人教A版数学必修一-高中必修一第二章能力检测试卷(新)

合集下载

新人教A版高中数学必修一 第二章一元二次函数、方程和不等式 拔高检测题 (2)

新人教A版高中数学必修一 第二章一元二次函数、方程和不等式 拔高检测题 (2)

新人教A 版高中数学必修一 第二章一元二次函数、方程和不等式 拔高检测题 (2)一、单选题1.已知m ,n 是正实数,且1m n +=,则12m n+的最小值是( ). A.3 B.3+C .92D .52.已知正数a,b 满足ab =10,则a +b 的最小值是( ) A .10B .25C .5D.3.设x ,y 均为负数,且1x y +=-,那么1xy xy+有( ). A .最大值174-B .最小值174-C .最大值174D .最小值1744.已知0a >,0b >,2a b A +=,B =2abC a b=+,则A ,B ,C 的大小关系为( ). A .A B C ≤≤B .AC B ≤≤C .B C A ≤≤D .C B A ≤≤5.若不等式a 2+b 2+2>λ(a+b )对任意正数a ,b 恒成立,实数λ的取值范围是( ) A .B .(﹣∞,1)C .(﹣∞,2)D .(﹣∞,3)6.若,,a b c 为实数,则下列命题错误的是( ) A .若22ac bc >,则a b > B .若0a b <<,则22a b < C .若0a b >>,则11a b< D .若0a b <<,0c d >>,则ac bd <7.已知a b c >>,下列不等关系一定成立的是( ) A .2ac b ab bc +>+ B .2ab bc b ac +>+ C .2ac bc c ab +>+ D .22a bc b ab +>+8.已知,αβ满足11123αβαβ-≤+≤⎧⎨≤+≤⎩,,则3αβ+的取值范围是( )A .137αβ≤+≤B .313αβ+-5≤≤C .37αβ+-5≤≤D .1313αβ+≤≤ 9.若0x y <<,则下列不等式不成立的是( ) A .2211x y -<- B .()22*nn xy n <∈NC .()2121*n n xyn ++<∈ND .11y x x>- 10.已知“1a >且1b >”,则与此判断等价的是( ) A .2a b +>且1ab > B .2a >且0b > C .0a >且0b >D .10a ->且10b ->11.若不等式212x mx x m ++>+对满足2m <的所有实数m 恒成立,则实数x 的取值范围是() A .22x -<< B .3x ≥C .1x ≤D .1x ≤-或3x ≥12.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-二、填空题13.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15,25,30AB m AC m BCM ==∠=︒,则tan θ的最大值为_______.14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,则a 5与b 5的大小关系为________. 15.已知-13a b <+<,且24a b <-<,那么23a b +的取值范围是_________. 16.有下列四个命题:①若“1xy=,则,x y 互为倒数的逆命题;②面积相等的三角形全等的否命题;③“若m 1≥,则2x 2x m 0-+=有实数解”的逆否命题;④“若A B A =,则A B ⊆”的逆否命题.其中真命题为_____17.设,a b 为正实数,则下列结论:①若221a b -=,则1a b -<;②若111b a-=,则1a b -<;1=,则1a b -<;④若1,1a b ≤≤,则1a b ab -<-.其中正确的有______.18.设直线l :a 2x +4y -a =0(a >0),当此直线在x ,y 轴上的截距之和最小时,直线l 的方程为________.三、解答题19.设矩形ABCD (其中AB BC >)的周长为24,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AB x =,求ADP △的最大面积.20.设桌面上有一个由铁丝围成的封闭曲线,周长是2L .回答下面的问题:(1)当封闭曲线为平行四边形时,用直径为L 的圆形纸片是否能完全覆盖这个平行四边形?请说明理由.(2)求证:当封闭曲线是四边形时,正方形的面积最大. 21.关于x 的方程2(1)430m x x m -+--=. (1)求证:方程总有实根.(2)若方程的解集中只含有正整数,求整数m 的值.22.已知函数2*()2,(,)f x ax x c a c N =++∈满足①(1)5f =;②6(2)11f <<.(1)求函数()f x 的解析表达式;(2)若对任意[]1,2x ∈,都有()21f x mx -≥成立,求实数m 的取值范围.23.在一个限速40km /h 的弯道上,甲.乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m .又知甲,乙两种车型的刹车距离s m 与车速x km /h 之间分别有如下关系:20.10.01s x x =+甲,20.050.005s x x =+乙.问超速行驶谁应负主要责任?24.为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.某大学毕业生按照相关政策投资销售一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月的销售量y (单位:件)与销售单价x (单位:元)之间的关系近似满足一次函数:10500y x =-+.(1)设他每月获得的利润为w (单位:元),写出他每月获得的利润w 与销售单价x 的函数关系. (2)相关部门规定,这种节能灯的销售单价不得高于25元.如果他想要每月获得的利润不少于3000元,那么政府每个月为他承担的总差价的取值范围是多少?25.已知命题p :{}12x x x ∀∈<≤≤,2210x ax -+>恒成立;命题q :x ∃∈R ,()2110x a x +-+<.(1)若p 是真命题,求a 的取值范围; (2)若p 、q 一真一假,求a 的取值范围. 26.关于x 的方程x 2-2x +a =0,求a 为何值时: (1)方程一根大于1,一根小于1;(2)方程一个根在(-1,1)内,另一个根在(2,3)内; (3)方程的两个根都大于零?参考答案1.B 【解析】 【分析】由题意将所给的代数式进行恒等变形,然后结合均值不等式的结论即可求得最小值. 【详解】 由题意可得:()12122333n m m n m n m n m n ⎛⎫+=++=++≥+=+ ⎪⎝⎭当且仅当12m n n m mn +=⎧⎪⎨=⎪⎩时等号成立.据此可得12m n+的最小值是3+故选:B . 【点睛】本题主要考查基本不等式求最值的方法,“1”的灵活巧妙应用等知识,意在考查学生的转化能力和计算求解能力. 2.D 【解析】 【分析】根据基本不等式求最值,即得结果. 【详解】a b +≥=a b ==D .【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属基础题. 3.D 【解析】 【分析】设a x =-,b y =-,由题意结合均值不等式可得ab 的取值范围,然后结合函数1y x x=+的图像即可确定1xy xy+的性质与最值.【详解】设a x =-,b y =-,则0a >,0b >.由1a b +=≥14ab ≤. 由函数1y x x =+的图像得,当104ab <≤时,1ab ab +在14ab =处取得最小值, 11117444xy ab xy ab ∴+=++=≥,当且仅当12x y ==-时取等号成立. 综上可得,1xy xy +有最小值174. 故选:D .【点睛】本题主要考查对勾函数的应用,基本不等式求最值的方法,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力. 4.D 【解析】 【分析】由题意结合均值不等式可比较AB 的大小,然后结合不等式的性质比较BC 的大小即可. 【详解】由于0a >,0b >,故a b +≥,则2a b+≥,即A B ≥,结合02a b +<≤2a b≥+,两边乘以ab 2ab a b ≥+,即B C ≥.据此可得:C B A ≤≤. 故选:D . 【点睛】本题主要考查基本不等式的应用,比较大小的方法等知识,意在考查学生的转化能力和计算求解能力.。

