高中数学(北师大版选修2-1)配套课时作业:第一章 常用逻辑用语 第1章 3.1-3.2 含答案

合集下载

高二数学选修2-1第一章常用逻辑用语_知识点+习题+答案

高二数学选修2-1第一章常用逻辑用语_知识点+习题+答案

第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第一章常用逻辑用语测试题一、 选择题(每道题只有一个答案,每道题5分,共60分)1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( ) A 、真命题与假命题的个数相同 B 真命题的个数一定是奇数C 真命题的个数一定是偶数D 真命题的个数可能是奇数,也可能是偶数 2、下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题③“若m>0,则x 2+x -m=0有实根”的逆否命题 ④“若x -123是有理数,则x 是无理数”的逆否命题A 、①②③④B 、①③④C 、②③④D 、①④3、“用反证法证明命题“如果x<y ,那么51x <51y ”时,假设的内容应该是() A 、51x =51yB 、51x <51yC 、51x =51y 且51x <51yD 、51x =51y 或51x >51y4、“a ≠1或b ≠2”是“a +b ≠3”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要5、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要6、函数f (x )=x|x+a|+b 是奇函数的充要条件是( )A 、ab =0B 、a +b=0C 、a =bD 、a 2+b 2=0 7、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题() A 、 若x =a 且x =b ,则x 2-(a +b )x +ab =0 B 、 B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 、 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0 D 、 D 、若x =a 或x =b ,则x 2-(a +b )x +ab =08、“12m =”是“直线(m+2)x+3my+1=0与直线(m+2)x+(m-2)y-3=0相互垂直”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要9、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( )A 、 存在实数m ,使得方程x 2+mx +1=0无实根B 、不存在实数m ,使得方程x 2+mx +1=0有实根C 、对任意的实数m ,使得方程x 2+mx +1=0有实根D 、至多有一个实数m ,使得方程x 2+mx +1=0有实根10.若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,其逆命题都是假命题,则"c d ≤"是"e f ≤"的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件 11.在下列结论中,正确的是( )①""q p ∧为真是""q p ∨为真的充分不必要条件 ②""q p ∧为假是""q p ∨为真的充分不必要条件 ③""q p ∨为真是""p ⌝为假的必要不充分条件 ④""p ⌝为真是""q p ∧为假的必要不充分条件 A. ①② B. ①③ C. ②④ D. ③④ 12.设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是( )A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>5 二、填空题(每道题4分,共16分)13、判断下列命题的真假性: ①、若m>0,则方程x 2-x +m =0有实根 ②、若x>1,y>1,则x+y>2的逆命题③、对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式④、△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件 14、“末位数字是0或5的整数能被5整除”的否定形式是 否命题是15、若把命题“A ⊆B ”看成一个复合命题,那么这个复合命题的形式是__________,构成它的两个简单命题分别是_____________________________________。

高二选修2-1北师大版:第一章_常用逻辑用语_§2_word版有答案

高二选修2-1北师大版:第一章_常用逻辑用语_§2_word版有答案

§2充分条件与必要条件学习目标 1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.知识点一充分条件与必要条件(1)“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.(2)若p⇒q,但q⇏p,称p是q的充分不必要条件,若q⇒p,但p⇏q,称p是q的必要不充分条件.知识点二充要条件思考在△ABC中,角A,B,C为它的三个内角,则“A,B,C成等差数列”是“B=60°”的什么条件?答案因为A,B,C成等差数列,故2B=A+C,又因为A+B+C=180°,故B=60°,反之,亦成立,故“A,B,C成等差数列”是“B=60°”的充要条件.梳理(1)一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q,此时,我们说,p是q的充分必要条件,简称充要条件.(2)充要条件的实质是原命题“若p,则q”和其逆命题“若q,则p”均为真命题,如果p是q的充要条件,那么q也是p的充要条件,即如果p⇔q,那么p与q互为充要条件.(3)从集合的角度判断充分条件、必要条件和充要条件.其中p:A={x|p(x)成立},q:B={x|q(x)成立}.1.q是p的必要条件时,p是q的充分条件.(√)2.若p是q的充要条件,则p和q是两个相互等价的命题.(√)3.q 不是p 的必要条件时,“p ⇏q ”成立.(√)类型一 充分条件、必要条件、充要条件的判定 例1 下列各题中,试分别指出p 是q 的什么条件. (1)p :两个三角形相似,q :两个三角形全等; (2)p :一个四边形是矩形,q :四边形的对角线相等; (3)p :A ⊆B ,q :A ∩B =A ; (4)p :a >b ,q :ac >bc .考点 充分条件、必要条件的判断 题点 充分、必要条件的判断解 (1)∵两个三角形相似⇏两个三角形全等,但两个三角形全等⇒两个三角形相似, ∴p 是q 的必要不充分条件. (2)∵矩形的对角线相等,∴p ⇒q , 而对角线相等的四边形不一定是矩形, ∴q ⇏p ,∴p 是q 的充分不必要条件.(3)∵p ⇒q ,且q ⇒p ,∴p 既是q 的充分条件,又是q 的必要条件. (4)∵p ⇏q ,且q ⇏p ,∴p 是q 的既不充分又不必要条件. 反思与感悟 充分条件、必要条件的两种判断方法 (1)定义法①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件; ③尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件. (2)命题判断法①如果命题:“若p ,则q ”为真命题,那么p 是q 的充分条件,同时q 是p 的必要条件; ②如果命题:“若p ,则q ”为假命题,那么p 不是q 的充分条件,同时q 也不是p 的必要条件. 跟踪训练1 指出下列各题中,p 是q 的什么条件? (1)p :ax 2+ax +1>0的解集是R ,q :0<a <4; (2)p :|x -2|<3,q :6x -5<-1;(3)p :A ∪B =A ,q :A ∩B =B ;(4)p :⎩⎪⎨⎪⎧ α>2,β>2,q :⎩⎪⎨⎪⎧α+β>4,αβ>4.考点 充分条件、必要条件的判断解 (1)当a =0时,1>0满足题意;当a ≠0时,由⎩⎪⎨⎪⎧Δ=a 2-4a <0,a >0,可得0<a <4.故p 是q 的必要不充分条件. (2)易知p :-1<x <5,q :-1<x <5, 所以p 是q 的充要条件.(3)因为A ∪B =A ⇔A ∩B =B ,所以p 是q 的充要条件.(4)由⎩⎪⎨⎪⎧ α>2,β>2,根据同向不等式相加、相乘的性质,有⎩⎪⎨⎪⎧α+β>4,αβ>4,即p ⇒q ,但⎩⎪⎨⎪⎧ α+β>4,αβ>4⇏⎩⎪⎨⎪⎧α>2,β>2,比如,当α=1,β=5时,⎩⎪⎨⎪⎧α+β=6>4,αβ=5>4,而α<2,所以q ⇏p ,所以p 是q 的充分不必要条件.类型二 充要条件的探求与证明 命题角度1 充要条件的探求例2 求ax 2+2x +1=0至少有一个负实根的充要条件是什么? 考点 充要条件的概念及判断 题点 寻求充要条件解 (1)当a =0时,原方程变为2x +1=0,即x =-12,符合要求.(2)当a ≠0时,ax 2+2x +1=0为一元二次方程,它有实根的充要条件是Δ≥0,即4-4a ≥0,∴a ≤1.①方程ax 2+2x +1=0只有一个负根的充要条件是⎩⎪⎨⎪⎧Δ≥0,x 1x 2<0,即⎩⎪⎨⎪⎧a ≤1,1a<0,∴a <0.②方程ax 2+2x +1=0有两个负根的充要条件是⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧a ≤1,-2a<0,1a >0,∴0<a ≤1.综上所述,ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.反思与感悟 探求一个命题的充要条件,可以利用定义法进行探求,即分别证明“条件⇒结论”和“结论⇒条件”,也可以寻求结论的等价命题,还可以先寻求结论成立的必要条件,再证明它也是其充分条件. 跟踪训练2 已知数列{a n }的前n 项和S n =(n +1)2+t (t 为常数),试问t =-1是否为数列{a n }是等差数列的充要条件?请说明理由.题点寻求充要条件解是充要条件.(充分性)当t=-1时,S n=(n+1)2-1=n2+2n.a1=S1=3,当n≥2时,a n=S n-S n-1=2n+1.又a1=3符合上式,∴a n=2n+1(n∈N+),又∵a n+1-a n=2(常数),∴数列{a n}是以3为首项,2为公差的等差数列.故t=-1是{a n}为等差数列的充分条件.(必要性)∵{a n}为等差数列,则2a2=a1+a3,∵a1=S1=4+t,a2=S2-S1=5,a3=S3-S2=7,∴10=11+t,解得t=-1,故t=-1是{a n}为等差数列的必要条件.综上,t=-1是数列{a n}为等差数列的充要条件.命题角度2充要条件的证明例3求证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0. 考点充要条件的概念及判断题点充要条件的证明证明充分性(由ac<0推证方程有一正根和一负根),∵ac<0,∴一元二次方程ax2+bx+c=0的判别式Δ=b2-4ac>0,∴原方程一定有两不等实根,不妨设为x1,x2,则x1x2=ca<0,∴原方程的两根异号,即一元二次方程ax2+bx+c=0有一正根和一负根.必要性(由方程有一正根和一负根推证ac<0),∵一元二次方程ax2+bx+c=0有一正根和一负根,不妨设为x1,x2,∴由根与系数的关系得x1x2=ca<0,即ac<0,此时Δ=b2-4ac>0,满足原方程有两个不等实根.综上可知,一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.跟踪训练3 求证:方程x 2+(2k -1)x +k 2=0的两个根均大于1的充要条件是k <-2. 考点 充要条件的概念及判断 题点 充要条件的证明 证明 必要性:若方程x 2+(2k -1)x +k 2=0有两个大于1的根,不妨设两个根为x 1,x 2,则 ⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0,即⎩⎪⎨⎪⎧k ≤14,(x 1+x 2)-2>0,x 1x 2-(x 1+x 2)+1>0.即⎩⎪⎨⎪⎧k ≤14,-(2k -1)-2>0,k 2+(2k -1)+1>0,解得k <-2. 充分性:当k <-2时,Δ=(2k -1)2-4k 2=1-4k >0. 设方程x 2+(2k -1)x +k 2=0的两个根为x 1,x 2.则(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=k 2+2k -1+1=k (k +2)>0. 又(x 1-1)+(x 2-1)=(x 1+x 2)-2=-(2k -1)-2=-2k -1>0, ∴x 1-1>0,x 2-1>0,∴x 1>1,x 2>1.综上可知,方程x 2+(2k -1)x +k 2=0有两个大于1的根的充要条件为k <-2. 类型三 利用充分条件、必要条件求参数的值(或范围)例4 设命题p :x (x -3)<0,命题q :2x -3<m ,已知p 是q 的充分不必要条件,则实数m 的取值范围为________.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 [3,+∞)解析 p :x (x -3)<0,即0<x <3; q :2x -3<m ,即x <m +32.由题意知p ⇒q ,q ⇏p ,则在数轴上表示不等式如图所示,则m +32≥3,解得m ≥3,反思与感悟 (1)在有些含参数的充要条件问题中,要注意将条件p 和q 转化为集合,从而转化为两集合之间的子集关系,再转化为不等式(或方程),从而求得参数的取值范围. (2)根据充分条件或必要条件求参数范围的步骤 ①记集合M ={x |p (x )},N ={x |q (x )};②若p 是q 的充分不必要条件,则M ?N ,若p 是q 的必要不充分条件,则N ?M ,若p 是q 的充要条件,则M =N ;③根据集合的关系列不等式(组); ④求出参数的范围.跟踪训练4 设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪ y =2x 2x +1,x ∈R ,B =⎩⎨⎧⎭⎬⎫y ⎪⎪y =13x +m ,x ∈[-1,1],记命题p :“y ∈A ”,命题q :“y ∈B ”,若p 是q 的必要不充分条件,则m 的取值范围为______________. 考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 ⎝⎛⎭⎫13,23解析 由题意知A ={y |0<y <1}., B =⎩⎨⎧⎭⎬⎫y | m -13≤y ≤m +13,依题意,得B ?A ,故⎩⎨⎧m -13>0,m +13<1,∴13<m <23.1.“x >0”是“x 2+x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 A解析 由x 2+x >0⇔x <-1或x >0,由此判断A 符合要求. 2.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件答案 A解析 当a +b =0时,得a =-b ,所以a ∥b ,但若a ∥b ,不一定有a +b =0. 3.“关于x 的不等式x 2-2ax +a >0,x ∈R 恒成立”的一个必要不充分条件是( ) A .0<a <1 B .0≤a ≤1 C .0<a <12D .a ≥1或a ≤0考点 充分条件、必要条件的概念及判断 题点 充分、必要条件的判断 答案 B解析 当关于x 的不等式x 2-2ax +a >0,x ∈R 恒成立时,应有Δ=4a 2-4a <0,解得0<a <1.所以一个必要不充分条件是0≤a ≤1.4.设p :1≤x <4,q :x <m ,若p 是q 的充分条件,则实数m 的取值范围是________.(用区间表示) 考点 充分条件的概念及判断 题点 由充分条件求取值范围 答案 [4,+∞)解析 因为p 为q 的充分条件,所以[1,4)⊆(-∞,m ), 得m ≥4.5.设p :|x |>1,q :x <-2或x >1,则q 是p 的__________条件.(填“充分不必要”“必要不充分”“既不充分又不必要”“充要”)考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 充分不必要解析 由已知,得p :x <-1或x >1,则q 是p 的充分不必要条件.充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,常采用如下方法(1)定义法:分清条件p 和结论q ,然后判断“p ⇒q ”及“q ⇒p ”的真假,根据定义下结论. (2)等价法:将命题转化为另一个与之等价的又便于判断真假的命题.(3)集合法:写出集合A ={x |p (x )}及集合B ={x |q (x )},利用集合之间的包含关系加以判断.一、选择题1.“x 为无理数”是“x 2为无理数”的( ) A .充分不必要条件 B .必要不充分条件考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 B解析 当x 2为无理数时,x 为无理数.2.设a ,b ∈R ,则“a +b >2”是“a >1且b >1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 B3.设x ∈R ,则x >π的一个必要不充分条件是( ) A .x >3 B .x <3 C .x >4D .x <4考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 A4.在△ABC 中,若p :A =60°,q :sin A =32,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 A解析 因为sin 60°=32,故p ⇒q ,但当sin A =32时,A =60°或120°. 5.已知p :x 2+2x -3<0,q :1-a ≤x ≤1+a ,且q 是p 的必要不充分条件,则a 的取值范围是( ) A .(4,+∞) B .(-∞,0] C .[4,+∞)D .(-∞,0)考点 充分、必要条件的综合应用 题点 充分、必要条件求参数的范围 答案 C解析 由命题p :-3<x <1,因为p ⇒q ,q ⇏p ,所以⎩⎪⎨⎪⎧ 1-a ≤-3,1+a ≥1,即⎩⎪⎨⎪⎧a ≥4,a ≥0,所以a ≥4.A .a ≥b +1B .a >b -1C .a 2>b 2D .a 3>b 3考点 充分、必要条件的判断 题点 充分不必要条件的判断 答案 A解析 由a ≥b +1>b ,从而a ≥b +1⇒a >b ;反之,如a =4,b =3.5,则4>3.5⇏4≥3.5+1,故a >b ⇏a ≥b +1,故选A.7.设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别是集合M 和N ,那么“a 1a 2=b 1b 2=c 1c 2”是“M =N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 D解析 若a 1a 2=b 1b 2=c 1c 2<0,则M ≠N ,即a 1a 2=b 1b 2=c 1c 2⇏M =N ; 反之,若M =N =∅,即两个一元二次不等式的解集为空集时, 只要求判别式Δ1<0,Δ2<0(a 1<0,a 2<0), 而与系数之比无关.8.设函数f (x )=|log 2x |,则f (x )在区间(m,2m +1)(m >0)内不是单调函数的充要条件是( ) A .0<m <12B .0<m <1 C.12<m <1 D .m >1考点 充要条件的概念及判断 题点 寻求充要条件 答案 B解析 f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,-log 2x ,0<x <1.f (x )的图像在(0,1)内单调递减, 在(1,+∞)内单调递增.则⎩⎪⎨⎪⎧m <1,2m +1>1⇔0<m <1. 二、填空题9.若a =(1,2x ),b =(4,-x ),则“a 与b 的夹角为锐角”是“0≤x <2”的________________条件. 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 既不充分又不必要10.“(x +1)(x +2)>0”是“(x +1)(x 2+2)>0”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 考点 充分、必要条件的判断 题点 必要不充分条件的判断 答案 必要不充分解析 (x +1)(x +2)>0⇒x <-2或x >-1,(x +1)·(x 2+2)>0⇒x >-1,因为x >-1⇒x <-2或x >-1,x <-2或x >-1⇏x >-1,所以应填“必要不充分”. 11.有下列命题:①“x >2且y >3”是“x +y >5”的充分条件;②“b 2-4ac <0”是“一元二次不等式ax 2+bx +c <0的解集为R ”的充要条件; ③“a =2”是“直线ax +2y =0平行于直线x +y =1”的充分不必要条件; ④“xy =1”是“lg x +lg y =0”的必要不充分条件. 其中真命题的序号为________. 考点 充分条件、必要条件的判断 题点 充分、必要条件的判断 答案 ①④解析 ①当x >2且y >3时,x +y >5成立,反之不一定,所以“x >2且y >3”是“x +y >5”的充分不必要条件,故①为真命题;②不等式解集为R 的充要条件是a <0且b 2-4ac <0,故②为假命题;③当a =2时,两直线平行,反之,若两直线平行,则a 1=21,所以a =2,所以“a =2”是“两直线平行”的充要条件,故③为假命题;④lg x +lg y =lg(xy )=0,所以xy =1且x >0,y >0,所以xy =1必成立,反之不然,所以“xy =1”是“lg x +lg y =0”的必要不充分条件,故④为真命题. 综上可知,真命题是①④. 三、解答题12.判断下列各题中,p 是q 的什么条件. (1)p :|x |=|y |,q :x =y ;(3)p :四边形的对角线互相平分,q :四边形是矩形;(4)p :圆x 2+y 2=r 2(r >0)与直线ax +by +c =0相切,q :c 2=(a 2+b 2)r 2.考点 充分条件、必要条件的判断题点 充分、必要条件的判断解 (1)∵|x |=|y |⇏x =y ,但x =y ⇒|x |=|y |,∴p 是q 的必要不充分条件.(2)∵△ABC 是直角三角形⇏△ABC 是等腰三角形,△ABC 是等腰三角形⇏△ABC 是直角三角形,∴p 是q 的既不充分又不必要条件.(3)∵四边形的对角线互相平分⇏四边形是矩形,四边形是矩形⇒四边形的对角线互相平分,∴p 是q 的必要不充分条件.(4)若圆x 2+y 2=r 2(r >0)与直线ax +by +c =0相切,则圆心(0,0)到直线ax +by +c =0的距离等于r ,即r =|c |a 2+b 2, ∴c 2=(a 2+b 2)r 2;反过来,若c 2=(a 2+b 2)r 2, 则|c |a 2+b 2=r 成立, 说明圆x 2+y 2=r 2(r >0)的圆心(0,0)到直线ax +by +c =0的距离等于r ,即圆x 2+y 2=r 2(r >0)与直线ax +by +c =0相切,故p 是q 的充要条件.13.已知p :2x 2-3x -2≥0,q :x 2-2(a -1)x +a (a -2)≥0,且命题p 是命题q 的充分不必要条件,求实数a 的取值范围.考点 充分、必要条件的综合应用题点 由充分、必要条件求参数的范围解 令M ={x |2x 2-3x -2≥0}={x |(2x +1)(x -2)≥0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-12或x ≥2,N ={x |x 2-2(a -1)x +a (a -2)≥0} ={x |(x -a )[x -(a -2)]≥0}={x |x ≤a -2或x ≥a }.由已知p ⇒q 且q ⇏p ,得M ?N ,∴⎩⎪⎨⎪⎧ a -2≥-12,a <2或⎩⎪⎨⎪⎧a -2>-12,a ≤2, 解得32≤a <2或32<a ≤2,即32≤a ≤2.即实数a 的取值范围是⎣⎡⎦⎤32,2.四、探究与拓展14.下列各题中,p 是q 的充要条件的是________.(填序号)①p :m <-2或m >6,q :y =x 2+mx +m +3有两个不同的零点;②p :f (-x )f (x )=1,q :y =f (x )为偶函数; ③p :cos α=cos β,q :tan α=tan β;④p :A ∩B =A ,q :∁U B ⊆∁U A .考点 充分、必要条件的判断题点 充要条件的判断答案 ①④解析 对于①,q :y =x 2+mx +m +3有两个不同的零点⇔q :Δ=m 2-4(m +3)>0⇔q :m <-2或m >6⇔p ; 对于②,当f (x )=0时,q ⇏p ;对于③,若α,β=k π+π2(k ∈Z ),则有cos α=cos β,但没有tan α=tan β,p ⇏q ; 对于④,p :A ∩B =A ⇔p :A ⊆B ⇔q :∁U B ⊆∁U A .15.已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.考点 充分、必要条件的综合应用题点 由充分、必要条件求参数的取值范围解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10}.由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].。

选修2-1数学课后习题答案(全)

选修2-1数学课后习题答案(全)

