浙江省丽水市2017年中考数学试卷(解析版)

合集下载

九年级下数学中考真题浙江省丽水市2017年中考数学试题(word图片两版,含答案)

九年级下数学中考真题浙江省丽水市2017年中考数学试题(word图片两版,含答案)

数学第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在数1,0,1-,2-中,最大的数是( ) A .2-B .1-C .0D .12.计算23a a ⋅的正确结果是( ) A .5aB .4aC .8aD .9a3.如图是底面为正方形的长方体,则有关它的三个视图的说法正确的是( )A .俯视图与主视图相同B .左视图与主视图相同C .左视图与俯视图相同D .三个视图都相同4.根据 2.5PM 空气质量标准:24小时 2.5PM 均值在0~35(微克/立方米)的空气质量等级为优.将环保部门对我市 2.5PM 一周的检测数据制成如图统计表,这组 2.5PM 数据的中位数是( )天数3 1 1 1 1 2.5PM1820212930A .21微克/立方米B .20微克/立方米C .19微克/立方米D .18微克/立方米5.化简2111x x x+--的结果是( ) A .1x +B .1x -C .21x -D .211x x +-6.若关于x 的一元一次方程20x m -+=的解是负数,则m 的取值范围是( ) A .2m ≥B .2m >C .2m <D .2m ≤7.如图,在ABCD Y 中,连接AC ,45ABC CAD ∠=∠=︒,2AB =,则BC 的长是( )A .2B .2C .22D .48.将函数2y x =的图象用下列方法平移后,所得的图象不经过点(1,4)A 的方法是( ) A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位9.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC =,则图中阴影部分的面积是( )A .433π- B .4233π- C .233π- D .233π- 10.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象.下列说法错误的是( )A .乙先出发的时间为0.5小时B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早112小时 第Ⅱ卷(共90分)二、填空题(每题4分,满分24分,将答案填在答题纸上)11.分解因式:22m m += .12.等腰三角形的一个内角为100︒,则顶角的度数是 . 13.已知21a a +=,则代数式23a a --的值为 .14.如图,由6个小正方形的组成的23⨯网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是 .15.我国三国时期数学家赵爽为了证明勾股定理,创造了一副“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且//IJ AB ,则正方形EFGH 的边长为 .16.如图,在平面直角坐标系xOy 中,直线y x m =-+分别交x 轴,y 轴于A ,B 两点,已知点(2,0)C . (1)当直线AB 经过点C 时,点O 到直线AB 的距离是 ;(2)设点P 为线段OB 的中点,连接PA ,PC ,若CPA ABO ∠=∠,则m 的值是 .三、解答题 (本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17.计算:011(2017)()93--- 18.解方程:(3)(1)3x x --=.19.如图是某小区的一个健身器材,已知0.15BC m =, 2.70AB m =,70BOD ∠=︒,求端点A 到地面CD 的距离(精确到0.1m ).(参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈)20.在全体丽水人民的努力下,我市剿灭劣V 类水“河道清淤”工程取得了阶段性成果.右表是全市十个县(市、区)指标任务数的统计表;左图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数100%⨯)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图标信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时间为t 小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v ,t 的一组对应值如表:v (千米/小时) 75 80 85 90 95 t (小时)4.003.753.533.333.16(1)根据表中的数据,求出平均速度v (千米/小时)关于行驶时间t (小时)的函数表达式; (2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由; (3)若汽车到达杭州市场的行驶时间t 满足3.54t ≤≤,求平均速度v 的取值范围.22.如图,在Rt ABC ∆中,C Rt ∠=∠,以BC 为直径的O e 交AB 于点D ,切线DE 交AC 于点E .(1)求证:A ADE ∠=∠;(2)若16AD =,10DE =,求BC 的长.23.如图1,在ABC ∆中,30A ∠=︒,点P 从点A 出发以2/cm s 的速度沿折线A C B --运动,点Q 从点A 出发以(/)a cm s 的速度沿AB 运动.P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动,设运动时间为()x s ,APQ ∆的面积为2()y cm ,y 关于x 的函数图象由1C ,2C 两段组成,如图2所示.(1)求a 的值;(2)求图2中图象2C 段的函数表达式;(3)当点P 运动到线段BC 上某一段时APQ ∆的面积,大于当点P 在线段AC 上任意一点时APQ ∆的面积,求x 的取值范围.24.如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF AF ⊥交AD 于点G ,设ADn AE=.(1)求证:AE GE =;(2)当点F 落在AC 上时,用含n 的代数式表示ADAB的值; (3)若4AD AB =,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.数学答案一、选择题1-5:DABBA 6-10:CCDAD二、填空题11.(2)m m +12.100︒ 13.2 14.1315.10 16.(1;(2)12 三、解答题17.解:原式1331=-+=. 18.解:(3)(1)3x x --=, 去括号,得2433x x -+=, 移项合并,得240x x -=,因式分解,得(4)0x x -=,解得10x =,24x =.19.解:过点A 作AE CD ⊥于点E ,过点B 作BF AE ⊥于点F , ∵OD CD ⊥,70BOD ∠=︒,∴//AE OD ,∴70A BOD ∠=∠=︒. 在Rt AFB ∆中, 2.7AB =,∴ 2.7cos70 2.70.340.918AF =⨯︒=⨯=, ∴0.9180.15 1.068 1.1()AE AF BC m =+=+=≈. 答:端点A 到地面CD 的距离约是1.1m . 20.解:(1)C 县的完成进度21.4100%107%20=⨯=;Ⅰ县的完成进度3100%27.3%11=⨯≈. 所以截止3月31日,完成进度最快的是C 县,完成进度最慢的是Ⅰ县.(2)全市的完成进度(20.520.327.89.68.817.19.621.411.525.2)=+++++++++200100%÷⨯171.8200100%85.9%=÷⨯=.(3)A 类(识图能力):能直接根据统计图的完成任务数对Ⅰ县作出评价.如:截止5月4日,Ⅰ县累计完成数为11.5万方>任务数11万方,已经超额完成任务. B 类(数据分析能力):能结合统计图通过计算完成进度对Ⅰ县作出评价. 如:截止5月4日,Ⅰ县的完成进度11.5100%104.5%11=⨯≈,超过全市完成进度. C 类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对Ⅰ县作出评价. 如:截止3月31日:Ⅰ县的完成进度3100%27.3%11=⨯≈,完成进度全市最慢. 截止5月4日:Ⅰ县的完成进度11.5100%104.5%11=⨯≈,超过全市完成进度,104.5%27.3%-77.2%=,与其它县(市、区)对比进步幅度最大.21.解:(1)根据表中的数据,可画出v 关于t 的函数图象(如图所示),根据图像形状,选择反比例函数模型进行尝试.设v 与t 的函数关系式kv t=, ∵当75v =时,4t =,∴475300k =⨯=,∴300v t=. 将点(3.75,80),(3.53,85),(3.33,90),(3.16,95)的坐标代入300v t=验证: 300 3.7580=,300 3.5385≈,300 3.3390≈,3003.1695≈, ∴v 与t 的函数表达式为300v t=(3t ≥).(2)∵107.5 2.5-=,∴当 2.5t =时,3001201002.5v ==>,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场. (3)由图象或反比例函数的性质得,当3.54t ≤≤时,600757v ≤≤. 答:平均速度v 的取值范围是600757v ≤≤.22.(1)证明:连接OD ,∵DE 是O e 的切线,∴90ODE ∠=︒,∴90ADE BDO ∠+∠=︒, ∵90ACB ∠=︒,∴90A B ∠+∠=︒, 又∵OD OB =,∴B BDO ∠=∠. ∴ADE A ∠=∠.(2)连结CD ,∵ADE A ∠=∠,∴AE DE =, ∵BC 是O e 的直径,90ACB ∠=︒,∴EC 是O e 的切线,∴DE EC =,∴AE EC =, 又∵10DE =,∴220AC DE ==,在Rt ADC ∆中,22201612DC =-=, 设BD x =,在Rt BDC ∆中,22212BC x =+,在Rt ABC ∆中,222(16)20BC x =+-,∴222212(16)20x x +=+-,解得9x =, ∴2212915BC =+=.23.解:过点P 作PD AB ⊥于点D . (1)在图1中,∵30A ∠=︒,2PA x =,∴1sin 3022PD PA x x =⋅︒=⋅=, ∴2111222y AQ PD ax x ax =⋅=⋅=,由图像得当1x =时,12y =,则211122a ⋅=,∴1a =.(2)当点P 在BC 上时(如图2),522102PB x x =⨯-=-, ∴sin (102)sin PD PB B x B =⋅=-⋅,∴11(102)sin 22y AQ PD x x B =⋅=⋅-⋅. 由图像得,当4x =时,43y =,∴144(108)sin 23B ⨯⨯-⋅=,∴1sin 3B =, ∴21115(102)2333y x x x x =⋅-⋅=-+.(3)由1C ,2C 的函数表达式,得22115233x x x =-+. 解得10x =(舍去),22x =.由图像得,当2x =时,函数212y x =的最大值为21222y =⨯=, 将2y =代入函数21533y x x =-+,得215233x x =-+,解得12x =,23x =,∴由图像得,x 的取值范围是23x <<. 24.解:设AE a =,则AD na =,(1)由对称得AE FE =,∴EAF EFA ∠=∠,∵GF AF ⊥,∴90EAF FGA EFA EFG ∠+∠=∠+∠=︒, ∴FGA EFG ∠=∠,∴EG EF =, ∴AE EG =.(2)当点F 落在AC 上时(如图1),由对称性得BE AF ⊥, ∴90ABE BAC ∠+∠=︒,∵90DAC BAC ∠+∠=︒,∴ABE DAC ∠=∠, 又∵90BAE D ∠=∠=︒, ∴ABE DAC ∆∆:,∴AB AEDA DC=, ∵AB DC =,∴2AB AD AE =⋅2na a na =⋅=.∵0AB >,∴AB na =,∴AD n AB na==.(3)若4AD AB =,则4nAB a =. 当点F 落在线段BC 上时(如图2),EF AE AB a ===. 此时4na a =,∴4n =, ∴当点F 落在矩形内部时,4n >.∵点F 落在矩形的内部,点G 在AD 上,∴FCG BCD ∠<∠,∴90FCG ∠<︒.①若90CFG ∠=︒,则点F 落在AC 上,由(2)得AD n AB =,即4ABn AB=16n =. ②若90CGF ∠=︒(如图3),则90CGD AGF ∠+∠=︒, ∵90FAG AGF ∠+∠=︒, ∴CGD FAG ABE ∠=∠=∠, ∵90BAE D ∠=∠=︒, ∴ABE DGC ∆∆:, ∴AB AEDG DC=, ∴AB DC DG AE ⋅=⋅,即2()(2)4n a n a a =-⋅, 解得1842n =+28424n =-<(不合题意,舍去).∴当16n =或842n =+时,以点F ,C ,G 为顶点的三角形是直角三角形.。

