一元一次不等式(组)知识总结思维导图
初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图
一元一次不等式和一元一次不等式组适用年八年级级所需时(说明:课内共用7课时)间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 本主题单元是北师大版教材八下第一章内容,是在学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。
本单元结构包括不等式的有关概念、基本性质,一元一次不等式的解、解集、解集的数轴表示、一元一次不等式的解法及一元一次不等式的简单应用,一元一次不等式组的解、解集、解集的数轴表示、一元一次不等式组的解法及一元一次不等式组的简单应用,主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。
)主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1.了解不等式的意义2.理解不等式(组)的解和解集的含义,能在数轴上表示不等式的解集3.会解一元一次不等式和一元一次不等式组,会用数轴确定一元一次不等式组的解集4.能够根据具体问题中的数量关系,列是一元一次不等式和一元一次不等式组,解决简单的实际问题过程与方法:1.通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系2.经历探索不等式的基本性质的过程,体会转化思想;3.联系和比较一元一次方程的解法,体会数学学习中类比、化归思想的应用;4.通过一元一次不等式的应用,有利于增强学生的建模意识。
情感态度与价值观:1.通过经历实际问题中数量关系的分析、抽象的过程,体会不等式和等式都刻画了现实世界中的数量关系,发展学生的符号感。
2.进一步感受数形结合思想的作用,培养学生分析问题和解决问题的能力.3.通过合作学习,培养学生的主动参与意识和勇于探索的精神. 4.通过共同的学习活动,培养学生良好的情感,独立思考的同时还要认同他人,与他人协作。
知识必备02 方程与不等式(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图
知识必备02方程与不等式(公式、定理、结论图表)考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础.列方程解应用题的常用公式:(1)行程问题:距离=速度×时间;(2)工程问题:工作量=工效×工时;(3)比率问题:部分=全体×比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abh ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.考点二、一元二次方程1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如的一元二次方程.根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中.(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.典例1:已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.【答案】(1)证明:∵不论取何值时,∴,即∴不论取何值时,方程总有两个不相等的实数根..(2)将代入方程,得再将代入,原方程化为,解得.考点三、分式方程1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.典例2:近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程.【答案与解析】解:设今年5月份汽油价格为x元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得,整理,得.解这个方程,得x1=4.8,x2=-3.经检验两根都为原方程的根,但x2=-3不符合实际意义,故舍去.【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a ≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况对于其他情况,可根据学生的接受能力给予渗透.典例3:如图所示,是在同一坐标系内作出的一次函数y1、y2的图象、,设,,则方程组的解是( )A. B. C. D.【思路点拨】图象、的交点的坐标就是方程组的解.【答案】B;【解析】由图可知图象、的交点的坐标为(-2,3),所以方程组的解为【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.不等式组(其中a >b )图示解集口诀(同大取大)(同小取小)(大小取中间)无解(空集) (大大、小小找不到)(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a, 则a=b;④若a2≤0,则a=0;⑤若ab>0或,则a、b同号;⑥若ab<0或,则a、b异号.(2)任意两个实数a、b的大小关系:①a-b>O a>b;②a-b=O a=b;③a-b<O a<b.不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c.典例4:解不等式组并将解集在数轴上表示出来.【思路点拨】此题考查一元一次不等式组的解法,解出不等式组中的每个不等式,根据不等式组解的四种情况,看看属于哪种情况.【答案与解析】解不等式①得:.解不等式②得:x≥-1.所以不等式组的解集为-1≤x<.其解在数轴上表示为如图所示:【总结升华】注意解不等式组的解题步骤.典例5:为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲乙A90盆30盆B40盆100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x个A种造型,则需要搭配(50-x)个B种造型,由题意,得解得30≤x≤32.所以x的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A种造型30个,B种造型20个;A种造型31个,B种造型19个;A种造型32个,B种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题.。