新课程标准数学选修2—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题.逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+-- ()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题.否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等. 逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不 相等.这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上.这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径. 原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=. 所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)真; (2)假.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(31≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0; (3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}. 6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C ==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t -==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t t x y -==. 由2t x =得2t x =,代入42t y -=, 得422x y -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2)此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线.习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0).由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y y x x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形, 利用勾股定理,得2222(3)9x y x y ++-+=,即2230x y x +-=. 其他同解法一.习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y a b+=.因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --= 由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y . 由于动圆截直线30x y -=和30x y +=所得弦分别为 AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =. 连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+ 所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=. 3、解:由已知,5a =,4b =,所以3c .(1)1AF B ∆的周长1212AF AF BF BF =+++. 由椭圆的定义,得122AF AF a +=,122BF BF a +=.所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值.4、解:设点M 的坐标为(,)x y ,由已知,得 直线AM 的斜率 1AM y k x =+(1)x ≠-; 直线BM 的斜率 1BMy k x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B)为圆心,以线段2OA (或1OA ) 为半径画圆,圆与x 轴的两个交点分别为12,F F .点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F OA =所以,2OF c =. 同样有1OF c =.2、(1)焦点坐标为(8,0)-,(8,0);(2)焦点坐标为(0,2),(0,2)-. 3、(1)2213632x y +=; (2)2212516y x+=. 4、(1)22194x y += (2)22110064x y +=,或22110064y x +=. 5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12, 12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁; (2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5, 因为35>,所以,椭圆221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49) 1、解:由点(,)M x y10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆. 它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤101033y -≤≤表示的区域的公共部分. 图略. 4、(1)长轴长28a =,短轴长24b =,离心率2e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=; (3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =. 代入椭圆的方程,得21154x +=,解得2x =±. 所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =.所以,QO QA QO QP OP r +=+==.又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆.8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=--(1)由0∆>,得m -<<当这组直线在y 轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y . 则 1223x x m x +==-. 因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=. 这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上. 9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km.习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--=配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12……③化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤ 将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥ 由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,. 12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a =所以236927b =-=. 于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF PM d ⎧⎫==⎨⎬⎩⎭由此得 12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y += 所以,点M 的轨迹是长轴、短轴长分别为8,.4、解:如图,由已知,得(0,3)E -,(4,0)F 因为,,R S T 是线段OF 的四等分点,,,R S T '''是线段CF 的四等分点, 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''. 直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==. 所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=, 所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上. 2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b-=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a ==.所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -= 3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=. 设双曲线的标准方程为 22221x y a a -=,或22221y x a a-=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a -=.解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=. 5、解:连接QA ,由已知,得QA QP =.所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=.习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得 222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k-=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =; 3、(1)a ,2pa -. (2),(6,- 提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±因为22AB y ==⨯== 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-; (2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p .设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32p x =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒=. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y =由第5题图知1(,33-不合题意,所以点M 的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=,化简得 2640x x -+=,解得 3x=±则 321y ==±因为OB k ,OA k=所以15195OB OA k k -⋅===--所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为 m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线. 2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-=因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan30y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a +=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以b ===用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上.而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=-令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点, 所以,k的取值范围为k >k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp - 设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =代入)2p y x =-,得 17(2x p =+.把22)y p =代入)32p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A的坐标为11(,)x y,点B的坐标为22(,)x y,点M的坐标为(,)x y.并设经过点M的直线l的方程为1(2)y k x-=-,即12y kx k=+-.把12y kx k=+-代入双曲线的方程2212yx-=,得222(2)2(12)(12)20k x k k x k------=2(20)k-≠. ……①所以,122(12)22x x k kxk+-==-由题意,得2(12)22k kk-=-,解得4k=当4k=时,方程①成为21456510x x-+=根的判别式25656512800∆=-⨯=>,方程①有实数解.所以,直线l的方程为47y x=-.10、解:设点C的坐标为(,)x y.由已知,得直线AC的斜率(5)5ACyk xx=≠-+直线BC的斜率(5)5BCyk xx=≠-由题意,得AC BCk k m=. 所以,(5)55y ym xx x⨯=≠±+-化简得,221(5)2525x yxm-=≠±当0m<时,点C的轨迹是椭圆(1)m≠-,或者圆(1)m=-,并除去两点(5,0),(5,0)-;当0m>时,点C的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x=上的点P的坐标为(,)x y,则24y x=.点P到直线3y x=+的距离d===当2y=时,d. 此时1x=,点P的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y轴(向上),建立直角坐标系.设隧道顶部所在抛物线的方程为22x py=-因为点(4,4)C -在抛物线上 所以 242(4)p =-- 解得 24p =-所以,隧道顶部所在抛物线的方程 为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=.2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a =-.由题意,得2b bac a =,所以,b c =,a =.由已知及1F A a c =+,得a c +=所以 (1c +=+ c =所以,a =,b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=. 由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……②(第4题)12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠± 所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=. 因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--. 练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3.练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=(第7题)PRS B CAQ O(第3题)所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=. 2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面, 于是c 与a ,b 共面,这与已知矛盾.2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++. 练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C 所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,153DB CM DB CM DB CM-+⋅<>===⋅.习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==.向量,,,AC AC AM AG '如图所示. 2、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-;(3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==;(4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==;(5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==;(6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =.9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-, 所以,点M 的坐标为19(,,2)22-,(AB =-10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N . 1(1,1,)2CM =-,11(1,1,)2D N =- 所以2312CM ==,21312D N == 111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19. 11、31(,,3)22- 习题3.1 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅∵ OA OB =,CA CB =(已知),OC OC =. ∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠∴ OB OC OA OC ⋅=⋅∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点.∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β; (3)292247u v u v⋅=-,α与β相交,交角的余弦等于292247.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥. 因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++(第3题)222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅ 222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以 22cos AA d mn θ'=.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O . ∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥ 习题3.2 A 组(P111)1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,212MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,212MN AD ⋅==1cos 2θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥. 因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3AC DB ⋅== 所以 1cos 3θ=-. 因此1DB 与平面EFGHLK 的所成角α的余弦cos 3α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++11(111111)42=++-+-= 所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,32AE AO ⋅=1cos 2θ===sin θ=点O 到平面ABC 的距离sin 1OH OA θ===. 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向, 建立坐标系,得下列坐标:(0,0,0)O,D ,1(0,,0)2B,3(0,,0)2C,A . ∴3((4DO DA ⋅=-⋅=,184DO DA ⋅=,cos 2θ=. ∴ AD 与平面BCD 所成角等于45︒. (2)(0,1,0)(0BC DA ⋅=⋅=. 所以,AD 与BC 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,则1(,,1)(,,1)(0,,02x y AB x y ⋅=⋅=,(,,1)(,,1)0x y AD x y ⋅=⋅=. 解得 1x =,y =显然(0,0,1)为平面BCD 的法向量.(0,0,1)1⋅=,cos θ==因此,二面角A BD C --的余弦cos cos()απθ=-=7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB ∥α,所以123412x y z-+==-. 因为226AB α==26=.解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a hE -.(1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE DE h a BE DE--⋅-<>==+.(2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-=,222h a = 222222641cos ,10123h a a BE DE h a a --<>===-+9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,)222O -,1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA ⋅=,10OM BD ⋅=,所以1OM AA ⊥,1OM BD ⊥,2OM ==. 10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD ==解得12z =,x =1cos 2BD AC BD ACθ⋅==⋅,60θ=︒ 因此,线段BD 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02OP BD z ⋅=⋅-=,解得98z =. 所以,938tan 38PB OB θ===.12、解:不妨设这条线段MN 长为2,则点M 到二面角的棱的距离1MP =,点N 到二面角的棱的距离1NQ =,QM PN ==PQ =22cos 2PQ MNPQ PQ MNθ⋅====⋅, 45θ=︒. 习题3.2 B 组(P113) 1、解:12222ABC S ∆=⨯⨯=, ()224502AD BE AB BD BE ⋅=+⋅=︒+=,202cos AD BE AD AD θ⋅==,20AD =,204BD ==. 184233ABCD V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F,,0,1)M -,,0)N .。

北师大版高中数学选修2-1本章练测:第1章常用逻辑用语(含答案详解)

北师大版高中数学选修2-1本章练测:第1章常用逻辑用语(含答案详解)

高中数学学习材料(灿若寒星精心整理制作)第一章常用逻辑用语(北京师大版选修2-1)一、选择题(本题共12小题,每小题5分,共60分)1. 下列说法中,不正确的是( )A.“若则”与“若则”是互逆命题B.“若﹁则﹁”与“若则”是互否命题C.“若﹁则﹁”与“若则”是互否命题D.“若﹁则﹁”与“若则”是互为逆否命题2.以下说法错误的是( )A.如果一个命题的逆命题为真命题,那么它的否命题也必为真命题B.如果一个命题的否命题为假命题,那么它本身一定为真命题C.原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数D.一个命题的逆命题、否命题、逆否命题可以同为假命题3.命题“设a,b,c∈R,若a>b,则a>b”的逆命题、否命题、逆否命题中真命题共有( ) A.0个B.1个C.2个D.3个4.(2012·山东济宁一模)已知p:|x+1|≤4;q:<5x -6,则p是q成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.设::,若﹁是﹁的必要不充分条件,则实数的取值范围是()A.B.C.D.6.命题:将函数的图像向右平移个单位长度得到函数的图像;命题:函数的最小正周期是,则复合命题“或”“且”“非”中真命题的个数是()A.0B.1C.2D.37.已知命题:“”,命题:,,若命题“”是真命题,则实数的取值范围是()A.或B.或C.D.8.给出下列命题:①若“或”是假命题,则“﹁且﹁”是真命题;②;③若关于的实系数一元二次不等式的解集为,则必有且;④,其中真命题的个数是()A.1B.2C.3D.49.关于的函数有以下命题:①,;②;③,都不是偶函数;④,使f是奇函数.其中假命题的序号是()A.①③B.①④C.②④D.②③10.下面有关命题的说法正确的是( )A.命题“若-3x+2=0,则x=1”的逆命题为“若x≠1,则-3x+2≠0”B.命题“若-3x+2=0,则x=1”的否命题为“若x≠1,则-3x+2≠0”C.命题“x∈R,≤0”的否定为“x∈R,>0”D.命题“x∈R,≤0”的否定为“x∈R,>0”11.有限集合中元素的个数记作,设A,B都是有限集合,给出下列命题:①的充要条件是=;②的必要条件是;③的充分条件是;④的充要条件是.其中正确的命题个数是()A.0B.1C.2D.312.已知命题使;命题,都有给出下列结论:①命题“”是真命题;②命题“﹁”是假命题;③命题“﹁”是真命题;④命题“﹁﹁”是假命题,其中正确的是()A.②④B.②③C.③④D.①②③二、填空题(本题共4小题,每小题4分,共16分)13.若为定义在D上的函数,则“存在D,使得”是“函数为非奇非偶函数”的________条件.14.已知与整数的差为的数;整数的,则是的________条件.15.已知命题p:命题q:若命题p是命题q的充分不必要条件,则实数的取值范围是____________.16.下列四个结论中,正确的有(填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“>-”是“一元二次不等式a +bx+c≥0的解集为R”的充要条件;③“x≠1”是“≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题(本题共6小题,共74分)17.(本小题满分12分)设命题为“若,则关于的方程有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.18.(本小题满分12分)已知命题:任意,,如果命题﹁是真命题,求实数的取值范围.19.(本小题满分12分)已知P={x|-8x-20≤0},S={x|1-m≤x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;(2)是否存在实数m,使x∈P是x∈S的必要不充分条件,若存在,求出m的取值范围.20.(本小题满分12分)设p:实数x满足-4ax+3<0,其中a>0;q:实数x满足--->(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.21.(本小题满分12分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖.问P,Q,R,S分别获得几等奖?22.(本小题满分14分)设命题p:函数是R上的减函数,命题q:函数在上的值域为.若“”为假命题,“”为真命题,求的取值范围.第一章常用逻辑用语(北京师大版选修2-1)答题纸得分:________ 一、选择题二、填空题13. 14. 15. 16.三、解答题17.解:18.解:19.解:20.解:21.解:22.解:第一章常用逻辑用语(北京师大版选修2-1)答案一、选择题1.B 解析:“若﹁则﹁”与“若则”是互为逆否的命题,B不正确,故选B.2.B解析:两个命题互为逆否命题,它们之间有相同的真假性;两个命题为互逆或互否命题,它们的真假性没有关系.故B错误.3.B解析:原命题正确,所以其逆否命题正确.逆命题不正确,因为当c=0时,a=b.从而原命题的否命题也不正确.4. B解析:由|x+1|≤4-4≤x+1≤4,得-5≤x≤3,即p对应的集合为[-5,3];由<5x-6-5x+6<0,解一元二次不等式可得2<x<3,即q对应的集合为(2,3).因为(2,3)[-5,3],所以p是q成立的必要不充分条件.5.A解析:由已知得若成立,则,若成立,则.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以,<,或<,所以.6.C 解析:将函数y=的图像向右平移个单位长度得到函数y==的图像,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数,最小正周期为,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个,选C.7.A解析:若p成立,对有.因为所以即若q成立,则方程的判别式解得或因为命题“”是真命题,所以p真q真,故的取值范围为或8.B解析:“p或q”是假命题,则它的否定是真命题,即“﹁p且﹁q”是真命题,①是真命题;若,则,若,则,所以②是真命题;数形结合可得,若一元二次不等式的解集是,则必有且,所以③是假命题;当时,必有但当,y=5时,满足但,所以④是假命题.共有2个真命题.9. A解析:对于命题①,若==成立,必须是整数,所以命题①是假命题;对于函数f,当时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.所以选A.10.D解析:A错误,逆命题为“若x=1,则-3x+2=0”;B错误,否命题为“若-3x+2≠0,则x≠1”;C错误,否定为“x∈R,>0”.11.C 解析:,集合和集合没有公共元素,①正确;,集合中的元素都是集合中的元素,②正确;③错误;,则集合中的元素与集合中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.所以选C.12.B解析:因为,所以命题p是假命题,﹁是真命题;由函数y=的图像可得,命题q是真命题,﹁是假命题.所以命题“”是假命题, 命题“﹁”是假命题,命题“﹁”是真命题,命题“﹁﹁”是真命题.所以②③正确.二、填空题13.充分不必要解析:存在D,使得 –则函数为非奇非偶函数;若函数为非奇非偶函数,可能定义域不关于原点对称,所以“存在D,使得”是“函数为非奇非偶函数”的充分不必要条件.14.充分不必要解析:,可分别用集合表示,集合表示奇数的 ,集合表示整数的,因为Ü,所以是的充分不必要条件.15.解析:两个命题可分别表示为或,或,要使命题是命题的充分不必要条件,则,,,或,,,解得.16.①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件.x≠1≠1,反例:x=-1=1,∴“x≠1”是“≠1”的不充分条件.x≠0x+|x|>0,反例:x=-2x+|x|=0.但x+|x|>0x>0x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题17.解:否命题为“若,则关于的方程没有实数根”;逆命题为“若关于的方程有实数根,则”;逆否命题为“若关于的方程没有实数根,则”.由方程根的判别式,得,此时方程有实数根.因为使,所以方程有实数根,所以原命题为真,从而逆否命题为真.但方程有实数根,必须,不能推出,故逆命题为假,从而否命题为假.18.解:因为命题﹁是真命题,所以是假命题.又当是真命题,即恒成立时,应有,,解得,所以当是假命题时,.所以实数的取值范围是.19.解:(1)由-8x-20≤0可解得-2≤x≤10,∴P={x|-2≤x≤10}.∵x∈P是x∈S的充要条件,∴P=S,∴--∴∴这样的m不存在.(2)由题意知,x∈P是x∈S的必要不充分条件,则S P.于是有--<或>∴或∴m≤3.∴当m≤3时,x∈P是x∈S的必要不充分条件.20.解:解:由-4ax+3<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由--->得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若p是q的充分不必要条件,即q,且p.设A={x|p},B={x|q},则A B.又A={x|p}={x|x≤a或x≥3a},B={x|q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.21.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.22.解:由得.因为在上的值域为,所以.又因为“”为假命题,“”为真命题,所以,一真一假.若真假,则;若假真,则.综上可得,的取值范围是或.。