最新人教A版高中数学必修一第二章一元二次函数、方程和不等式质量检测试卷及解析

最新人教A版高中数学必修一第二章一元二次函数、方程和不等式质量检测试卷及解析

章末质量检测(二) 一元二次函数、方程和不等式考试时间:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设M =2a(a -2)+7,N =(a -2)(a -3),则有( ) A .M>N B .M ≥N C .M<N D .M ≤N2.若集合A ={x|x 2+2x>0},B ={x|x 2+2x -3<0},则A ∩B =( ) A .{x|-3<x<1} B .{x|-3<x<-2}C .RD .{x |-3<x <-2或0<x <1}3.若a ,b ,c ∈R 且a >b ,则下列不等式中一定成立的是( ) A .ac >bc B .(a -b )c 2>0C .1a <1bD .-2a <-2b4.函数y =2x +2x -1(x >1)的最小值是( )A .2B .4C .6D .85.若实数2是不等式3x -a -4<0的一个解,则a 可取的最小正整数是( ) A .1 B .2 C .3 D .46.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:m)与时间t (单位:s)之间的关系为y =-4.9t 2+14.7t +17,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米7.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S =p (p -a )(p -b )(p -c ) 求得,其中p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a =3,b +c =5,则此三角形面积的最大值为( )A .32B .3C .7D .118.已知两个正实数x ,y 满足2x +1y=1,并且x +2y ≥m 2-2m 恒成立,则实数m 的取值范围( )A .-2<m <4B .-2≤m ≤4C .m <-2或m >4D .m ≤-2或m ≥4二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列表达式的最小值为2的有( )A .当ab =1时,a +bB .当ab =1时,b a +abC .a 2-2a +3D .a 2+2 +1a 2+210.关于x 的不等式ax 2+bx +c <0的解集为{x |x <-2或x >3},则下列正确的是( ) A .a <0B .关于x 的不等式bx +c >0的解集为{x |x <-6}C .a +b +c >0D .关于x 的不等式cx 2-bx +a >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x >12 11.若a ,b ,c 为实数,下列说法正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a <b <0,则a 2>ab >b 2C .“关于x 的不等式ax 2+bx +c ≥0恒成立”的充要条件是“a >0,b 2-4ac ≤0”D .“a <1”是“关于x 的方程x 2+x +a =0有两个异号的实根”的必要不充分条件 12.设a >1,b >1且ab -(a +b )=1,那么( )A .a +b 有最小值2+22B .a +b 有最大值2+22C .ab 有最大值1+2D .ab 有最小值3+22三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.不等式-x 2+2x +8>0的解集是________.14.若正数x ,y 满足x +y =xy ,则x +4y 的最小值等于________.15.已知a >0,b >0,若不等式2a +1b ≥m2a +b恒成立,则m 的最大值为________.16.已知关于x 的不等式x 2-5ax +2a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)在①一次函数y =ax +b 的图象过A (0,3),B (2,7)两点,②关于x 的不等式1<ax +b ≤3的解集为{x |3<x ≤4},③{1,a }⊆{a 2-2a +2,a -1,0}这三个条件中任选一个,补充在下面的问题中并解答.问题:已知________,求关于x 的不等式ax 2-3x -a >0的解集.18.(本小题满分12分)正数x ,y 满足1x +9y=1.(1)求xy 的最小值; (2)求x +2y 的最小值.19.(本小题满分12分)甲厂以x 千克/时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润100⎝⎛⎭⎫5x +1-3x 元.要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围.20.(本小题满分12分)已知a >0,b >0且ab =1. (1)求a +2b 的最小值;(2)若不等式x 2-2x <14a +9b恒成立,求实数x 的取值范围.21.