2017年浙江省丽水市中考数学试卷

2017年浙江省丽水市中考数学试卷

中考数学复习资料(真题)2017年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5.(3分)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤27.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.48.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=.12.(4分)等腰三角形的一个内角为100°,则顶角的度数是.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为.14.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.18.(6分)解方程:(x﹣3)(x﹣1)=3.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.(10分)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F 作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.2017年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•丽水)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.1【分析】根据有理数大小比较的规律即可得出答案.【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选D.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(3分)(2017•丽水)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.【点评】本题考查了同底数幂的乘法运算,掌握同底数幂的乘法运算法则:底数不变,指数相加是解题的关键.3.(3分)(2017•丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是一个正方形,主视图是一个长方形,故A错误;B、左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C、左视图是一个长方形,俯视图是一个正方形,故C错误;D、俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.4.(3分)(2017•丽水)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【分析】按大小顺序排列这组数据,最中间那个数是中位数.【解答】解:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.【点评】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2017•丽水)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•丽水)若关于x的一元一次方程x﹣m+2=0的解是负数,则m 的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤2【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.7.(3分)(2017•丽水)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.4【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.【点评】本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.8.(3分)(2017•丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【分析】根据平移规律,可得答案.【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.(3分)(2017•丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣【分析】连接OC,根据已知条件得到∠ACB=90°,∠AOC=30°,∠COB=120°,解直角三角形得到AB=2AO=4,BC=2,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC=﹣×2×1=π﹣,故选A.【点评】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题关键.10.(3分)(2017•丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•丽水)分解因式:m2+2m=m(m+2).【分析】根据提取公因式法即可求出答案.【解答】解:原式=m(m+2)故答案为:m(m+2)【点评】本题考查因式分解,解题的关键是熟练运用提取公因式法,本题属于基础题型.12.(4分)(2017•丽水)等腰三角形的一个内角为100°,则顶角的度数是100°.【分析】根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.【点评】本题考查了等腰三角形两底角相等的性质,先判断出100°的角是顶角是解题的关键.13.(4分)(2017•丽水)已知a2+a=1,则代数式3﹣a﹣a2的值为2.【分析】原式后两项提取﹣1变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+a=1,∴原式=3﹣(a2+a)=3﹣1=2.故答案为:2【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.14.(4分)(2017•丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【分析】直接利用已知得出涂黑后是轴对称图形的位置,进而得出答案.【解答】解:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确得出符合题意的位置是解题关键.15.(4分)(2017•丽水)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为10.【分析】根据正方形面积公式,由面积的和差关系可得8个直角三角形的面积,进一步得到1个直角三角形的面积,再由面积的和差关系可得正方形EFGH的面积,进一步求出正方形EFGH的边长.【解答】解:(14×14﹣2×2)÷8=(196﹣4)÷8=192÷8=24,24×4+2×2=96+4=100,=10.答:正方形EFGH的边长为10.故答案为:10.【点评】考查了勾股定理的证明,关键是熟练掌握正方形面积公式,以及面积的和差关系,难点是得到正方形EFGH的面积.16.(4分)(2017•丽水)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是12.【分析】(1)把点C的坐标代入函数解析式求得m的值;然后结合一次函数解析式求得A、B的坐标,然后利用等积法求得点O到直线AB的距离是;(2)典型的“一线三等角”,构造相似三角形△PCD∽△APB,对m的取值分析进行讨论,在m<0时,点A在x轴的负半轴,而此时,∠APC>∠OBA=45°,不合题意;故m>0.由相似比求得边的相应关系.【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2).∴OB=OA=2,AB=2.设点O到直线AB的距离为d,=OA2=AB•d,得由S△OAB4=2d,则d=.故答案是:.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.所以m>0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以=,即=,解得m=12.故答案是:12.【点评】本题考查了一次函数综合题.需要掌握待定系数法求一次函数解析式,相似三角形的判定与性质,三角形面积的求法等知识点,另外,解题时,注意分类讨论数学思想的应用.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)(2017•丽水)计算:(﹣2017)0﹣()﹣1+.【分析】本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2017)0﹣()﹣1+=1﹣3+3=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.18.(6分)(2017•丽水)解方程:(x﹣3)(x﹣1)=3.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:就是因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.(6分)(2017•丽水)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【分析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.【解答】解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1m,答:端点A到地面CD的距离是1.1m.【点评】本题考查解直角三角形的应用、解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.(8分)(2017•丽水)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【分析】(1)利用条形统计图结合表格中数据分别求出C,I两县的完成进度;(2)利用条形统计图结合表格中数据求出总的完成进度;(3)可从识图能力、数据分析能力以及综合运用能力分析得出答案.【解答】解:(1)C县的完全成进度=×100%=107%;I县的完全成进度=×100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%;(3)A类(识图能力):能直接根据统计图的完成任务数对I县作出评价;B类(数据分析能力):能结合统计图通过计算完成对I县作出评价,如:截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度=×100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.【点评】此题主要考查了条形统计图以及统计表的综合应用,利用图表获取正确信息是解题关键.21.(8分)(2017•丽水)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.【分析】(1)根据表格中数据,可知V是t的反比例函数,设V=,利用待定系数法求出k即可;(2)根据时间t=2.5,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可;【解答】解:(1)根据表格中数据,可知V=,∵v=75时,t=4,∴k=75×4=300,∴v=.(2)∵10﹣7.5=2.5,∴t=2.5时,v==120>100,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)∵3.5≤t≤4,∴75≤v≤,答:平均速度v的取值范围是75≤v≤.【点评】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.22.(10分)(2017•丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O 交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,可得x2+122=(x+16)2﹣202,解方程即可解决问题;【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.【点评】本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(10分)(2017•丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB 运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.【分析】(1)作PD⊥AB于D,根据直角三角形的性质得到PD=AP=x,根据三角形的面积公式得到函数解析式,代入计算;(2)根据当x=4时,y=,求出sinB,得到图象C2段的函数表达式;(3)求出y=x2的最大值,根据二次函数的性质计算即可.【解答】解:(1)如图1,作PD⊥AB于D,∵∠A=30°,∴PD=AP=x,∴y=AQ•PD=ax2,由图象可知,当x=1时,y=,∴×a×12=,解得,a=1;(2)如图2,由(1)知,点Q的速度是1cm/s,∵AC+BC<2AB,而点P的速度时2cm/s,所以点P先到达B点,作PD⊥AB于D,由图象可知,PB=5×2﹣2x=10﹣2x,PD=PB•sinB=(10﹣2x)•sinB,∴y=×AQ×PD=x×(10﹣2x)•sinB,∵当x=4时,y=,∴×4×(10﹣2×4)•sinB=,解得,sinB=,∴y=x×(10﹣2x)×=﹣x2+x;(3)x2=﹣x2+x,解得,x1=0,x2=2,由图象可知,当x=2时,y=x2有最大值,最大值是×22=2,﹣x2+x=2,解得,x1=3,x2=2,∴当2<x<3时,点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积.【点评】本题考查的是三角形的面积计算、二次函数的解析式的确定、二次函数的性质,根据图象确定x的运动时间与面积的关系是解题的关键.24.(12分)(2017•丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.【分析】(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EFA,∵GF⊥AF,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵点F落在矩形内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,①当∠CFG=90°时,如图3,则点F落在AC上,由(2)得,,∴n=16,②当∠CGF=90°时,则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(舍),∴当n=16或n=8+4时,以点F,C,G为顶点的三角形是直角三角形.【点评】此题是相似形综合题,主要考查了矩形的性质,等腰三角形的判定,相似三角形的判定和性质,解(1)的关键是判断出EG=EF,解(2)的关键是判断出△ABE∽△DAC,解(3)的关键是分类讨论,用方程的思想解决问题,是一道中考常考题.。

2017丽水中考数学试题及答案

2017丽水中考数学试题及答案

2017丽水中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. πD. 0.5答案:B2. 一个长方体的长、宽、高分别为a、b、c,其体积为:A. abcB. ab + bc + acC. a² + b² + c²D. abc²答案:A3. 已知函数y=kx+b,当x=1时,y=5;当x=-1时,y=1。

则k和b的值分别是:A. k=3,b=2B. k=-3,b=2C. k=3,b=-2D. k=-3,b=-2答案:A4. 若一个角的补角是它的余角的两倍,则这个角的度数为:A. 30°B. 45°C. 60°D. 90°答案:B5. 一个圆的半径为5,它的周长是:A. 10πB. 20πC. 25πD. 50π答案:B6. 若a、b、c是△ABC的三边,且满足a²+b²=c²,则△ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B7. 下列哪个选项是不等式2x-3>0的解集?A. x>3/2B. x<3/2C. x>-3/2D. x<-3/2答案:A8. 一个等腰三角形的底边长为6,腰长为5,则它的周长是:A. 16B. 21C. 26D. 31答案:B9. 一个二次函数y=ax²+bx+c的图象开口向上,且经过点(1,0)和(-1,0),则a的符号为:A. 正B. 负C. 零D. 不能确定答案:A10. 一个多项式P(x)=x³+ax²+bx+c,若P(1)=0且P(-1)=0,则a和b的值分别是:A. a=0,b=0B. a=-2,b=0C. a=0,b=0D. a=-2,b=2答案:B二、填空题(每题4分,共20分)11. 一个数的相反数是-5,则这个数是________。

2017年各地中考试卷2017年浙江省丽水市中考数学试卷

2017年各地中考试卷2017年浙江省丽水市中考数学试卷

2017年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5.(3分)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤27.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.48.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=.12.(4分)等腰三角形的一个内角为100°,则顶角的度数是.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为.14.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.18.(6分)解方程:(x﹣3)(x﹣1)=3.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.(10分)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F 作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.2017年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•丽水)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.1【分析】根据有理数大小比较的规律即可得出答案.【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选D.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(3分)(2017•丽水)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.【点评】本题考查了同底数幂的乘法运算,掌握同底数幂的乘法运算法则:底数不变,指数相加是解题的关键.3.(3分)(2017•丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是一个正方形,主视图是一个长方形,故A错误;B、左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C、左视图是一个长方形,俯视图是一个正方形,故C错误;D、俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.4.(3分)(2017•丽水)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【分析】按大小顺序排列这组数据,最中间那个数是中位数.【解答】解:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.【点评】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2017•丽水)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•丽水)若关于x的一元一次方程x﹣m+2=0的解是负数,则m 的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤2【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.7.(3分)(2017•丽水)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.4【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.【点评】本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.8.(3分)(2017•丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【分析】根据平移规律,可得答案.【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.(3分)(2017•丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣【分析】连接OC,根据已知条件得到∠ACB=90°,∠AOC=30°,∠COB=120°,解直角三角形得到AB=2AO=4,BC=2,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC=﹣×2×1=π﹣,故选A.【点评】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题关键.10.(3分)(2017•丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•丽水)分解因式:m2+2m=m(m+2).【分析】根据提取公因式法即可求出答案.【解答】解:原式=m(m+2)故答案为:m(m+2)【点评】本题考查因式分解,解题的关键是熟练运用提取公因式法,本题属于基础题型.12.(4分)(2017•丽水)等腰三角形的一个内角为100°,则顶角的度数是100°.【分析】根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.【点评】本题考查了等腰三角形两底角相等的性质,先判断出100°的角是顶角是解题的关键.13.(4分)(2017•丽水)已知a2+a=1,则代数式3﹣a﹣a2的值为2.【分析】原式后两项提取﹣1变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+a=1,∴原式=3﹣(a2+a)=3﹣1=2.故答案为:2【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.14.(4分)(2017•丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【分析】直接利用已知得出涂黑后是轴对称图形的位置,进而得出答案.【解答】解:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确得出符合题意的位置是解题关键.15.(4分)(2017•丽水)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为10.【分析】根据正方形面积公式,由面积的和差关系可得8个直角三角形的面积,进一步得到1个直角三角形的面积,再由面积的和差关系可得正方形EFGH的面积,进一步求出正方形EFGH的边长.【解答】解:(14×14﹣2×2)÷8=(196﹣4)÷8=192÷8=24,24×4+2×2=96+4=100,=10.答:正方形EFGH的边长为10.故答案为:10.【点评】考查了勾股定理的证明,关键是熟练掌握正方形面积公式,以及面积的和差关系,难点是得到正方形EFGH的面积.16.(4分)(2017•丽水)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是12.【分析】(1)把点C的坐标代入函数解析式求得m的值;然后结合一次函数解析式求得A、B的坐标,然后利用等积法求得点O到直线AB的距离是;(2)典型的“一线三等角”,构造相似三角形△PCD∽△APB,对m的取值分析进行讨论,在m<0时,点A在x轴的负半轴,而此时,∠APC>∠OBA=45°,不合题意;故m>0.由相似比求得边的相应关系.【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2).∴OB=OA=2,AB=2.设点O到直线AB的距离为d,=OA2=AB•d,得由S△OAB4=2d,则d=.故答案是:.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.所以m>0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以=,即=,解得m=12.故答案是:12.【点评】本题考查了一次函数综合题.需要掌握待定系数法求一次函数解析式,相似三角形的判定与性质,三角形面积的求法等知识点,另外,解题时,注意分类讨论数学思想的应用.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)(2017•丽水)计算:(﹣2017)0﹣()﹣1+.【分析】本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2017)0﹣()﹣1+=1﹣3+3=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.18.(6分)(2017•丽水)解方程:(x﹣3)(x﹣1)=3.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:就是因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.(6分)(2017•丽水)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【分析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.【解答】解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1m,答:端点A到地面CD的距离是1.1m.【点评】本题考查解直角三角形的应用、解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.(8分)(2017•丽水)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【分析】(1)利用条形统计图结合表格中数据分别求出C,I两县的完成进度;(2)利用条形统计图结合表格中数据求出总的完成进度;(3)可从识图能力、数据分析能力以及综合运用能力分析得出答案.【解答】解:(1)C县的完全成进度=×100%=107%;I县的完全成进度=×100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%;(3)A类(识图能力):能直接根据统计图的完成任务数对I县作出评价;B类(数据分析能力):能结合统计图通过计算完成对I县作出评价,如:截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度=×100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.【点评】此题主要考查了条形统计图以及统计表的综合应用,利用图表获取正确信息是解题关键.21.(8分)(2017•丽水)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.【分析】(1)根据表格中数据,可知V是t的反比例函数,设V=,利用待定系数法求出k即可;(2)根据时间t=2.5,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可;【解答】解:(1)根据表格中数据,可知V=,∵v=75时,t=4,∴k=75×4=300,∴v=.(2)∵10﹣7.5=2.5,∴t=2.5时,v==120>100,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)∵3.5≤t≤4,∴75≤v≤,答:平均速度v的取值范围是75≤v≤.【点评】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.22.(10分)(2017•丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O 交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,可得x2+122=(x+16)2﹣202,解方程即可解决问题;【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.【点评】本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(10分)(2017•丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB 运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.【分析】(1)作PD⊥AB于D,根据直角三角形的性质得到PD=AP=x,根据三角形的面积公式得到函数解析式,代入计算;(2)根据当x=4时,y=,求出sinB,得到图象C2段的函数表达式;(3)求出y=x2的最大值,根据二次函数的性质计算即可.【解答】解:(1)如图1,作PD⊥AB于D,∵∠A=30°,∴PD=AP=x,∴y=AQ•PD=ax2,由图象可知,当x=1时,y=,∴×a×12=,解得,a=1;(2)如图2,由(1)知,点Q的速度是1cm/s,∵AC+BC<2AB,而点P的速度时2cm/s,所以点P先到达B点,作PD⊥AB于D,由图象可知,PB=5×2﹣2x=10﹣2x,PD=PB•sinB=(10﹣2x)•sinB,∴y=×AQ×PD=x×(10﹣2x)•sinB,∵当x=4时,y=,∴×4×(10﹣2×4)•sinB=,解得,sinB=,∴y=x×(10﹣2x)×=﹣x2+x;(3)x2=﹣x2+x,解得,x1=0,x2=2,由图象可知,当x=2时,y=x2有最大值,最大值是×22=2,﹣x2+x=2,解得,x1=3,x2=2,∴当2<x<3时,点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积.【点评】本题考查的是三角形的面积计算、二次函数的解析式的确定、二次函数的性质,根据图象确定x的运动时间与面积的关系是解题的关键.24.(12分)(2017•丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.【分析】(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EFA,∵GF⊥AF,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵点F落在矩形内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,①当∠CFG=90°时,如图3,则点F落在AC上,由(2)得,,∴n=16,②当∠CGF=90°时,则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(舍),∴当n=16或n=8+4时,以点F,C,G为顶点的三角形是直角三角形.【点评】此题是相似形综合题,主要考查了矩形的性质,等腰三角形的判定,相似三角形的判定和性质,解(1)的关键是判断出EG=EF,解(2)的关键是判断出△ABE∽△DAC,解(3)的关键是分类讨论,用方程的思想解决问题,是一道中考常考题.。