高中数学选修2-1各章节课时作业及答案解析

高中数学选修2-1各章节课时作业及答案解析

第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________. 9.下列语句是命题的是________. ①求证3是无理数; ②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数; ⑤若x ∈R ,则x 2+4x +7>0. 三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ; (2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根; (4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假. (1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题. 2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析 第一章 常用逻辑用语 §1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假 2.条件 结论 作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.] 3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.] 4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.] 6.D 7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形. 8.若一个函数是奇函数 这个函数的图象关于原点对称 9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x+7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2. (2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根. (4)假命题.因为不共线的三点确定一个圆.11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题.12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1; 若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真, 即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2.故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.]14.B[①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]1.1.2四种命题【课时目标】 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的____________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的命题结构:用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:原命题:若p成立,则q成立.即“若p,则q”.逆命题:________________________.即“若q,则p”.否命题:______________________.即“若綈p,则綈q”.逆否命题:__________________.即“若綈q,则綈p”.一、选择题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1 B.2 C.3 D.42.命题“若A∩B=A,则A⊆B”的逆否命题是()A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠AD.若A⊇B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是()A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是____________________________;逆命题是_______;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出其逆命题、否命题、逆否命题,并判断真假.11.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.12.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【能力提升】13.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数14.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.2四种命题知识梳理1.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定2.若q成立,则p成立若綈p成立,则綈q成立若綈q成立,则綈p成立作业设计1.B[由a>-3⇒a>-6,但由a>-6 a>-3,故真命题为原命题及原命题的逆否命题,故选B.]2.C[先明确命题的条件和结论,然后对命题进行转换.]3.D 4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.若x≤y,则x3≤y3-18.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解逆命题:已知a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题否命题:已知a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.11.解(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.12.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.13.B[命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.]14.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.1.1.3四种命题间的相互关系【课时目标】 1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.1.四种命题的相互关系2.四种命题的真假性(1)原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假(2)四种命题的真假性之间的关系①两个命题互为逆否命题,它们有______的真假性.②两个命题为互逆命题或互否命题,它们的真假性______________.一、选择题1.命题“若p 不正确,则q 不正确”的逆命题的等价命题是( ) A .若q 不正确,则p 不正确 B .若q 不正确,则p 正确 C .若p 正确,则q 不正确 D .若p 正确,则q 正确2.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“若a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真3.与命题“能被6整除的整数,一定能被2整除”等价的命题是( ) A .能被2整除的整数,一定能被6整除 B .不能被6整除的整数,一定不能被2整除 C .不能被6整除的整数,不一定能被2整除 D .不能被2整除的整数,一定不能被6整除4.命题:“若a 2+b 2=0 (a ,b ∈R ),则a =b =0”的逆否命题是( ) A .若a ≠b ≠0 (a ,b ∈R ),则a 2+b 2≠0 B .若a =b ≠0 (a ,b ∈R ),则a 2+b 2≠0C .若a ≠0,且b ≠0 (a ,b ∈R ),则a 2+b 2≠0D .若a ≠0,或b ≠0 (a ,b ∈R ),则a 2+b 2≠05.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( ) A .都真 B .都假C .否命题真D .逆否命题真6.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( ) A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①②都是真命题 D .二、填空题7.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是________________________________________,它是______命题.(填“真”“假”) 8.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”、“假”)9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________. 三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.11.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a+b≥0. 12.若a2+b2=c2,求证:a,b,c不可能都是奇数.【能力提升】13.给出下列三个命题:①若a≥b>-1,则a1+a≥b1+b;②若正整数m和n满足m≤n,则m(n-m)≤n 2;③设P(x1,y1)是圆O1:x2+y2=9上的任意一点,圆O2以Q(a,b)为圆心,且半径为1.当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.其中假命题的个数为()A.0B.1C.2D.314.a、b、c为三个人,命题A:“如果b的年龄不是最大的,那么a的年龄最小”和命题B:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a、b、c的年龄的大小顺序是否能确定?请说明理由.1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.1.1.3四种命题间的相互关系知识梳理1.若q,则p若綈p,则綈q若綈q,则綈p2.(2)①相同②没有关系作业设计1.D[原命题的逆命题和否命题互为逆否命题,只需写出原命题的否命题即可.] 2.D 3.D4.D[a=b=0的否定为a,b至少有一个不为0.]5.D[原命题是真命题,所以逆否命题也为真命题.]6.D7.已知a∈U(U为全集),若a∈A,则a∉∁U A真解析“已知a∈U(U为全集)”是大前提,条件是“a∉∁U A”,结论是“a∈A”,所以原命题的逆命题为“已知a∈U(U为全集),若a∈A,则a∉∁U A”.它为真命题.8.假9.①②10.解逆命题:若方程x2+2x+3m=0无实根,则m>2,假命题.否命题:若m≤2,则方程x2+2x+3m=0有实根,假命题.逆否命题:若方程x2+2x+3m=0有实根,则m≤2,真命题.11.证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.∴a+b≥0.12.证明若a,b,c都是奇数,则a2,b2,c2都是奇数.得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,即原命题的逆否命题为真,故原命题也为真命题.所以a,b,c不可能都是奇数.13.B[①用“分部分式”判断,具体:a1+a≥b1+b⇔1-11+a≥1-11+b⇔11+a≤11+b,又a≥b>-1⇔a+1≥b+1>0知本命题为真命题.②用基本不等式:2xy≤x2+y2 (x>0,y>0),取x=m,y=n-m,知本命题为真.③圆O1上存在两个点A、B满足弦AB=1,所以P、O2可能都在圆O1上,当O2在圆O1上时,圆O1与圆O2相交.故本命题为假命题.]14.解能确定.理由如下:显然命题A和B的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A为真可知,当b不是最大时,则a是最小的,即若c最大,则a最小,所以c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,所以b>a>c.总之由命题A为真可知:c>b>a或b>a>c.②同理由命题B为真可知a>c>b或b>a>c.从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.§1.2充分条件与必要条件【课时目标】 1.结合实例,理解充分条件、必要条件、充要条件的意义.2.会判断(证明)某些命题的条件关系.1.如果已知“若p,则q”为真,即p⇒q,那么我们说p是q的__________,q是p的__________.2.如果既有p⇒q,又有q⇒p,就记作________.这时p是q的____________条件,简称________条件,实际上p与q互为________条件.如果p⇒q且q⇒p,则p是q的________________条件.一、选择题1.“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.设p:x<-1或x>1;q:x<-2或x>1,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.设l,m,n均为直线,其中m,n在平面α内,“l⊥α”是“l⊥m且l⊥n”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.“a<0”是“方程ax2+2x+1=0至少有一个负数根”的()A.必要不充分条件B.充分不必要条件C.充分必要条件二、填空题7.用符号“⇒”或“ ”填空.(1)a>b________ac2>bc2;(2)ab≠0________a≠0.8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-2<x<-1,则a的取值范围是________.9.函数y=ax2+bx+c (a>0)在[1,+∞)上单调递增的充要条件是__________.三、解答题10.下列命题中,判断条件p是条件q的什么条件:(1)p:|x|=|y|,q:x=y.(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;(3)p:四边形的对角线互相平分,q:四边形是矩形.11.设x ,y ∈R ,求证|x +y |=|x |+|y |成立的充要条件是xy ≥0.12.已知P ={x |a -4<x <a +4},Q ={x |x 2-4x +3<0},若x ∈P 是x ∈Q 的必要条件,求实数a 的取值范围.【能力提升】 13.记实数x 1,x 2,…,x n 中的最大数为max{x 1,x 2,…,x n },最小数为min {}x 1,x 2,…,x n .已知△ABC 的三边边长为a ,b ,c (a ≤b ≤c ),定义它的倾斜度为l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ,则“l =1”是“△ABC 为等边三角形”的( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件D .既不充分也不必要条件14.已知数列{a n }的前n 项和为S n =(n +1)2+c ,探究{a n }是等差数列的充要条件.1.判断p是q的什么条件,常用的方法是验证由p能否推出q,由q能否推出p,对于否定性命题,注意利用等价命题来判断.2.证明充要条件时,既要证明充分性,又要证明必要性,即证明原命题和逆命题都成立,但要分清必要性、充分性是证明怎样的一个式子成立.“A的充要条件为B”的命题的证明:A⇒B证明了必要性;B⇒A证明了充分性.“A是B的充要条件”的命题的证明:A⇒B证明了充分性;B⇒A证明了必要性.§1.2充分条件与必要条件知识梳理1.充分条件必要条件2.p⇔q充分必要充要充要既不充分又不必要作业设计1.A[对于“x>0”⇒“x≠0”,反之不一定成立.因此“x>0”是“x≠0”的充分而不必要条件.]2.A[∵q⇒p,∴綈p⇒綈q,反之不一定成立,因此綈p是綈q的充分不必要条件.] 3.B [因为N M.所以“a∈M”是“a∈N”的必要而不充分条件.]4.A[把k=1代入x-y+k=0,推得“直线x-y+k=0与圆x2+y2=1相交”;但“直线x-y+k=0与圆x2+y2=1相交”不一定推得“k=1”.故“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分而不必要条件.]5.A [l ⊥α⇒l ⊥m 且l ⊥n ,而m ,n 是平面α内两条直线,并不一定相交,所以l ⊥m 且l ⊥n 不能得到l ⊥α.]6.B [当a <0时,由韦达定理知x 1x 2=1a<0,故此一元二次方程有一正根和一负根,符合题意;当ax 2+2x +1=0至少有一个负数根时,a 可以为0,因为当a =0时,该方程仅有一根为-12,所以a 不一定小于0.由上述推理可知,“a <0”是“方程ax 2+2x +1=0至少有一个负数根”的充分不必要条件.] 7.(1) ⇒ (2)⇒ 8.a >2解析 不等式变形为(x +1)(x +a )<0,因当-2<x <-1时不等式成立,所以不等式的解为-a <x <-1.由题意有(-2,-1) (-a ,-1),∴-2>-a ,即a >2.9.b ≥-2a解析 由二次函数的图象可知当-b2a≤1,即b ≥-2a 时,函数y =ax 2+bx +c 在[1,+∞)上单调递增.10.解 (1)∵|x |=|y |⇒x =y , 但x =y ⇒|x |=|y |,∴p 是q 的必要条件,但不是充分条件.(2)△ABC 是直角三角形⇒△ABC 是等腰三角形. △ABC 是等腰三角形⇒△ABC 是直角三角形. ∴p 既不是q 的充分条件,也不是q 的必要条件. (3)四边形的对角线互相平分⇒四边形是矩形. 四边形是矩形⇒四边形的对角线互相平分. ∴p 是q 的必要条件,但不是充分条件.11.证明 ①充分性:如果xy ≥0,则有xy =0和xy >0两种情况,当xy =0时,不妨设x =0,则|x +y |=|y |,|x |+|y |=|y |,∴等式成立. 当xy >0时,即x >0,y >0,或x <0,y <0,又当x >0,y >0时,|x +y |=x +y ,|x |+|y |=x +y , ∴等式成立.当x <0,y <0时,|x +y |=-(x +y ),|x |+|y |=-x -y ,∴等式成立. 总之,当xy ≥0时,|x +y |=|x |+|y |成立. ②必要性:若|x +y |=|x |+|y |且x ,y ∈R , 则|x +y |2=(|x |+|y |)2,即x 2+2xy +y 2=x 2+y 2+2|x ||y |, ∴|xy |=xy ,∴xy ≥0.综上可知,xy ≥0是等式|x +y |=|x |+|y |成立的充要条件. 12.解 由题意知,Q ={x |1<x <3},Q ⇒P , ∴⎩⎪⎨⎪⎧a -4≤1a +4≥3,解得-1≤a ≤5. ∴实数a 的取值范围是[-1,5].13.A [当△ABC 是等边三角形时,a =b =c ,∴l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =1×1=1.∴“l =1”是“△ABC 为等边三角形”的必要条件.∵a ≤b ≤c ,∴max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ca .又∵l =1,∴min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ac,即ab=ac或bc=ac,得b=c或b=a,可知△ABC为等腰三角形,而不能推出△ABC为等边三角形.∴“l=1”不是“△ABC为等边三角形”的充分条件.]14.解当{a n}是等差数列时,∵S n=(n+1)2+c,∴当n≥2时,S n-1=n2+c,∴a n=S n-S n-1=2n+1,∴a n+1-a n=2为常数.又a1=S1=4+c,∴a2-a1=5-(4+c)=1-c,∵{a n}是等差数列,∴a2-a1=2,∴1-c=2.∴c=-1,反之,当c=-1时,S n=n2+2n,可得a n=2n+1 (n≥1)为等差数列,∴{a n}为等差数列的充要条件是c=-1.§1.3简单的逻辑联结词【课时目标】 1.了解逻辑联结词“或”、“且”、“非”的含义.2.会用逻辑联结词联结两个命题或改写某些数学命题,并能判断命题的真假.1.用逻辑联结词构成新命题(1)用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.(2)用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.(3)对一个命题p全盘否定,就得到一个新命题,记作________,读作__________或__________.2.含有逻辑联结词的命题的真假判断p q p∨q p∧q綈p真真真真假真假真假假假真真假真假假假假真一、选择题1.已知p:2+2=5;q:3>2,则下列判断错误的是()A.“p∨q”为真,“綈q”为假B.“p∧q”为假,“綈p”为真C.“p∧q”为假,“綈p”为假D.“p∨q”为真,“綈p”为真2.已知p:∅{0},q:{2}∈{1,2,3}.由它们构成的新命题“綈p”,“綈q”,“p∧q”,“p∨q”中,真命题有( )A.1个B.2个C.3个D.4个3.下列命题:①2010年2月14日既是春节,又是情人节;②10的倍数一定是5的倍数;③梯形不是矩形.其中使用逻辑联结词的命题有()A.0个B.1个C.2个D.3个4.设p、q是两个命题,则新命题“綈(p∨q)为假,p∧q为假”的充要条件是() A.p、q中至少有一个为真B.p、q中至少有一个为假C.p、q中有且只有一个为假D.p为真,q为假5.命题p:在△ABC中,∠C>∠B是sin C>sin B的充分不必要条件;命题q:a>b是ac2>bc2的充分不必要条件.则()A.p假q真B.p真q假C.p∨q为假D.p∧q为真6.下列命题中既是p∧q形式的命题,又是真命题的是()A.10或15是5的倍数B.方程x2-3x-4=0的两根是-4和1C.方程x2+1=0没有实数根D.有两个角为45°的三角形是等腰直角三角形题号123456答案二、填空题7.“2≤3”中的逻辑联结词是________,它是________命题.(填“真”,“假”) 8.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的范围是____________.9.已知a、b∈R,设p:|a|+|b|>|a+b|,q:函数y=x2-x+1在(0,+∞)上是增函数,那么命题:p∨q、p∧q、綈p中的真命题是________.三、解答题10.分别指出由下列各组命题构成的“p∨q”“p∧q”“綈p”形式的复合命题的真假.(1)p:4+3=7,q:5<4;(2)p:9是质数,q:8是12的约数;(3)p:1∈{1,2};q:∅{1,2};(4)p:∅={0},q:∅⊆∅.11.写出由下列各组命题构成的“p或q”、“p且q”、“綈p”形式的复合命题,并判断真假.(1)p:1是质数;q:1是方程x2+2x-3=0的根;(2)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;(3)p:0∈∅;q:{x|x2-3x-5<0}⊆R;(4)p:5≤5;q:27不是质数.12.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.【能力提升】13.命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y =|x-1|-2 的定义域是(-∞,-1]∪[3,+∞),则()A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真14.设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.1.从集合的角度理解“且”“或”“非”.设命题p:x∈A.命题q:x∈B.则p∧q⇔x∈A且x∈B⇔x∈A∩B;p∨q⇔x∈A或x∈B ⇔x∈A∪B;綈p⇔x∉A⇔x∈∁U A.2.对有逻辑联结词的命题真假性的判断当p、q都为真,p∧q才为真;当p、q有一个为真,p∨q即为真;綈p与p的真假性相反且一定有一个为真.3.含有逻辑联结词的命题否定“或”“且”联结词的否定形式:“p或q”的否定形式“綈p且綈q”,“p且q”的否定形式是“綈p或綈q”,它类似于集合中的“∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B)”.§1.3简单的逻辑联结词知识梳理1.(1)p∧q“p且q”(2)p∨q“p或q”(3)綈p“非p”“p的否定”作业设计1.C[p假q真,根据真值表判断“p∧q”为假,“綈p”为真.]2.B[∵p真,q假,∴綈q真,p∨q真.]3.C[①③命题使用逻辑联结词,其中,①使用“且”,③使用“非”.]4.C [因为命题“綈(p ∨q )”为假命题,所以p ∨q 为真命题.所以p 、q 一真一假或都是真命题.又因为p ∧q 为假,所以p 、q 一真一假或都是假命题,所以p 、q 中有且只有一个为假.]5.C [命题p 、q 均为假命题,∴p ∨q 为假.]6.D [A 中的命题是p ∨q 型命题,B 中的命题是假命题,C 中的命题是綈p 的形式,D 中的命题为p ∧q 型,且为真命题.] 7.或 真 8.[1,2)解析 x ∈[2,5]或x ∈(-∞,1)∪(4,+∞),即x ∈(-∞,1)∪[2,+∞),由于命题是假命题, 所以1≤x <2,即x ∈[1,2). 9.綈p解析 对于p ,当a >0,b >0时,|a |+|b |=|a +b |,故p 假,綈p 为真;对于q ,抛物线y =x 2-x +1的对称轴为x =12,故q 假,所以p ∨q 假,p ∧q 假.这里綈p 应理解成|a |+|b |>|a +b |不恒成立,而不是|a |+|b |≤|a +b |.10.解 (1)因为p 真q 假,所以“p ∨q ”为真,“p ∧q ”为假,“綈p ”为假. (2)因为p 假q 假,所以“p ∨q ”为假,“p ∧q ”为假,“綈p ”为真. (3)因为p 真q 真,所以“p ∨q ”为真,“p ∧q ”为真,“綈p ”为假. (4)因为p 假q 真,所以“p ∨q ”为真,“p ∧q ”为假,“綈p ”为真. 11.解 (1)p 为假命题,q 为真命题.p 或q :1是质数或是方程x 2+2x -3=0的根.真命题. p 且q :1既是质数又是方程x 2+2x -3=0的根.假命题. 綈p :1不是质数.真命题. (2)p 为假命题,q 为假命题.p 或q :平行四边形的对角线相等或互相垂直.假命题. p 且q :平行四边形的对角线相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题. (3)∵0∉∅,∴p 为假命题,又∵x 2-3x -5<0,∴3-292<x <3+292,∴{x |x 2-3x -5<0}=⎩⎨⎧⎭⎬⎫x |3-292<x <3+292⊆R 成立. ∴q 为真命题.∴p 或q :0∈∅或{x |x 2-3x -5<0}⊆R ,真命题, p 且q :0∈∅且{x |x 2-3x -5<0}⊆R ,假命题, 綈p :0∉∅,真命题.(4)显然p :5≤5为真命题,q :27不是质数为真命题, ∴p 或q :5≤5或27不是质数,真命题, p 且q :5≤5且27不是质数,真命题,綈p :5>5,假命题.12.解 若方程x 2+mx +1=0有两个不等的负根,则⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0,解得m >2,即p :m >2. 若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0,。

北师大版高中数学选修2-1本章练测:第1章常用逻辑用语(含答案详解).docx

北师大版高中数学选修2-1本章练测:第1章常用逻辑用语(含答案详解).docx

第一章常用逻辑用语(北京师大版选修2-1)建议用时实际用时满分实际得分120分钟150分一、选择题(本题共12小题,每小题5分,共60分)1. 下列说法中,不正确的是( )A.“若p则p”与“若p则p”是互逆命题B.“若﹁p则﹁p”与“若p则p”是互否命题C.“若﹁p则﹁p”与“若p则p”是互否命题D.“若﹁p则﹁p”与“若p则p”是互为逆否命题以下说法错误的是( )A.如果一个命题的逆命题为真命题,那么它的否命题也必为真命题B.如果一个命题的否命题为假命题,那么它本身一定为真命题C.原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数D.一个命题的逆命题、否命题、逆否命题可以同为假命题命题“设a,b,c∈R,若a p2>b p2,则a>b”的逆命题、否命题、逆否命题中真命题共有( )A.0个B.1个C.2个D.3个(2012·山东济宁一模)已知p:|x+1|≤4;q:p2<5x-6,则p是q成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件设p:|4p−3|≤1,p:p2−(2p+1)p+p(p+1)≤0,若﹁p是﹁p的必要不充分条件,则实数p的取值范围是()[0,12]B.(0,12)(−∞,0]∪[12,+∞)D.(−∞,0)∪(12,+∞)命题p:将函数p=sin2p的图像向右平移π3个单位长度得到函数p=sin(2p−π3)的图像;命题p:函数p=sin(p+π6)cos(π3−p)的最小正周期是π,则复合命题“p或p”“p且p”“非p”中真命题的个数是()A.0B.1C.2D.37.已知命题p:“∀p∈[1,2],p2−p≥0”,命题p:“∃p∈p,p2+2pp+2−p=0”若命题“p⋀p”是真命题,则实数p的取值范围是()A. {p|p≤−2或p=1}B.{p|p≤−2或1≤p≤2}C. {p|p≥1}D. {p|−2≤p≤1}8.给出下列命题:①若“p或p”是假命题,则“﹁p且﹁p”是真命题;②|p|>|p|⇔p2>p2;③若关于p的实系数一元二次不等式pp2+pp+p≤0的解集为p,则必有p>0且p≤0;④{p>2,p>2⇔{p+p>4,pp>4.其中真命题的个数是()A.1B.2C.3D.49.关于p的函数p(p)=sin(pp+p)有以下命题:①∀ p∈p,p(p+2π)=p(p);②∃ p∈p,p(p+1)=p(p);③∀ p∈p,p(p)都不是偶函数;④∃ p∈p,使f(p)是奇函数.其中假命题的序号是()A.①③B.①④C.②④D.②③10.下面有关命题的说法正确的是( )A.命题“若p2-3x+2=0,则x=1”的逆命题为“若x≠1,则p2-3x+2≠0”B.命题“若p2-3x+2=0,则x=1”的否命题为“若x≠1,则p2-3x+2≠0”C.命题“∃x∈R,log2p≤0”的否定为“∃x∈R,log2p>0”D.命题“∃x∈R,log2p≤0”的否定为“∀x∈R,log2p>0”11.有限集合p中元素的个数记作card(p),设,B都是有限集合,给出下列命题:①p∩p=p的充要条件是card(p∪p)=card(p)+card(p);②p⊆p的必要条件是card(p)≤card(p);③p⊈p的充分条件是card(p)≤card(p);④p=p的充要条件是card(p)=card(p).其中正确的命题个数是()A.0B.1C.2D.312.已知命题p:∃ p∈p,使sin p=√52;命题p: ∀ p∈p,都有p2+p+1>0.给出下列结论:①命题“p∧p”是真命题;②命题“p∧(﹁p)”是假命题;③命题“(﹁p)∨p”是真命题;④命题“(﹁p)∨(﹁p)”是假命题,其中正确的是()A.②④B.②③C.③④D.①②③二、填空题(本题共4小题,每小题4分,共16分)13.若p=p(p)为定义在D上的函数,则“存在p0∈D,使得[p(−p0)]2≠[p(p0)]2”是“函数p=p(p)为非奇非偶函数”的________条件.14.已知p:与整数的差为12的数;p:整数的12,则p是p的________条件.15.已知命题p:(p−3)(p+1)>0,命题q:p2−2p+1−p2>0(p>0),若命题p是命题q的充分不必要条件,则实数p的取值范围是____________.16.下列四个结论中,正确的有 (填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“{p>0,p=p2-4pp≤0”是“一元二次不等式a p2+bx+c≥0的解集为R”的充要条件;③“x≠1”是“p2≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题(本题共6小题,共74分)17.(本小题满分12分)设命题为“若p>0,则关于p的方程p2+p−p=0有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.18.(本小题满分12分)已知命题p:任意p∈p,pp2+2p+3≥0,如果命题﹁p是真命题,求实数p的取值范围.19.(本小题满分12分)已知P={x|p2-8x-20≤0},S={x|1-m≤x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;(2)是否存在实数m,使x∈P是x∈S的必要不充分条件,若存在,求出m的取值范围.20.(本小题满分12分)设p:实数x满足p2-4ax+3p2<0,其中a>0;q:实数x满足{p2-p-6≤0,p2+2p-8>0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.21.(本小题满分12分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖.问P,Q,R,S分别获得几等奖?22.(本小题满分14分)设命题p:函数p(p)=(p−32)p是R上的减函数,命题q:函数p(p)= p2−4p+3在[0,p]上的值域为[−1,3].若“p∧p”为假命题,“p∨p”为真命题,求p的取值范围.答题纸得分:________ 一、选择题二、填空题13. 14. 15. 16.三、解答题17.解:18.解:19.解:20.解:21.解:22.解:答案一、选择题1.B 解析:“若﹁p则﹁p”与“若p则p”是互为逆否的命题,B不正确,故选B.2.B解析:两个命题互为逆否命题,它们之间有相同的真假性;两个命题为互逆或互否命题,它们的真假性没有关系.故B错误.3.B解析:原命题正确,所以其逆否命题正确.逆命题不正确,因为当c=0时,a p2=b p2.从而原命题的否命题也不正确.4. B解析:由|x+1|≤4⟹-4≤x+1≤4,得-5≤x≤3,即p对应的集合为[-5,3];由p2<5x-6⟹p2-5x+6<0,解一元二次不等式可得2<x<3,即q对应的集合为(2,3).因为(2,3)[-5,3],所以p是q成立的必要不充分条件.5.A解析:由已知得若p成立,则12≤p≤1,若p成立,则p≤p≤p+1.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以{p≤12,1<p+1,或{p<12,1≤p+1.所以0≤p≤12.6.C 解析:将函数y=sin2p的图像向右平移π3个单位长度得到函数y=sin2(p−π3)=sin(2p−2π3)的图像,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数p=sin(p+π6)cos(π3−p)=cos(π2−p−π6)cos(π3−p)=cos2(π3−p)=cos(2p−2π3)2+12,最小正周期为π,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个,选C.7.A解析:若p成立,对∀p∈[1,2],有p≤p2.因为1≤p≤2,所以1≤p2≤4,即p≤(p2)min=1.若q成立,则方程p2+2pp+2−p=0的判别式p=4p2−4(2−p)≥0,解得p≤−2或p≥1.因为命题“p∧p”是真命题,所以p真q真,故p的取值范围为{p|p≤−2或p=1}.8.B解析:“p或q”是假命题,则它的否定是真命题,即“﹁p且﹁q”是真命题,①是真命题;若|p|>|p|,则p2>p2,若p2>p2,则|p|>|p|,所以②是真命题;数形结合可得,若一元二次不等式pp2+pp+c≤0的解集是p,则必有p>0且p<0,所以③是假命题;当p>2,p>2时,必有p+p>4,pp>4.但当p= 1,y=5时,满足p+p>4,pp>4.但p<2,所以④是假命题.共有2个真命题.9. A解析:对于命题①,若p(p+2π)=sin(pp+2πp+p)=sin(pp+p)成立,p必须是整数,所以命题①是假命题;对于函数f(p)=sin(pp+p),当p=π2时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.所以选A.10. D解析:A错误,逆命题为“若x=1,则p2-3x+2=0”;B错误,否命题为“若p2-3x+2≠0,则x≠1”;C错误,否定为“∀x∈R,log2p>0”.11.C 解析:p∩p=p,集合p和集合p没有公共元素,①正确;p⊆p,集合p中的元素都是集合p中的元素,②正确;③错误;p=p,则集合p中的元素与集合p中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.所以选C.12.B解析:因为√52>1,所以命题p是假命题,﹁p是真命题;由函数y=p2+p+1的图像可得,命题q是真命题,﹁p是假命题.所以命题“p∧p”是假命题, 命题“p∧(﹁p)”是假命题,命题“(﹁p)∨p”是真命题,命题“(﹁p)∨(﹁p)”是真命题.所以②③正确.二、填空题13.充分不必要 解析:存在p 0∈D ,使得[p (–p 0)]2≠[p (p 0)]2,则函数p =p (p )为非奇非偶函数;若函数 p =p (p )为非奇非偶函数,可能定义域不关于原点对称,所以“存在p 0∈D ,使得[p (−p 0)]2≠[p (p 0)]2”是“函数p =p (p )为非奇非偶函数”的充分不必要条件.14.充分不必要 解析:p ,p 可分别用集合p ={p |p =p +12,p ∈p },p ={p |p =p2,p ∈p }表示,集合p 表示奇数的12,集合p 表示整数的12,因为p Üp ,所以p 是p 的充分不必要条件.15.(0,2)解析:两个命题可分别表示为p : p >3或p <−1,p : p >1+p 或p <1−p ,要使命题p 是命题p的充分不必要条件,则{1+p ≤3,1−p >−1,p >0,或{1+p <3,1−p ≥−1,p >0,解得0<p <2.16.①②④解析:∵原命题与其逆否命题等价,∴若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件.x ≠1⇏p 2≠1,反例:x =-1⟹p 2=1,∴“x ≠1”是“p 2≠1”的不充分条件.x ≠0⇏x +|x |>0,反例:x =-2⟹x +|x |=0. 但x +|x |>0⟹x >0⟹x ≠0,∴“x ≠0”是“x +|x |>0”的必要不充分条件.三、解答题17.解:否命题为“若p ≤0,则关于p 的方程p 2+p −p =0没有实数根”;逆命题为“若关于p 的方程p 2+p −p =0有实数根,则p >0”; 逆否命题为“若关于p 的方程p 2+p −p =0没有实数根,则p ≤0”.由方程p 2+p −p =0根的判别式p =1+4p >0,得p >−14,此时方程有实数根.因为p >0使1+4p >0,所以方程p 2+p −p =0有实数根,所以原命题为真,从而逆否命题为真.但方程p 2+p −p =0有实数根,必须p >−14,不能推出p >0,故逆命题为假,从而否命题为假.18.解:因为命题﹁p 是真命题,所以p 是假命题.又当p 是真命题,即pp 2+2p +3≥0恒成立时,应有 {p >0,p =4−12p ≤0,解得p ≥13,所以当p 是假命题时,p <13. 所以实数p 的取值范围是{p |p <13}.19.解:(1)由p 2-8x -20≤0可解得-2≤x ≤10, ∴P ={x |-2≤x ≤10}. ∵x ∈P 是x ∈S 的充要条件,∴P =S , ∴{1-p =-2,1+p =10,∴{p =3,p =9.∴这样的m 不存在.(2)由题意知,x ∈P 是x ∈S 的必要不充分条件,则SP .于是有{1-p≥-2,1+p<10或{1−p>−2,1+p≤10,∴p≤3或p<3,∴m≤3.∴当m≤3时,x∈P是x∈S的必要不充分条件.20.解:解:由p2-4ax+3p2<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由{p2-p-6≤0,p2+2p-8>0,得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若¬p是¬q的充分不必要条件,即¬p⟹¬q,且¬p⇏¬p.设A={x|¬p},B={x|¬q},则A B.又A={x|¬p}={x|x≤a或x≥3a},B={x|¬q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.21.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.22.解:由0<p−32<1得32<p<52.因为p(p)=(p−2)2−1在[0,p]上的值域为[−1,3],所以2≤p≤4. 又因为“p∧p”为假命题,“p∨p”为真命题,所以p,p一真一假.若p真p假,则32<p<2;若p假p真,则52≤p≤4.综上可得,p的取值范围是{p|32<p<2或52≤p≤4}.。