(本小题满分12分)(1)比较a 2+13与6a +3的大小;(2)解关于x 的不等式x 2-(3m +1)x +2m 2+2m ≤0.22.(本小题满分12分)2020 年初,新冠肺炎疫情袭击全国,在党和国家强有力的抗疫领导下,我国控制住疫情,之后一方面防止境外输入,另一方面复工复产.某厂经调查测算,某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量,公司决定明年对该商品进行全面技术革新和营销策略改革,并将定价提高到x 元.公司拟投入16()x 2-600 万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.1.解析:M -N =(2a 2-4a +7)-(a 2-5a +6)=a 2+a +1=⎝⎛⎭⎫a +122+34>0,∴M >N . 故选A. 答案:A 2.解析:A ={x |x 2+2x >0}={x |x <-2或x >0},B ={x |x 2+2x -3<0}={x |-3<x <1},∴A ∩B ={x |-3<x <-2或0<x <1}.故选D. 答案:D3.解析:∵a ,b ,c ∈R 且a >b ,∴取c =0,可排除A ,B ;取a =1,b =-1可排除C.由不等式的性质知当a >b 时,-2a <-2b ,故D 正确.答案:D4.解析:因为y =2x +2x -1(x >1),=2(x -1)+2x -1+2≥22(x -1)·2x -1+2=6,当且仅当2(x -1)=2x -1即x =2时取等号,此时取得最小值6.故选C.答案:C5.解析:∵实数2是不等式3x -a -4<0的一个解, ∴代入得:6-a -4<0,解得a >2, ∴a 可取的最小整数是3.故选C. 答案:C6.解析:∵y =-4.9t 2+14.7t +17,∴烟花冲出后在爆裂的最佳时刻为t =-14.72×(-4.9)=1.5,此时y =-4.9×1.52+14.7×1.5+17≈28, 故选B. 答案:B7.解析:由题意p =12(3+5)=4S =4(4-a )(4-b )(4-c )=4(4-b )(4-c )=4(bc -4)≤ 4×⎝⎛⎭⎫b +c 22-16=9=3, 当且仅当4-b =4-c ,即b =c 时等号成立﹐ ∴此三角形面积的最大值为3. 故选B. 答案:B8.解析:因为x +2y ≥m 2-2m 恒成立,则m 2-2m ≤(x +2y )min ,x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +x y ≥4+24y x ×x y =4+2×2=8, 当且仅当⎩⎨⎧4y x =x y 2x +1y=1即⎩⎪⎨⎪⎧x =4y =2时等号成立,所以x +2y 的最小值为8,所以m 2-2m ≤8,即()m -4()m +2≤0, 解得:-2≤m ≤4, 故选B. 答案:B9.解析:对选项A ,当a ,b 均为负值时,a +b <0,故最小值不为2;对选项B ,因为ab =1,所以a ,b 同号,所以b a >0,a b >0,b a +a b ≥2b a ·ab=2,当且仅当b a =ab,即a =b =±1时取等号,故最小值为2; 对选项C ,a 2-2a +3=(a -1)2+2,当a =1时,取最小值2;对选项D ,a 2+2+1a 2+2≥2a 2+2·1a 2+2=2,当且仅当a 2+2=1a 2+2,即a 2+2=1时,取等号,但等号显然不成立,故最小值不为2.故选BC.答案:BC10.解析:由已知可得a <0且-2,3是方程ax 2+bx +c =0的两根,A 正确,则由根与系数的关系可得:⎩⎨⎧-2+3=-ba-2×3=ca,解得b =-a ,c =-6a ,则不等式bx +c >0可化为:-ax -6a >0,即x +6>0,所以x >-6,B 错误, a +b +c =a -a -6a =-6a >0,C 正确,不等式cx 2-bx +a >0可化为:-6ax 2+ax +a >0,即6x 2-x -1>0,解得x >12或x <-13,D 正确,故选ACD. 答案:ACD11.解析:A 选项,若a >b ,c =0,则ac 2=bc 2,A 错;B 选项,若a <b <0,则a 2>ab ,ab >b 2,即a 2>ab >b 2,B 正确;C 选项,不等式ax 2+bx +c ≥0不一定是一元二次不等式,所以不能推出a >0;由a >0,b 2-4ac ≤0,可得出不等式ax 2+bx +c ≥0恒成立,所以“关于x 的不等式ax 2+bx +c ≥0恒成立”的充要条件不是“a >0,b 2-4ac ≤0”,C 错;D 选项,若关于x 的方程x 2+x +a =0有两个异号的实根,则⎩⎪⎨⎪⎧a <0Δ=1-4a >0,即a <0,因此“a <1”是“关于x 的方程x 2+x +a =0有两个异号的实根”的必要不充分条件,D 正确.故选BD. 答案:BD12.解析:由ab -(a +b )=1得:ab =1+(a +b )≤⎝⎛⎭⎫a +b 22(当且仅当a =b >1时取等号), 即()a +b 2-4(a +b )-4≥0且a +b >2,解得:a +b ≥2+22, ∴a +b 有最小值2+22,知A 正确;由ab -(a +b )=1得:ab -1=a +b ≥2ab (当且仅当a =b >1时取等号), 即ab -2ab -1≥0且ab >1,解得:ab ≥3+22, ∴ab 有最小值3+22,知D 正确. 