浙江省丽水市中考数学真题试题(含答案)(2021年整理)

浙江省丽水市中考数学真题试题(含答案)(2021年整理)

浙江省丽水市2017年中考数学真题试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省丽水市2017年中考数学真题试题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省丽水市2017年中考数学真题试题(含答案)的全部内容。

浙江省丽水市2017年中考数学真题试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在数1,0,1-中,最大的数是()-,2A.2-C.0D.1-B.12。

计算23a a⋅的正确结果是( )A.5a B.4a C.8a D.9a3.如图是底面为正方形的长方体,则有关它的三个视图的说法正确的是( )A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4。

根据 2.5PM均值在0~35(微克/立方米)的空气质量等级为PM空气质量标准:24小时 2.5优.将环保部门对我市 2.5PM数据的中位数是PM一周的检测数据制成如图统计表,这组 2.5()天数31111PM18202129302.5A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5。

化简2111x x x+--的结果是( ) A .1x + B .1x - C .21x -D .211x x +-6。

若关于x 的一元一次方程20x m -+=的解是负数,则m 的取值范围是( ) A .2m ≥B .2m >C .2m <D .2m ≤7.如图,在ABCD 中,连接AC ,45ABC CAD ∠=∠=︒,2AB =,则BC 的长是( )A .2B .2C .22D .48.将函数2y x =的图象用下列方法平移后,所得的图象不经过点(1,4)A 的方法是( ) A .向左平移1个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移1个单位9.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC =,则图中阴影部分的面积是( )A .433πB .4233π-C .233πD .233π 10.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象.下列说法错误的是( )A.乙先出发的时间为0。

中考复习【数学】2017年浙江省丽水市中考真题(解析版)

中考复习【数学】2017年浙江省丽水市中考真题(解析版)
15.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦 图”,如图 1 所示.在图 2 中,若正方形 ABCD 的边长为 14,正方形 IJKL 的边长为 2,且 IJ∥AB,则正方形 EFGH 的边长为.
16.如图,在平面直角坐标系 xOy 中,直线 y=﹣x+m 分别交 x 轴,y 轴于 A,B 两点,已知 点 C(2,0). (1)当直线 AB 经过点 C 时,点 O 到直线 AB 的距离是; (2)设点 P 为线段 OB 的中点,连结 PA,PC,若∠CPA=∠ABO,则 m 的值是.
考点:平行四边形的性质. 8.【答案】D. 【解析】 试题分析:A.平移后,得 y=(x+1)2,图象经过 A 点,故 A 不符合题意; B.平移后,得 y=(x﹣3)2,图象经过 A 点,故 B 不符合题意; C.平移后,得 y=x2+3,图象经过 A 点,故 C 不符合题意; D.平移后,得 y=x2﹣1 图象不经过 A 点,故 D 符合题意; 故选 D. 考点:二次函数图象与几何变换.
考点:解一元二次方程﹣因式分解法. 19.【答案】1.1m. 【解析】 试题分析:作 AE⊥CD 于 E,BF⊥AE 于 F,则四边形 EFBC 是矩形,汽车 AF、EF 即可解 决问题. 试题解析:作 AE⊥CD 于 E,BF⊥AE 于 F,则四边形 EFBC 是矩形,∵OD⊥CD,∠BOD=70°, ∴AE∥OD,∴∠A=∠BOD=70°,在 Rt△AFB 中,∵AB=2.7,∴AF=2.7×cos70°=2.7×0.34=0.918, ∴AE=AF+BC=0.918+0.15=1.068≈1.1m. 答:端点 A 到地面 CD 的距离是 1.1m.
D.甲到 B 地比乙到 A 地早 1 小时 12

2017年浙江省丽水市中考数学试卷

2017年浙江省丽水市中考数学试卷

第10页(共1页)
A. B.2 C.2 D.4
【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的 长. 【解答】解:∵四边形ABCD是平行四边形, ∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°, ∴AC=CD=2,∠ACD=90°, 即△ACD是等腰直角三角形,
A
25
B
25
C
20
D
12
E
13
F
25
G
16
H
25
I
11
J
28
合计
200
(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最
快、最慢的县(市、区)分别是哪一个?
(2)求截止5月4日全市的完成进度;
(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行
评价.
21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽
15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦 图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长 为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为 .
16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴 于A,B两点,已知点C(2,0). (1)当直线AB经过点C时,点O到直线AB的距离是 ; (2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是 .
【解答】解:原式= ﹣ = =
=x+1,
故选A 【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 6.(3分)(2017•丽水)若关于x的一元一次方程x﹣m+2=0的解是负数,则m 的取值范围是( ) A.m≥2 B.m>2 C.m<2 D.m≤2 【分析】根据方程的解为负数得出m﹣2<0,解之即可得. 【解答】解:∵程x﹣m+2=0的解是负数, ∴x=m﹣2<0, 解得:m<2, 故选:C. 【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列 出不等式是解题的关键. 7.(3分)(2017•丽水)如图,在▱ABCD中,连结AC,∠ABC= ∠CAD=45°,AB=2,则BC的长是( )

2017年中考真题精品解析 数学(浙江丽水卷)精编word版(原卷版)

2017年中考真题精品解析 数学(浙江丽水卷)精编word版(原卷版)

2017年浙江省丽水市中考数学试卷
16.如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;
(2)设点P为线段OB的中点,连结P A,PC,若∠CP A=∠ABO,则m的值是.
23.如图1,在△ABC中,∠A=30°,点P从点A出发以2c m/s的速度沿折线A﹣C﹣B运动,点Q从点A 出发以a(c m/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.
(1)求a的值;
(2)求图2中图象C2段的函数表达式;
(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.
24.如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落
在矩形ABCD的内部,连接AF,BF,EF,过点F作GF⊥AF交AD于点G,设AD
n AE

(1)求证:AE=GE;
(2)当点F落在AC上时,用含n的代数式表示AD
AB
的值;。

2017年浙江省丽水市中考数学试卷

2017年浙江省丽水市中考数学试卷

2017年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.12.(3分)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5.(3分)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤27.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.48.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=.12.(4分)等腰三角形的一个内角为100°,则顶角的度数是.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为.14.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.18.(6分)解方程:(x﹣3)(x﹣1)=3.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.(10分)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F 作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.2017年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•丽水)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2 B.﹣1 C.0 D.1【分析】根据有理数大小比较的规律即可得出答案.【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选D.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(3分)(2017•丽水)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.【点评】本题考查了同底数幂的乘法运算,掌握同底数幂的乘法运算法则:底数不变,指数相加是解题的关键.3.(3分)(2017•丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是一个正方形,主视图是一个长方形,故A错误;B、左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C、左视图是一个长方形,俯视图是一个正方形,故C错误;D、俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.4.(3分)(2017•丽水)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【分析】按大小顺序排列这组数据,最中间那个数是中位数.【解答】解:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.【点评】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2017•丽水)化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•丽水)若关于x的一元一次方程x﹣m+2=0的解是负数,则m 的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤2【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.7.(3分)(2017•丽水)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2 C.2 D.4【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.【点评】本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.8.(3分)(2017•丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【分析】根据平移规律,可得答案.【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.(3分)(2017•丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣【分析】连接OC,根据已知条件得到∠ACB=90°,∠AOC=30°,∠COB=120°,解直角三角形得到AB=2AO=4,BC=2,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC=﹣×2×1=π﹣,故选A.【点评】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题关键.10.(3分)(2017•丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•丽水)分解因式:m2+2m=m(m+2).【分析】根据提取公因式法即可求出答案.【解答】解:原式=m(m+2)故答案为:m(m+2)【点评】本题考查因式分解,解题的关键是熟练运用提取公因式法,本题属于基础题型.12.(4分)(2017•丽水)等腰三角形的一个内角为100°,则顶角的度数是100°.【分析】根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.【点评】本题考查了等腰三角形两底角相等的性质,先判断出100°的角是顶角是解题的关键.13.(4分)(2017•丽水)已知a2+a=1,则代数式3﹣a﹣a2的值为2.【分析】原式后两项提取﹣1变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+a=1,∴原式=3﹣(a2+a)=3﹣1=2.故答案为:2【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.14.(4分)(2017•丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【分析】直接利用已知得出涂黑后是轴对称图形的位置,进而得出答案.【解答】解:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确得出符合题意的位置是解题关键.15.(4分)(2017•丽水)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为10.【分析】根据正方形面积公式,由面积的和差关系可得8个直角三角形的面积,进一步得到1个直角三角形的面积,再由面积的和差关系可得正方形EFGH的面积,进一步求出正方形EFGH的边长.【解答】解:(14×14﹣2×2)÷8=(196﹣4)÷8=192÷8=24,24×4+2×2=96+4=100,=10.答:正方形EFGH的边长为10.故答案为:10.【点评】考查了勾股定理的证明,关键是熟练掌握正方形面积公式,以及面积的和差关系,难点是得到正方形EFGH的面积.16.(4分)(2017•丽水)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是12.【分析】(1)把点C的坐标代入函数解析式求得m的值;然后结合一次函数解析式求得A、B的坐标,然后利用等积法求得点O到直线AB的距离是;(2)典型的“一线三等角”,构造相似三角形△PCD∽△APB,对m的取值分析进行讨论,在m<0时,点A在x轴的负半轴,而此时,∠APC>∠OBA=45°,不合题意;故m>0.由相似比求得边的相应关系.【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2).∴OB=OA=2,AB=2.设点O到直线AB的距离为d,=OA2=AB•d,得由S△OAB4=2d,则d=.故答案是:.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.所以m>0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以=,即=,解得m=12.故答案是:12.【点评】本题考查了一次函数综合题.需要掌握待定系数法求一次函数解析式,相似三角形的判定与性质,三角形面积的求法等知识点,另外,解题时,注意分类讨论数学思想的应用.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)(2017•丽水)计算:(﹣2017)0﹣()﹣1+.【分析】本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2017)0﹣()﹣1+=1﹣3+3=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.18.(6分)(2017•丽水)解方程:(x﹣3)(x﹣1)=3.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:就是因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.(6分)(2017•丽水)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【分析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.【解答】解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1m,答:端点A到地面CD的距离是1.1m.【点评】本题考查解直角三角形的应用、解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.(8分)(2017•丽水)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【分析】(1)利用条形统计图结合表格中数据分别求出C,I两县的完成进度;(2)利用条形统计图结合表格中数据求出总的完成进度;(3)可从识图能力、数据分析能力以及综合运用能力分析得出答案.【解答】解:(1)C县的完全成进度=×100%=107%;I县的完全成进度=×100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%;(3)A类(识图能力):能直接根据统计图的完成任务数对I县作出评价;B类(数据分析能力):能结合统计图通过计算完成对I县作出评价,如:截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度=×100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.【点评】此题主要考查了条形统计图以及统计表的综合应用,利用图表获取正确信息是解题关键.21.(8分)(2017•丽水)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.【分析】(1)根据表格中数据,可知V是t的反比例函数,设V=,利用待定系数法求出k即可;(2)根据时间t=2.5,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可;【解答】解:(1)根据表格中数据,可知V=,∵v=75时,t=4,∴k=75×4=300,∴v=.(2)∵10﹣7.5=2.5,∴t=2.5时,v==120>100,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)∵3.5≤t≤4,∴75≤v≤,答:平均速度v的取值范围是75≤v≤.【点评】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.22.(10分)(2017•丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O 交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,可得x2+122=(x+16)2﹣202,解方程即可解决问题;【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.【点评】本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(10分)(2017•丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB 运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.【分析】(1)作PD⊥AB于D,根据直角三角形的性质得到PD=AP=x,根据三角形的面积公式得到函数解析式,代入计算;(2)根据当x=4时,y=,求出sinB,得到图象C2段的函数表达式;(3)求出y=x2的最大值,根据二次函数的性质计算即可.【解答】解:(1)如图1,作PD⊥AB于D,∵∠A=30°,∴PD=AP=x,∴y=AQ•PD=ax2,由图象可知,当x=1时,y=,∴×a×12=,解得,a=1;(2)如图2,由(1)知,点Q的速度是1cm/s,∵AC+BC<2AB,而点P的速度时2cm/s,所以点P先到达B点,作PD⊥AB于D,由图象可知,PB=5×2﹣2x=10﹣2x,PD=PB•sinB=(10﹣2x)•sinB,∴y=×AQ×PD=x×(10﹣2x)•sinB,∵当x=4时,y=,∴×4×(10﹣2×4)•sinB=,解得,sinB=,∴y=x×(10﹣2x)×=﹣x2+x;(3)x2=﹣x2+x,解得,x1=0,x2=2,由图象可知,当x=2时,y=x2有最大值,最大值是×22=2,﹣x2+x=2,解得,x1=3,x2=2,∴当2<x<3时,点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积.【点评】本题考查的是三角形的面积计算、二次函数的解析式的确定、二次函数的性质,根据图象确定x的运动时间与面积的关系是解题的关键.24.(12分)(2017•丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.【分析】(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EFA,∵GF⊥AF,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵点F落在矩形内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,①当∠CFG=90°时,如图3,则点F落在AC上,由(2)得,,∴n=16,②当∠CGF=90°时,则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(舍),∴当n=16或n=8+4时,以点F,C,G为顶点的三角形是直角三角形.【点评】此题是相似形综合题,主要考查了矩形的性质,等腰三角形的判定,相似三角形的判定和性质,解(1)的关键是判断出EG=EF,解(2)的关键是判断出△ABE∽△DAC,解(3)的关键是分类讨论,用方程的思想解决问题,是一道中考常考题.。