高中数学北师大版选修2-1课时练课件-第一章-(共8份打包)2

高中数学北师大版选修2-1课时练课件-第一章-(共8份打包)2

充要条件
当 p⇒q 且 q⇒p,即 p 是 q 的充分条件而且 p 是 q 的必要条件 时,我们称 p 是 q 的___充__分__必__要____条件,简称 ___充__要__条__件______.当 p 是 q 的充要条件时,q 也是 p 的充误的打“×”) (1)“两角不相等”是“两角不是对顶角”的必要不充分条 件.( × ) (2)若命题“若 p,则 q”及其否命题都是真命题,则 p⇔q.( √ )
[错因与防范] (1)本例易忽略条件和结论的判断,从而把充 分性、必要性的证明颠倒; (2)对“A 是 B 的充要条件”这种叙述 A 是条件,B 是结论; 对“A 的充要条件是 B”这种叙述,B 是条件,A 是结论. (3)由条件推出结论是证明充分性,由结论推出条件是证明必 要性.
4.已知 ab≠0,求证:a+b=1 的充要条件是 a3+b3+ab-a2 -b2=0. 证明:先证必要性:因为 a+b=1, 所以 a3+b3+ab-a2-b2 =(a+b)(a2-ab+b2)+ab-a2-b2 =a2-ab+b2+ab-a2-b2=0,
所以必要性成立.
再证充分性:因为 a3+b3+ab-a2-b2=0, 即(a+b)(a2-ab+b2)-(a2-ab+b2)=0, 所以(a+b-1)(a2-ab+b2)=0. 又因为 ab≠0,所以 a≠0 且 b≠0, 从而 a2-ab+b2≠0, 所以 a+b-1=0,即 a+b=1,故充分性成立. 所以 a+b=1 的充要条件是 a3+b3+ab-a2-b2=0.
[方法归纳] (1)分清条件和结论; (2)由条件推出结论是证明充分性; (3)由结论推出条件是证明必要性.
3.已知数列{an}的前 n 项和为 Sn=aqn+b(a≠0,q 是不等于

高中数学 第一章 常用逻辑用语 1.2.2 必要条件课时作业 北师大版选修2-1

高中数学 第一章 常用逻辑用语 1.2.2 必要条件课时作业 北师大版选修2-1

1.2.2 必要条件[基础达标]1.使不等式1a >1b成立的充分条件是( ) A .a <bB .a >bC .ab <0D .a >0,b <0解析:选D.a >0,b <0⇒1a >1b ,其它条件均推不出1a >1b,故选D. 2.使不等式a 2>b 2成立的必要条件是( )A .a <bB .a >bC .|a |>|b |D .ab >0 解析:选C.∵a 2>b 2⇒|a |>|b |,而推不出A 、B 、D ,故选C.3.下列说法不正确的是( )A .a ∥b 是a =b 的必要条件B .a ∥b 是a =b 的不充分条件C .θ>0是sin θ>0的充分条件D .θ>0是sin θ>0的不必要条件解析:选C.由于θ>0/⇒ sin θ>0,例如θ=π,sin θ=0,∴C 中命题不正确,其余均正确.4.若“x >1”是“x >a ”的充分条件,则实数a 的取值范围是( )A .a >1B .a ≥1C .a <1D .a ≤1解析:选D.由题意,需x >1⇒x >a ,∴a ≤1,选D.5.对任意实数a ,b ,c ,在下列命题中,真命题是( )A .“ac >bc ”是“a >b ”的必要条件B .“ac =bc ”是“a =b ”的必要条件C .“ac >bc ”是“a >b ”的充分条件D .“ac =bc ”是“a =b ”的充分条件解析:选B. A× 当c <0时,a >b /⇒ ac >bc B√ 根据等式的性质,有“a =b ⇒ac =bc ”C× 当c <0时,ac >bc /⇒ a >b D × 当c =0时,ac =bc /⇒a =b 6.a 为素数解析:由于a =2时不成立,∴a 为素数不是a 为奇数的充分条件.答案:不是7.若“x 2+ax +2=0”是“x =1”的必要条件,则a =________.解析:由题意x =1是方程的根,∴12+a +2=0,∴a =-3.答案:-38.命题“已知n ∈Z ,若a =4n ,则a 是偶数”中,“a 是偶数”是“a =4n ”的________条件,“a =4n ”是“a 是偶数”的________条件(用充分、必要填空).解析:命题“已知n ∈Z ,若a =4n ,则a 是偶数”是真命题,所以“a 是偶数”是“a =4n ”的必要条件,“a =4n ”是“a 是偶数”的充分条件.答案:必要 充分9.(1)是否存在实数m ,使2x +m <0是x 2-2x -3>0的充分条件?(2)是否存在实数m ,使2x +m <0是x 2-2x -3>0的必要条件?解:(1)欲使2x +m <0是x 2-2x -3>0的充分条件,则只要{x |x <-m 2}⊆{x |x <-1或x >3},则只要-m 2≤-1,即m ≥2.故存在实数m ≥2,使2x +m <0是x 2-2x -3>0的充分条件.(2)欲使2x +m <0是x 2-2x -3>0的必要条件,则只要{x |x <-m 2}⊇{x |x <-1或x >3},这是不可能的,故不存在实数m ,使2x +m <0是x 2-2x -3>0的必要条件.10.分别判断下列“若p ,则q ”的命题中,p 是否为q 的充分条件或必要条件,并说明理由.(1)若α≠β,则sin α≠sin β.(2)若m >2,则方程x 2+mx +1=0有实数根.解:(1)由于α=β ⇒sin α=sin β,sin α=sin β/⇒ α=β,由逆否命题的真假性相同,得sin α≠sin β ⇒α≠β, α≠β/⇒ sin α≠sin β,所以α≠β是sin α≠sin β的不充分条件,α≠β是sin α≠sin β的必要条件.(2)由方程x 2+mx +1=0有实数根,得 Δ=m 2-4≥0⇔m ≤-2或m ≥2.由于m >2⇒Δ>0⇒方程x 2+mx +1=0有实数根,而反推不成立,所以m >2是方程x 2+mx +1=0有实数根的充分条件,m >2是方程x 2+mx +1=0有实数根的不必要条件.[能力提升]1.已知等比数列{a n }的公比为q ,则下列不是{a n }为递增数列的充分条件的是( ) ①a 1<a 2;②a 1>0,q >1;③a 1>0,0<q <1;④a 1<0,0<q <1.A .①②B .①③C .③④D .①③④ 解析:选B.由等比数列-1,1,-1,…知①不是等比数列{a n }递增的充分条件,排除C ;显然②是等比数列{a n }递增的充分条件,排除A ;当a 1<0,0<q <1时,等比数列{a n }递增,排除D.故选B.2.函数f (x )=a -42x +1为奇函数的必要条件是________. 解析:∵x ∈R ,f (x )为奇函数.∴f (0)=0,即a -2=0,∴a =2.答案:a =23.已知集合P ={x |x 2-8x -20≤0},集合S ={x ||x -1|≤m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充分条件?若存在,求出m 的取值范围;若不存在,说明理由.(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的取值范围;若不存在,说明理由.解:(1)由题意,x ∈P 是x ∈S 的充分条件,则P ⊆S .由x 2-8x -20≤0,解得-2≤x ≤10,∴P =[-2,10].由|x -1|≤m 得1-m ≤x ≤1+m ,∴S =[1-m ,1+m ].要使P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤-2,1+m ≥10. ∴⎩⎪⎨⎪⎧m ≥3,m ≥9.∴m ≥9, ∴实数m 的取值范围是{m |m ≥9}.(2)由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .由|x -1|≤m ,可得1-m ≤x ≤m +1,要使S ⊆P ,则⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,∴m ≤3. ∴实数m 的取值范围是{m |m ≤3}.4.设函数f (x )=x 2-2x +3,g (x )=x 2-x .(1)解不等式|f (x )-g (x )|≥2 014;(2)若|f (x )-a |<2恒成立的充分条件是1≤x ≤2,求实数a 的取值范围.解:(1)由|f (x )-g (x )|≥2 014得|-x +3|≥2 014,即|x -3|≥2 014,所以x -3≥2 014或x -3≤-2 014,解得x ≥2 017或x ≤-2 011.(2)依题意知:当1≤x ≤2时,|f (x )-a |<2恒成立,所以当1≤x ≤2时,-2<f (x )-a <2恒成立,即f (x )-2<a <f (x )+2恒成立.由于当1≤x ≤2时,f (x )=x 2-2x +3=(x -1)2+2的最大值为3,最小值为2,因此3-2<a <2+2,即1<a <4,所以实数a 的取值范围是(1,4).。

(常考题)北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试(含答案解析)

(常考题)北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试(含答案解析)