初中数学知识结构图思维导图
公式 提公 法 因式 法
单项式除以单项式
同底数幂相除
除法
乘法公式
单项式与多项式 幂的乘法
乘法
运算
分母中 含字母、
分母 不为零
系数 相加 字母 不变
合并 同类项
加减 同类项
每个单项式 升降幂排列
项 次数
多项式
整式
最高项的次 数
意义
单项式
字母指数和
次数
系数
数字因 数
不改变 分式的值
公因式
通分化成同分 母
反比例函数
图象 性质
柱形储藏室轮船卸货 力学问题 电学问题
应用
一次函 数与反 比例函 数
解析式
形如y k x
(k为常数,k 0)
实际问题,图象在第 一象限
看图 象能 口述 性质
y
y
ox o
图象
1.开口方向 2.顶点坐标 3.对称轴 4.增减性 5.极值
性质
看式
子类
型能
口述
性质 ① yax2 ② yax2k
角平分线
条件
全等三角形
SSS
对应边、角、周长 面积、中线、高线、
角平分线相等
性质 表示方法
定义
两个三角形 用符号≌连接
完全重合 两个三角形
关系
位似变换
性质
两角对应 相等
相似三角形
判定
两边成比例 且夹角相等
全等 三角形 与 相似 三
角形
相似图形 形状相同
相似多边形
平行
比例线段
性质
ac bd
对应角相等, 周长的比=相似比 方
(3) a2 a
Y随 x的 增 大 而 增 大
初中数学《一元一次不等式》单元教学设计以及思维导图
初中数学《一元一次不等式》单元教学设计以及思维导图一元一次不等式的单元主题设计适用年八年级上学期级所需时共八课时(课内共用7课时;课外共用1课时) 间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 不等关系与相等关系是客观事物之间基本的数量关系.从某种意义上说,不等关系比相等关系更为普遍存在,因而研究不等关系与研究等量关系同样重要。
在学生学习了一元一次方程、二元一次方程组和实数之后,本章的一元一次不等式是进一步探究现实生活中数量关系的重要内容。
应用不等式的基本性质解一元一次不等式是一项基本技能,也是以后学习一元二次方程、函数以及进一步学习不等式等知识的基础。
一元一次不等式(组)也是一种基本的数学模型,在社会生产和人们的生活中有着广泛的应用。
因此,学习本章内容对于培养分析问题、解决问题的能力,体会数学的价值,以及学生的后续学习都具有重要意义。
主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能。
)主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1、通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的意义。
2、了解不等式的解和解集的含义,会在数轴上表示不等式的解集。
3、会解一元一次不等式和一元一次不等式组,会用数轴确定一元一次不等式组的解集。
过程与方法:经历探索不等式的基本性质的过程,掌握解一元一次不等式和一元一次不等式组的方法。
情感态度与价值观:能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。
从而培养学生分析问题、解决问题的能力,体会数学的价值。
对应课标(说明:学科课程标准对本单元学习的要求) 1、感受不等式和不等式组都是刻画现实世界中数量关系的工具,发展学生的符号感。
(完整版)一元一次不等式(组)知识总结思维导图
一对一教育授课记录说明:1、考纲要求I、II :I 是考试大纲,针对老教材的;II是新课程标准,针对新教材的;2、课堂掌握情况以分值来评判各知识点或解题方法的掌握熟练程度,1,2,3,4,5代表5种分值,1代表了解,2代表理解,3代表基本掌握,4代表熟练掌握,5代表综合运用;3、作业完成情况指学生本堂课针对此知识点进行训练的作业完成情况。
【知识要点】 一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a>或)x ax a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式:解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变) 合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 三、一元一次不等式组< >≤≥含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集. 一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) ①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x ax 的解集是a x <,如下图: 同大取大 同小取小③⎩⎨⎧<>b x a x 的解集是b x a <<,如下图: ④⎩⎨⎧><b x a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
初中数学《一元一次不等式与一元一次不等式组》单元教学设计以及思维导图
主题单元学习目标 知识与技能: 了解一元一次不等式(组)及其相关概念, 熟悉一元一次不等式(组)一般步骤和解法 学会观察和归纳,探索不等式的性质 过程与方法: 了解不等式及其解集概念 熟悉解一元一次不等式的一般步骤 掌握一元一次不等式解法,并在数轴上表示出解集,体会解法中蕴含 的化归思想 情感态度与价值观: 通过具体情境的创设,使学生在生活中发现数学问题,感受数学在生 活中的重要应用,激发学生对数学学习的热情。 对应课标
评 价 要 1.能否正确的解一元一次不等式组和写出步骤
点
3.能否利用一元一次不等式组解决生活中的实际问题
和联系?