丽水市中考数学试卷及答案

丽水市中考数学试卷及答案

2017年浙江省丽水市中考数学试卷一、选择题1、(2017·丽水)在数1,0,-1,-2中,最大的数是()A、-2B、-1C、0D、12、(2017·丽水)计算a2·a3的正确结果是()A、a5B、a6C、a8D、a93、(2017·丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A、俯视图与主视图相同B、左视图与主视图相同C、左视图与俯视图相同D、三个视图都相同4、(2017·丽水)根据PM2.5空气质量标准:24小时PM2.5均值在1~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表.这组PM2.5数据的中位数是()天数 3 1 1 1 1PM2.5 18 20 21 29 30A、21微克/立方米B、20微克/立方米C、19微克/立方米D、18微克/立方米5、(2017·丽水)化简的结果是()A、x+1B、x-1C、x2-1D、6、(2017·丽水)若关于x的一元一次方程x-m+2=0的解是负数,则m的取值范围是()B、m>2C、m<2D、m≤27、(2017·丽水)如图,在□ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A、B、2C、2D、48、(2017·丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A、向左平移1个单位B、向右平移3个单位C、向上平移3个单位D、向下平移1个单位9、(2017·丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A、B、C、D、10、(2017·丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象.下列说法错误的是A、乙先出发的时间为0.5小时B、甲的速度是80千米/小时C、甲出发0.5小时后两车相遇D、甲到B地比乙到A地早小时二、填空题11、(2017·丽水)分解因式:m2+2m=________.12、(2017·丽水)等腰三角形的一个内角为100°,则顶角的°数是________.13、(2017·丽水)已知a2+a=1,则代数式3-a-a2的值为________.14、(2017·丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形图形是轴对称图形的概率是________.15、(2017·丽水)我国三国时期数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ//AB,则正方形EFGH的边长为________.16、(2017·丽水)如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是________;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是________.三、解答题17、(2017·丽水)计算:(-2017)0- + .18、(2017·丽水)解方程:(x-3)(x-1)=3.19、(2017·丽水)如图是某小区的一个健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20、(2017·丽水)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,下面的右表是全市十个县(市、区)指标任务数的统计表;左图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、电慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图形信息和数据分析,对I且完成指标任务的行动过程和成果进行评价.21、(2017·丽水)丽水苛公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:v(千米/小时) 75 80 85 90 95t(小时) 4.00 3.75 3.53 3.33 3.16(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市?请说明理由:(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22、(2017·丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE 交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23、(2017·丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A—C—B 运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24、(2017·丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.答案部分。

(高清版)2017年浙江省丽水市中考数学试卷

(高清版)2017年浙江省丽水市中考数学试卷


A C B 运动,点 Q 从点 A 出发以 a (cm/s) 的速度沿 AB 运动. P , Q 两点同时出发,
当某一点运动到点 B 时,两点同时停止运动,设运动时间为 x (s) , △APQ 的面积为
y (cm2 ) , y 关于 x 的函数图象由 C1 , C2 两段组成,如图 2 所示. (1)求 a 的值.
等,即可解答.
数学试卷 第 7页(共 20页)
【考点】简单几何体的三视图
4.【答案】B 【解析】7 个数据从小到排列的第 4 个数据是中位数,而 3 1 4 ,故中位数是 20 微克/
立方米.故选 B.
【提示】一共有 7 个数据,∴中位数是这组数据从小到大排列时,排在第 4 位的数.
【考点】中位数,众数
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
方 形 IJKL 的 边 长 为 2, 且 IJ∥AB , 则 正 方 形 EFGH 的 边 长

.
16.如图,在平面直角坐标系 xOy 中,直线 y x m 分别交 x 轴, y
数学试卷 第 2页(共 20页)
轴于 A , B 两点,已知点 C(2,0) .