一、选择题1.已知函数()y f x =的定义域为R ,有下面三个命题,命题p :存在a ∈R 且0a ≠,对任意的x ∈R ,均有()()()+<+f x a f x f a 恒成立,命题1q :()y f x =在R 上是严格减函数,且()0f x >恒成立;命题2q :()y f x =在R 上是严格增函数,且存在00x <使得0()0f x =,则下列说法正确的是( ) A .1q 、2q 都是p 的充分条件 B .只有1q 是p 的充分条件 C .只有2q 是p 的充分条件D .1q 、2q 都不是p 的充分条件2.命题“若{}n a 是等比数列,则n n kn k na a a a +-=(n k >且*,n k N ∈)的逆命题、否命题与逆否命题中,假命题的个数为( ) A .0B .1C .2D .33.下列说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B .命题“2000,10x x x ∃∈++<R ”的否定是“2,10x R x x ∀∈++<” C .命题“若x y =,则sin sin x y =”的逆否命题为假命题D .若椭圆22221(0)x y a b a b +=>>22221x y a b -=的渐近线方程为12y x =±4.已知命题p :在ABC 中,若A B >,则cos cos A B <,命题q :()0,x ∃∈+∞,sin x x >,则下列命题中为真命题的是( )A .p q ∧B .()p q ⌝∧C .()p q ∨⌝D .()()p q ⌝∧⌝5.命题“存在[]1,0x ∈-,使得20x x a +-≤”为真命题的一个充分不必要条件是( )A .14a ≥-B .14a >C .12a ≥-D .12a >-6.设0a >,0b >.下列说法正确的是( )A .2ln 2ln a b a b +<+则a b >B .2ln 2ln a b a b +<+则a b <C .2ln 2ln a b a b -<-则a b >D .2ln 2ln a b a b -<-则a b <7.若命题“0x R ∃∈,200230x mx m ++-<”为假命题,则实数m 的取值范围是( ) A .[]2,6 B .()2,6C .(][),26,-∞+∞D .()(),26,-∞+∞8.已知命题()0:0,p x ∃∈+∞,00122019xx +=;命题:q 在ABC ∆中,若sin sin A B >,则cos cos A B <.下列命题为真命题的是( )A .p q ∧B .()p q ∨⌝C .()()p q ⌝∨⌝D .()p q ∧⌝9.已知函数()222f x x x =-+,2log g xx t ,对[]10,2x ∀∈,21,162x ⎡⎤∃∈⎢⎥⎣⎦使得()()12f x g x =,则实数t 的取值范围( ) A .(],2-∞-B .[)2+∞,C .()2,2-D .[]22-,10.在平面直角坐标系1A xy -中,直线134x y+=与x 、y 轴分别交于点2A 、3A ,记以点(1,2,3)i A i =为圆心,半径为r 的圆与三角形123A A A 的边的交点个数为M .对于下列说法:①当1i =时,若3M =,则125r =;②当2i =时,若04r <<,则2M =;③当3i =时,M 不可能等于3;④M 的值可以为0,1,2,3,4,5.其中正确的个数为( ) A .1B .2C .3D .411.命题“[]1,2x ∃∈,2ln 0x x a +-≤”为假命题,则a 的取值范围为( ) A .(),1-∞B .(),0-∞C .(],ln 22-∞+D .(),ln 24-∞+12.条件甲:关于x 的不等式 sincos 1a x b x +>的解集为空集,条件乙:1a b +≤,则甲是乙的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件二、填空题13.下列说法中:①命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤”;②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”是“函数()y f x =在区间D 上的最小值为M ”的必要不充分条件;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()()()1212f x f x f x x +=; ④若1x ,2x ∈R ,12x x ≠,则函数()2xf x =满足()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭.所有正确说法的序号______.(把满足条件的序号全部写在横线上) 14.给出以下四个结论: ①函数()211x f x x -=+的对称中心是1,2;②若关于x 的方程10x k x-+=在()0,1∈x 没有实数根,则k 的取值范围是2k ≥; ③在ABC 中,“cos cos b A a B =”是“ABC 为等边三角形”的充分不必要条件;④若()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后为奇函数,则ϕ最小值是π12. 其中正确的结论是______15.已知命题:p x R ∀∈,210x mx ++≥;命题()0:0,q x ∃∈+∞,000xe mx -=,若p q ∨为假命题,则实数m 的取值范围是_______________;16.已知命题:P 方程2410x x m ++-=有两个不等的负根;命题:q 方程24420x x m ++-=无实根.若P 、q 两命题中一真一假,则m 的取值范围是__________.17.设:12p x <<,:21x q >,则p 是q 成立的________条件 18.定义在R 上的函数()f x ,给出下列三个论断: ①()f x 在R 上单调递增;②1x >;③()(1)f x f >.以其中的两个论断为条件,余下的一个论断为结论,写出一个正确的命题:________. 19.设α:13x ≤≤;β: 124m x m +≤≤+,m R ∈,若α是β的充分不必要条件,则m 的取值范围是________ 20.“”是“”的_____条件.(填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)三、解答题21.已知集合A =233|1,,224y y x x x ⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,B ={x|x +m 2≥1}.命题p :x ∈A ,命题q :x ∈B ,并且命题p 是命题q 的充分条件,求实数m 的取值范围. 22.已知命题12:,p x x 是方程210x mx --=的两个实根,且不等式21243||a a x x +-≤-对任意m R ∈恒成立;命题q :不等式2210ax x +->有解,若命题p q ∨为真,p q ∧为假,求实数a 的取值范围.23.已知m ∈R 命题p :对[]0,1x ∀∈,不等式2223x m m -≥-恒成立;命题[]:1,1q x ∃∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若命题p 和命题q 有且仅有一个为真,求m 的取值范围. 24.给定两个命题P :对任意实数x 都有210ax ax ++>恒成立;Q :关于x 的方程20x x a -+=有实数根;(1)“0a =”是P 的什么条件?(2)如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围. 25.已知函数()1-=+x af x a(0a >且1a ≠)过点1,22⎛⎫ ⎪⎝⎭.(1)求实数a ;(2)若函数()1322⎛⎫=+- ⎪⎝⎭g x f x ,求函数()g x 的解析式; (3)已知命题p :“任意x ∈R 时,()220++≤g ax ax ”,若命题p ⌝是假命题,求实数a 的取值范围.26.已知集合{}211A x a x a =-<<+,{}01B x x =≤≤.(1)在①1a =-,②0a =,③1a =,这三个条件中选择一个条件,求A B ;(2)若“x A ∈”是R x B ∈的充分不必要条件,求实数a 的取值范围. 注:(1)中如果选择多个条件分别解答,则按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先由命题1q 成立时,利用单调性和函数值为正,结合不等式性质即推出命题p 成立,再由命题2q 成立时,利用单调性和函数零点,推出命题p 成立,即得结果. 【详解】命题1q 成立,即()y f x =在R 上是严格减函数,且()0f x >恒成立, 故取0a >时,对任意的x ∈R ,x a x +>,则()()f x a f x +<,()0f a >即0()f a <,故()()()+<+f x a f x f a ,即命题1q 可推出命题p ,1q 是p 的充分条件; 命题2q 成立,()y f x =在R 上是严格增函数,且存在00x <使得0()0f x =, 故取00a x =<时,对任意的x ∈R ,x a x +<,则()()f x a f x +<,0()()0f a f x ==,()()()f x a f x f a +<+,即命题2q 可推出命题p , 2q 是p 的充分条件;故1q 、2q 都是p 的充分条件. 故选:A. 【点睛】本题解题关键在于分别由命题1q 、2q ,利用函数的单调性和值的分布特征去证明命题p ,即突破难点.2.A解析:A 【分析】先判断原命题为真命题,由此得出逆否命题是真命题;判断出原命题的逆命题为真命题,由此判断原命题的否命题也是真命题,由此确定假命题的个数. 【详解】若{}n a 是等比数列,则n a 是n k a -与n k a +的等比中项,所以原命题是真命题, 从而,逆否命题是真命题; 反之,若(*)n n k n k n a a n k n k a a +-=>∈N ,,,则当1k =时,11(1*)n n n na an n a a +-=>∈N ,, 所以{}n a 是等比数列,所以逆命题是真命题,从而,否命题是真命题. 故选:A . 【点睛】本小题主要考查四种命题及其相互关系,考查等比数列的性质,属于基础题.3.D解析:D 【分析】利用四种命题的逆否判断A 的正误,命题的否定判断B 的正误;根据充分条件与必要条件判断C 的正误;根据椭圆的离心率可得,a b 关系,进而求得双曲线的渐近线方程; 【详解】解:对于A ,命题“若21x =,则1x =”的否命题为:“若21x ≠,则1x ≠”,故A 错误; 对于B ,命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈ 均有210x x ++≥”,故B 错误;对于C ,因为原命题为真命题,故其逆否命题也为真命题,故C 错误;对D,因为122c b a a a ==⇒=,所以双曲线22221x y a b -=的渐近线方程为12y x =±,故 D 正确.故选:D. 【点睛】本题考查命题的真假的判断与应用,考查四种命题的逆否关系,命题的否定以及充要条件的判断,是基本知识的综合应用.4.C解析:C 【分析】由函数cos y x =在(0,)π上的单调性即可判断p 为真命题;当(0,)2x π∈时,令()sin f x x x =-,利用导数判断函数()f x 在(0,)2π上的单调性从而证明sin x x <,当[,)2x π∈+∞时,根据图象判断sin x x <,即可确定q 为假命题,利用复合命题的真假判断规则进行判断即可. 【详解】命题p :在ABC 中,,(0,)A B π∈,因为函数cos y x =在(0,)π上单调递减,所以若A B >,则cos cos A B <,命题p 为真命题.命题q :令()sin f x x x =-,当(0,)2x π∈时,cos 10y x '=-<,函数()sin f x x x=-在(0,)2π上单调递减,所以()(0)0f x f <=,即sin x x <;当[,)2x π∈+∞时,由下图可知sin x x <,所以q 为假命题.所以()p q ∨⌝为真命题. 故选:C 【点睛】本题考查复合命题的真假判断,涉及正、余弦函数的图象与性质,利用导数证明不等式,属于中档题.5.B解析:B 【分析】“存在[]1,0x ∈-,使得20x x a +-≤”为真命题,可得()2mina x x≥+,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出. 【详解】解:因为“存在[]1,0x ∈-,使得20x x a +-≤”为真命题, 所以()22minmin 111244a xx x ⎡⎤⎛⎫≥+=+-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因此上述命题得个充分不必要条件是14a >. 故选:B.【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.6.B解析:B 【分析】举反例说明C,D 不成立,再根据函数2ln x y x =+单调性,进而确定选项. 【详解】因为311123112ln12ln 2,2ln 2ln ,ee e e-<--<-所以CD 不成立;因为2ln x y x =+在(0,)+∞上单调递增,所以由2ln 2ln a b a b +<+得a b <, 故选:B 【点睛】本题考查利用函数单调性判断命题真假,考查基本分析判断能力,属基础题.7.A解析:A 【分析】因为原命题是假命题,其否定为真命题,问题可转化为0x R ∀∈,200230x mx m ++-≥恒成立,故由0∆≤即可求出m 的取值范围. 【详解】因为命题“0x R ∃∈,200230x mx m ++-<”为假命题, 故其否定:“0x R ∀∈,200230x mx m ++-≥”为真命题, 故224(23)8120m m m m ∆=--=-+≤,解得26m ≤≤, 故实数m 的取值范围是[2,6]. 故选:A 【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想.8.C解析:C 【分析】判断出命题p 、q 的真假,即可判断出各选项中命题的真假,进而可得出结论. 【详解】函数()2xf x x =+在()0,+∞上单调递增,()()1012019f x f ∴>=>,即命题p 是假命题; 又sin sin A B >,根据正弦定理知a b >,可得A B >,余弦函数cos y x =在()0,π上单调递减,cos cos A B ∴<,即命题q 是真命题. 综上,可知()()p q ⌝∨⌝为真命题,p q ∧、()p q ∨⌝、()p q ∧⌝为假命题. 故选:C. 【点睛】本题考查复合命题真假的判断,解答的关键就是判断出各简单命题的真假,考查推理能力,属于中等题.9.D解析:D 【分析】求出()(),f x g x 的值域,A B ,由题意可得A B ⊆,列不等式求解即可. 【详解】()222f x x x =-+,当[]0,2x ∈时,()f x 的值域为[]1,2A =,2log g xx t ,1,162x ⎡⎤∈⎢⎥⎣⎦,()g x 的值域[]1,4t t B =-+,由条件可知A B ⊆,即[][]1,21,4t t ⊆-+,从而有1142t t -≤⎧⎨+≥⎩,可得22t -≤≤. 故选:D. 【点睛】本题主要考查全称命题与特称命题的综合应用,关键是要将问题进行转化,转化为值域之间的包含问题,是中档题.10.B解析:B 【分析】 作出直线134x y+=,可得1(0,0)A ,2(3,0)A ,3(0,4)A ,分别考虑圆心和半径r 的变化,结合图形,即可得到所求结论. 【详解】作出直线134x y+=,可得1(0,0)A ,2(3,0)A ,3(0,4)A , ①当1i =时,若3M =,当圆222x y r +=与直线相切,可得125r =; 当圆经过点(3,0),即3r =, 则125r =或3r =,故①错误; ②当2i =时,若04r <<,圆222(3)x y r -+=,当圆经过O 时,3r =,交点个数为2,4r =时,交点个数为1,则2M =,故②正确;③当3i =时,圆222(4)x y r +-=,随着r 的变化可得交点个数为1,2,0,M 不可能等于3,故③正确;④M 的值可以为0,1,2,3,4,不可以为5,故④错误. 故选:B. 【点睛】本题考查命题的真假判断与应用,考查直线和圆的位置关系,考查分析能力和计算能力.11.A解析:A 【分析】由于命题为假命题,则它的逆否命题一定为真,得出其逆否命题,构造函数2ln y x x =+,利用单调性得出函数2ln y x x =+在[]1,2的最小值,即可得到a 的取值范围. 【详解】若“[]1,2x ∃∈,使得2ln 0x x a +-≤”为假命题,可得当[]1,2x ∈时,2ln x x a +>恒成立只需()2minln a x x <+又函数2ln y x x =+在[]1,2上单调递增,所以1a <. 故选:A 【点睛】本题主要考查了原命题与逆否命题等价性的应用以及函数不等式恒成立问题,属于中档题.12.A解析:A 【分析】分别求出条件甲、乙所对应的,a b 的关系式,比较两个关系式所表示的图形,可得出结论. 【详解】 由题意,当0ab 时,不等式 sincos 1a x b x +>的解集为空集, 当,a b 不都为0时,()22sin cos sin a x b x a b x ϕ+=++,22sin b a b ϕ=+,22cos a a bϕ=+.因为()22sin 1a b x ϕ++>的解集为空集,所以221a b +≤,即221a b +≤. 如下图,221a b +≤表示以原点为圆心,半径为1的圆及其内部,1a b +≤表示为圆内接正方形及其内部,所以甲是乙的必要不充分条件. 故答案为:A.【点睛】本题考查充分性与必要性的判断,考查三角函数的恒等变换,考查不等式表示的平面区域,考查学生的计算能力与推理能力,属于中档题.二、填空题13.②③④【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用;③对数的运算关系式的应用;④根据基本不等式可得答案;【详解】①命题对任意的有的否定为存在有故①错误;②对于任意的总有(为解析:②③④ 【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用; ③对数的运算关系式的应用; ④根据基本不等式可得答案; 【详解】①命题“对任意的1x >,有21x >”的否定为“存在1x >,有21x ≤”,故①错误;②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”由于没有说明0x D ∈()0f x M =,所以“函数()y f x =在区间D 上的最小值为M ”不一定成立;函数()y f x =在区间D 上的最小值为M ,总有()f x M ≥(M 为常数)成立,故②正确;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()1212log log log a a a x x x x =+, 所以()()()1212f x f x f x x +=成立,故③正确;④若1x ,2x ∈R ,12x x ≠,()()1212,33x x f x f x ==,1212232x xx x f ++⎛⎫= ⎪⎝⎭, 因为()30xf x =>,所以()()1212122322x x f x f x x x f +++⎛⎫>=== ⎪⎝⎭,故④正确.故答案为:②③④.【点睛】本题考查了命题的否定、函数的最小值和充分条件和必要条件的应用、对数的运算关系、不等式比较大小的问题.14.①【分析】对四个结论逐个分析可选出答案【详解】对于①其图象由的图象向左平移1个单位再向上平移2个单位得到故的对称中心为即①正确;对于②由可得令且显然函数在上单调递减则又因为时故在的值域为所以当时关于解析:① 【分析】对四个结论逐个分析,可选出答案. 【详解】 对于①,()213211x f x x x -==-++,其图象由3y x =-的图象向左平移1个单位,再向上平移2个单位得到,故()f x 的对称中心为1,2,即①正确;对于②,由10x k x -+=,可得1k x x=-. 令()1g x x x=-,且()0,1∈x ,显然函数()g x 在()0,1∈x 上单调递减, 则()()10g x g >=,又因为0x →时,1+x x-→∞,故()g x 在0,1的值域为0,,所以当0k ≤时,关于x 的方程10x k x-+=在()0,1∈x 没有实数根,即②错误; 对于③,先来判断充分性,当cos cos b A a B =时,可得sin cos sin cos =B A A B ,所以()sin cos sin cos sin 0B A A B B A -=-=,即B A =,所以ABC 为等腰三角形,不能推出ABC 为等边三角形,即充分性不成立;再来判断必要性,当ABC 为等边三角形时,可得B A =,则sin cos sin cos =B A A B ,故cos cos b A a B =,即必要性成立,故③不正确;对于④,()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,得到()πsin 223g x x φ⎛⎫=-- ⎪⎝⎭,由()g x 为奇函数,可得πsin 203φ⎛⎫--= ⎪⎝⎭,则()π2π3φk k +=∈Z ,解得()ππ26k φk =-∈Z ,当1k =时,ϕ取得最小正值为π3,故④不正确.所以,正确的结论是①. 故答案为:①. 【点睛】本题考查函数的对称中心,考查三角函数的平移变换及奇偶性的应用,考查利用参变分离法解决方程的解的存在性问题,考查充分性与必要性的判断,考查学生的推理论证能力与计算求解能力,属于中档题.15.【分析】先求出命题为真命题时的取值范围以及当命题为真命题时的取值范围由为假命题可知两个命题均为假命题由此可求得实数的取值范围【详解】若命题为真命题则解得;若命题为真命题则关于的方程在上有解则令其中则 解析:()(),22,e -∞-【分析】先求出命题p 为真命题时m 的取值范围,以及当命题q 为真命题时m 的取值范围,由p q ∨为假命题可知两个命题均为假命题,由此可求得实数m 的取值范围. 【详解】若命题p 为真命题,则240m ∆=-≤,解得22m -≤≤;若命题q 为真命题,则关于x 的方程0xe mx -=在()0,∞+上有解,则x e m x=. 令()x e f x x =,其中0x >,则()()21x x e f x x-'=. 当01x <<时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增. 所以,()()1f x f e ≥=,则m e ≥.因为命题p q ∨为假命题,则命题p 、q 均为假命题,则22m m m e ⎧-⎨<⎩或,所以,2m <-或2m e <<. 因此,实数m 的取值范围是()(),22,e -∞-.故答案为:()(),22,e -∞-.【点睛】本题考查利用复合命题的真假求参数,同时也考查了利用导数研究函数的零点问题,考查计算能力,属于中等题.16.【分析】首先求出当两个命题是真命题时的取值范围再根据两命题中一真一假列不等式求的取值范围【详解】若方程有两个不等的负根则解得:若方程无实根则解得:当真假时解得:;当假真时解得:综上可知:的取值范围是 解析:(1,3][5,)⋃+∞【分析】首先求出当,p q 两个命题是真命题时,m 的取值范围,再根据P 、q 两命题中一真一假,列不等式求m 的取值范围. 【详解】:p 若方程有两个不等的负根,则()1212164104010m x x x x m ⎧∆=-->⎪+=-<⎨⎪=->⎩ , 解得:15m <<:q 若方程无实根,则()164420m ∆=-⨯-<,解得:3m >,当p 真q 假时,153m m <<⎧⎨≤⎩,解得:13m <≤;当p 假q 真时,153m m m ≤≥⎧⎨>⎩或 ,解得:5m ≥,综上可知:m 的取值范围是13m <≤或5m ≥. 故答案为:(1,3][5,)⋃+∞ 【点睛】本题考查根据命题的真假求参数的取值范围,重点考查根据一元二次方程实数根求参数的取值范围,属于基础题型.17.充分不必要【解析】【分析】根据充分必要条件的定义判断即可【详解】由解得即因为所以是成立的充分不必要条件故答案为:充分不必要【点睛】本题主要考查了充分条件必要条件的判定属于中档题解析:充分不必要 【解析】 【分析】根据充分必要条件的定义判断即可. 【详解】由21x >解得0x >,即:0q x >, 因为120x x <<⇒>,012x x ><<,所以p 是q 成立的充分不必要条件, 故答案为:充分不必要 【点睛】本题主要考查了充分条件,必要条件的判定,属于中档题.18.①②推出③;【分析】写出答案再根据函数单调性得到证明【详解】①②推出③;证明:在单调递增且当时有得证故答案为:①②推出③【点睛】本题考查了利用函数单调性判断命题意在考查学生的推断能力解析:①②推出③; 【分析】写出答案,再根据函数单调性得到证明. 【详解】 ①②推出③;证明:()f x 在R 单调递增且当1x >时,有()(1)f x f >,得证. 故答案为:①②推出③ 【点睛】本题考查了利用函数单调性判断命题,意在考查学生的推断能力.19.【分析】α是β的充分不必要条件可知即可求解【详解】因为α:;β:α是β的充分不必要条件所以即解得故答案为:【点睛】本题主要考查了充分不必要条件真子集的概念属于中档题 解析:102m -≤≤ 【分析】α是β的充分不必要条件可知[1,3] [1,24]m m ++,即可求解. 【详解】因为α:13x ≤≤;β: 124m x m +≤≤+,m R ∈,α是β的充分不必要条件 所以[1,3] [1,24]m m ++,即11324m m +≤⎧⎨≤+⎩,解得102m -≤≤.故答案为:102m -≤≤ 【点睛】本题主要考查了充分不必要条件,真子集的概念,属于中档题.20.必要不充分条件【解析】【分析】由a2>1解得a>1或a<-1由a3>1解得a>1进而判断出结论【详解】由a2>1解得a>1或a<-1由a3>1解得a>1因为(-∞-1)∪(1+∞)⊃≠(1+∞)所以解析:必要不充分条件【分析】 由,解得或,由解得,进而判断出结论.【详解】由,解得或,由解得,因为,所以“”是“”的必要不充分条件,故答案是:必要不充分条件.【点睛】该题考查的是有关必要不充分条件的判断,涉及到的知识点有不等式的解法,必要不充分条件的定义,属于简单题目.三、解答题21.34m ≥或34m ≤-.【分析】试题分析:首先将集合,A B 进行化简,再根据命题p 是命题q 的充分条件知道A B ⊆,利用集合之间的关系,就可以求出实数m 的取值范围. 【详解】化简集合A ,由2312y x x =-+,配方,得237416y x ⎛⎫=-+⎪⎝⎭. 3,24x ⎡⎤∈⎢⎥⎣⎦,min 716y ∴=,max 2y =.7,216y ⎡⎤∴∈⎢⎥⎣⎦,7|216A y y ⎧⎫∴=≤≤⎨⎬⎩⎭化简集合B ,由21x m +≥,21x m -≥,{}2|1B x m =≥-命题p 是命题q 的充分条件,A B ∴⊆.27116m ∴-≤, 解得34m ≥,或34m ≤-.∴实数m 的取值范围是33,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 22.[5,1](1,)--⋃+∞.【分析】首先可求得p ,q 的等价的a 的取值范围,再根据题意可得p ,q 中一真一假,即可求得a 的取值范围.p :等式21243||a a x x +-≤-对任意m R ∈恒成立 212min 43||a a x x ⇔+-≤-⇔243a a +-243251a a a ⇔+-≤⇔-≤≤,q :显然0x =不是不等式的解,不等式2210ax x +->有解22212111()2[()1]1x a x x x x-⇔>=-⋅=-- 2min 1([()1]1)1a a x⇔>--⇔>-,又∵p q ∨为真,p q ∧为假,∴p ,q 中一真一假, ∴实数a 的取值范围是[5,1](1,)--⋃+∞. 23.(1)[]1,2;(2)()(],11,2-∞.【分析】(1)()2min 223x m m -≥-,即232m m -≤-,可解出实数m 的取值范围;(2)先求出命题q 为真命题时实数m 的取值范围,再分析出命题p 、q 中一个是真命题,一个是假命题,即可的得出实数m 的取值范围. 【详解】(1)∵对任意[]0,1x ∈,不等式2223x m m -≥-恒成立,()2min 223x m m ∴-≥-,即232m m -≤-,即2320m m -+≤,解得12m ≤≤,因此,若p 为真命题时,实数m 的取值范围是[]1,2. (2)1a =,且存在[]1,1x ∈-,使得m ax ≤成立,m x ∴≤,命题q 为真时,1m .因为p 、q 中一个是真命题,一个是假命题. 当p 真q 假时,则121m m ≤≤⎧⎨>⎩,解得12m <≤;当p 假q 真时,121m m m ⎧⎨≤⎩或,即1m <.综上所述,m 的取值范围为()(],11,2-∞.【点睛】本题考查利用命题的真假、利用复合命题的真假求参数问题,解题的关键就是要确定简单命题的真假,考查分类讨论思想的应用,属于中等题.24.(1)充分不必要条件;(答充分条件也对);(2)()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】(1)若a =0,求出P 成立的等价条件,根据充分条件和必要条件的定义进行判断. (2)根据复合命题之间的关系分P 真Q 假和P 假Q 真,进行求解即可.(1)若0a =,210ax ax ++>等价于10>恒成立,若0a ≠,则210ax ax ++>恒成立等价于判别式240a a ∆=-<,且0a >, 则04a <<,综上,P :04a ≤<,即“0a =”是P 的充分不必要条件;(答充分条件也对)(2)对任意实数x 都有210ax ax ++>恒成立, 可得0a =或00a >⎧⎨∆<⎩,可得04a ≤<; 关于x 的方程20x x a -+=有实数根,可得140,a -≥14a ≤; 如果P 正确,且Q 不正确, 有04a ≤<,且14a >,144a ∴<<; 如果Q 正确,且P 不正确, 有0a <或4a ≥,且14a ≤,0a ∴<. 所以实数a 的取值范围为()1,0,44⎛⎫-∞ ⎪⎝⎭. 【点睛】本题考查必要条件、充分条件与充要条件的判断及根据命题真假求参数,必要条件、充分条件与充要条件的判断一般利用定义或集合进行判断,根据命题真假求参数一般是列不等式求解即可,属于中等题.25.(1)12a =(2)11()22xg x ⎛⎫=- ⎪⎝⎭(3)[0,4] 【分析】(1)因为函数()1-=+x a f x a (0a >且1a ≠)过点1,22⎛⎫ ⎪⎝⎭,可得1212a a -+=,即可求得答案;(2)因为()121121x x af x a--=+=+,13()22g x f x ⎛⎫=+- ⎪⎝⎭,即可求得答案; (3)命题p ⌝是假命题,故命题p 是真命题,当x ∈R 时,()220++≤g ax ax 恒成立,函数11()22xg x ⎛⎫=- ⎪⎝⎭,不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立,即可求得答案. 【详解】 (1)函数()1-=+x af x a(0a >且1a ≠)过点1,22⎛⎫⎪⎝⎭.1212a a-∴+= ,即121a a-=解得:12a =, (2)由(1)12a =∴()121121x x a f x a --=+=+1122131311()1222222x xg x f x ⎛⎫+- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴=+-=-+=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 11()22xg x ⎛⎫∴=- ⎪⎝⎭(3)命题p ⌝是假命题,故命题p 是真命题,∴当x ∈R 时,()220++≤g ax ax 恒成立, 函数11()22xg x ⎛⎫=- ⎪⎝⎭ ∴不等式2211022++⎛⎫-≤ ⎪⎝⎭ax ax 在R 上恒成立, 即221122++⎛⎫≤⎪⎝⎭ax ax 在R 上恒成立 根据指数函数单调可知:12xy ⎛⎫= ⎪⎝⎭是减函数 ∴221ax ax ++≥在R 上恒成立即210ax ax ++≥在R 上恒成立, 当0a =时,不等式化为10≥成立; 当0a ≠时,则需满足240a a a >⎧⎨-≤⎩, 解得04a <≤,综上所述,实数a 的取值范围是[0,4]. 【点睛】本题主要考查了求解函数解析式和根据不等式恒成立求参数范围,解题关键是掌握函数的基础知识和含参数一元二次不等式恒成立的解法,属于难题. 26.(1)答案见解析;(2),11,2【分析】(1)本题可将a 的值代入集合A 中,然后通过并集的相关性质即可得出结果;(2)本题首先可通过集合B 求出集合B R,然后通过x A ∈得出集合A 不是空集,最后通过题意得出集合A 是集合B R的真子集,即可列出不等式并通过计算得出结果.【详解】(1)选择①:当1a =-时,()3,0A =-, 因为[]0,1B =,所以(]3,1A B ⋃=-. 选择②:当0a =时,()1,1A =-, 因为[]0,1B =,所以(]1,1A B ⋃=-. 选择③:当1a =时,()1,2A =, 因为[]0,1B =,所以[)0,2A B ⋃=.(2)因为{}01B x x =≤≤,所以()(),01,R B =-∞⋃+∞, 因为x A ∈,所以集合{}211A x a x a =-<<+不是空集,即211a a -<+,解得2a <,因为“x A ∈”是R x B ∈的充分不必要条件, 所以集合A 是集合B R的真子集,即10a +≤或211a -≥,解得1a ≤-或1a ≥, 综上所述,实数a 的取值范围为,11,2.【点睛】关键点点睛:若命题p 是命题q 的充分不必要条件,则命题p 中元素所组成的集合是命题q 中元素所组成的集合的真子集,若命题p 是命题q 的必要不充分条件,则命题q 中元素所组成的集合是命题p 中元素所组成的集合的真子集,考查计算能力,是中档题.。