故选AD. 答案:AD13.解析:不等式-x 2+2x +8>0等价于x 2-2x -8<0 由于方程x 2-2x -8=0的解为:x =-2或x =4所以-2<x <4.答案:{x |-2<x <4}14.解析:∵x +y =xy ,∴1x +1y =1,∴x +4y =(x +4y )⎝⎛⎭⎫1x +1y =5+x y +4y x ≥5+2x y ·4y x=9.当且仅当x y =4yx时取等号.答案:915.解析:由2a +1b ≥m 2a +b 得m ≤⎝⎛⎭⎫2a +1b ()2a +b 恒成立,而⎝⎛⎭⎫2a +1b ()2a +b =5+2a b +2b a ≥5+22a b ·2ba =5+4=9,故m ≤9,所以m 的最大值为9. 答案:916.解析:由于a >0,故一元二次方程x 2-5ax +2a 2=0的判别式: Δ=25a 2-4·2a 2=17a 2>0,由韦达定理有:⎩⎪⎨⎪⎧x 1+x 2=5ax 1x 2=2a 2,则: x 1+x 2+a x 1x 2=5a +a 2a 2=5a +12a ≥25a ×12a=10,当且仅当5a =12a ,a =1010时等号成立.综上可得:x 1+x 2+ax 1x 2的最小值是10.答案:1017.解析:若选①,由题得⎩⎪⎨⎪⎧ b =3,2a +b =7,解得⎩⎪⎨⎪⎧a =2,b =3.将a =2代入所求不等式整理得:(x -2)(2x +1)>0,解得x >2或x <-12,故原不等式的解集为:⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >2. 若选②,因为不等式1<ax +b ≤3的解集为{x |3<x ≤4},所以⎩⎪⎨⎪⎧ 3a +b =1,4a +b =3,解得⎩⎪⎨⎪⎧a =2,b =-5.将a =2代入不等式整理得(x -2)(2x +1)>0,解得x >2或x <-12,故原不等式的解集为:⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >2.若选③,若1=a 2-2a +2,解得a =1,不符合条件;若1=a -1,解得a =2,则a 2-2a +2=2符合条件.将a =2代入不等式整理得(x -2)(2x +1)>0,解得x >2或x <-12,故原不等式的解集为:⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >2. 18.解析:(1)由1=1x +9y ≥21x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9x y ≥19+22y x ·9x y=19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2. 19.解析:根据题意,要使生产该产品2小时获得的利润不低于3 000元,得2×100×⎝⎛⎭⎫5x +1-3x ≥3 000,整理得5x -14-3x≥0,即5x 2-14x -3≥0, 解得x ≥3或x ≤-15,又1≤x ≤10,可解得3≤x ≤10.20.解析:(1)∵a >0,b >0且ab =1, ∴a +2b ≥22ab =22,当且仅当a =2b =2时,等号成立,故a +2b 的最小值为2 2. (2)∵a >0,b >0且ab =1, ∴14a +9b ≥294ab =3,当且仅当14a =9b ,且ab =1,即a =16,b =6时,取等号, 即14a +9b的最小值为3, ∴x 2-2x <3,即x 2-2x -3<0,解得-1<x <3, 即实数x 的取值范围是{}x |-1<x <3.21.解析:(1)a 2+13-()6a +3=a 2-6a +10=()a -32+1, 因为()a -32≥0,所以()a -32+1≥1>0, 即a 2+13>6a +3.(2)x 2-()3m +1x +2m 2+2m =()x -2m ()x -m -1.当2m <m +1,即m <1时,解原不等式,可得2m ≤x ≤m +1; 当2m =m +1,即m =1时,解原不等式,可得x =2;当2m >m +1,即m >1时,解原不等式,可得m +1≤x ≤2m . 综上所述,当m <1时,原不等式的解集为{}x |2m ≤x ≤m +1; 当m =1时,原不等式的解集为{2};当m >1时,原不等式的解集为{}x |m +1≤x ≤2m . 22.解析:(1)设每件定价为t 元,依题意得⎝⎛⎭⎫8-t -251×0.2t ≥25×8,整理得t 2-65t +1000≤0,解得25≤t ≤40所以要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意知当x >25时,不等式ax ≥25×8+50+16()x 2-600+15x 成立等价于x >25时,a ≥150x +16x +15有解,由于150x +16x ≥2150x ×16x =10,当且仅当150x =x6,即x =30时等号成立,所以a ≥10.2当该商品改革后销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.。