2017年浙江省丽水市中考数学试卷及答案解析

2017年浙江省丽水市中考数学试卷及答案解析

2017年浙江省丽水市中考数学试卷满分:120分 版本:浙教版一、选择题(每小题3分,共10小题,合计30分)1.(2017浙江丽水·1·3分)在数1,0,-1,-2中,最大的数是( )A .-2B .-1C .0D .1答案:D .解析:根据“负数小于0,正数大于0,正数大于负数”,所以这四个数中最大的数是1,故选D . 2.(2017浙江丽水·2·3分)计算a 2·a 3的正确结果是( )A .a 5B .A 6C .A 8D .A 9答案:A .解析:根据同底数幂乘法法则,a 2·a 3=a 2+3=a 5,故选A .3.(2017浙江丽水·3·3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )A .俯视图与主视图相同B .左视图与主视图相同C .左视图与俯视图相同D .三个视图都相同答案:B .解析:根据三视图的概念,这个几何体的主视图和左视图是相同的长方形,俯视图是正方形,故选B . 4.(2017浙江丽水·4·3分)根据PM2.5空气质量标准:24小时PM2.5均值在0~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表.这组PM2.5数据的中位数是( )A .21微克/立方米B .20微克/立方米C .19微克/立方米D .18微克/立方米答案:B .解析:把这几个数按大小排列:18,18,18,20,21,29,30,根据中位数的概念,7个数中最中间的数(第4个数)是20,所以这组数据的中位数是20微克/立方米,选B .5.(2017浙江丽水·5·3分)化简xx x -+-1112的结果是( )A .x +1B .x -1C .x 2-1D .112-+x x答案:A .解析:根据分式的加法法则,x x x -+-1112=1)1)(1(1111122--+=--=--x x x x x x x x -=x +1,选A . 6.(2017浙江丽水·6·3分)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤2答案:C .解析:解关于x 的一元一次方程x -m +2=0得x =m -2,由于方程的解是负数,即m -2<0,解得m <2,选C .7.(2017浙江丽水·7·3分)如图,在□ABCD 中,连结AC ,∠ABC =∠CAD =450,AB =2,则BC 的长是( )A .2B .2C .22D .4答案:C .解析:∵□ABCD ,∴AD ∥BC ,∴∠DAC =∠ACB =45°=∠ABC ,∴∠BAC =90°,AB =AC =2,由勾股定理得BC =2282222==+,选C .8.(2017浙江丽水·8·3分)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位答案:D . 解析: 选项 知识点结果 A 将函数y =x 2的图象向左平移1个单位得到函数y =(x +1)2,其图象经过点(1,4). × B 将函数y =x 2的图象向右平移3个单位得到函数y =(x -3)2,其图象经过点(1,4). × C 将函数y =x 2的图象向上平移3个单位得到函数y =x 2+3,其图象经过点(1,4). × D 将函数y =x 2的图象向下平移1个单位得到函数y =x 2-1,其图象不经过点(1,4).√9.(2017浙江丽水·9·3分)如图,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( ) A .433πB .4233π- C .233πD .2332π-答案:A .解析:连接OC ,∵点C 是半圆的三等分点,∴∠AOC =600,∴△AOC 是等边三角形,∠BOC =1200,由三角形面积公式求得S △BOC =33221=⨯⨯,由扇形的面积公式求得S 扇形BOC =2120243603ππ⋅⨯=∴S 阴影=S 扇形BOC-S △BOC =433π-,选A .10.(2017浙江丽水·10·3分)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系图象.下列说法错误的是( ) A .乙先出发的时间为0.5小时 B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早121小时答案:D .解析:由图象可知乙先出发0.5小时后两车相距70千米,即乙的速度是60千米/小时,这样乙从B 地出发到达A 地所用时间为32160100=÷小时,由函数图形知此时两车相距不到100千米,即乙到达A 地时甲还没有到达B 地(甲到B 地比乙到A 地迟),故选项D 错误. 二、填空题:(每小题3分,共8小题,合计24分)11.(2017浙江丽水·11·4分)分解因式:m 2+2m =答案:m (m +2).解析:运用提公因式法,m 2+2m =m (m +2).12.(2017浙江丽水·12·4分)等腰三角形的一个内角为100°,则顶角的度数是答案:100°.解析:根据三角形的内角和等于1800,又等腰三角形的一个内角为100°,所以这个100°的内角只可能是顶角,故填100°.13.(2017浙江丽水·13·4分)已知a 2+a =1,则代数式3-a 2-a 的值为答案:2.解析:3-a 2-a =3-(a 2+a ),把a 2+a =1整体代入得原式=3-1=2.14.(2017浙江丽水·14·4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是答案:31.解析:把第二行的任一正方形留白,其他5个正方形涂黑都能得到轴对称图形,有2种情况,一共有6种情况,根据概率计算公式得黑色部分的图形是轴对称图形的概率=3162=. 15.(2017浙江丽水·15·4分)我国三国时期数学家赵爽为了证明勾股定理,绘制了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且IJ ∥AB ,则正方形EFGH 的边长为答案:10.解析:设直角三角形的勾(较短的直角边)为a ,股(较长的直角边)为b ,根据题意得⎩⎨⎧=-=+214a b b a ,解得⎩⎨⎧==86b a ,由勾股定理得直角三角形的弦(斜边)为1008622=+=10,即方形EFGH 的边长为10.16.(2017浙江丽水·16·4分)如图,在平面直角坐标系xOy 中,直线y =-x +m 分别交x 轴,y 轴于A ,B 两点,已知点C (2,0).(1)当直线AB 经过点C 时,点O 到直线AB 的距离是 ;(2)设点P 为线段OB 的中点,连结P A ,PC ,若∠CP A =∠ABO ,则m 的值是 .答案:(1)2;(2)12.解析:(1)∵直线y =-x +m 经过点C(2,0),∴0=-2+m ,m =2,函数表达式为y =-x +2,当x =0时,y =2,∴点B 坐标为(0,2),由勾股定理AB =222222=+,设点O 到AB 距离为h ,根据三角形面积公式h 22212221⨯=⨯⨯,h =2,填2;(2)当x =0时,y =m ;当y =0时,-x +m =0,x =m ,∴点A 坐标为(m ,0),点B 坐标为(0,m ),∴OA =0B =m ,∴∠OAB =∠OBA =450,又点P 是OB 中点,∴BP =OP =2m.在y 轴负半轴上取点D (0,-2),连结CD ,∴OC =OD =2,∴∠OCD =∠ODC =450=∠APC =∠ABO ,易证∠CPD =∠P AB ,∴△CPD ∽△P AB ,∴PBCDAB PD =,由勾股定理得AB =2m ,CD =22, ∴222222m m=+m ,解得m =12.三、解答题:本大题共8个小题,满分66分. 17.(2017浙江丽水·17·6分)计算:(-2017)°-(31)-1+9 思路分析:先根据零指数幂、负整数指数幂和算术平方根的概念分别求(-2017)0、(31)-1、9,再进行有理数的加减运算. 解:(-2017)°-(31)-1+9=1-3+3=1. 18.(2017浙江丽水·18·6分)解方程:(x -3)(x -1)=3.思路分析:先把方程化为一元二次方程的一般形式,再选用合适的方法解方程. 解:原方程整理为:x 2-4x =0,x (x -4)=0,x 1=0,x 2=4.19.(2017浙江丽水·19·6分)如图是某小区的一个健身器材,已知BC =0.15m ,AB =2.70m ,∠BOD =70°,求端点A 到底面CD 的距离(精确到0.1m )(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)思路分析:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥AE 于点F ,构造Rt △ABF ,运用解直角三角形的知识求出AF ,进而求出AE 得出结果.解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥AE 于点F ,∵OD ⊥CD ,∠BOD =700,∴AE ∥OD ,∴∠A =∠BOD =700,在Rt △ABF 中,AB =2.7,∴AF =2.7×cos 700=2.7×0.34=0.918,∴AE =AF +BC =0.918+0.15=1.068≈1.1(m ).答:端点A 到底面CD 的距离约是1.1m .20.(2017浙江丽水·20·8分)在全体丽水人民的努力下,我市剿灭劣Ⅴ类水“河道清淤”工程取得了阶段性成果.右表是全市十个县(市、区)指标任务数的统计表;左图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对I 县完成指标任务的行动过程和成果进行评价.思路分析:(1)由复合条形统计图得十个县(市、区)截止3月31日累计完成任务数,由统计表得十个县(市、区)的任务数,根据完成进度的计算公式分别求出十个县(市、区)的完成进度,通过比较得解;(2)由复合条形统计图得十个县(市、区)截止5月4日各县累计完成任务数除以十个县(市、区)任务总数可求解;(3)先从统计图表中获取I 县相关信息和数据,并通过对I 县的各项指标进行分析,进而对I 县完成指标任务的行动过程和成果进行评价.解:(1)C 县的完成进度=%%107100204.21=⨯;I 县的完成进度=%%3.27100113≈⨯. 所以截止3月31日,完成进度最快的是C 县,完成进度最慢的是I 县.(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%.(3)A 类(识图能力):能直接根据统计图的完成任务数对I 县作出评价,如截止5月4日,I 县累计完成数为11.5万方>任务数11万方,已经超额完成任务.B 类(数据分析能力):能结合统计图通过计算完成进度对I 县作出评价.如:截止5月4日,I 县的完成进度=%%5.104100115.11≈⨯,超过全市的完成进度. C 类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I 县作出评价.如:截止3月31日,I 县的完成进度%%3.27100113≈⨯,完成进度全市最慢;截止5月4日,I 县的完成进度=%%5.104100115.11≈⨯,超过全市完成进度,104.5%-27.3%=77.2%,与其他县(市、区)对比进步幅度最大. 21.(2017浙江丽水·21·8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车的行驶时间为t 小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v ,t 的一组对应值如下表:(1)根据表中的数据,求出平均速度v (千米/小时)关于行驶时间t (小时)的函数表达式; (2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由; (3)若汽车到达杭州市场的行驶时间t 满足3.5≤t ≤4,求平均速度v 的取值范围.思路分析:(1)把表中v ,t 的每一组对应值分别作为点的坐标在平面直角坐标系中描点,根据这些点的变化规律选用合适的函数模型(本题选用反比例函数)进行尝试,由n ,t 的一组对应值代入确定反比例函数表达式,并用表中v ,t 其他组对应值进行验证;(2)由题意先确定t =2.5,代入函数表达式求得v 的值,并与100千米/小时进行比较即可;(3)根据反比例函数图象或性质,由自变量取值范围可确定反比例函数值的取值范围.解:(1)根据表中的数据,可画出v 关于t 的函数图象(如图所示),根据图象形状,选择反比例函数模型进行尝试.设v 关于t 的函数表达式为v =tk,∵当v =75时,t =4,∴k =4×75=300.∴v =t 300.将点(3.75,80),(3.53,85),(3.33,90),(3.16,95)的坐标代入v =t300验证:,,,,16.39530033.39030053.38530075.380300≈≈≈=∴v 与t 的函数表达式是v =t300(t ≥3).(2)∵10-7.5=2.5,∴当t =2.5时,v =1001205.2300>=. ∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场. (3)由图象或反比例函数的性质得,当3.5≤t ≤4时,75≤v ≤7600. 答:平均速度v 的取值范围是75≤v ≤7600. 22.(2017浙江丽水·22·10分)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.思路分析:(1)连结OD ,由圆的切线性质得到直角,再根据直角三角形的性质得到余角互余,结合同角的余角相等可得证;(2)连结CD ,根据“直径所对的圆周角是直角”得CD ⊥AB ,由“等角对等边”得到AE =DE ,由圆的切线长定理得DE =EC ,求得AC =2DE =20,在Rt △ADC 中由勾股定理求得CD ,设BD =x ,分别在Rt △BDC 和Rt △ABC 中,由勾股定理建立关于的方程求得x 的值,最后在Rt △BCD 中,运用勾股定理求B C .解:(1)连结OD ,∵DE 是⊙O 的切线,∴∠ODE =900,∴∠ADE +∠BDO =900.∵∠ACB =900,∴∠A +∠B =900,∵OD =OB ,∴∠B =∠BDO .∴∠ADE =∠A .(2)连结CD ,∵∠ADE =∠A ,∴AE =DE .∵BC 是⊙O 的直径,∠ACB =900.∴EC 是⊙O 的切线,∴DE =EC ,∴AE =E C .∵DE =10,∴AC =2DE =20.在Rt △ADC 中,DC =221620-=12.设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2-202,∴x 2+122=(x +16)2-202,解得x =9,∴BC =22912+=15.23.(2017浙江丽水·23·10分)如图1,在Rt △ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A -C -B 运动,点Q 从点A 出发以a (cm/s)的速度沿AB 运动.P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示. (1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.思路分析:过点P 作PD ⊥AB 于点D .(1)先用含x 的代数式表示PD ,再根据三角形的面积公式确定y 与x 之间的函数表达式,由函数的图象得到x ,y 的一组对应值代入可求a 的值;(2)在Rt △PBD 中,由解直角三角形知识,用含x 和sinB 的式子表示PD ,同样根据三角形面积公式建立y 与x 的关系,由函数图形得到x ,y 的一组对应值,求得sinB ,进而确定图2中图象C 2段的函数表达式;(3)先求出图象C 1段与图象C 2段函数值相等时对应的x 的值,得到图象C 1段函数的最大值,并求出图象C 1段函数的最大值在图象C 2段对应的x 的值,结合函数图象可得到x 的取值范围. 解:过点P 作PD ⊥AB 于点D .(1)在图1中,∵∠A =300,P A =2x ,∴PD =P A ·sin 300=2x ·21=x ,∴y =2212121ax x ax PD AQ =⋅=⋅.由图象得,当x =1时,y =21,则211212=⋅a ,∴a =1.(2)当点P 在BC 上时(如图2),PB =5×2-2x =10-2x .∴PD =PB ·sinB =(10-2x )·sin B .∴·y =B x x PD AQ sin )210(2121⋅-⋅=⋅.由图象得,当x =4时,y =34,∴144(108)sin 23B ⨯⨯-=,∴sinB =31,∴y =x x x x 353131)210(212+-=⋅-⋅.(3)由C 1,C 2的函数表达式,得x x x 35312122+-=,解得x 1=0(舍去),x 2=2.由图象得,当x =2时,函数y =221x 的最大值为y =22⨯21=2.将y =2代入函数y =x x 35312+-,得2=x x 35312+-,解得x 1=2,x 2=3,∴由图象得,x 的取值范围是2<x <3.24.(2017浙江丽水·24·12分)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连结BE ,作点A 关于BE的对称点F ,且点F 落在矩形ABCD 的内部.连结AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设AEAD=n .(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示ABAD的值; (3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.思路分析:设AE =a ,则AD =n A .(1)由轴对称性质得到AE =FE ,结合“等边对等角”得到∠EAF =∠EF A .由垂直得到两个角的互余关系,根据“等角的余角相等”可得到结论;(2)由对称性质得BE ⊥AF ,先证∠ABE =∠DAC ,进而证得△ABE ∽△DAC ,根据相似三角形的对应边成比例建立关系式,通过适当变形求解;(3)由特例点F 落在线段BC 上,确定n =4,根据条件点F 落在矩形内部得到n >4,判断出∠FCG <90°.然后分∠CFG =90°和∠CGF =90°两种情况,由(2)的结论和相似三角形的性质分别建立关于n 的等式,求得n 的值.解:设AE =a ,则AD =n A .(1)由对称得AE =FE ,∴∠EAF =∠EF A .∵GF ⊥AF ,∴∠EAF +∠FGA =∠EF A +∠EFG =900.∴∠FGA =∠EFG ,∴FG =EF .∴AE =EG .(2)当点F 落在AC 上时(如图1),由对称得BE ⊥AF ,∴∠ABE +∠BAC =900,∵∠DAC +∠BAC =90°,∴∠ABE =∠DA C .又∵∠BAE =∠D =90°,∴△ABE ∽△DAC ,∴DCAEDA AB =.∵AB =D C .∴AB 2=AD ·AE =na ·a =na 2.∵AB >0,∴AB =n a ,∴n an naAB AD ==.第 11 页 共 11 页(3)若AD =4AB ,则AB =a n 4.当点F 落在线段BC 上时(如图2),EF =AE =AB =A .此时a n 4=a ,∴n =4.∴当点F 落在矩形内部时,n >4.∵点F 落在矩形的内部,点G 在AD 上,∴∠FCG <∠BCD ,∴∠FCG <90°.①若∠CFG =900,则点F 落在AC 上,由(2)得n ABAB n AB AD ==4,即,∴n =16. ②若∠CGF =900(如图3),则∠CGD +∠AGF =90°.∵∠F AG +∠AGF =90°,∴∠CGD =∠F AG =∠ABE ,∵∠BAE =∠D =90°,∴△ABE ∽△DG C .∴DC AE DG AB =.∴AB ·DC =DG ·AE ,即a a n a n ⋅-=)2()4(2,解得n 1=8+42,n 2=8-42<4(不合题意,舍去).∴当n =16或n =8+42时,以点F ,C ,G 为顶点的三角形是直角三角形.。

2017丽水中考数学试题及答案

2017丽水中考数学试题及答案

2017丽水中考数学试题及答案2017年丽水市中考数学试题及答案一、选择题(共10小题,每小题3分,满分30分)1. 下列哪个数是整数?A. 3.14B. -0.5C. 0D. π答案:C2. 如果一个角的度数为120°,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:C3. 一个长方形的长是10厘米,宽是5厘米,它的周长是:A. 30厘米B. 25厘米C. 20厘米D. 15厘米答案:A4. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A5. 下列哪个是二次根式?A. √16B. √(-4)C. √xD. √x^2答案:A6. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个圆的半径是3,那么它的面积是:A. 28.26B. 9C. 18D. 3.14答案:A8. 一个数列的前三项是1, 3, 6,如果这是一个等差数列,那么第四项是:A. 10B. 9C. 8D. 7答案:A9. 下列哪个是不等式?A. x + 2 = 5B. x - 3 > 0C. 2x = 6D. 3x + 4答案:B10. 如果一个三角形的两边分别为3和4,且第三边大于1而小于7,那么这个三角形是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形答案:B二、填空题(共5小题,每小题4分,满分20分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是________。

答案:513. 一个数的立方根是2,那么这个数是________。

答案:814. 一个数的倒数是1/3,那么这个数是________。

答案:315. 如果一个圆的直径是14,那么它的半径是________。

答案:7三、解答题(共5小题,每小题10分,满分50分)16. 解方程:2x + 5 = 13答案:首先移项得 2x = 13 - 5,即 2x = 8,然后除以2得 x = 4。

2017年浙江省丽水市中考数学试题(解析版)

2017年浙江省丽水市中考数学试题(解析版)

浙江省丽水市2017年中考数学试卷一、选择题1、 ( 2017丽水)在数1,0, -1 , -2中,最大的数是()A 、-2B 、-1C 、0D 、12、 ( 2017丽水)计算a 2 a 3的正确结果是() A 、a 5B 、a 6C 、a 8D 、a 93、 (2017丽水)如图是底面为正方形的长方体, 下面有关它的三个视图的说法正确的是 ()主视方向4、( 2017丽水)根据PM2.5空气质量标准:24小时PM2.5均值在1~35 (微克/立方米)的空气质量等级为优•将环保部门对我市 PM2.5 一周的检测数据制作成如下统计表 •这组PM2.5数据的中位数是()天数3 1 1 1 1 PM2. 18 20 2129 3(5A 、21微克/立方米B 、20微克/立方米C 、19微克/立方米D 、18微克/立方米尸 15、 (2017丽水)化简 - ' 1的结果是()A 、x+1B 、x-1C 、x 2-1D 、16、 ( 2017丽水)若关于x 的一元一次方程 x-m+2=0的解是负数,贝U m 的取值范围是()A 、m >2B 、m>2C 、m<2D 、m <2 7、( 2017 丽水)如图,在 dBCD 中,连结 AC ,/ ABC= / CAD=45 ° AB=2,贝U BC 的长是A 、俯视图与主视图相同 C 、左视图与俯视图相同B 、左视图与主视图相同 D 、三个视图都相同法是()的面积是( )图象.下列说法错误的是( )B 、甲的速度是80千米/小时丄D 、甲到B 地比乙到A 地早1-小时二、填空题11、 (2017丽水)分解因式: m 2+2m= _______ .12、 (2017丽水)等腰三角形的一个内角为 100 °则顶角的。