所需教学环境和教学资源
白板 ppt
学习活动设计
一元一次不等式组(第 1 课时) 活动 1:一元一次不等式组的概念和解法 活动过程: 1.创设情境,复习引入 1)什么是一元一次不等式?不等式的解集?怎么解一元一次不等 式? 学生抢答 2)教师用准备好的木条做实验引出有关概念一元一次不等式组 2.什么是一元一次不等式组的解集? 3.什么是解不等式组? 活动 2:解一元一次不等式组的一般步骤 1.通过解简单的不等式组总结出求公共部分的规律:大大取大,小小取 小,大小小大取中间,大大小小无解. 2.解不等式组 2x+3<5
3.怎么利用数轴表示一元一次不等式的解集?
主 题 单 元 4.什么是一元一次不等式组? 问题设计 5.怎样求一元一次不等式组的解集?
6.利用一元一次不等式(组)解决实际问题时应注意什 么?
专题划分
7 解一元一次不等式组的解集与一元一次不等式解集的
区别和联系是什么?
专题一:一元一次不等式 ( 4 课时)
题。
1.什么是一元一次不等式? 2.一元一次不等式的性质是什么? 专题问 3.解一元一次不等式的一般步骤是什么?在系数化 1 时应 题设计 注意什么问题?
初一数学章节思维导图(全)
沪科版初中数学-全章思维导图
5
沪科版初中数学-全章思维导图
• 第 7 章 一元一次不等式与不等式组 • 第 8 章 整式乘法与因式分解
6
• 第 9 章 分式
沪科版初中数学-全章思维导图
• 第 10 章 相交线、平行线和平移
7
初一上·第一学期 • 第 1 章 有理数
沪科版初中数学-全章思维导图
1
沪科版初中数学-全章思维导图
• 第 2 章 整式加减
沪科版初中数学-全章思维导图
• 第 3 章 一次方程与方程组
3
沪科版初中数学-全章思维导图
• 第 4 章 直线与角
• 第 5 章 数据的收集与整理
4
七年级下-第二学期 • 第 6 章 实数
小学六年级数学知识思维导图(无水印)
不等式(6上)
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式
利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的 解集
解一元一次不等式的步骤:1.有分数先去分母(利用分数的基本性质,在不等式两边同 时乘分母的倍数)。2.有括号就去括号。3.利用不等式的性质,把带有未知数的项放到不 等式的一边,不带未知数的项放到不等式的另一边。4.如果需要的话,合并同类项。5.系数 化为1求得未知数的值。
比例(6下)
解比例:已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中 的未知项,叫做解比例。 解比例都是运用比例的基本性质来解的,因为两个外项的积 等于两内项的积,所以我们可以把两个外项和内项互相乘起来,然后来解这个方程。如 x:3=9:27 解:27x=3×9 27x=27 x=1
比的化简方法
基本性质法:是利用比的基本性质来化简
转换分数法:先把比转换成分数,然后把这个分数转化为最简分数,最后把这个最简分 数转化为比
比的前项和后项同时乘或除以相同的数(0除外),比值不变
比的后项不能为0
比的基本性质
比的后项乘以比值等于比的前项,比的前项除以后项等于比值 最简整数比指比的前后皆是整数且为互质数
如果用字母表示比、除法、分数三者之间的关系,可以表示为a:b=a÷b=
比(6上)
比与除法、分数比较
除法算式“被除数÷除数”用比的形式写作“被除数:除数”
比的前项相当于被除数、分子,比的后项相当于除数、分母,比值相当于商、分数值, 比号相当于除号、分数线。比值相当于商和分数值。因为除数和分母不能为“0”,所 以比的后项不能为“0”。
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组。 不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。求不等式组的解集 的过程叫做解不等式组
导图系列(3-4):八年级数学(北师大版)各章知识点思维导图集合
第三章 图形的平移与旋转
第四章 因式分解 第五章 分式与分式方程
第六章 平行四边形
任它本身;负数的绝对值是它的相反数;0 的绝对值是 0。(反之,若 5 绝对值
性质 |a|=a,则 a≥0;若|a|=-a,则 a≤0。)
互为相反数的两个数的绝对值相等。
两个负数比较大小,绝对值大的反而小。
如果两个数只有符号不同,那么称其中一个数为另一个的相反数,也称这两个数互
性质 负数。
一般地,形如 的代数式叫做二次根式,a 叫做被开方数。
二次根 一般地,被开方数不含分母,也不含能开得尽方的因数或因式的二次根式叫最简二次根式。
11
式
·
( , ),
(,)
第三章 位置与坐标
序号 1
知识点 确定位置
第三章 位置与坐标
内容 在平面内,确定一个物体的位置一般需要 2 个数据。 在平面内,两条互相垂直且有公共原点的两条数轴构成平面直角坐标系。通常,两条 数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平 的数轴叫做 x 轴或横轴,垂直的数轴叫做 y 轴或纵轴,x 轴和 y 轴统称为坐标轴,它们的 公共原点 O 称为直角坐标系的原点。建立了平面直角坐标系,平面内的点就可以用一组有 序实数对(a,b)来表示了。 在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一 象限,其它三部分按逆时针方向依次叫做第二、三、四象限。坐标轴上的点不在任何一个 象限内。
性质 一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