第2章一元二次函数、方程和不等式章末检测【新教材】人教A版(2019)高中数学必修第一册限时作业含答

第2章一元二次函数、方程和不等式章末检测【新教材】人教A版(2019)高中数学必修第一册限时作业含答

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二章 一元二次函数、方程和不等式章末检测时间:120分钟 分值:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a R Î,则1a >是11a<的( )A . 充分不必要条件 B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3.设函数f x ax bx c =++(,,a b c R Î),若a c =,则函数f x 的图象不可能是( )+A . 3B . 3+C . 3D .A .A ≥B B .A >BC .A <BD .A ≤B7.已知a >0,b >0,11a b a b +=+,则12a b +的最小值为( )A .4B .C .8D .169.若a ,b 都是正数,则411b a a b æöæö++ç÷ç÷èøèø的最小值为( )A .7B .8C .9D .1010.已知[]1,1a Î-时不等式()24420x a x a +-+->恒成立,则x 的取值范围为( )A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)11.已知 10a b <<,且1111M a b =+++,11a b N a b=+++,则M 、N 的大小关系是A . M >N B . M <N ( )C . M =ND . 不能确定12.关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且2115x x -=,则a = ( )A . 52B . 72C . 154D . 152二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是________.14.若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为________.15.正数a ,b 满足191a b+=,若不等式2418a b x x m +³-++-对任意实数x 恒成立,则实数m 的取值范围是________.16.某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为________千米时,运费与仓储费之和最小,最小为________万元.(2)求x +2y 的最小值.19.(本小题12分)若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}.(1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .20.(本小题12分)设(),,0,a b c Î+¥,且1abc =,证明:a b c +£++21.(本小题12分)解关于x 的不等式()222ax x ax x R -³-Î.22.(本小题12分)如图,建立平面直角坐标系xoy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程()()2211020y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.第二章 一元二次函数、方程和不等式章末检测参考答案时间:120分钟 分值:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a R Î,则1a >是11a<的( )A . 充分不必要条件 B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件解析:若a >1,则1a <1成立;反之,若1a <1,则a >1或a <0.即a >1⇒1a <1,而1a<1⇒ a >1,故选A .3.设函数(),若,则函数的图象不可能是( )解析:由A ,B ,C ,D 四个选项知,图象与x 轴均有交点,记两个交点的横坐标分别为x 1,x 2,若只有一个交点,则x 1=x 2,由于a =c ,所以x 1x 2=c a=1,比较四个选项,可知选项D 的x 1<-1,x 2<-1,所以D 不满足.+A . 3B . 3+C . 3D .解析:由x >0,y >0,x +2y =2xy ,得12y +1x =1,则x +4y =(x +4y )·(12y +1x )=x 2y +1+2+4y x ≥3+3+,当且仅当x 2y =4y x 时等号成立.7.已知a >0,b >0,11a b a b +=+,则12a b +的最小值为( )A .4B .C .8D .16解析:由a >0,b >0,a +b =1a +1b =a +b ab,得ab =1,则1a +2b ≥2.当且仅当1a =2b ,即a b9.若a ,b 都是正数,则411b a a b æöæö++ç÷ç÷èøèø的最小值为( )A .7B .8C .9D .10解析:由a ,b 都是正数,可得(1+b a )(1+4a b )=5+b a +4a b ≥5+9,当且仅当b =2a >0时取等号.10. 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( )A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)解析:把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立,所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组{x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.11.已知 10a b <<,且1111M a b =+++,11a b N a b=+++,则M 、N 的大小关系是A . M >N B . M <N ( )C . M =ND . 不能确定解析:∵0<a <1b,∴1+a >0,1+b >0,1-ab >0,∴M -N =1-a 1+a +1-b 1+b =()()()2111ab a b -++>0.12.关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且2115x x -=,则a = ( )A . 52B . 72C . 154D . 152解析:由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2,故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52.15.正数a ,b 满足191a b +=,若不等式2418a b x x m +³-++-对任意实数x 恒成立,则实数m 的取值范围是________.解析:因为a >0,b >0,1a +9b =1,所以a +b =(a +b )(1a +9b )=10+b a +9a b ≥10+16,由题意,得16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立,而x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6.16.某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为________千米时,运费与仓储费之和最小,最小为________万元.解析:设工厂和仓库之间的距离为x 千米,运费为y 1万元,仓储费为y 2万元,则y 1=k 1x (k 1≠0),y 2=k 2x(k 2≠0),∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,∴k 1=5,k 2=20,∴运费与仓储费之和为(5x +20x )万元,∵5x +20x ≥220,当且仅当5x =20x ,即x =2时,运费与仓储费之和最小,为20万元.即为3x 2+bx +3≥0,若此不等式解集为R ,则b 2-4×3×3≤0,所以-6≤b ≤6.20.(本小题12分)设(),,0,a b c Î+¥,且1abc =,证明:a b c +£++a +b +c =(a +b )+(b +c )+(a +c )2≥21.(本小题12分)解关于x 的不等式()222ax x ax x R -³-Î.解析:原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为(x -2a )(x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为(x -2a )(x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a=-1,即a =-2时,解得x =-1满足题意;当2a <-1,即-2<a <0,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为{x |x ≥2a,或x ≤-1};当-2<a <0时,不等式的解集为{x |2a ≤x ≤-1};当a =-2时,不等式的解集为{-1};当a <-2时,不等式的解集为{x |-1≤x ≤2a }.22.(本小题12分)如图,建立平面直角坐标系xoy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程()()2211020y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解析:(1)在y =kx -120(1+k 2)x 2(k>0)中,令y =0,得kx -120(1+k 2)x 2=0.由实际意义和题设条件知,x>0,k>0.∴x=20k1+k2=201k+k≤202=10,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在k>0,使ka-120(1+k2)a2=3.2成立,即关于k的方程a2k2-20ak+a2+64=0有正根.由Δ=(-20a)2-4a2(a2+64)≥0得a≤6.此时,k不考虑另一根),∴当a不超过6千米时,炮弹可以击中目标.。