数是 ____________ 13、 (2017丽水)已知 a 2+a=1,则代数式 3-a-a 2的值为 _________ .4 A (1,4)的方A 、向左平移1个单位C 、向上平移3个单位B 、向右平移3个单位 D 、向下平移1个单位9、(2017丽水)如图,点 C 是以AB 为直径的半圆O 的三等分点,AC=2,则图中阴影部分10、(2017丽水)在同一条道路上,甲车从 A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间 x (小时)的函数关系的A 、乙先出发的时间为 0.5小时 C 、甲出发0.5小时后两车相遇 A 、\8、( 2017丽水)将函数 D 、14、(2017丽水)如图,由6个小正方形组成的 2 >3网格中,任意选取 5个小正方形图形是轴对称图形的概率是 __________(1)当直线AB 经过点C 时,点O 到直线AB 的距离是 __________⑵设点P 为线段OB 的中点,连结 PA , PC 若/ CPA=Z ABO ,则m 的值是 ______________ 三、解答题15、(2017丽水)我国三国时期数学家赵爽为了证明勾股定理,创制了一幅弦图”,后人称ABCD 的边长为14,正方形IJKL 的16、(2017丽水)如图,在平面直角坐标系 xOy 中,直线y=-x+m 分别交于x 轴、y 轴于A ,B 两点,已知点C (2, 0)17、(2017 丽水)计算:(-2017) 其为赵爽弦图”,如图1所示•在图2中,若正方形18、(2017 丽水)解方程:(x-3) (x-1)=3.19、(2017丽水)如图是某小区的一个健向器材, 已知BC=0.15m , AB=2.70m , / BOD=70° 求端点A 到地面CD 的距离(精确到0.1m ).(参考数据:sin70°~ 0.9Cos70°~ 0.3tan70°^ 2.7520、(2017丽水)在全体丽水人民的努力下,我市剿灭劣 V 类水河道清淤”工程取得了阶段性成果,下面的右表是全市十个县(市、区)指标任务数的统计表;左图是截止 2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图(1)截止3月31日,完成进度(完成进度 =累计完成数 W 务数X100%)最快、电慢的县 (市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;⑶请结合图形信息和数据分析,对I且完成指标任务的行动过程和成果进行评价臥 K)AISc 抽D 121)e o25 r h.i21會*諭21、(2017丽水)丽水苛公司将丽水山耕”农副产品运往杭州市场进行销售•记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时)•根据经验,v,t的一组对应值如下表:(3)若汽车到达杭州市场的行驶时间t满足3.5偉4求平均速度v的取值范围22、(2017丽水)如图,在Rt A ABC中,/ C=Rt/,以BC为直径的O O交AB于点D,切线DE交AC于点E.(1) 求证:/ A= / ADE ;⑵若AD=16 , DE=10,求BC的长.23、(2017丽水)如图1,在厶ABC 中,/ A=30°点P 从点A 出发以2cm/s 的速度沿折线 A — C — B 运动,点Q 从点A 出发以a(cm/s)的速度沿AB 运动,P , Q 两点同时出发,当某 一点运动到点 B 时,两点同时停止运动•设运动时间为x(s), △ APQ 的面积为y(cm 2),y 关 于x 的函数图象由C i , C 2两段组成,如图2所示•(2)求图2中图象C 2段的函数表达式;(3) 当点P 运动到线段BC 上某一段时△ APQ 的面积,大于当点 P 在线段AC 上任意一点 时厶APQ 的面积,求x 的取值范围•(1)求 a 的值;24、(2017丽水)如图,在矩形 ABCD 中,点E 是AD 上的一个动点,连接 BE ,作点A 关 于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连结 AF ,BF ,EF ,过点F 作GF 丄AF(1) 求证:AE=GE ;(2) 当点F 落在AC 上时,用含n 的代数式表—jTT 的值;⑶若AD=4AB ,且以点F , C , G 为顶点的三角形是直角三角形,求答案解析部分一、选择题 1、【答案】 Dn 的值.【考点】有理数大小比较【解析】【解答】解:从小到大排列为:-2<-1<0<1 ,则最大的数是1.故选 D.【分析】四个数中有负数、正数、0,-1 与-2 比较时,|-1|<|-2|,则-1>-2,即负数比较时,绝对值大的反而小,而由负数小于0,0 小于正数,则可得答案.2、【答案】A【考点】同底数幂的乘法【解析】【解答】解:a283=a2+3=a5故选A.【分析】由同底数幕的乘法法则,底数不变,指数相加,贝冋得a2 a3=a2+3,即可得答案3、【答案】B【考点】简单几何体的三视图【解析】【解答】解:•••该长方体的底面为正方形,•••可设长方体的长、宽、高分别为a,a,b,则主视图是长为b,宽为a的长方形;左视图是长为b,宽为a的长方形;俯视图是边长为a的正方形;故主视图与左视图相同.故选 B.【分析】易得长方体的主视图、左视图、俯视图都是长方形,而题中已知“底面为正方形”则可得俯视图是正方形,从而可得主视图和左视图的长方形的长和宽分别相等,即可解答4、【答案】B【考点】中位数、众数【解析】【解答】解:7 个数据从小到排列的第 4 个数据是中位数,而3+1=4, 故中位数是20 微克/立方米.故选 B.【分析】一共有7个数据,.••中位数是这组数据从小到大排列时,排在第4位的数.5、【答案】A【考点】分式的混合运算F ] 如 1 .心1 G+I)G TI‘【解析】【解答】解:=^ .故选A.1 = 1 _ 1【分析】分式相加减,可将分母化为一致,即把第二项的^ ' I即转化为同分母的分式减法,再将结果化成最简分式6、【答案】C【考点】一元一次方程的解【解析】【解答】解:解x-m+2=0得x=m-2,■/x<0,/• m-2<0,则m<2.故选C.【分析】解出一元一次方程的解,由解是负数,解不等式即可7、【答案】C【考点】平行四边形的性质【解析】【解答】解:在6BCD中,AD//BC,•••/ ACB = Z CAD=45°,•••/ ABC=Z ABC=45°,• AC=AB=2,Z BAC=90°,由勾股定理得BC=故选C.【分析】由平行四边形ABCD的性质可得AD//BC,则可得内错角相等/ ACB = Z CAD =45°, 由等角对等边可得AC=AB=2,/ BAC=90°由勾股定理可解出BC.8、【答案】D【考点】二次函数的图象,二次函数的性质,二次函数的应用A.向左平移1个单位后,得到y-(x+1)2当x=1时,y=4,则平移【解析】【解答】解:后的图象经过A (1,4);B. 向右平移3个单位,得到y=(x-3)2 ,当x=1时,y=4,则平移后的图象经过 A (1,4);C. 向上平移3个单位,得到y=x 2+3,当x=1时,y=4,则平移后的图象经过 A (1,4);D. 向下平移1个单位,得到y=x 2-1,当x=1时,y=0,则平移后的图象不经过 A ( 1,4); 故选. 【分析】遵循 对于水平平移时,x 要左加右减”对于上下平移时,y 要上加下减”的原则分 别写出平移后的函数解析式,将 x=1代入解析式,检验 y 是否等于4. 9、【答案】A【考点】扇形面积的计算【解析】【解答】解:连接 0C ,:点C 是以AB 为直径的半圆 0的三等分点, •••/ ABC=30° / BOC=120°, 又••• AB 为直径, •••/ ACB=90° , 则 AB=2AC=4, BC=120兀丁贝U S 阴=$ 扇形 BOC -S^BOC = ^60 故选A.【分析】连接 OC , S 阴=S 扇形BOC -S A BOC ,则需要求出半圆的半径,及圆心角/BOC ;由点C 是以AB 为直径的半圆 O 的三等分点,可得/ ABC=30° , / BOC=120°,从而可解答. 10、【答案】D 【考点】函数的图象【解析】【解答】解:观察0.5左边和右边的线段可得它们的斜率不一样,确;70相遇时间为-二丨二—'(小时),故C 正确;5 丄乙到A 地比甲到B 地早-1.25= 1 -小时,故D 错误. 故选D.【分析】行驶相遇问题.主要观察图象得到有用的信息, 在0.5左边和右边的线段可得它们的 斜率不一样,可得 0.5小时是一个转折点;求出乙的速度和行完全程所需要的时间,对比乙 行完全程所需要的时间与 1.75小时,如果比1.75小时大,说明甲先到达 B 地,如果比1.754x0 KACxBC )=警则可得0.5小时是一个转折点,即乙先出发的时间为0.5小时,故A 正确;10070=60 (千米/小时),则乙行完全程需要的时间是 1.75-0.5=1.25 (小时),甲的速度是 -…乙的速度是 则甲所用的时间是:(千米/小时),故B 正= 0.5小时小,说明乙先到达A地,则作出判断后即可求出甲行完全程所用的时间,以及速度,即可解答.二、<b >填空题</b>11、【答案】m(m+2)【考点】因式分解-提公因式法【解析】【解答】解:原式=m(m+2).故答案为m(m+2).【分析】先提取公因式.12、【答案】100 °【考点】等腰三角形的性质【解析】【解答】解:等腰三角形的一个内角为100°而底角不能为钝角,•••100°为等腰三角形的顶角.故答案为100°.【分析】这个为100°的内角是钝角只能是顶角,不能为底角.13、【答案】2【考点】代数式求值【解析】【解答】解:T a2+a=1 ,•- 3-a-a2=3- (a+a2) =3-1=2.故答案为2.【分析】可由a2+a=1,解出a的值,再代入3-a-a2;或者整体代入3- (a+a2)即可答案.114、【答案】-■【考点】概率的意义,概率公式【解析】【解答】解:任选5个小正方形,有6种选法,是轴对称图形的有下面2种,则概2 _丄率为-—.1故答案为「•【分析】选5个小正方形,相当于去掉一个小正方形,有6种去法,故一共有6种选法,而去掉一个小正方形后,是轴对称图形的只有两个,则可解出答案 15、【答案】10 【考点】勾股定理【解析】【解答】解:易得正方形 ABCD 是由八个全等直角三角形和一个小方形组成的, 可,EJ=x ,则 HJ=x+2 , 则 S 正方形 ABCD =8X _ '+22=142 ,化简得 X 2+2X -48=0, 解得 X<I =6,X 2=-8 (舍去).•••正方形EFGH 的边长为 '+'」.故答案为10.【分析】在原来勾股弦图基础上去理解新的弦图”,易得八个全等直角三角形和小正方形的面积和为正方形 ABCD 的面积,构造方程解出EJ 的长,再由勾股定理求出正方形 EFGH 的 边长.(2) 12【考点】相似三角形的应用,一次函数的性质【解析】【解答】解:(1)当直线AB 经过点C 时,点A 与点C 重合, 当 x=2 时,y=-2+m=0,即卩 m=2. •直线 AB 为 y=-x+2,则 B (0,2) •••0B = 0A=2,AB=216、【答案】设点0到直线AB 的距离是d ,2)作 OD=OC=2,则/ PDC=45 ° 如图,由 y=-x+m 可得 A (m,0) ,B(0,m), 则可得 OA=OB ,则/ OBA= / OAB=45° ,当 m<0 时,/ APO>/OBA=45° •••此时/ CPA>45° ,故不符合, /• m>0.•••/ CPA=Z ABO=45° ,•••/ BPA+Z OPC = Z BAP + Z BPA=135° ,即/ OPC= Z BAP , 则厶 PCD~A APB ,PD CD.••二 _ t :即」 -,解得m=12.故答案为】;12.【分析】(1)点C 与点A 都在x 轴上,当直线 AB 经过点C ,则点C 与点A 重合,将C 点 坐标代入y=-x+m 代入求出m 的值,则可写出B 的坐标和OB ,求出AB ,再由等积法可解出;(2)典型的 一线三等角”,构造相似三角形 △ PCD~A APB ,对m 的分析进行讨论,在 m<0 时,点A 在x 轴负半轴,而此时Z CPA>Z ABO ,故m>0,「.由相似比求出边的相应关系 •丄址由 S A OAB =- :-.-lL ,- ,则4=2 <d,三、<b >解答题</b>17、【答案】解:原式=1-3+3=1.【考点】倒数,算术平方根【解析】【分析】一个非负数的o次方都为1, 一个数的(-1)次方,是这个数的倒数,;是9的算术平方根•18、【答案】解: ( x-3)(x-1)=3X2-4X+3=3,x2-4x=0,x(x_4)=0,X1=O,X2=4.【考点】一元二次方程的解【解析】【分析】方程右边不是0 ,•••要将方程左边化简,最终可因式分解得x(x-4)=0,即可解出答案.19、【答案】解:过点A作AE丄CD于点E,过点B作BF丄AE于点F,•/ OD 丄CD,/ BOD=70° • AE//OD,•/ A= / BOD=70°在Rt A AFB 中,AB=2.7,「. AF=2.7cos70°2.7 >0.34=0.918,• AE=AF + BC=0.918+0.15=1.068 ~ 1.1(m).答:端点A到地面CD的距离约是1.1m.【考点】解直角三角形的应用【解析】【分析】求求端点A到地面CD的距离,则可过点A作AE丄CD于点E,在构造直角三角形,可过点B作BF丄AE于点F,即在Rt A AFB中,AB已知,且/ A= / BOD=70° 即可求出AF 的长,贝U AE=AF+EF即可求得答案.x 100% = 107%20、【答案】(1 )解:C县的完成进度=- ;I县的完成进度=十x 100^2 27.3W•••截止3月31日,完成进度最快的是C县,完成进度最慢的是I县•(2 )解:全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2 )吃00 XI00%=171.8 -200 >100%=85.9%.