算数 定义 一般地,如果一个正数 x 的平方等于 a, ,那么这个正数 x 就叫做 a 的算数平方根。 9
平方根 性质 一个正数的算数平方根是正数;0 的算数平方根是 0;负数没有算数平方根。
方程(组)与不等式(组)思维导图
王老师方程(组)与不等式(组)思维导图用心整理,利人利己王老师方程(组)与不等式(组)思维导图用心整理,利人利己一.【考点梳理】考点一、不等式的相关概念1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.考点二、不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或ac>bc).性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac<bc(或ac<bc).要点诠释:(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a,•则a=b;④若a2≤0,则a=0;⑤若ab>0或王老师方程(组)与不等式(组)思维导图 用心整理,利人利己0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .考点三、一元一次不等式(组) 1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0). 2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向. 解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1. 要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 3.一元一次不等式组及其解集含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定. 要点诠释:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 4.一元一次不等式组的解法王老师方程(组)与不等式(组)思维导图用心整理,利人利己由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:解不等式组时,一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集.5.一元一次不等式(组)的应用列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要.要点诠释:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)王老师方程(组)与不等式(组)思维导图 用心整理,利人利己从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案. 6.一元一次不等式、一元一次方程和一次函数的关系一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.二.【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法. 3.一元二次方程根的判别式一元二次方程根的判别式为. △>0方程有两个不相等的实数根;ac 4b 2-=∆⇔王老师方程(组)与不等式(组)思维导图 用心整理,利人利己△=0方程有两个相等的实数根; △<0方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程(a ≠0)的两个根是,那么.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法. 3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根.口诀:“一化二解三检验”. 要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.⇔⇔⇔0c bx ax 2=++21x x 、ac x x ab x x 2121=⋅-=+,王老师方程(组)与不等式(组)思维导图用心整理,利人利己考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:王老师方程(组)与不等式(组)思维导图用心整理,利人利己方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.三.【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)=+bax叫做一元一次方程的标0≠x(0a为未知数,准形式,a是未知数x的系数,b是常数项.5.一元一次方程解法的一般步骤整理方程——去分母——去括号——移项——合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关王老师方程(组)与不等式(组)思维导图 用心整理,利人利己键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.王老师方程(组)与不等式(组)思维导图 用心整理,利人利己(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)x b ac =-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法. 4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是: ①去分母,方程两边都乘以最简公分母; ②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.