【高中数学】2020-2021学年人教A版必修一二次函数、方程和不等式(能力测评卷)

【高中数学】2020-2021学年人教A版必修一二次函数、方程和不等式(能力测评卷)

章末检测(一) 集合与常用逻辑用语 ◎◎◎◎◎◎滚动测评卷◎◎◎◎◎◎(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,集合A ={x |x >0},B ={x |x >1},则A ∩(∁U B )=() A .{x |0≤x <1} B .{x |0<x ≤1} C .{x |x <0} D .{x |x >1}【答案】B【解析】∵全集U =R ,A ={x |x >0},B ={x |x >1},∴∁U B ={x |x ≤1},∴A ∩(∁U B )={x |0<x ≤1},故选B.2.四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 【答案】A【解析】若四边形ABCD 为菱形,则AC ⊥BD ;反之,若AC ⊥BD ,则四边形ABCD 不一定是菱形.故“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件. 3.下列四个命题中的真命题为() A .∃x ∈Z ,1<4x <3 B .∃x ∈Z ,5x +1=0 C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0 【答案】D【解析】选项A 中,14<x <34且x ∈Z ,不成立;选项B 中,x =-15,与x ∈Z 矛盾;选项C 中,x =±1,与∀x ∈R 矛盾;选项D 中,由Δ=1-8=-7<0可知D 正确. 4.设m +n >0,则关于x 的不等式(m -x )·(n +x )>0的解集是() A .{x |x <-n 或x >m } B .{x |-n <x <m } C .{x |x <-m 或x >n } D .{x |-m <x <n } 【答案】B【解析】方程(m -x )(n +x )=0的两个根为m ,-n .因为m +n >0,所以m >-n ,结合二次函数y =(m -x )·(n +x )的图象,得原不等式的解集是{x |-n <x <m }.故选B. 5.已知2a +1<0,则关于x 的不等式x 2-4ax -5a 2>0的解集是() A .{x |x <5a 或x >-a } B .{x |x >5a 或x <-a } C .{x |-a <x <5a } D .{x |5a <x <-a } 【答案】A【解析】方程x 2-4ax -5a 2=0的两根为-a ,5a .因为2a +1<0,所以a <-12,所以-a >5a .结合二次函数y =x 2-4ax -5a 2的图象,得原不等式的解集为{x |x <5a 或x >-a },故选A.6.若-4<x <1,则22222-+-x x x ()A .有最小值1B .有最大值1C .有最小值-1D .有最大值-1【答案】D【解析】]11)1[(2122222-+-=-+-x x x x x 又∵-4<x <1,∴x -1<0.∴-(x -1)>0.∴1])1(1)1([21-≤--+---x x ≤-1.当且仅当x -1=11-x ,即x =0时等号成立. 7.关于x 的方程11-=-x xx x 的解集为() A .{0} B .{x |x ≤0或x >1} C .{x |0≤x <1} D .{x |x ≠1}【答案】B【解析】由题意知,1-x x≥0,所以x ≤0或x >1, 所以方程11-=-x x x x 的解集为{x |x ≤0或x >1}. 8.设p :0<x <1,q :(x ﹣a )[x ﹣(a +2)]≤0,若p 是q 的充分而不必要条件,则实数a 的取值范围是( )A .[﹣1,0]B .(﹣1,0)C .(﹣∞,0]∪[1+∞,)D .(﹣∞,﹣1)∪(0+∞,) 【答案】A【解析】命题q ::(x ﹣a )[x ﹣(a +2)]≤0,即a ≤x ≤2+a .由题意得,命题p 成立时,命题q 一定成立,但当命题q 成立时,命题p 不一定成立. ∴a ≤0,且2+a ≥1,解得﹣1≤a ≤0,故选:A .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)1.(2019·江苏姑苏�高二期中)已知b 克糖水中有a 克糖()0b a >>,若再添加m 克糖()0m >,则糖水变得更甜.对于0b a >>,0m >,下列不等式正确的有:( )A .a a mb b m+<+ B .a a mb b m ->- C .a a bmb b am+<+ D .a a bmb b am-<- 【答案】AC【解析】由题意可知,可以得到不等式,若0b a >>,0m >,则有a a m b b m+<+,因此选项A 是正确的;由该不等式反应的性质可得:a a am a bmb b am b am++<<++,因此选项C 是正确的; 对于选项B :假设a a mb b m->-成立,例如:当3,1,4b a m ===时,显然1143334->=-不成立,故选项B 不是正确的; 对于选项D :假设a a bmb b am-<-成立,例如:当3,1,1b a m ===时,显然113113311-⨯<=--⨯不成立,故选项D 不是正确的.故选:AC2.