(3)解:A类(识图能力):能直接根据统计图的完成任务数对I县作出评价•如:截止5月4日,I县累计完成数为11.5万方>任务数11万方,已知超额完成任务.B类(数据分析能力):能结合统计图通过计算完成进度对I县作出评价•如:截止5月4日,I县的完成进度='「’、” mm,超过全市完成进度.C类(综合运用能力):能利用两个阶段的未完成进度、全市完成进度的排序等方面对I县作出评价•如:截止3月31 日: I县的完成进度=—:':',完成进度全市最慢.截止5月4日:I县的完成进度 =—'■■,超过全市完成进度,104.5%-27.3%=77.2%,与其它县(市、区)对比进步幅度最大【考点】统计表,条形统计图【解析】【分析】(1)可以将A~I县(市、区)中3月31日的累计完成数写在指标任务统计表中A~I相对应的指标任务旁边估算完成进度即可;(2)用总累计完成数吃00X100%,即可解答;(3)可成累计完成数、完成进度及增长率等分析21、【答案】(1)解:(1)根据表中的数据,可画出v关于t的函数图象(如图所示),k根据图象形状,选择反比例函数模型进行尝试•设v与t的函数表达式为v=,•••当v=75 时,t=4, • k=4X75=300.二v= .300将点(3.75,80) , ( 3.53,85) , (3.33,90), (3.16 , 95)的坐标代入v= 验证:= 3.75SOO SOO SJ3-16300• v与t的函数表达式为v=W(千米/时)(2)解:T 10-7.5=2.5 ,300•••当t=2.5 时,v= _~ =120>100.•••汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.600(3)解:由图象或反比例函数的性质得,当 3.5峯<4时,75W V W .600答案:平均速度v的取值范围是75<v<".【考点】反比例函数的性质k【解析】【分析】(1)根据表中的数据,尝试运用构造反比例函数模型v=,取一组整数值300代入求出k,再取几组值代入检验是否符合;(2)经过的时间t=10-7.5,代入v=',求出v值,其值要不超过100,才成立;(3)根据反比例函数,k>0,且t>0,则v是随t的增大而减小的,故分别把t=3.5, t=4,求得v的最大值和最小值.22、【答案】(1)证明:连结OD,: DE是O O的切线,•••/ ODE=90°,•••/ ADE + Z BDO=90°,•••/ ACB=90°,•Z A+ Z B=90°,又••• OD = OB ,•Z B= Z BDO , • Z ADE = Z A.(2)解:连结CD ,•••/ ADE = / A,••• AE=DE ,•/ BC 是O O 的直径,/ ACB=90°.• EC 是O O 的切线,• DE = EC,• AE=EC.又••• DE=10,• AC=2DE=20,在Rt A ADC 中,DC= ' 一■.设BD=x,在Rt A BDC 中,BC2=X2+122,在Rt A ABC 中,BC2=(x+16)2-202, •X2+122=(X+16)2-202,解得X=9,• BC=「D【考点】切线的性质【解析】【分析】(1)连结OD,根据切线的性质和同圆的半径相等,及圆周角所对的圆周角为90°得到相对应的角的关系,即可证明; (2)由(1)中的/ ADE= / A 可得AE=DE ; 1-3由/ ACB=90°可得EC 是O O 的切线,由切线长定理易得 DE = EC ,则AC=2DE ,由勾股定 理求出CD ;设BD=x ,再可由勾股定理BC 2= x 2 + 122=(x+16)2-202,可解出x 的值,再重新代入 原方程,即可求出 BC.23、【答案】(1)解:在图1中,过P 作PD 丄AB 于D ,vZ A=30 ° PA=2x ,• PD = FA sin30°=2x =x ,• y = If?尸0=2妙兀=Z©2丄 丄卡丄由图象得,当x=1时,y= _,则二■=-.a=1.(2 )解:当点 F 在 BC 上时(如图 2), PB=5X2-2x=10-2x.• FD = FB sinB=(10-2x) sinB ,丄 丄• y= - AQ FD= - x ( 10-2x ) sinB.4由图象得,当x=4时,y= 一;,1 4-X 4X (10-8) sinB= 一 ,/• si nB=1••• y= lx ・( 10-2x )A Q D B田 11-3 5-3(3)解:由C 1 , C 2的函数表达式,得 解得x 1=0 (舍去),X 2=2 ,由图易得,当x=2时,函数y=-…的最大值为y= 7 「一将y=2代入函数y=匸:得2= ~ .解得 x i =2 , X2=3 ,•••由图象得,X 的取值范围是2<X <3.【考点】 二次函数的图象,二次函数的性质,二次函数的应用 2【解析】【分析】(1)C i 段的函数解析式是点 P 在AC 线段时y 与X 的关系,由S= - AQ ( AQA上的高),而 AQ = ax ,由Z A=30° , PA=2X ,可过 P 作 PD 丄 AB 于 D ,贝U PD=FA sin30°2X W =X ,1则可写出y 关于X 的解析式,代入点(1, I )即可解出;(2)作法与(1)同理,求出用4sinB 表示出PD ,再写出y 与X 的解析式,代入点(4, 「;),即可求出sinB ,即可解答;(3) 题中表示在某X 的取值范围内C K C 2 ,即此时C 2的y 值大于C 1的y 值的最大值,由图易求出x 的值,根据函数y= - I -,的开口向下,则可得 x 的取值范围24、【答案】(1)证明:由对称得 AE=FE ,「./ EAF= / EFA ,•/ GF 丄 EAF+ / FGA= / EFA+Z EFG=90° •••/ FGA = Z EFG ,••• EG=EF.••• AE=EG.(2)解:设 AE=a ,贝U AD= na ,当点F 落在AC 上时(如图1),由对称得BE 丄AF ,•••/ ABE+Z BAC=90° ,•••/ DAC+ Z BAC=90° ,• Z ABE=Z DAC ,又 T Z BAE= Z D=90° ,• △ ABE~A DAC ,AB AE•••T AB=DC ,• AB 2=A D AE=na a=na 2,得,当x=2时,函数 y= 1 y=- =•将y=2代入函数n(3)解:设AE=a,贝U AD= na,由AD=4AB,贝U AB=- 当点F落在线段BC上时(如图2) , EF=AE=AB=a, n _此时J,-,A n=4.•••当点F落在矩形外部时,n>4.•••点F落在矩形的内部,点G在AD上,•••/ FCG< / BCD,•/ FCG<90°若/ CFG=90°,则点F落在AC上,由(2)得若/ CGF=90°(如图3),则/ CGD + / AGF=90°•••/ FAG + Z AGF =90°, •••/ CGD= Z FAG = Z ABE,vZ BAE=Z D=90°,•△ABE~A DGC ,AB AS•••二一—二,73• AB DC=DG AE,即(I' )2= (n-2)a a.解得’或逬一. ;工(不合题意,舍去)•••当n=16 或时,以点F, C, G为顶点的三角形是直角三角形,• n=16.(09 3>【考点】矩形的性质,解直角三角形的应用【解析】【分析】(1)因为GF丄AF,由对称易得AE=EF,则由直角三角形的两个锐角的和为90度,且等边对等角,即可证明E是AG的中点;(2)可设AE=a,则AD=na,即需要用n或a表示出AB,由BE丄AF 和/ BAE== / D=90° 可证明△ ABE~A DAC ,则AB AE--1 - ■-,因为AB=DC ,且DA , AE已知表示出来了,所以可求出AB,即可解答;(3)求以点F , C , G为顶点的三角形是直角三角形时的n,需要分类讨论,一般分三个,/ FCG =90°, / CFG=90°, / CGF=90°;根据点 F 在矩形ABCD 的内部就可排除/ FCG=90°, 所以就以/ CFG =90°和/ CGF =90°进行分析解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省丽水市2017年中考数学试卷(解析版)一、选择题1、(2017·丽水)在数1,0,-1,-2中,最大的数是()A、-2B、-1C、0D、12、(2017·丽水)计算a2·a3的正确结果是()A、a5B、a6C、a8D、a93、(2017·丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A、俯视图与主视图相同B、左视图与主视图相同C、左视图与俯视图相同D、三个视图都相同4、(2017·丽水)根据PM2.5空气质量标准:24小时PM2.5均值在1~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表.这组PM2.5数据的中位数是()A、21微克/立方米B、20微克/立方米C、19微克/立方米D、18微克/立方米5、(2017·丽水)化简的结果是()A、x+1B、x-1C、x2-1D、6、(2017·丽水)若关于x的一元一次方程x-m+2=0的解是负数,则m的取值范围是()A、m≥2B、m>2C、m<2D、m≤27、(2017·丽水)如图,在□ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A、B、2C、2D、48、(2017·丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A、向左平移1个单位B、向右平移3个单位C、向上平移3个单位D、向下平移1个单位9、(2017·丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A、B、C、D、10、(2017·丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象.下列说法错误的是()A、乙先出发的时间为0.5小时B、甲的速度是80千米/小时C、甲出发0.5小时后两车相遇D、甲到B地比乙到A地早小时二、填空题11、(2017·丽水)分解因式:m2+2m=________.12、(2017·丽水)等腰三角形的一个内角为100°,则顶角的°数是________.13、(2017·丽水)已知a2+a=1,则代数式3-a-a2的值为________.14、(2017·丽水)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形图形是轴对称图形的概率是________.15、(2017·丽水)我国三国时期数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ//AB,则正方形EFGH的边长为________.16、(2017·丽水)如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是________;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是________.三、解答题17、(2017·丽水)计算:(-2017)0- + .18、(2017·丽水)解方程:(x-3)(x-1)=3.19、(2017·丽水)如图是某小区的一个健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20、(2017·丽水)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,下面的右表是全市十个县(市、区)指标任务数的统计表;左图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、电慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图形信息和数据分析,对I且完成指标任务的行动过程和成果进行评价.21、(2017·丽水)丽水苛公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市?请说明理由:(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22、(2017·丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23、(2017·丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A—C—B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24、(2017·丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.答案解析部分一、<b >选择题</b>1、【答案】D【考点】有理数大小比较【解析】【解答】解:从小到大排列为:-2<-1<0<1,则最大的数是1.故选D.【分析】四个数中有负数、正数、0,-1与-2比较时,|-1|<|-2|,则-1>-2,即负数比较时,绝对值大的反而小,而由负数小于0,0小于正数,则可得答案.2、【答案】A【考点】同底数幂的乘法【解析】【解答】解:a2·a3=a2+3=a5故选A.【分析】由同底数幂的乘法法则,底数不变,指数相加,则可得a2·a3=a2+3,即可得答案.3、【答案】B【考点】简单几何体的三视图【解析】【解答】解:∵该长方体的底面为正方形,∴可设长方体的长、宽、高分别为a,a,b,则主视图是长为b,宽为a的长方形;左视图是长为b,宽为a的长方形;俯视图是边长为a的正方形;故主视图与左视图相同.故选B.【分析】易得长方体的主视图、左视图、俯视图都是长方形,而题中已知“底面为正方形”,则可得俯视图是正方形,从而可得主视图和左视图的长方形的长和宽分别相等,即可解答.4、【答案】B【考点】中位数、众数【解析】【解答】解:7个数据从小到排列的第4个数据是中位数,而3+1=4,故中位数是20微克/立方米.故选B.【分析】一共有7个数据,∴中位数是这组数据从小到大排列时,排在第4位的数.5、【答案】A【考点】分式的混合运算【解析】【解答】解:= .故选A.