王老师方程(组)与不等式(组)思维导图用心整理,利人利己3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法. 要点诠释:解分式方程时,求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.王老师方程(组)与不等式(组)思维导图用心整理,利人利己(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;王老师方程(组)与不等式(组)思维导图用心整理,利人利己②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.要点诠释:用符号“<”“>”“≤”“≥”“≠”表示不等关系的式子,叫做不等式.。
七上数学第三章思维导园
选取具有代表性的应用题,引导学生分析题 意、列出方程并求解。
整式加减应用题
选取与实际问题相关的整式加减题,培养学 生运用数学知识解决实际问题的能力。
角的平分线性质应用题
选取与角的平分线性质相关的几何题,帮助 学生理解并掌握该性质的应用。
05
典型例题分析与解题思路
选择题答题技巧及实例分析
是使方程成立的未知数的值”等。
列出关键概念
与中心主题相关的重要概念,如“方 程”、“解”、“未知数”等。
添加细节和例子
在关键概念旁边添加细节信息或具体 例子,以帮助理解和记忆。
思维导图在解题中应用举例
分析问题
通过思维导图梳理问 题中的关键信息和已 知条件,明确求解目
标。
寻找解题思路
根据思维导图中的关 联和细节信息,尝试 不同的解题方法或策
下一步学习计划制定
学习目标
加强一元一次方程的应用训练,提高解决实际问题的能 力。
制定详细的学习计划表,合理安排学习时间,确保每天 有足够的时间进行数学学习和练习。
深入理解代数式的概念及运算规则,提高运算准确性和 速度。
学习计划
针对自己的薄弱环节进行有针对性的训练,例如通过专 项练习题加强代数式的运算训练,通过应用题加强一元 一次方程的应用训练。
步骤讲解
按照逻辑顺序,逐步讲解解题步骤和 方法,帮助学生理解和掌握解题思路 。
06
知识体系总结与自我评价
第三章知识体系总结回顾
代数式
理解代数式的概念,掌握代数式的基本运算,如加减乘 除、乘方等。
整式的加减
掌握同类项的概念及合并同类项的方法,能进行整式的 加减运算。
第三章知识体系总结回顾
初中数学《不等式与不等式组》主题单元教学设计以及思维导图
初中数学《不等式与不等式组》主题单元教学设计以及思维导图主题单元:不等式与不等式组作者姓名:未知主属学科:数学适用年级:七年级所需时间:课内共用9课时,每周5课时,课外共用1课时研究概述:本章教学是在已经研究过方程(组)内容的基础上,进一步研究不等式及不等式组。
通过类比方程,引出一元一次不等式的概念,并探讨不等式的性质和解法。
教材还通过实际问题引导学生将生活中的问题转化为不等式问题,并求出符合实际情况的解。
最后,引入一元一次不等式组及其解法。
重点:一元一次不等式(组)的解法及应用难点:一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题研究方式:观察、类比、归纳、猜测、验证预期研究成果:1.合作交流,观察、类比、归纳出一元一次不等式(组)的概念。
2.小组合作探讨并求证得出一元一次不等式(组)求解过程并得出正确的解。
3.体会不等式(组)在数轴上的表示,体会数形结合的美妙之处。
4.把生活中的实际问题转换成不等式问题并求出符合实际情况的解。
通过观察、对比和归纳,探索不等式的性质。
在解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想。
通过创设问题情境和实验探究活动,引导学生积极参与数学活动,提高研究数学的兴趣,增进研究数学的信心,体会在数学解决问题的过程与他人交流合作的重要性。
二、不等式的解和解集活动二】:通过类比一元一次方程的解法,更好地掌握一元一次不等式的解法,树立辩证唯物主义的思想方法。
在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。
三、一元一次不等式活动三】:解决实际问题时,将实际问题抽象为一元一次不等式,体会一元一次不等式(组)是刻画现实世界中不等关系的一种有效的数学模型。
通过数形结合的数学思想,体会数学的奇妙之处。
问题设计:1、解不等式的一般步骤有哪些?2、不等式的性质有哪些?3、不等式在实际生活中如何应用?。
人教版数学七年级下册思维导图
5.1相交线5.1.1 相交线1.邻补角(定义:一条公共边,另一边互为反向延长线)2.对顶角(定义:两边互为反向延长线)性质:对顶角相等(同角的补角相等)5.1.2 垂线1.垂线(定义:两条线互相垂直,其中一条直线是直线的垂线)2.垂足(定义:两条互相垂直的线的交点)3.定理:①在同一平面内,过一点有且只有一条直线与已知直线垂直②垂线段最短:连接直线外一点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外一点到这条直线的垂线段的长度)5.1.3 同位角、内错角、同旁内角1.同位角(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角)2.内错角(定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间)3.同旁内角(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,)5.2 平行线及其判定5.2.1 平行线1.