(2020·山东新泰�泰安一中高二期中)如果0a b <<,那么下列不等式正确的是() A .11a b< B .22ac bc <C .11a b b a+<+ D .22a ab b >>【答案】CD 【解析】0,0,0,0a b b a a b ab <<∴->-<>A.110b aa b ab--=>,故错误; B. ()222ac bc c a b -=-,当0c时,220ac bc -=,故错误;C. ()11110a b a b a b a b b a ab ab -⎛⎫⎛⎫+-+=-+=-+< ⎪ ⎪⎝⎭⎝⎭,故正确; D. 2()0a ab a a b -=->,2()0=->-b a b ab b ,故正确. 故选CD.11.已知不等式ax 2+bx +c >0的解集为)2,21(-,则下列结论正确的是() A .a >0 B .b >0 C .c >0 D .a +b +c >0【答案】BCD【解析】因为不等式ax 2+bx +c >0的解集为)2,21(,故相应的二次函数f (x )=ax 2+bx +c 的图象开口向下,所以a <0,故A 错误;易知2和-12是方程ax 2+bx +c =0的两个根,则有c a =-1<0,-b a =32>0,又a <0,故b >0,c >0,故B 、C 正确;由二次函数的图象可知f (1)=a +b +c >0,故D 正确.故选B 、C 、D. 12.已知关于x 的不等式a ≤43x 2-3x +4≤b ,下列结论正确的是() A .当a <b <1时,不等式a ≤43x 2-3x +4≤b 的解集为∅ B .当a =1,b =4时,不等式a ≤43x 2-3x +4≤b 的解集为{x |0≤x ≤4} C .当a =2时,不等式a ≤43x 2-3x +4≤b 的解集可以为{x |c ≤x ≤d }的形式 D .不等式a ≤43x 2-3x +4≤b 的解集恰好为{x |a ≤x ≤b },那么b =34 【答案】AB 【解析】由43x 2-3x +4≤b 得3x 2-12x +16-4b ≤0,又b <1,所以Δ=48(b -1)<0.从而不等式a ≤43x 2-3x +4≤b 的解集为∅,故A 正确;当a =1时,不等式a ≤43x 2-3x +4就是x 2-4x +4≥0,解集为R ,当b =4时,不等式43x 2-3x +4≤b 就是x 2-4x ≤0,解集为{x |0≤x ≤4},故B 正确;在同一平面直角坐标系中作出函数y =43x 2-3x +4=43(x -2)2+1的图象及直线y =a 和y =b ,如图所示.由图知,当a =2时,不等式a ≤43x 2-3x +4≤b 的解集为{x |x A ≤x ≤x C }∪{x |x D ≤x ≤x B }的形式,故C 错误;由a ≤43x 2-3x +4≤b 的解集为{x |a ≤x ≤b }, 知a ≤y min ,即a ≤1,因此当x =a ,x =b 时函数值都是b .由当x =b 时函数值是b ,得43b 2-3b +4=b ,解得b =34或b =4.当b =34时,由43a 2-3a +4=b =34,解得a =34或a =38,不满足a ≤1,不符合题意,故D 错误.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.不等式-3x 2+5x -4>0的解集为________. 【答案】∅【解析】原不等式变形为3x 2-5x +4<0. 因为Δ=(-5)2-4×3×4=-23<0,所以由函数y =3x 2-5x +4的图象可知,3x 2-5x +4<0的解集为∅.14.若不等式x 2-4x +m <0的解集为空集,则不等式x 2-(m +3)x +3m <0的解集是________. 【答案】{x |3<x <m }【解析】由题意,知方程x 2-4x +m =0的判别式Δ=(-4)2-4m ≤0,解得m ≥4,又x 2-(m +3)x +3m <0等价于(x -3)(x -m )<0,所以3<x <m . 15.若∃x >0,使得x1+x -a ≤0,则实数a 的取值范围是________. 【答案】a ≥2 【解析】∃x >0,使得x 1+x -a ≤0,等价于a 大于等于x1+x 的最小值, ∵x +x1≥2 xx 1⋅=2(当且仅当x =1时等号成立), 故a ≥2.16.(一题两空)某公司有20名技术人员,计划开发A ,B 两类共50件电子器件,每类每件所需人员和预计产值如下:万元. 【答案】20330【解析】设总产值为y 万元,应开发A 类电子器件x 件,则应开发B 类电子器件(50-x )件. 根据题意,得2x +350x -≤20,解得x ≤20. 由题意,得y =7.5x +6×(50-x )=300+1.5x ≤330,当且仅当x =20时,y 取最大值330.所以欲使总产值最高,A 类电子器件应开发20件,最高产值为330万元.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围.【解析】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}. (2)∵A ∩B =A ,∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4;若A ≠∅,由A ⊆B ,得⎪⎩⎪⎨⎧≤+-≥-+≤-43221321a a a a ,解得-1≤a ≤21综上,a 的取值范围是}2114{≤≤--<a a a 或.18.(本小题满分12分))若正数x ,y 满足x +3y =5xy ,求: (1)3x +4y 的最小值; (2)求xy 的最小值.【解析】(1)正数x ,y 满足x +3y =5xy ,∴1y+3x=5.