【分析】分式相加减,可将分母化为一致,即把第二项的,即转化为同分母的分式减法,再将结果化成最简分式.6、【答案】C【考点】一元一次方程的解【解析】【解答】解:解x-m+2=0得x=m-2,∵x<0,∴m-2<0,则m<2.故选C.【分析】解出一元一次方程的解,由解是负数,解不等式即可.7、【答案】C【考点】平行四边形的性质【解析】【解答】解:在□ABCD中,AD//BC,∴∠ACB=∠CAD=45°,∴∠ABC=∠ABC=45°,∴AC=AB=2,∠BAC=90°,由勾股定理得BC= AB=2 .故选C.【分析】由平行四边形ABCD的性质可得AD//BC,则可得内错角相等∠ACB=∠CAD=45°,由等角对等边可得AC=AB=2,∠BAC=90°,由勾股定理可解出BC.8、【答案】D【考点】二次函数的图象,二次函数的性质,二次函数的应用【解析】【解答】解:A. 向左平移1个单位后,得到y=(x+1)2,当x=1时,y=4,则平移后的图象经过A(1,4);B. 向右平移3个单位,得到y=(x-3)2,当x=1时,y=4,则平移后的图象经过A(1,4);C. 向上平移3个单位,得到y=x2+3,当x=1时,y=4,则平移后的图象经过A(1,4);D. 向下平移1个单位,得到y=x2-1,当x=1时,y=0,则平移后的图象不经过A(1,4);故选.【分析】遵循“对于水平平移时,x要左加右减”“对于上下平移时,y要上加下减”的原则分别写出平移后的函数解析式,将x=1代入解析式,检验y是否等于4.9、【答案】A【考点】扇形面积的计算【解析】【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ABC=30°,∠BOC=120°,又∵AB为直径,∴∠ACB=90°,则AB=2AC=4,BC= ,则S阴=S扇形BOC-S△BOC= - = - .故选A.【分析】连接OC,S阴=S扇形BOC-S△BOC,则需要求出半圆的半径,及圆心角∠BOC;由点C是以AB为直径的半圆O的三等分点,可得∠ABC=30°,∠BOC=120°,从而可解答.10、【答案】D【考点】函数的图象【解析】【解答】解:观察0.5左边和右边的线段可得它们的斜率不一样,则可得0.5小时是一个转折点,即乙先出发的时间为0.5小时,故A正确;乙的速度是=60(千米/小时),则乙行完全程需要的时间是(小时),则甲所用的时间是:1.75-0.5=1.25(小时),甲的速度是(千米/小时),故B正确;相遇时间为(小时),故C正确;乙到A地比甲到B地早-1.25= 小时,故D错误.故选D.【分析】行驶相遇问题.主要观察图象得到有用的信息,在0.5左边和右边的线段可得它们的斜率不一样,可得0.5小时是一个转折点;求出乙的速度和行完全程所需要的时间,对比乙行完全程所需要的时间与1.75小时,如果比1.75小时大,说明甲先到达B地,如果比1.75小时小,说明乙先到达A地,则作出判断后即可求出甲行完全程所用的时间,以及速度,即可解答.二、<b >填空题</b>11、【答案】m(m+2)【考点】因式分解-提公因式法【解析】【解答】解:原式=m(m+2).故答案为m(m+2).【分析】先提取公因式.12、【答案】100°【考点】等腰三角形的性质【解析】【解答】解:等腰三角形的一个内角为100°,而底角不能为钝角,∴100°为等腰三角形的顶角. 故答案为100°.【分析】这个为100°的内角是钝角只能是顶角,不能为底角.13、【答案】2【考点】代数式求值【解析】【解答】解:∵a2+a=1,∴3-a-a2=3-(a+a2)=3-1=2.故答案为2.【分析】可由a2+a=1,解出a的值,再代入3-a-a2;或者整体代入3-(a+a2)即可答案.14、【答案】【考点】概率的意义,概率公式【解析】【解答】解:任选5个小正方形,有6种选法,是轴对称图形的有下面2种,则概率为.故答案为.【分析】选5个小正方形,相当于去掉一个小正方形,有6种去法,故一共有6种选法,而去掉一个小正方形后,是轴对称图形的只有两个,则可解出答案.15、【答案】10【考点】勾股定理【解析】【解答】解:易得正方形ABCD是由八个全等直角三角形和一个小方形组成的,可,EJ=x,则HJ=x+2,则S正方形ABCD=8× +22=142,化简得x2+2x-48=0,解得x1=6,x2=-8(舍去).∴正方形EFGH的边长为. 故答案为10.【分析】在原来勾股弦图基础上去理解新的弦图”,易得八个全等直角三角形和小正方形的面积和为正方形ABCD的面积,构造方程解出EJ的长,再由勾股定理求出正方形EFGH的边长.16、【答案】(1)(2)12【考点】相似三角形的应用,一次函数的性质【解析】【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=-2+m=0,即m=2.∴直线AB为y=-x+2,则B(0,2)∴OB=OA=2,AB=2 ,设点O到直线AB的距离是d,由S△OAB= ,则4=2 d,∴d= .2)作OD=OC=2,则∠PDC=45°,如图,由y=-x+m可得A(m,0),B(0,m),则可得OA=OB,则∠OBA=∠OAB=45°,当m<0时,∠APO>∠OBA=45°,∴此时∠CPA>45°,故不符合,∴m>0.∵∠CPA=∠ABO=45°,∴∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD~△APB,∴,即,解得m=12.故答案为;12.【分析】(1)点C与点A都在x轴上,当直线AB经过点C,则点C与点A重合,将C点坐标代入y=-x+m 代入求出m的值,则可写出B的坐标和OB,求出AB,再由等积法可解出;(2)典型的“一线三等角”,构造相似三角形△PCD~△APB,对m的分析进行讨论,在m<0时,点A在x轴负半轴,而此时∠CPA>∠ABO,故m>0,∴由相似比求出边的相应关系.三、<b >解答题</b>17、【答案】解:原式=1-3+3=1.【考点】倒数,算术平方根【解析】【分析】一个非负数的0次方都为1,一个数的(-1)次方,是这个数的倒数,是9的算术平方根.18、【答案】解:(x-3)(x-1)=3x2-4x+3=3,x2-4x=0,x(x-4)=0,x1=0,x2=4.【考点】一元二次方程的解【解析】【分析】方程右边不是0,∴要将方程左边化简,最终可因式分解得x(x-4)=0,即可解出答案.19、【答案】解:过点A作AE⊥CD于点E,过点B作BF⊥AE于点F,∵OD⊥CD,∠BOD=70°,∴AE//OD,∴∠A=∠BOD=70°,在Rt△AFB中,AB=2.7,∴AF=2.7cos70°=2.7×0.34=0.918,∴AE=AF+BC=0.918+0.15=1.068≈1.1(m).答:端点A到地面CD的距离约是1.1m.【考点】解直角三角形的应用【解析】【分析】求求端点A到地面CD的距离,则可过点A作AE⊥CD于点E,在构造直角三角形,可过点B作BF⊥AE于点F,即在Rt△AFB中,AB已知,且∠A=∠BOD=70°,即可求出AF的长,则AE=AF+EF 即可求得答案.20、【答案】(1)解:C县的完成进度= ;I县的完成进度= . ∴截止3月31日,完成进度最快的是C县,完成进度最慢的是I县.(2)解:全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%.(3)解:A类(识图能力):能直接根据统计图的完成任务数对I县作出评价.如:截止5月4日,I县累计完成数为11.5万方>任务数11万方,已知超额完成任务.B类(数据分析能力):能结合统计图通过计算完成进度对I县作出评价.如:截止5月4日,I县的完成进度= ,超过全市完成进度.C类(综合运用能力):能利用两个阶段的未完成进度、全市完成进度的排序等方面对I县作出评价.如:截止3月31日:I县的完成进度= ,完成进度全市最慢.截止5月4日:I县的完成进度= ,超过全市完成进度,104.5%-27.3%=77.2%,与其它县(市、区)对比进步幅度最大.【考点】统计表,条形统计图【解析】【分析】(1)可以将A~I县(市、区)中3月31日的累计完成数写在指标任务统计表中A~I相对应的指标任务旁边估算完成进度即可;(2)用总累计完成数÷200×100%,即可解答;(3)可成累计完成数、完成进度及增长率等分析.21、【答案】(1)解:(1)根据表中的数据,可画出v关于t的函数图象(如图所示),根据图象形状,选择反比例函数模型进行尝试.设v与t的函数表达式为v= ,∵当v=75时,t=4,∴k=4×75=300.∴v= .将点(3.75,80),(3.53,85),(3.33,90),(3.16,95)的坐标代入v= 验证:,,,,∴v与t的函数表达式为v= .(2)解:∵10-7.5=2.5,∴当t=2.5时,v= =120>100.∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)解:由图象或反比例函数的性质得,当3.5≤t≤4时,75≤v≤ .答案:平均速度v的取值范围是75≤v≤ .【考点】反比例函数的性质【解析】【分析】(1)根据表中的数据,尝试运用构造反比例函数模型v= ,取一组整数值代入求出k,再取几组值代入检验是否符合;(2)经过的时间t=10-7.5,代入v= ,求出v值,其值要不超过100,才成立;(3)根据反比例函数,k>0,且t>0,则v是随t的增大而减小的,故分别把t=3.5,t=4,求得v的最大值和最小值.22、【答案】(1)证明:连结OD,∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)解:连结CD,∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线,∴DE=EC,∴AE=EC.又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC= .设BD=x,在Rt△BDC中,BC2=x2+122, 在Rt△ABC中,BC2=(x+16)2-202, ∴x2+122=(x+16)2-202,解得x=9,∴BC= .【考点】切线的性质【解析】【分析】(1)连结OD,根据切线的性质和同圆的半径相等,及圆周角所对的圆周角为90°,得到相对应的角的关系,即可证明;(2)由(1)中的∠ADE=∠A可得AE=DE;由∠ACB=90°,可得EC是⊙O的切线,由切线长定理易得DE=EC,则AC=2DE,由勾股定理求出CD;设BD=x,再可由勾股定理BC2= x2+122=(x+16)2-202,可解出x的值,再重新代入原方程,即可求出BC.23、【答案】(1)解:在图1中,过P作PD⊥AB于D,∵∠A=30°,PA=2x,∴PD=PA·sin30°=2x·=x,∴y= = .由图象得,当x=1时,y= ,则= .∴a=1.(2)解:当点P在BC上时(如图2),PB=5×2-2x=10-2x.∴PD=PB·sinB=(10-2x)·sinB,∴y= AQ·PD= x·(10-2x)·sinB.由图象得,当x=4时,y= ,∴×4×(10-8)·sinB= ,∴sinB= .∴y= x·(10-2x)·= .(3)解:由C1,C2的函数表达式,得= ,解得x1=0(舍去),x2=2,由图易得,当x=2时,函数y= 的最大值为y= .将y=2代入函数y= ,得2= .解得x1=2,x2=3,∴由图象得,x的取值范围是2<x<3.【考点】二次函数的图象,二次函数的性质,二次函数的应用【解析】【分析】(1)C1段的函数解析式是点P在AC线段时y与x的关系,由S= AQ·(AQ上的高),而AQ=ax,由∠A=30°,PA=2x,可过P作PD⊥AB于D,则PD=PA·sin30°=2x·=x,则可写出y关于x的解析式,代入点(1,)即可解出;(2)作法与(1)同理,求出用sinB表示出PD,再写出y与x的解析式,代入点(4,),即可求出sinB,即可解答;(3)题中表示在某x的取值范围内C1<C2,即此时C2的y值大于C1的y值的最大值,由图易得,当x=2时,函数y= 的最大值为y= .将y=2代入函数y= ,求出x的值,根据函数y= ,的开口向下,则可得x的取值范围.24、【答案】(1)证明:由对称得AE=FE,∴∠EAF=∠EFA,∵GF⊥AE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF.∴AE=EG.(2)解:设AE=a,则AD=na,当点F落在AC上时(如图1),由对称得BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,又∵∠BAE=∠D=90°,∴△ABE~△DAC ,∴∵AB=DC,∴AB2=AD·AE=na·a=na2,∵AB>0,∴AB= .∴.(3)解:设AE=a,则AD=na,由AD=4AB,则AB= .当点F落在线段BC上时(如图2),EF=AE=AB=a,此时,∴n=4.∴当点F落在矩形外部时,n>4.∵点F落在矩形的内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,若∠CFG=90°,则点F落在AC上,由(2)得,∴n=16.若∠CGF=90°(如图3),则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE~△DGC,∴,∴AB·DC=DG·AE,即()2=(n-2)a·a.解得或(不合题意,舍去),∴当n=16或时,以点F,C,G为顶点的三角形是直角三角形.【考点】矩形的性质,解直角三角形的应用【解析】【分析】(1)因为GF⊥AF,由对称易得AE=EF,则由直角三角形的两个锐角的和为90度,且等边对等角,即可证明E是AG的中点;(2)可设AE=a,则AD=na,即需要用n或a表示出AB,由BE⊥AF和∠BAE==∠D=90°,可证明△ABE~△DAC , 则,因为AB=DC,且DA,AE已知表示出来了,所以可求出AB,即可解答;(3)求以点F,C,G为顶点的三角形是直角三角形时的n,需要分类讨论,一般分三个,∠FCG=90°,∠CFG=90°,∠CGF=90°;根据点F在矩形ABCD的内部就可排除∠FCG=90°,所以就以∠CFG=90°和∠CGF=90°进行分析解答.。

相关文档
最新文档