平行(定义:永不相交)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)5.2.2 平行线的判定1.同位角相等,两直线平行2.内错角相等,两两直线平行直线平行3.同旁内角互补,两直线平行5.3 平行线的性质5.3.1 平行线的性质1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补5.3.2 命题、定理、证明1.命题:题设、结论①真命题:题设成立,结论一定成立②假命题:题设成立,结论不一定成立2.定理3.证明5.4 平移6.1 平方根1.算术平方根、被开方数(规定:0的算术平方根是0)2.平方根、开平方①正数有两个互为相反数的平方根②0的平方根为0③负数没有平方根6.2 立方根1.立方根、开立根6.3 实数1.无理数:无限不循环的小数2.有理数:有限小数和无限循环小数(包含0)3.实数a的相反数是-a4.一个正实数的绝对值是它本身,一个负实数的绝对值时它的相反数,0的绝对值是07.1 平面直角坐标系7.1.1 有序数对(a,b)7.1.2 平面直角坐标系1.横轴x,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2 用坐标表示平移8.1 二元一次方程组1.二元一次方程:两个未知数的次数都是1 8.2 消元——解二元一次方程组1.带入消元法2.加减消元法8.3 实际问题与二元一次方程组1.设未知数2.列方程组*8.4三元一次方程组的解法9.1 不等式9.1.1 不等式及其解集1.不等式的解(值)2.解集(含未知数的不等式的所有的解)9.1.2 不等式的性质1.不等式两边加(或减)同一个数(或式子),不等号的方向不变2.不等式两边乘(或除以)同一个正数,不等号的方向不变3.不等式两边乘(或除以)同一个负数,不等号的方向改变9.2 一元一次不等式9.3 一元一次不等式组10.1 统计调查1.全面调查2.抽样调查3.简单随机抽样调查4.数据处理的一般过程:调查、收集数据、整理数据(制表)、描述数据(绘图:条形图,扇形图,折线图,直方图)、分析数据、得出结论10.2 直方图1.计算最大值和最小值的差2.决定组距和组数3.列频数分布表4.画频数分布直方图10.3 课题学习从数据谈节水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一对一教育授课记录学员姓名授课教师所授科目数学学员年级七年级讲次第讲上课时间2014年06月14日共2课时总课时14:00—16:00教学标题一元一次不等式(组)知识体系图:教学目标1.会解一元一次不等式及会用一元一次不等式解应用题。
2.理解一元一次不等式组的概念及其解集,掌握一元一次不等式组的解法。
教学重难点解不等式(组)和解方程不同,要注意符号变化;取解集时,一般借助于数轴,既直观,又不会漏解。
教学提纲及掌握情况主要内容和方法(目标)考纲要求课堂掌握情况作业完成情况知识点一:一元一次不等式I II 1 2 3 4 5知识点二:一元一次不等式组I II 1 2 3 4 5方法:(详见第2-3页)I II 1 2 3 4 5课堂表现:签名确认:学员:班主任:教学主任:说明:1、考纲要求I、II :I 是考试大纲,针对老教材的;II是新课程标准,针对新教材的;2、课堂掌握情况以分值来评判各知识点或解题方法的掌握熟练程度,1,2,3,4,5代表5种分值,1代表了解,2代表理解,3代表基本掌握,4代表熟练掌握,5代表综合运用;3、作业完成情况指学生本堂课针对此知识点进行训练的作业完成情况。
【知识要点】 一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式:a a a ax <a x >ax ≤ax ≥a解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变) 合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 三、一元一次不等式组含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集. 一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) ①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<bx ax 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b x a x 的解集是b x a <<,如下图: ④⎩⎨⎧><bx ax 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
列不等式解决问题的一般步骤:abababab①弄清题意和题目中的数量关系,用字母表示未知数; ②找出能够表示问题全部含义的一个不等关系。
知识点1:一元一次不等式的定义 1.下列属于一元一次不等式的是( )A .10>8B .2132x y +>+C .12(1)12y y +>- D .235x +> 2.已知36331m m x -->是关于x 的一元一次不等式,求m 的值是 ,x 的解集是 。
知识点2:一元一次不等式的整数解3.在不等式324x -<中,x 可取的最大整数值是( )A .0B .1C .2D .34.不等式2x -1≥3x -5的正整数解的个数为( )A .5个B .2个C .3个D .4个5.不等式2x -1<3的非负整数解是 知识点3:解一元一次不等式 6.不等式53>-x的解集是( ) A .35-<x B .35->xC .15-<xD .15>-x7.(1)解不等式: 4)3(23≥--x x(2)解不等式:22531-->+x x8.当x 取何值时,代数式35-x 的值不小于121-+x 的值。