北师大版高中数学选修2-1精练:第一章 常用逻辑用语 1.2 Word版含答案

北师大版高中数学选修2-1精练:第一章 常用逻辑用语 1.2 Word版含答案

§2充分条件与必要条件课后训练案巩固提升A组1、“x<0”是“ln( x+1 )<0”的( )A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件详细解析:由ln( x+1 )<0得-1<x<0,故选B、正确答案:B2、设集合U={( x,y )|x∈R,y∈R},A={( x,y )|2x-y+m>0},B={( x,y )|x+y-n≤0},那么点P( 2,3 )∈[A∩( ∁U B )]的充要条件是( )A、m>-1,n<5B、m<-1,n<5C、m>-1,n>5D、m<-1,n>5详细解析:∁U B={( x,y )|x+y-n>0},∵点P( 2,3 )∈[A∩( ∁U B )],∴( 2,3 )∈A,且( 2,3 )∈∁U B,即2×2-3+m>0,且2+3-n>0,∴m>-1,n<5、正确答案:A3、已知实系数一元二次方程ax2+bx+c=0( a≠0 ),下列结论中正确的是( )①Δ=b2-4ac≥0是这个方程有实根的充分条件;②Δ=b2-4ac≥0是这个方程有实根的必要条件;③Δ=b2-4ac=0是这个方程有实根的充分条件、A、③B、①②C、①②③D、②③详细解析:Δ=b2-4ac≥0是实系数一元二次方程ax2+bx+c=0( a≠0 )有实根的充要条件、∵当Δ=b2-4ac>0时,方程ax2+bx+c=0( a≠0 )有两相异实根;Δ=b2-4ac=0时,方程有两相等实根,故上述结论均正确、正确答案:C4、下面命题中是真命题的是( )A、x>2,且y>3是x+y>5的充要条件B、A∩B≠⌀是A⫋B的充分条件C、b2-4ac<0是一元二次不等式ax2+bx+c>0的解集为R的充要条件D、一个三角形的三边满足勾股定理的充要条件是此三角形为直角三角形详细解析:对于选项A,x>2,且y>3⇒x+y>5,但x+y>5未必能推出x>2,且y>3,如x=0,且y=6满足x+y>5,但不满足x>2,故A为假命题、对于选项B,A∩B≠⌀未必能推出A⫋B,如A={1,2},B={2,3},故B为假命题、对于选项C,例如一元二次不等式-2x2+x-1>0的解集为⌀,但满足b2-4ac<0,故C为假命题、正确答案:D5、设数列{a n}是公比为q的等比数列,则“0<q<1”是“{a n}为递减数列”的( )A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件详细解析:数列{a n}是公比为q的等比数列,则a n=·q n、若0<q<1,当a1<0时,{a n}为递增数列、若{a n}为递减数列,当a1<0时,q>1( 仅对q>0的情况讨论)、故选D、正确答案:D6、已知p:A⫋B⊆S,q:( ∁S B )⫋( ∁S A ),则p是q的条件、详细解析:利用集合的图示法,如图,A⫋B⊆S⇒( ∁S B )⫋( ∁S A ),( ∁S B )⫋( ∁S A )⇒A⫋B⊆S、∴p是q的充分条件,也是必要条件,即p是q的充要条件、正确答案:充要7、下列各小题中,p是q的充要条件的是、( 填写正确命题的序号)①p:m<-2或m>6;q:y=x2+mx+m+3有两个不同的零点;②p:=-1;q:y=f( x )是奇函数;③p:cos α=cos β;q:tan α=tan β;④p:A∩B=A;q:∁U B⊆∁U A、详细解析:若y=x2+mx+m+3有两个不同的零点,则m2-4( m+3 )>0,解得m<-2或m>6、反之也成立,故①正确;对于②,函数f( x )=sin x是奇函数,它不全满足=-1,故②不满足;对于③,当α=β=时,cos α=cos β成立,但tan α=tan β不成立;对于④,∵A∩B=A,∴A⊆B,∁U B⊆∁U A,反之也成立,故④正确、正确答案:①④8、是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围、解由x2-x-2>0,得x>2或x<-1、由4x+p<0,得x<-、要想使当x<-时,x>2或x<-1成立,必须有-≤-1,即p≥4,所以当p≥4时,-≤-1⇒x<-1⇒x2-x-2>0,所以当p≥4时,“4x+p<0”是“x2-x-2>0”的充分条件、9、导学号90074004求关于x的方程x2-mx+3m-2=0的两根均大于1的充要条件、解设方程的两根分别为x1,x2,则原方程有两个大于1的根的充要条件是即又∵x1+x2=m,x1x2=3m-2,∴故所求的充要条件为m≥6+2、B组1、设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=⌀”的( )A、充分不必要的条件B、必要不充分的条件C、充要条件D、既不充分也不必要的条件详细解析:如图可知,存在集合C,使A⊆C,B⊆∁U C,则有A∩B=⌀、若A∩B=⌀,显然存在集合C、满足A⊆C,B⊆∁U C、故选C、正确答案:C2、已知a,b是实数,则“|a+b|=|a|+|b|”是“ab>0”的( )A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件详细解析:因为|a+b|=|a|+|b|,等价于a2+2ab+b2=a2+2|ab|+b2,等价于|ab|=ab,等价于ab≥0、而由ab≥0不能推出ab>0;由ab>0能推出ab≥0、即由|a+b|=|a|+|b|不能推出ab>0;由ab>0能推出|a+b|=|a|+|b|、故选B、正确答案:B3、函数f( x )=x2+mx+1的图像关于直线x=1对称的充要条件是( )A、m=-2B、m=2C、m=-1D、m=1详细解析:当m=-2时,f( x )=x2-2x+1,其图像关于直线x=1对称,反之也成立,所以函数f( x )=x2+mx+1的图像关于直线x=1对称的充要条件是m=-2、正确答案:A4、设p是q的充分不必要条件,r是q的必要不充分条件,s是r的充要条件,则s是p的( )A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件详细解析:由题可知,p⇒q⇒r⇔s,则p⇒s,s p,故s是p的必要不充分条件、正确答案:B5、方程ax2+2x+1=0至少有一个负的实根的充要条件是( )A、0<a≤1B、a<1C、a≤1D、0<a≤1或a<0详细解析:( 1 )当a=0时,原方程变形为一元一次方程,其根为x=-,符合要求;( 2 )当a≠0时,原方程为一元二次方程,它有实根的充要条件是判别式Δ≥0,即4-4a≥0,从而a≤1、又设方程ax2+2x+1=0的根为x1,x2,则由根与系数的关系知x1+x2=-,x1·x2=、①方程ax2+2x+1=0有一个负根的充要条件是⇒a<0、②方程ax2+2x+1=0有两个负根的充要条件是⇒0<a≤1、综上所述,ax2+2x+1=0至少有一个负根的充要条件是a≤1、正确答案:C6、给出下列命题:①“a>b”是“a2>b2”的充分不必要条件;②“lg a=lg b”是“a=b”的必要不充分条件;③若x,y∈R,则“|x|=|y|”是“x2=y2”的充要条件;④“sin α>sin β”是“α>β”的充分不必要条件、其中真命题是( 填序号)、详细解析:①因为a>b推不出a2>b2,a2>b2推不出a>b,所以“a>b”是“a2>b2”的既不充分也不必要条件;②lg a=lg b可推出a=b,但a=b推不出lg a=lg b,如a=b=-2,所以“lg a=lg b”是“a=b”的充分不必要条件;易知③正确;④当α=,β=π时,sin α==sin β,但α<β,所以sin α>sin β推不出α>β,反之α>β也推不出sin α>sin β,所以“sin α>sin β”是“α>β”的既不充分也不必要条件、正确答案:③7、导学号90074005设α,β,γ为平面,m,n,l为直线,则对于下列条件:①α⊥β,α∩β=l,m⊥l;②α∩γ=m,α⊥β,γ⊥β;③α⊥γ,β⊥γ,m⊥α;④n⊥α,n⊥β,m⊥α、其中为m⊥β的充分条件的是、( 将正确的序号都填上)详细解析:①α⊥β,α∩β=l,m⊥l m⊥β;②α∩γ=m,α⊥β,γ⊥β⇒m⊥β;③α⊥γ,β⊥γ⇒α与β可能相交也可能平行,故α⊥γ,β⊥γ,m⊥αm⊥β;④由n⊥α,n⊥β得α∥β,又m⊥α,所以m⊥β、正确答案:②④8、已知集合A=,B={x|x+m2≥1};命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围、解化简集合A,由y=x2-x+1,配方,得y=、∵x∈,∴y min=,y max=2、∴y∈、∴A=、化简集合B,由x+m2≥1,得x≥1-m2,∴B={x|x≥1-m2}、∵命题p是命题q的充分条件,∴A⊆B、∴1-m2≤,解得m≥或m≤-、∴实数m的取值范围是、9、两个数列{a n}和{b n},满足b n=( n∈N+ )、证明:{b n}为等差数列的充要条件是{a n}为等差数列、证明必要性:由已知得a1+2a2+3a3+…+na n=n( n+1 )b n,①于是有a1+2a2+3a3+…+( n-1 )a n-1=n( n-1 )·b n-1( n≥2 )、②①-②整理得a n=( n+1 )b n-( n-1 )b n-1( n≥2 )、设{b n}的公差为d,由已知得a1=b1,所以a n=( n+1 )[a1+( n-1 )d]-( n-1 )[a1+( n-2 )d]=[( n+1 )a1+( n+1 )( n-1 )d-( n-1 )a1-( n-1 )( n-2 )d]= a1+( n-1 )·,故数列{a n}是首项为a1,公差为的等差数列、充分性:由已知得n( n+1 )b n=a1+2a2+3a3+…+na n、( * )设等差数列{a n}的公差为d,则a1+2a2+3a3+…+na n=a1+2( a1+d )+3( a1+2d )+…+n[a1+( n-1 )d]=a1( 1+2+3+…+n )+d( 22-2+32-3+…+n2-n )=a1·+d=a1·+d·、再结合( * )式得b n=a1+( n-1 )d、故数列{b n}是以a1为首项,以d为公差的等差数列、综上,{b n}为等差数列的充要条件是{a n}为等差数列、。

2018版高中数学北师大版选修2-1学案:第一章 常用逻辑

2018版高中数学北师大版选修2-1学案:第一章 常用逻辑

2.3充要条件[学习目标] 1.理解充要条件的意义.2.会判断、证明充要条件.3.通过学习,明白对充要条件的判定应该归结为判断命题的真假.知识点一充要条件一般地,如果既有p⇒q,又有q⇒p就记作p⇔q.此时,我们说,p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q 也是p的充要条件.概括地说,如果p⇔q,那么p与q互为充要条件.思考(1)若p是q的充要条件,则命题p和q是两个相互等价的命题.这种说法对吗?(2)“p是q的充要条件”与“p的充要条件是q”的区别在哪里?答案(1)正确.若p是q的充要条件,则p⇔q,即p等价于q,故此说法正确.(2)①p是q的充要条件说明p是条件,q是结论.②p的充要条件是q说明q是条件,p是结论.知识点二常见的四种条件与命题真假的关系如果原命题为“若p,则q”,逆命题为“若q,则p”,那么p与q的关系有以下四种情形:知识点三从集合的角度判断充分条件、必要条件和充要条件若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件题型一充要条件的判断例1(1)“x=1”是“x2-2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案 A解析解x2-2x+1=0得x=1,所以“x=1”是“x2-2x+1=0”的充要条件.(2)判断下列各题中,p是否为q的充要条件?①在△ABC中,p:∠A>∠B,q:sin A>sin B;②若a,b∈R,p:a2+b2=0,q:a=b=0;③p:|x|>3,q:x2>9.解①在△ABC中,显然有∠A>∠B⇔sin A>sin B,所以p是q的充要条件.②若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.③由于p:|x|>3⇔q:x2>9,所以p是q的充要条件.反思与感悟判断p是q的充分必要条件的两种思路(1)命题角度:判断p是q的充分必要条件,主要是判断p⇒q及q⇒p这两个命题是否成立.若p⇒q成立,则p是q的充分条件,同时q是p的必要条件;若q⇒p成立,则p是q的必要条件,同时q是p的充分条件;若二者都成立,则p与q互为充要条件.(2)集合角度:关于充分条件、必要条件、充要条件,当不容易判断p⇒q及q⇒p的真假时,也可以从集合角度去判断,结合集合中“小集合⇒大集合”的关系来理解,这对解决与逻辑有关的问题是大有益处的.跟踪训练1(1)a,b中至少有一个不为零的充要条件是()A.ab=0B.ab>0C.a 2+b 2=0D.a 2+b 2>0答案 D解析 a 2+b 2>0,则a 、b 不同时为零;a ,b 中至少有一个不为零,则a 2+b 2>0. (2)“函数y =x 2-2x -a 没有零点”的充要条件是________. 答案 a <-1解析 函数没有零点,即方程x 2-2x -a =0无实根,所以有Δ=4+4a <0,解得a <-1.反之,若a <-1,则Δ<0,方程x 2-2x -a =0无实根,即函数没有零点.故“函数y =x 2-2x -a 没有零点”的充要条件是a <-1. 题型二 充要条件的证明例2 求证:方程x 2+(2k -1)x +k 2=0的两个根均大于1的充要条件是k <-2. 证明 ①必要性:若方程x 2+(2k -1)x +k 2=0有两个大于1的根,不妨设两个根为x 1,x 2,则⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0⇒⎩⎪⎨⎪⎧k ≤14,(x 1+x 2)-2>0,x 1x 2-(x 1+x 2)+1>0.即⎩⎪⎨⎪⎧k ≤14,-(2k -1)-2>0,k 2+(2k -1)+1>0,解得k <-2.②充分性:当k <-2时,Δ=(2k -1)2-4k 2=1-4k >0. 设方程x 2+(2k -1)x +k 2=0的两个根为x 1,x 2. 则(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1 =k 2+2k -1+1=k (k +2)>0. 又(x 1-1)+(x 2-1)=(x 1+x 2)-2 =-(2k -1)-2=-2k -1>0, ∴x 1-1>0,x 2-1>0. ∴x 1>1,x 2>1.综上可知,方程x 2+(2k -1)x +k 2=0有两个大于1的根的充要条件为k <-2.反思与感悟 一般地,证明“p 成立的充要条件为q ”时,在证充分性时应以q 为“已知条件”,p 是该步中要证明的“结论”,即q ⇒p ;证明必要性时则是以p 为“已知条件”,q 为该步中要证明的“结论”,即p ⇒q .跟踪训练2 求证:一次函数f (x )=kx +b (k ≠0)是奇函数的充要条件是b =0. 证明 ①充分性:如果b =0,那么f (x )=kx ,因为f(-x)=k(-x)=-kx,所以f(-x)=-f(x),所以f(x)为奇函数.②必要性:因为f(x)=kx+b(k≠0)是奇函数,所以f(-x)=-f(x)对任意x均成立,即k(-x)+b=-(kx+b),所以b=0.综上,一次函数f(x)=kx+b(k≠0)是奇函数的充要条件是b=0.1.对于非零向量a,b,“a+b=0”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析当a+b=0时,得a=-b,所以a∥b,但若a∥b,不一定有a+b=0.2.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案 A解析a=3时,A={1,3},A⊆B,当A⊆B时,a=2或3.3.已知α:“a=±2”;β:“直线x-y=0与圆x2+(y-a)2=2相切”,则α是β的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析a=±2时,直线x-y=0与圆x2+(y±2)2=2相切;当直线x-y=0与圆x2+(y-a)2=2相切时,得|a|2=2,∴a=±2.∴α是β的充要条件4.已知直线l1:x+ay+6=0和直线l2:(a-2)x+3y+2a=0,则l1∥l2的充要条件是a=________.答案 -1解析 由1×3-a ×(a -2)=0得a =3或-1, 而a =3时,两条直线重合,所以a =-1.5.命题p :x >0,y <0,命题q :x >y ,1x >1y ,则p 是q 的________条件.答案 充要解析 当x >0,y <0时,x >y 且1x >1y 成立,当x >y 且1x >1y时,得⎩⎪⎨⎪⎧x -y >0,x -yxy <0,⇒⎩⎪⎨⎪⎧x >0,y <0. 所以p 是q 的充要条件.1.充要条件的判断有三种方法:定义法、等价命题法、集合法.2.充要条件的证明与探求(1)充要条件的证明分充分性的证明和必要性的证明.在证明时要注意两种叙述方式的区别: ①p 是q 的充要条件,则由p ⇒q 证的是充分性,由q ⇒p 证的是必要性; ②p 的充要条件是q ,则由p ⇒q 证的是必要性,由q ⇒p 证的是充分性.(2)探求充要条件,可先求出必要条件,再证充分性;如果能保证每一步的变形转化过程都可逆,也可以直接求出充要条件.。

高中数学(北师大版选修2-1)配套课时作业第一章 常用逻辑用语 第1章 3.3 Word版含答案

高中数学(北师大版选修2-1)配套课时作业第一章 常用逻辑用语 第1章 3.3 Word版含答案

全称命题与特称命题的否定课时目标理解全称命题、特称命题的含义,能正确地对全称命题和特称命题进行否定..要说明一个全称命题是错误的,只需找出就可以了..全称命题的否定是..要证明一个特称命题是错误的,只要说明这个特称命题的否定是..特称命题的否定是.一、选择题.“和都不是偶数”的否定形式是().和至少有一个是偶数.和至多有一个是偶数.是偶数,不是偶数.和都是偶数.命题“某些平行四边形是矩形”的否定命题是().某些平行四边形不是矩形.任何平行四边形是矩形.每一个平行四边形都不是矩形.以上都不对.命题“原函数与反函数的图像关于=对称”的否定是().原函数与反函数的图像关于=-对称.原函数不与反函数的图像关于=对称.存在一个原函数与反函数的图像不关于=对称.存在原函数与反函数的图像关于=对称.“存在整数,,使得=+”的否定是().任意整数,,使得=+.存在整数,,使得≠+.任意整数,,使得≠+.以上都不对.命题“存在∈≤”的否定是().不存在∈>.存在∈≥.对任意的∈≤.对任意的∈>.命题“任意四边形都有外接圆”的否定为().任意四边形都没有外接圆.任意四边形不都有外接圆.有的四边形没有外接圆.有的四边形有外接圆题号答案二、填空题.命题“零向量与任意向量共线”的否定为..写出命题:“对任意实数,关于的方程++=有实根”的否定为:. .命题:对任意∈,使()≥成立,则命题的否定是.三、解答题.写出下列命题的否定,并判断其真假.()有些质数是奇数;()所有二次函数的图象都开口向上;()存在∈,=;()不论取何实数,方程+-=都有实数根.。

高中数学(北师大版选修2-1)配套课时作业第一章 常用逻辑用语 第1章 2.1-2.2 Word版含答案

高中数学(北师大版选修2-1)配套课时作业第一章 常用逻辑用语 第1章 2.1-2.2 Word版含答案

§充分条件与必要条件充分条件必要条件课时目标.理解充分条件、必要条件的意义.会判断充分条件和必要条件,会求某些命题的条件关系.通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力..“若,则”形式的命题为真命题是指:由条件可以得到结论.通常记作:⇒,读作“推出”.此时我们称是的..如果“若,则”形式的命题为真命题,即⇒,称是的充分条件,同时,我们称是的.一、选择题.“=”是“=”的().充分不必要条件.必要不充分条件.既是充分条件又是必要条件.既不充分又不必要条件.“≠”是“方程=+表示直线”的().必要不充分条件.充分不必要条件.既是充分条件又是必要条件.既不充分又不必要条件.<,<的一个必要条件为().+< .->> >-.命题:α是第二象限角;命题:α·α<,则是成立的().充分不必要条件.必要不充分条件.既是充分条件又是必要条件.既不充分又不必要条件.设集合={>},={<},那么“∈,或∈”是“∈∩”的().必要不充分条件.充分不必要条件.既是充分条件也是必要条件.既不充分也不必要条件题号答案二、填空题.“ > ”是“>”的条件..“≠”是“≠”的条件..已知α、β是不同的两个平面,直线α,直线β,命题:与无公共点;命题:α∥β,则是的条件.三、解答题.已知:=,:函数()=++是偶函数.命题“若,则”是真命题吗?它的逆命题是真命题吗?是的什么条件?。

高中数学北师大版版选修2-1课时作业第一章 常用逻辑用语章末检测A Word版含解析

高中数学北师大版版选修2-1课时作业第一章 常用逻辑用语章末检测A Word版含解析

第一章常用逻辑用语()(时间:分钟满分:分)一、选择题(本大题共小题,每小题分,共分).下列语句中是命题的是( ).梯形是四边形.作直线.是整数.今天会下雪吗?.设原命题:若+≥,则,中至少有一个不小于,则原命题与其逆命题的真假情况是( ).原命题真,逆命题假.原命题假,逆命题真.原命题与逆命题均为真命题.原命题与逆命题均为假命题.给出命题:若函数=()是幂函数,则函数=()的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ).....已知命题:任意∈++<;命题:存在∈,-=.则下列判断正确的是( ).是真命题.是假命题.綈是假命题.綈是假命题.有下列命题:①年月日是国庆节,又是中秋节;②的倍数一定是的倍数;③方程=的解=±.其中使用逻辑联结词的命题有( ).个.个.个.个.在△中,“>°”是“ >”的().充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件.已知条件:+>,条件:->,则綈是綈的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件.已知实数>,命题:函数=(++)的定义域为,命题:<是<的充分不必要条件,则( ).“或”为真命题.“且”为假命题.“綈且”为真命题.“綈或綈”为真命题.不等式(-)+(-)-<对于∈恒成立,那么的取值范围是( ).(-) .(-].(-∞,] .(-∞,-).已知命题:存在∈,使=,命题:-+<的解集是{<<},下列结论:①命题“且”是真命题;②命题“且綈”是假命题;③命题“綈或”是真命题;④命题“綈或綈”是假命题,其中正确的是( ).②③.①②④.①②③④二、填空题(本大题共小题,每小题分,共分).命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是..命题“-->不成立”是真命题,则实数的取值范围是..若:“平行四边形一定是菱形”,则“非”为..若:∈,<,:的二次方程+(+)+-=的一个根大于零,另一根小于零,则是的条件..下列四个命题中①“=”是“函数=-的最小正周期为π”的充要条件;②“=”是“直线++=与直线+(-)=-相互垂直”的充要条件;③函数=的最小值为.其中是假命题的为(将你认为是假命题的序号都填上)三、解答题(本大题共小题,共分).(分)将下列命题改写成“若,则”的形式,并判断其真假.()正方形是矩形又是菱形;()同弧所对的圆周角不相等;()方程-+=有两个实根..(分)判断命题“已知、为实数,如果关于的不等式+(+)++≤的解集非空,则≥”的逆否命题的真假.。

