为常数且a>0且a≠1。

6. 三角函数:包括正弦函数、余弦函数和正切函数等。

五、函数的运算与性质1. 四则运算:函数之间可以进行加、减、乘、除的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数复习主要知识点二、函数的解析式与定义域函 数 解 析 式 的 七 种 求 法待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(xx x x f +=+)0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设,)1(2)()(x xf x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(xg 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。

例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 1、求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (32求函数定义域的两个难点问题(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。

(2) (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式; ④分离常数:适合分子分母皆为一次式(x 有范围限制时要画图); ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=f(x)是偶函数⇔y=f(x)的图象关于y 轴对称, y=f(x)是奇函数⇔y=f(x)的图象关于原点对称, ②若函数f(x)的定义域关于原点对称,则f(0)=0 ③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称] 3五、函数的单调性1、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若f(x)与g(x)的单调性相反,则()[]x g f y =在M 上是减函数;若f(x)与g(x)的单调性相同,则()[]x g f y =在M 上是增函数。

一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间322--=x x y 322--=x x y 452-+-=x x y 3212+--=x x y)23(log 22+-=x x y xx y 4221-=x x y 212+=51212+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=x xyx a x y += (0>a ) xax y -= (0>a ) 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在(-1,1)上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围。

例:设 是定义在 上的增函数, ,且 ,求满足不等式的x 的取值范围.3.取值范围例: 函数在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x ax f x xx -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是( )A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值。

例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值。

5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数 ⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围 例:已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值. 例:已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.六.函数的周期性:1.(定义)若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期。

说明:nT 也是)(x f 的周期 (推广)若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a⑶计算:1.幂的有关概念(1)零指数幂)0(10≠=a a (2)负整数指数幂()10,nn aa n N a-*=≠∈ (3)正分数指数幂)0,,,1m na a m n N n *=>∈>; (5)负分数指数幂)10,,,1mnm naa m n Nn a-*==>∈>(6)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,sr rs a a a r s Q =>∈ ()()()30,0,rr r ab a b a br Q =>>∈ 3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==0a aa aa an n 4.对数(1)对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a (2)对数的性质:①零与负数没有对数 ②01log =a ③1log =a a (3)对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且对数的降幂公式:)10,0(log log ≠>>=a a N NnNa na m 且x2. 比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理) 记住下列特殊值为底数的函数图象:3、 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。

十.函数的图象变换(1) 1、平移变换:(左+ 右- ,上+ 下- )即kx f y x f y h x f y x f y k k h h +=−−−−−→−=+=−−−−−→−=><><)()()()(,0;,0,0;,0上移下移左移右移①对称变换:(对称谁,谁不变,对称原点都要变))()()()()()()()()()()()(1x f y x f y x f y x f y x fy x f y x f y x f y x f y x f y x f y x f y x x y xy y x =−−−−−−−−−→−==−−−−−−−−−−→−==−−→−=--=−−→−=-=−→−=-=−→−=-=轴下方图上翻轴上方图,将保留边部分的对称图轴右边不变,左边为右原点轴轴函数图像的变换函数图象及变化规则 掌握几类基本的初等函数图像是学好本内容的前题1、基本函数(1)一次函数、(2)二次函数、(3)反比例函数、(4)指数函数、(5)对数函数、(6)三角函数。

2、图象的变换(1)平移变换(左加右减)①函数y=f(x+2)的图象是把函数y=f(x)的图像沿x 轴向左平移2个单位得到的;反之向右移2个单位 ②函数y=f(x)-3(的图象是把函数y=f(x)的图像沿y 轴向下平移3个单位得到的;反之向上移3个单位 (2)对称变换①函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称; 函数y=f(x) 与函数y=-f(x)的图象关于直线y=0对称;函数y=f(x)与函数y=-f(-x)的图象关于坐标原点对称; ②如果函数y=f(x)对于一切x ∈R 都有f(x+a)=f(x-a),那么y=f(x)的图象关于直线x=a 对称。

相关文档
最新文档