知识点4:一元一次不等式(组)的综合应用9.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本多少本?10.某种商品进价150元,标价200元,但销量较小。
为了促销,商场决定打折销售,若为了保证利润率不低于20%,那么至多打几折?11.小强借到一本有82页的图书,要在10天内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?2012年中考真题:12.(2012湖北恩施3分)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()。
A.40% B.33.4% C.33.3% D.30%13.(2012湖北荆州3分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()。
A. B. C. D.14. 2012山东日照4分)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有()。
A.29人 B.30人 C.31人 D.32人15.(2012山东淄博4分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012—2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是( )A.2x(32x)+-≤48 D.2x≥48+-≥48 B.2x(32x)--≥48 C.2x(32x)16.(2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西3分)为庆祝“六·一”国际儿童节,龙沙区某小学组织师生共360人参加公园游园活动,有A、B两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有()A.3种 B.4种 C.5种 D.6种17.(2012黑龙江龙东地区3分)某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( )。
A. 6种B. 5种C. 4种D. 3种二、填空题18. (2012四川凉山4分)某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x元,则x的取值范围是。
19.(2012贵州安顺4分)如图,a,b,c三种物体的质量的大小关系是.20.(2012青海西宁2分)某饮料瓶上这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为.三、解答题21. (2012湖南张家界8分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A.B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?知识点5:一元一次不等式与一次函数22.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 .(第11题图) (第12题图)23.直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 .24.某加工厂以每吨3000元的价格购进50吨原料进行加工。
若进行粗加工,每吨加工费用为600元,需13天,每吨售价4000元;若进行精加工,每吨加工费用为900元,需12天,每吨售价4500元。
现将这50吨原料全部加工完。
(1)设其中粗加工x 吨,获利y 元,求y 与x 的函数关系式(不要求写自变量的范围); (2)如果必须在20天内完成,如何安排生产才能获得最大利润?最大利润是多少?知识点6:一元一次不等式组的解集的数轴表示25.如图,用不等式表示数轴上所示的解集,正确的是( )A .31≥-<x x 或B .31>-≤x x 或C .31<≤-xD .31≤<-x26.把不等式组110x x +⎧⎨-⎩≤>0,的解集表示在数轴上,正确的为图中的( )A .B .C .D . 知识点7:解一元一次不等式组-1012327.解不等式组:⎪⎩⎪⎨⎧≥-->+0521372x x x28.解不等式组205121123x x x ->⎧⎪+-⎨+⎪⎩,≥,并把解集在数轴上表示出来.知识点8:一元一次不等式组的整数解29.不等式组31413(3)024x x +<⎧⎪⎨+-<⎪⎩的最大整数解是( ) A .0 B .-1 C .-2 D .130.同时满足210x -<和31x <的整数x = . 知识点9:综合应用31.如果不等式 ⎩⎨⎧><m x x 8无解,那么m 的取值范围是( )A .m >8B .m ≥8C .m <8D .m ≤832.已知方程12-=k x 的解是正数,则k 的取值范围是: ; 33.在方程组221x y my x -=⎧⎨-=⎩中,x 、y 满足0x y +>,则m 的取值范围在数轴上表示为( )ABCD34.已知关于x 的不等式2x 3m ->-的解的解如图所示,则m 的值等于( )A .2B .1C . -1D .05- 4- 3- 2- 1- 0 1 2 3 4 535.若4a <,则关于x 的不等式(4)4a x a ->-的解集是( )A .1x >-B .1x <-C .1x >D .1x <36.已知3633>1m m x --是关于x 的一元一次不等式,求m 的值。