最新【创设计-课堂讲义】高中数学(北师大版选修2-1)配套课时作业:第一章 常用逻辑用语 第1章 1

最新【创设计-课堂讲义】高中数学(北师大版选修2-1)配套课时作业:第一章 常用逻辑用语 第1章 1

最新北师大版数学精品教学资料第一章常用逻辑用语§1命题课时目标1.了解命题的概念,会判断一个命题的真假.2.了解四种命题及四种命题的相互关系,并会判断四种命题的真假.1.命题的定义可以判断________、用________或________表述的语句叫作命题,其中______________的命题叫作真命题,______________的命题叫作假命题.2.命题的结构一般地,一个命题由________和________两部分组成.在数学中,通常把命题表示为“____________”的形式,其中______是条件,______是结论.3.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的________________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的_________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.4.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有________的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性________关系.一、选择题1.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤2.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数3.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0二、填空题7.下列命题:①四条边相等的四边形是正方形;②平行四边形是梯形;③若ac2>bc2,则a>b.其中真命题的序号是________.(填序号)8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是__________;逆命题是________________;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.判断下列命题的真假:(1)已知a,b,c,d∈R,若a≠c,b≠d,则a+b≠c+d;(2)对任意的x∈N,都有x3>x2成立;(3)若m>1,则方程x2-2x+m=0无实数根;(4)存在一个三角形没有外接圆.11.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.能力提升12.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数13.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a+b≥0.1.由命题的定义可知,要判断一个语句是否为命题要抓住能否判断真假,只有能判断真假的语句才是命题.2.命题有真假之分,真命题是我们学过的公理、定理、公式、法则或可以经过推理证明正确的命题;假命题的判断只需要举一反例即可.3.一般地,命题都是由条件和结论两部分组成的,对“若p则q”的命题,p是条件,q 是结论.在判断命题的条件和结论时,如果一个命题的条件和结论不明显,可以先改写成“若p则q”的形式,然后再进行判断.4.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假;四种命题中真命题的个数只能是偶数个,即0个,2个或4个.课时作业答案解析第一章常用逻辑用语§1命题知识梳理1.真假文字符号判断为真判断为假2.条件结论若p则q p q3.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定4.(1)相同(2)没有作业设计1.A[④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]2.D[A中方程在实数范围内无解,故是假命题;B中若x2=1,则x=±1,故B是假命题;因空集是任何非空集合的真子集,故C是假命题;所以选D.]3.C[命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.③解析③是真命题,①四条边相等的四边形也可以是菱形,②平行四边形不是梯形.8.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解(1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x=0时,x3>x2不成立.(3)真命题.∵Δ=4-4m<0,∴方程x2-2x+m=0无实数根.(4)假命题.因为不共线的三点确定一个圆.11.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.12.B13.证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.∴a+b≥0.。

高中数学第一章常用逻辑用语1.3.2存在量词与特称命题课时作业北师大版选修2-1(2021年整理)

高中数学第一章常用逻辑用语1.3.2存在量词与特称命题课时作业北师大版选修2-1(2021年整理)

2018-2019学年高中数学第一章常用逻辑用语1.3.2 存在量词与特称命题课时作业北师大版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章常用逻辑用语1.3.2 存在量词与特称命题课时作业北师大版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章常用逻辑用语1.3.2 存在量词与特称命题课时作业北师大版选修2-1的全部内容。

1.3.2 存在量词与特称命题[基础达标]1.下列命题为特称命题的是( )A.偶函数的图像关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线D.存在实数大于或等于3解析:选D。

选项D中的命题含有存在量词“存在”,因此它是特称命题.2.下列命题中是全称命题并且是真命题的是()A.每一个二次函数的图像都是开口向上B.存在一条直线与两个相交平面都垂直C.存在一个实数x,使x2-3x+6<0D.对任意c≤0,若a≤b+c,则a≤b解析:选D。

对A当二次项系数小于零时不成立,A为假命题;B、C均为特称命题.故选D。

错误!下列命题中,真命题是( )A.存在m∈R,使函数f(x)=x2+mx(x∈R)是偶函数B.存在m∈R,使函数f(x)=x2+mx(x∈R)是奇函数C.对任意m∈R,函数f(x)=x2+mx(x∈R)都是偶函数D.对任意m∈R,函数f(x)=x2+mx(x∈R)都是奇函数解析:选A.由于当m=0时,函数f(x)=x2+mx=x2为偶函数,故“存在m∈R,使函数f (x)=x2+mx(x∈R)为偶函数”是真命题.错误!下列命题是假命题的为( )A.存在x∈R,lg e x=0B.存在x∈R,tan x=xC.任意x∈(0,π2),错误!>cos xD.任意x∈R,e x>x+1解析:选D。

北师大版高中数学选修2-1精练:第一章 常用逻辑用语 1.4 Word版含答案

北师大版高中数学选修2-1精练:第一章 常用逻辑用语 1.4 Word版含答案

§4逻辑联结词“且”“或”“非”课后训练案巩固提升A组1、若p是真命题,q是假命题,则( )A、p且q是真命题B、p或q是假命题C、 p是真命题D、 q是真命题正确答案:D2、由下列各组命题构成的新命题“p或q”和“p且q”都为真命题的是( )A、p:4+4=9,q:7>4B、p:a∈{a,b,c},q:{a}⫋{a,b,c}C、p:15是质数,q:8是12的约数D、p:2是偶数,q:2不是质数详细解析:只有命题p和q都正确时“p且q”才正确,据此原则可判断仅B项符合、正确答案:B3、已知p与q是两个命题,给出下列命题:( 1 )只有当命题p与q同时为真时,命题“p或q”才能为真;( 2 )只有当命题p与q同时为假时,命题“p或q”才能为假;( 3 )只有当命题p与q同时为真时,命题“p且q”才能为真;( 4 )只有当命题p与q同时为假时,命题“p且q”才能为假、其中正确的命题是( )A、( 1 )和( 3 )B、( 2 )和( 3 )C、( 2 )和( 4 )D、( 3 )和( 4 )详细解析:因为当命题p与q同时为真时,命题“p或q”“p且q”都为真,而当命题p与q一真一假时,命题“p或q”为真,“p且q”为假,所以( 1 )错,( 3 )对;而当命题p与q只要有一个为假时,“p且q”就为假,所以( 4 )错;当命题p与q同时为假时,“p或q”才为假,所以( 2 )对,故选B、正确答案:B4、已知全集S=R,A⊆S,B⊆S,若p:∈( A∪B ),则“非p”是( )A、∉AB、∈∁S BC、∉( A∩B )D、∈[( ∁S A )∩( ∁S B )]详细解析:对一个命题的否定,只对命题的结论进行否定、正确答案:D5、导学号90074012已知命题p:存在x∈R,使tan x=1,命题q:x2-3x+2<0的解集是{x|1<x<2}、有下列结论:①命题“p且q”是真命题;②命题“p且非q”是假命题;③命题“非p或q”是真命题;④命题“非p或非q”是假命题、其中正确的是( )A、②③B、①②④C、①③④D、①②③④详细解析:命题p:存在x∈R,使tan x=1正确、命题q:x2-3x+2<0的解集是{x|1<x<2}也正确,∴①命题“p且q”是真命题;②命题“p且非q”是假命题;③命题“非p或q”是真命题;④命题“非p或非q”是假命题,故应选D、正确答案:D6、用适当的逻辑联结词填空( 填“且”或“或” ):( 1 )若a2+b2=0,则a=0b=0;( 2 )若ab=0,则a=0b=0;( 3 )平行四边形的一组对边平行相等、详细解析:( 1 )若a2+b2=0,则a=0且b=0,故填“且”、( 2 )若ab=0,则a=0或b=0,故填“或”、( 3 )平行四边形的一组对边平行且相等,故填“且”、正确答案:( 1 )且( 2 )或( 3 )且7、如果命题“非p或非q”是假命题,对于下列结论:①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题、其中正确的是、( 填序号)详细解析:由“非p或非q”是假命题知,“非p”与“非q”都是假命题,所以p,q都是真命题,从而判断①③正确,②④错误、正确答案:①③8、命题p:1是集合{x|x2<a}中的元素;命题q:2是集合{x|x2<a}中的元素、若“p且q”是真命题,则a的取值范围为、详细解析:由p为真命题,可得a>1,由q为真命题,可得a>4、当“p且q”为真命题时,p,q都为真命题,即解得{a|a>4}、正确答案:{a|a>4}9、写出由下列各组命题构成的“p或q”“p且q”“非p”形式的命题,并判断其真假、( 1 )p:1是质数,q:1是方程x2+2x-3=0的根;( 2 )p:平行四边形的对角线相等,q:平行四边形的对角线互相垂直;( 3 )p:N⊆Z,q:0∈N、解( 1 )因为p假q真,所以p或q:1是质数或是方程x2+2x-3=0的根,为真;p且q:1是质数且是方程x2+2x-3=0的根,为假;非p:1不是质数,为真、( 2 )因为p假q假,所以p或q:平行四边形的对角线相等或互相垂直,为假;p且q:平行四边形的对角线相等且互相垂直,为假;非p:平行四边形的对角线不一定相等,为真、( 3 )因为p真q真,所以p或q:N⊆Z或0∈N为真;p且q:N⊆Z且0∈N,为真;非p:N⊈Z,为假、B组1、若命题“p或q”与“p且q”中一真一假,则可能是( )A、p真q假B、p真q真C、非p真q假D、p假非q真详细解析:由题意知“p且q”为假,“p或q”为真,则p,q中一真一假、正确答案:A2、命题“原函数与反函数的图像关于直线y=x对称”的否定是( )A、原函数与反函数的图像关于直线y=-x对称B、原函数不与反函数的图像关于直线y=x对称C、存在一个原函数与反函数的图像不关于直线y=x对称D、存在原函数与反函数的图像关于直线y=x对称详细解析:命题“原函数与反函数的图像关于直线y=x对称”的本质含义是“所有原函数与反函数的图像关于直线y=x对称”、故其否定应为“存在一个原函数与反函数的图像不关于直线y=x 对称”、正确答案:C3、已知命题p:“x>2是x2>4的充要条件”,命题q:“若,则a>b”,则( )A、“p或q”为真B、“p且q”为真C、p真q假D、p,q均为假详细解析:由已知可知命题p为假,命题q为真,因此选A、正确答案:A4、设命题p:函数y=cos 2x的最小正周期为;命题q:函数f( x )=sin的图像的一条对称轴是x=-,则下列判断正确的是( )A、p为真B、非q为假C、p且q为真D、p或q为假详细解析:因为函数y=cos 2x的最小正周期为π,故命题p是假命题;因为f=-1,故命题q 是真命题,则非q为假,p且q为假,p或q为真,故选B、正确答案:B5、已知p:点P在直线y=2x-3上,q:点P在直线y=-3x+2上,则使命题p且q为真命题的一个点P( x,y )是、详细解析:因为p且q为真命题,所以p,q均为真命题,即点P为直线y=2x-3与y=-3x+2的交点,故有解得故点P的坐标为( 1,-1 )、正确答案:( 1,-1 )6、若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的范围是、详细解析:由题意得,p:x∈[2,5],q:x∈{x|x<1或x>4},因为p或q为假,所以p假q假,故有解得1≤x<2、正确答案:[1,2 )7、已知函数①f( x )=|x+2|;②f( x )=( x-2 )2;③f( x )=cos( x-2 )、现有命题p:f( x+2 )是偶函数;命题q:f( x )在( -∞,2 )内是减函数,在( 2,+∞ )内是增函数、则能使p且q为真命题的所有函数的序号是、详细解析:若p且q为真命题,则p,q均为真命题、对于①,f( x+2 )=|x+4|不是偶函数,故p 为假命题、对于②,f( x+2 )=x2是偶函数,则p为真命题;f( x )=( x-2 )2在( -∞,2 )内是减函数,在( 2,+∞ )内是增函数,则q为真命题,故p且q为真命题、对于③,f( x )=cos( x-2 )显然在( 2,+∞ )内不是增函数,故q为假命题、故填②、正确答案:②8、已知命题p:“存在a>0,使函数f( x )=ax2-4x在( -∞,2]上单调递减”,命题q:“存在a∈R,使任意x∈R,16x2-16( a-1 )x+1≠0”、若命题“p且q”为真命题,求实数a的取值范围、解若p为真,则函数f( x )图像的对称轴x=-在区间( -∞,2]的右侧,即≥2,∴0<a≤1、若q为真,则方程16x2-16( a-1 )x+1=0无实数根,∴Δ=[16( a-1 )]2-4×16<0,∴<a<、∵命题“p且q”为真命题,∴<a≤1、故实数a的取值范围为、9、导学号90074013已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解、若p且q是假命题,非p也是假命题、求实数a的取值范围、解∵p且q是假命题,非p是假命题,∴命题p是真命题,命题q是假命题、∵x1,x2是方程x2-mx-2=0的两个实根,∴∴|x1-x2|=、∴当m∈[-1,1]时,|x1-x2|max=3、由不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立,可得a2-5a-3≥3、∴a≥6或a≤-1,∴当命题p为真命题时,a≥6或a≤-1、命题q:不等式ax2+2x-1>0有解,①当a>0时,显然有解;②当a=0时,2x-1>0有解;③当a<0时,∵ax2+2x-1>0,∴Δ=4+4a>0,∴-1<a<0、从而命题q:不等式ax2+2x-1>0有解时,a>-1、又命题q是假命题,∴a≤-1、综上所述得⇒a≤-1、∴所求a的取值范围为( -∞,-1]、。

新北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试(含答案解析)(3)

新北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试(含答案解析)(3)

一、选择题1.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( ) A .p ∧q B .¬p ∨q C .¬p ∧qD .¬p ∨q ⌝2.“函数()2()311f x ax a x =--+在区间[)1+∞,上是增函数”是“01a ≤≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.下列命题中假命题是( ) A .∃x 0∈R ,ln x 0<0 B .∀x ∈(-∞,0),e x >x +1 C .∀x >0,5x >3xD .∃x 0∈(0,+∞),x 0<sin x 0 4.下列说法错误的是( )A .“若2560x x -+=,则2x =”的逆否命题是“若2x ≠,则2560x x -+≠”B .“2x >”是“2230x x +->”的充分不必要条件C .“x R ∀∈,2650x x -+≠”的否定是“0x R ∃∈,200650x x -+=” D .若“p q ∧”为假命题,则,p q 均为假命题 5.下列说法中正确的是( )A .命题“若x y =,则22x y =”的逆命题为真命题B .若p q ∧为假命题,则,p q 均为假命题C .若p q ∧为假命题,则p q ∨为真命题D .命题“若两个平面向量,a b 满足||||||a b a b ⋅>⋅,则,a b 不共线”的否命题是真命题. 6.下列命题中正确的是( ) A .“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的充分不必条件B .“直线l 垂直平面α内无数条直线”是“直线l 垂直于平面α”的充分条件C .已知a 、b 、c 为非零向量,则“a b a c ⋅=⋅”是“b c =”的充要条件D .p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++> 7.已知()0,x π∈,则“6x π>”是“1sin 2x >”成立的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要8.下列说法正确的是( )A .“若24x =,则2x =或2x =-”的否命题是“若24x ≠,则2x ≠或2x ≠-”B .如果p 是q 的充分条件,那么p ⌝是q ⌝的充分条件C .若命题p 为真命题,q 为假命题,则p q ∧为假命题D .命题“若αβ=,则sin sin αβ=”的否命题为真命题9.命题“已知直线1l :10ax y ++=和2l :20x by ++=,若1ab =,则12l l //”,该命题的逆命题、否命题、逆否命题中正确的个数为( ) A .0B .1C .2D .310.下列命题中真命题的是( )A .命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠B .“22am bm <”是“a b <”的充要条件C .若p q ∧为假命题,则,p q 均为假命题D .对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠,则p 是q 的必要不充分条件 11.已知点A ,B ,C 不共线,则“AB 与AC 的夹角为3π”是“AB AC BC +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件12.已知2:11xp x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( ) A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞二、填空题13.已知a R ∈,命题“存在x ∈R ,使230x ax a --≤”为假命题,则a 的取值范围为______.14.给出以下四个结论: ①函数()211x f x x -=+的对称中心是1,2;②若关于x 的方程10x k x-+=在()0,1∈x 没有实数根,则k 的取值范围是2k ≥; ③在ABC 中,“cos cos b A a B =”是“ABC 为等边三角形”的充分不必要条件; ④若()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后为奇函数,则ϕ最小值是π12. 其中正确的结论是______ 15.给出下列命题:①纯虚数z 的共轭复数是z -; ②若120z z -=,则12z z =;③若12R z z +∈,则1z 与2z 互为共轭复数; ④若120z z -=,则1z 与2z 互为共轭复数.其中正确命题的序号是_________.16.若命题“存在,x R ∈220x x a ++≤”是假命题,则实数a 的取值范围是________. 17.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________. 18.已知,B ,C ()222A kx kx kx k Z πππ≠+≠+≠+∈, 则“A B C π++=”是tan tan tan tan tan tanC A B C A B ++="的___________________条件 (请在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一个合适的填空) .19.命题“0x R ∃∈,使()200110m x mx m +-+-≤”是假命题,则实数m 的取值范围为__________.20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是; 其中正确的命题的是________.三、解答题21.已知{}3A x a x a =≤≤+,{}2450B x x x =-++<.(1)若3a =-,求A B ;(2)若x A ∈是R x B ∈的充分不必要条件,求实数a 的取值范围.22.已知0a >,命题()()230p x x +-≤:,命题11q a x a -≤≤+:. (1)若5a =,“p 或q ”为真命题,“p 且q ”为假命题,求实数x 的取值范围; (2)若q ⌝ 是p ⌝的必要条件,求实数a 的取值范围.23.已知命题:“0 x R ∃∈,使得200250x mx m +++<”为假命题. (1)求实数m 的取值集合A ;(2)设不等式()()1120x a x a -+-<+的解集为集合B ,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.24.已知:46p x -≤,2:2240q x x --≤,若p q ∨为真,p q ∧为假,求实数x 的取值范围.25.给定两个命题P :对任意实数x 都有210ax ax ++>恒成立;Q :关于x 的方程20x x a -+=有实数根;(1)“0a =”是P 的什么条件?(2)如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.26.设命题p :函数()(21)2020f x k x =-+在R 上是减函数,命题q :函数()g x =R ,如果()p q ∧⌝是真命题,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案. 【详解】∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.2.C解析:C 【解析】0a <时,“函数()()2311f x ax a x =--+在区间[)1,+∞上不是增函数”,0a =时,()1f x x =+在[)1,+∞上是增函数,0a >时,令3112a a-≤,得01a <≤,∴“()()2311f x ax a x =--+在区间[)1,+∞上是增函数” 的充分必要条件“01a ≤≤”,故选C.3.D解析:D 【详解】∃x 0∈R ,lnx 0<0,的当x ∈(0,1)时,恒成立,所以正确;x ∈(﹣∞,0),令g (x )=e x ﹣x ﹣1,可得g ′(x )=e x ﹣1<0,函数是减函数,g (x )>g (0)=0,可得∀x ∈(﹣∞,0),e x >x +1恒成立,正确; 由指数函数的性质的可知,∀x >0,5x >3x 正确;令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.4.D解析:D 【分析】根据逆否命题的定义、集合间的关系、全称命题的否定、p q ∧为假命题的定义,对选项进行一一验证,即可得答案. 【详解】对A ,根据逆否命题的定义可知命题正确,故A 正确;对B ,若2230x x +->,则1x >或3x <-,所以“2x >”是“2230x x +->”的充分不必要条件,故B 正确;对C ,因为全称命题的否定是特称命题,且将结论否定,故C 正确; 对D ,若“p q ∧”为假命题,则p 、q 中只要有一个为假命题,故D 错误. 故选:D. 【点睛】本题考查命题真假性的判断,考查对概念的理解与应用,属于基础题.5.D解析:D 【分析】A 中,利用四种命题的的真假判断即可;B 、C 中,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题;D 中,写出该命题的否命题,再判断它的真假性. 【详解】对于A ,命题“若x y =,则22x y =”的逆命题是:若22x y =,则x y =; 因为yx =-也成立.所以A 不正确;对于B ,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题,所以B 错误;C 错误; 对于D ,“平面向量,a b 满足||||||a b a b ⋅>⋅”,则,a b 不共线的否命题是,若“平面向量,a b 满足||||||a b a b ⋅≤⋅”,则,a b 共线; 由||||cos a b a b θ⋅=⋅⨯知:||||||a b a b ⋅≥⋅,一定有||||||a b a b ⋅=⋅,cos 1θ=±, 所以,a b 共线,D 正确. 故选:D.【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题.6.D解析:D 【分析】由两直线平行与系数的关系式求得m 判断A;由线面垂直的判定定理判断B ;由平面向量的数量积的运算判断C ;写出特称命题的否定判断D ,综合可得答案. 【详解】解:由直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行⇔223203220m m m m m ⎧+--=⎨-+--≠⎩()()()(),可得m =“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的既不充分也不必条件,故A 错误;直线l 垂直平面α内无数条直线不一定有直线垂直平面,故“直线l 垂直平面α内无数条直线”不是“直线l 垂直于平面α”的充分条件,故B 错误;a 、b 、c 为非零向量,由“a b a c ⋅=⋅”不能得到“b c =”,反之由“b c =”能够得到“a b a c ⋅=⋅”,故“a b a c ⋅=⋅”是“b c =”的必要不充分条件,故C 错误;p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++>,故D 正确; 故选:D. 【点睛】本题主要考查命题真假的判断,涉及全称命题与特称命题的否定的书写、充分必要条件的判断等知识点,属于中档题.7.B解析:B 【分析】 求出不等式1sin 2x >在()0,x π∈上的解,然后利用集合的包含关系即可得出结论. 【详解】()0,x π∈,解不等式1sin 2x >,得566x ππ<<,5,66ππ⎛⎫ ⎪⎝⎭ ,6ππ⎛⎫⎪⎝⎭,因此,“6x π>”是“1sin 2x >”成立的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,涉及正弦不等式的求解,考查推理能力与运算求解能力,属于中等题.8.C解析:C 【分析】写出“若24x =,则2x =或2x =-”的否命题,即可A 选项; 根据原命题与逆否命题的等价性,判断B 选项; 根据且命题的性质判断C 选项;写出该命题的否命题,举例说明,判断D 选项. 【详解】“若24x =,则2x =或2x =-”的否命题是“若24x ≠,则2x ≠且2x ≠-”,故A 错误; 因为p 是q 的充分条件,所以由p 能推出q ,所以q ⌝能推出p ⌝,即p ⌝是q ⌝的必要条件故B 错误;命题p 为真,q 为假,则p q ∧为假命题,故C 正确;命题“若αβ=,则sin sin αβ=”的否命题为“若αβ≠,则sin sin αβ≠”,所以否命题为假命题,例如当30,150αβ=︒=︒时,sin sin αβ=,故D 错误. 故选:C 【点睛】本题主要考查了写出命题的否命题并且判断真假,原命题与逆否命题的等价性应用,属于中档题.9.C解析:C 【分析】判断原命题为假命题得到逆否命题为假,逆命题为真得到否命题为真,得到答案. 【详解】 取12a =,2b =,满足1ab =,两直线重合,故原命题为假,故逆否命题为假; 若12l l //,则1ab =,故逆命题为真,故否命题为真. 故选:C . 【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.10.A解析:A 【分析】A. 根据四种命题的结构形式及转化来判断.B.利用特殊值法,当 0m =时,逆命题不成立.C. 若p q ∧为假命题,由结论“一假则假”来判断. D 用等价命题来判断. 【详解】命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠,故A 正确;若22am bm <,则0m ≠,可得a b <,反之a b <,0m =,22am bm <不成立,故B 错误;若p q ∧为假命题,则p ,q 中至少有一个为假命题,故C 错误;对于实数x ,y ,p :8x y +≠,q :2x ≠或6y ≠,由2x =且6y =,可得8x y +=,即p 可得q ,反之由q 推不到p ,则p 是q 的充分不必要条件,故D 错误.故选:A 【点睛】本题主要考查命题的转化及关系以及逻辑条件,还考查了理解辨析的能力,属于基础题.11.A解析:A 【分析】利用向量数量积的性质,可判断AB AC BC +>与AB 与AC 的夹角为3π的推出关系,即可求解. 【详解】当AB 与AC 的夹角为3π时 222=||+2+||2=2||||cos03AB AC AB AB AC AC AB AC AB AC π+⋅⋅⋅⋅>,,222222=||+2+||||2+||||AB AC AB AB AC AC AB AB AC AC AC AB ∴+⋅>-⋅=-,||AB AC AC AB BC ∴+>-=,当AB AC BC +>时,2222222=||+2+||||2+|||||AB AC AB AB AC AC AB AB AC AC AC AB BC +⋅>-⋅=-=,化简得:0AB AC ⋅>, A ,B ,C 不共线,∴AB 与AC 的夹角为锐角,所以“AB 与AC 的夹角为3π”是“AB AC BC +>”的充分不必要条件, 故选:A 【点睛】本题主要考查了数量积的运算性质,充分不必要条件,属于中档题.12.A解析:A 【分析】由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案. 【详解】 解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<, ∴:11p x -<<,由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件; 当3a >时,解得:q x a >或3x <,满足条件; 当3a <时,解得:3q x >或x a <,∴13a ≤<, 综上:1a ≥, 故选:A . 【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.【分析】将条件转化为任意恒成立此时有从而解出实数a 的取值范围【详解】命题:存在使为假命题即恒成立则即:解得故实数a 的取值范围为故答案为:【点睛】本题考查由命题的真假求参数的范围考查一元二次不等式的应 解析:()12,0-【分析】将条件转化为任意x ∈R ,230x ax a -->恒成立,此时有∆<0,从而解出实数a 的取值范围. 【详解】命题:“存在x ∈R ,使230x ax a --≤”为假命题 即230x ax a -->恒成立,则∆<0, 即:2120a a ∆=+<,解得120a -<<, 故实数a 的取值范围为()12,0- 故答案为:()12,0- 【点睛】本题考查由命题的真假求参数的范围,考查一元二次不等式的应用,体现了等价转化的思想,属于中等题.14.①【分析】对四个结论逐个分析可选出答案【详解】对于①其图象由的图象向左平移1个单位再向上平移2个单位得到故的对称中心为即①正确;对于②由可得令且显然函数在上单调递减则又因为时故在的值域为所以当时关于解析:① 【分析】对四个结论逐个分析,可选出答案. 【详解】 对于①,()213211x f x x x -==-++,其图象由3y x =-的图象向左平移1个单位,再向上平移2个单位得到,故()f x 的对称中心为1,2,即①正确;对于②,由10x k x -+=,可得1k x x=-. 令()1g x x x=-,且()0,1∈x ,显然函数()g x 在()0,1∈x 上单调递减, 则()()10g x g >=,又因为0x →时,1+x x-→∞,故()g x 在0,1的值域为0,,所以当0k ≤时,关于x 的方程10x k x-+=在()0,1∈x 没有实数根,即②错误; 对于③,先来判断充分性,当cos cos b A a B =时,可得sin cos sin cos =B A A B ,所以()sin cos sin cos sin 0B A A B B A -=-=,即B A =,所以ABC 为等腰三角形,不能推出ABC 为等边三角形,即充分性不成立;再来判断必要性,当ABC 为等边三角形时,可得B A =,则sin cos sin cos =B A A B ,故cos cos b A a B =,即必要性成立,故③不正确;对于④,()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,得到()πsin 223g x x φ⎛⎫=-- ⎪⎝⎭,由()g x 为奇函数,可得πsin 203φ⎛⎫--= ⎪⎝⎭,则()π2π3φk k +=∈Z ,解得()ππ26k φk =-∈Z ,当1k =时,ϕ取得最小正值为π3,故④不正确.所以,正确的结论是①. 故答案为:①. 【点睛】本题考查函数的对称中心,考查三角函数的平移变换及奇偶性的应用,考查利用参变分离法解决方程的解的存在性问题,考查充分性与必要性的判断,考查学生的推理论证能力与计算求解能力,属于中档题.15.①④【分析】对于①根据纯虚数和共轭复数的定义可知正确;对于②由得出再由复数相等和共轭复数的定义可知不一定有可知②不正确;对于③则可能均为实数但不一定相等或与的虚部互为相反数但实部不一定相等即可判断出解析:①④ 【分析】对于①,根据纯虚数和共轭复数的定义可知正确;对于②,由120z z -=得出12z z =,再由复数相等和共轭复数的定义,可知不一定有12z z =,可知②不正确;对于③,12R z z +∈,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,,即可判断出③;对于④,由120z z -=得出12z z =,则1z 与2z 互为共轭复数,则④正确;综合得出答案. 【详解】解:根据纯虚数和共轭复数的定义,可知命题①显然正确; 对于②,若120z z -=,只能得到12z z =,不一定有12z z =,所以命题②不正确;对于③,若12R z z +∈,则12,z z 可能均为实数,但不一定相等, 或1z 与2z 的虚部互为相反数,但实部不一定相等, 则1z 与2z 不一定互为共轭复数,所以命题③不正确; 由120z z -=得出12z z =,则1z 与2z 互为共轭复数,可知命题④正确;所以正确命题的序号是①④.故答案为:①④. 【点睛】本题考查复数相关命题的真假,考查对复数的概念中实数、虚数、纯虚数以及相等复数和共轭复数的特征的理解,属于基础题.16.【分析】根据所给的特称命题的否定:任意实数是真命题得到判别式小于0解不等式即可【详解】命题存在的否定任意实数是真命题解得:故答案为:【点睛】本题考查命题的否定写出正确的全称命题并且根据这个命题是一个 解析:1a >【分析】根据所给的特称命题的否定:任意实数x ,220x x a ++>是真命题,得到判别式小于0,解不等式即可. 【详解】命题“存在x ∈R , 220x x a ++≤”的否定 “任意实数x , 220x x a ++>”是真命题,∴440a ∆=-<,解得:1a >,故答案为:1a >. 【点睛】本题考查命题的否定,写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况,属于容易题.17.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.18.充分不必要【分析】由得;反之由得然后结合充分必要条件的判定得答案【详解】解:若则又;若则依题意是的充分不必要条件故答案为充分不必要【点睛】本题考查两角和与差的正切函数着重考查充分必要条件的判定考查转解析:充分不必要 【分析】由A B C π++=,得tan tan tan tan tan tan A B C A B C ++=;反之,由tan tan tan tan tan tan A B C A B C ++=,得,A B C n n Z π++=∈.然后结合充分必要条件的判定得答案. 【详解】解:若A B C π++=, 则A B C π+=-,又,,,2A B C k k Z ππ≠+∈ ,tan()tan()A B C π∴+=- ,tan tan tan 1tan tan A BC A B+∴=-- ,tan tan tan +tan tan tan A B C A B C ∴+=-, tan tan tan tan tan tan A B C A B C ∴++=; 若tan tan tan tan tan tan A B C A B C ∴++=, 则()()tan tan tan +tan tan tan 1tan tan tan A B C A B C A B C ∴+=-=--,依题意,()1tan tan 0A B -≠,tan tan tan 1tan tan A BC A B+∴=--,tan()tan()A B C ∴+=-, ,A B n C n Z π+=-∈∴ ,A B C n n Z π++=∈∴∴“A B C π++=”是tan tan tan tan tan tanC A B C A B ++="的充分不必要条件.故答案为充分不必要. 【点睛】本题考查两角和与差的正切函数,着重考查充分必要条件的判定,考查转化思想与推理证明能力,属于中档题.19.【分析】使是假命题则使是真命题对是否等于进行讨论当时不符合题意当时由二次函数的图像与性质解答即可【详解】使是假命题则使是真命题当即转化为不是对任意的恒成立;当使即恒成立即第二个式子化简得解得或所以【解析:m >【分析】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,对1m +是否等于0进行讨论,当10m +=时不符合题意,当10m +≠时,由二次函数的图像与性质解答即可. 【详解】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,当10m +=,即1m =-,()2110m x mx m +-+->转化为20x ->,不是对任意的x ∈R 恒成立;当10m +≠,x R ∀∈,使()2110m x mx m +-+->即恒成立,即()()()2104110m m m m +>⎧⎪⎨--+-<⎪⎩,第二个式子化简得234m >,解得m >或233m <-所以233m >【点睛】本题考查命题间的关系以及二次函数的图像与性质,解题的关键是得出x R ∀∈,使()2110m x mx m +-+->是真命题这一条件,属于一般题.20.④【解析】试题分析:若或为真命题则pq 至少有一真所以命题 错误;命题若且则的否命题为若或则故命题‚错误;三角形ABC 中角A 时故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件由因p:所以由一解析:④ 【解析】试题分析:若“p 或q ”为真命题,则p 、q 至少有一真,所以命题•错误;命题“若且,则”的否命题为“若或,则”,故命题 错误;三角形ABC 中,角A时,,故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件.由因p:,所以由一元二次方程根的分布可得,解得,.故正确的命题是④.考点:命题的真假性判断.三、解答题21.(1){}31x x -≤<-;(2)[]1,2-. 【分析】(1)求出集合A 、B ,利用交集的定义可求得集合A B ;(2)求出集合B R,由题意可得出关于实数a 的不等式组,由此可求得实数a 的取值范围.【详解】 (1)当3a=-时,{}30A x x =-≤≤,{}{}{224504501B x x x x x x x x =-++<=-->=<-或}5x >,因此,{}31A B x x ⋂=-≤<-; (2)由(1)可得{}15RB x x =-≤≤,若x A ∈是()Rx B ∈的充分不必要条件,则A B R ,所以,135a a ≥-⎧⎨+≤⎩,解得12a -≤≤.①当1a =-时,{}12A x x =-≤≤,则AB R成立;②当2a =时,{}25A x x =≤≤,则A B R成立.综上所述,实数a 的取值范围是[]1,2-. 【点睛】本题考查交集的运算,同时也考查了利用充分不必要条件求参数,考查了集合包含关系的应用,考查计算能力,属于中等题.22.(1){|42x x -≤<-或36}x <≤ ;(2)02a <. 【分析】(1)将5a =,代入命题q ,求出x 的取值范围,由“p 或q ”为真命题,“p 且q ”为假命题,可知p 与q 一真一假,分类讨论当p 真q 假和当p 假q 真时,解不等式进行求解即可;(2)0a >,23p x -≤≤:,11q a x a -≤≤+:,分别求出p 和q ,根据q ⌝是p ⌝的必要条件,可得p 是q 的必要条件,从而求出a 的范围. 【详解】解:(1)当5a =时,命题 23p x -≤≤:;命题46q x -≤≤:. “p 或q ”为真命题,“p 且q ”为假命题,p q ∴, 一真一假,①当p 真q 假时,23x -,且4x <-或6x > ,∴无解; ②当p 假q 真时,2x <-或3x >,且46x - ,∴ 42x -≤<-或36x <≤,综上得,x 的范围是{|42x x -≤<-或36}x <≤ .(2)命题23p x -≤≤:,命题11q a x a -≤≤+:, q ⌝∵是p ⌝的必要条件,p ∴是q 的必要条件,又0a >, 2113a a ∴--+ ,∴ 02a <.【点睛】本题考查命题真假的判断,以及充分条件和必要条件的定义和不等式的解法及其性质,考查分类讨论的思想和运算能力. 23.(1){|210}m m -≤≤.(2)92<-a 或11a >【分析】(1)写出命题的否定得2m 2m 50x x +++≥恒成立,列出满足条件的不等式即可求解; (2)根据题意知集合A 是集合B 的真子集,分类讨论,分别列出满足的不等式求解即可. 【详解】(1)命题“x R ∀∈,使方程2m 2m 50x x +++≥”是真命题. 只需24(25)0m m ∆=-+≤, 解得210m -≤≤,于是可得:{}210A m m =-≤≤(2)若x B ∈是x A ∈的必要不充分条件,则集合A 是集合B 的真子集. 当23a =时,B φ=,不合题意, 当23<a 时,()1,12B a a =--, 由A B 可得:121210a a -<-⎧⎨->⎩,解得92<-a ; 当23a >时,()12,1B a a =--, 由A B 可得:110122a a ->⎧⎨-<-⎩,解得11a >; 综上92<-a 或11a >. 【点睛】本题主要考查了存在性命题的否定,二次不等式恒成立,由包含关系求参数,属于中档题.24.(][)6,104,2--【分析】解不等式46x -≤和22240x x --≤,由题意得出p 、q 一真一假,然后分情况讨论,进而可求得实数x 的取值范围. 【详解】解不等式46x -≤,即646x -≤-≤,解得210x -≤≤; 解不等式22240x x --≤,解得46x -≤≤.:210p x ∴-≤≤,:46q x -≤≤,因为p q ∨为真,p q ∧为假,所以p 、q 一真一假, 若p 真q 假,则(]6,10x ∈;若q 真p 假,则[)4,2x ∈--.综上所述,实数x 的取值范围是(][)6,104,2--.【点睛】本题考查利用复合命题的真假求参数的取值范围,同时也考查了绝对值不等式和一元二次不等式的求解,考查运算求解能力,属于中等题.25.(1)充分不必要条件;(答充分条件也对);(2)()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】(1)若a =0,求出P 成立的等价条件,根据充分条件和必要条件的定义进行判断. (2)根据复合命题之间的关系分P 真Q 假和P 假Q 真,进行求解即可. 【详解】(1)若0a =,210ax ax ++>等价于10>恒成立,若0a ≠,则210ax ax ++>恒成立等价于判别式240a a ∆=-<,且0a >, 则04a <<,综上,P :04a ≤<,即“0a =”是P 的充分不必要条件;(答充分条件也对)(2)对任意实数x 都有210ax ax ++>恒成立, 可得0a =或0a >⎧⎨∆<⎩,可得04a ≤<; 关于x 的方程20x x a -+=有实数根,可得140,a -≥14a ≤; 如果P 正确,且Q 不正确, 有04a ≤<,且14a >,144a ∴<<; 如果Q 正确,且P 不正确, 有0a <或4a ≥,且14a ≤,0a ∴<. 所以实数a 的取值范围为()1,0,44⎛⎫-∞ ⎪⎝⎭. 【点睛】本题考查必要条件、充分条件与充要条件的判断及根据命题真假求参数,必要条件、充分条件与充要条件的判断一般利用定义或集合进行判断,根据命题真假求参数一般是列不等式求解即可,属于中等题.26.11(,1),32k ⎛⎫∈-∞-⋃ ⎪⎝⎭【分析】若函数()(21)2020f x k x =-+在R 上递减,只需210k -<,函数()g x =R ,则2(31)10x k x +++≥恒成立,函数0∆≤即可.【详解】解:若p 为真,则210k -<,即12k <; 若q 为真,则2(31)40k ∆=+-≤,解得113k -≤≤, 由()p q ∧⌝是真命题可知,p 真且q 假,即12113k k k⎧<⎪⎪⎨⎪-⎪⎩或. 解得:1k <-或1132k <<, 故实数k 的取值范围是11(,1),32k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 【点睛】求解根据含逻辑连接词的命题真假求参数的取值范围的问题时,先求解当p 和q 都是真命题时参数的取值范围,则p ⌝成立时,只需计算其补集,最后根据“或”、“且”、“非”的关系求解即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3 全称量词与存在量词
3.1 全称量词与全称命题
3.2 存在量词与特称命题
课时目标 1.理解全称量词和存在量词的意义.2.掌握全称命题和特称命题的定义,能判定全称命题和特称命题的真假.
1.全称量词与全称命题
短语“所有”、“每一个”、“任何”、“任意一条”、“一切”等都是在指定范围内,表示________或________的含义,这样的词叫作全称量词,含有____________的命题,叫作全称命题.
2.存在量词与特称命题
短语“有些”、“至少有一个”、“有一个”、“存在”等都有表示________或_____的含义,这样的词叫作存在量词,含有______________的命题叫作特称命题.
一、选择题
1.下列语句不是全称命题的是( )
A.任何一个实数乘以零都等于零
B.自然数都是正整数
C.高二(一)班绝大多数同学是团员
D.每一个向量都有大小
2.下列命题是特称命题的是( )
A.偶函数的图象关于y轴对称
B.正四棱柱都是平行六面体
C.不相交的两条直线是平行直线
D.存在实数大于等于3
3.下列命题不是“存在x0∈R,使x20>3”成立的表述方法的是( ) A.有一个x0∈R,使x20>3
B.有些x0∈R,使x20>3
C.任选一个x∈R,使x2>3
D.至少有一个x0∈R,使x20>3
4.下列四个命题中,既是特称命题又是真命题的是( )
A.斜三角形的内角是锐角或钝角
B.至少有一个实数x0,使x20>0
C.任一无理数的平方必是无理数
D.存在一个负数x0,使1
x0
>2
5.下列命题中全称命题的个数是( )
①任意一个自然数都是正整数;②所有的素数都是奇数;③有的等差数列也是等比数列;④三角形的内角和是180°.
A.0 B.1 C.2 D.3
6.给出下列命题:
①存在实数x>1,使x2>1;
②全等的三角形必相似;
③有些相似三角形全等;
④至少有一个实数a,使ax2-ax+1=0的根为负数.
其中特称命题的个数为( )
A.1个B.2个C.3个D.4个
二、填空题
7.对任意x>3,x>a恒成立,则实数a的取值范围是________.
8.命题“存在x0∈R,使得x20+x0+2≤0”是__________命题(用真或假填空).9.下列命题:①存在x<0,使|x|>x;
②对于一切x<0,都有|x|>x;
③已知a n=2n,b n=3n,对于任意n∈N+,都有a n≠b n;
④已知A={a|a=2n},B={b|b=3n},对于任意n∈N+,都有A∩B=∅.
其中,所有正确命题的序号为________.(填序号)
三、解答题
10.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假.
(1)若a>0,且a≠1,则对任意实数x,a x>0;
(2)对任意实数x1,x2,若x1<x2,则tan x1<tan x2;
(3)存在T0∈R,使|sin(x+T0)|=|sin x|;
(4)存在x0∈R,使x20+1<0.。

相关文档
最新文档