∴3x +4y =15(3x +1y )(3x +4y )=15(13+12yx +3x y ≥15(13+3×2√4y x ⋅xy )=5,当且仅当x =1,y =12时取等号.∴3x +4y 的最小值为5.(2)∵正数x ,y 满足x +3y =5xy ,∴5xy ≥2√3xy , 解得:xy ≥1225,当且仅当x =3y =65时取等号. ∴xy 的最小值为1225.19.(本小题满分12分)解关于x 的不等式56x 2�ax �a 2<0. 【解析】原不等式可化为()()780x a x a +-<, 即078a a x x ⎛⎫⎛⎫+-< ⎪⎪⎝⎭⎝⎭, ①当78a a -<即0a >时,78a a x -<<; ②当78a a-=时,即0a =时,原不等式的解集为∅;③当78a a ->即0a <时,87a a x <<-,综上知:当0a >时,原不等式的解集为78a a x x ⎧⎫-<<⎨⎬⎩⎭;当0a =时,原不等式的解集为∅;当0a <时,原不等式的解集为87a a xx ⎧⎫<<-⎨⎬⎩⎭.20.(本小题满分12分)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c 【解析】(1)2222()2220a b c a b c ab ac bc ++=+++++=, ()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .21.(本小题满分12分)已知命题:“∃x ∈{x |﹣1<x <1},使等式x 2﹣x ﹣m =0成立”是真命题, (1)求实数m 的取值集合M ;(2)设不等式(x ﹣a )(x +a ﹣2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围. 【解析】(1)由x 2﹣x ﹣m =0可得m =x 2﹣x =(x −12)2−14 ∵﹣1<x <1 ∴−14≤m <2 M ={m |−14≤m <2}(2)若x ∈N 是x ∈M 的必要条件,则M ⊆N①当a >2﹣a 即a >1时,N ={x |2﹣a <x <a },则{2−a <−14a ≥2a >1即a >94②当a <2﹣a 即a <1时,N ={x |a <x <2﹣a },则{a <1a <−142−a ≥2即a <−14③当a =2﹣a 即a =1时,N =φ,此时不满足条件 综上可得a >94或a <−1422.(本小题满分12分)某个体户计划经销A 、B 两种商品,据调查统计,当投资额为x (x ≥0)万元时,经销A 、B 商品中所获得的收益分别为f (x )万元与g (x )万元.其中f (x )=x +1;g (x )={10x+1x+1(0≤x ≤3)−x 2+9x −12(3<x ≤5).如果该个体户准备投入5万元经营这两种商品,请你帮他制定一个资金投入方案,使他能获得最大收益,并求出其最大收益.【解析】设投入B 商品的资金为x 万元(0≤x ≤5),则投入A 商品的资金为5﹣x 万元,设收入为S (x )万元,①当0≤x ≤3时,f (5﹣x )=6﹣x ,g (x )=10x+1x+1,则S (x )=6﹣x +10x+1x+1=17﹣[(x +1)+9x+1]≤17﹣2√(x +1)⋅9x+1=17﹣6=11,当且仅当x +1=9x+1,解得x =2时,取等号.②当3<x ≤5时,f (5﹣x )=6﹣x ,g (x )=﹣x 2+9x ﹣12, 则S (x )=6﹣x ﹣x 2+9x ﹣12=﹣(x ﹣4)2+10≤10,此时x =4. ∵10<11,∴最大收益为11万元,答:投入A 商品的资金为3万元,投入B 商品的资金为2万元,此时收益最大,为11万元.。

高中数学(人教a版)必修一:第1-3章-全册综合质量评估试卷(含答案) (2)

高中数学(人教a版)必修一:第1-3章-全册综合质量评估试卷(含答案) (2)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

综合质量评估第一至第三章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6},A={1,2,3},B={2,3,4},则ð(A∪UB)=( )A.{2,3}B.{5,6}C.{1,4,5,6}D.{1,2,3,4}2.下列函数中,在(0,1)上为单调递减的偶函数的是( )A.y=B.y=x4C.y=x-2D.y=-3.由下表给出函数y=f(x),则f(f(1))等于( )A.1B.2C.4D.54.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则a的取值范围是( )A.a≤2或a≥3B.2≤a≤3C.a≤2D.a≥35.(2012·安徽高考)(log29)·(log34)=( )A. B. C.2 D.46.(2012·天津高考)已知a=21.2,b=()-0.8,c=2log52,则a,b,c的大小关系为( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a7.判断下列各组中的两个函数是同一函数的为( )(1)f(x)=,g(t)=t-3(t≠-3).(2)f(x)=,g(x)=.(3)f(x)=x,g(x)=.(4)f(x)=x,g(x)=.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4)8.函数f(x)=1+log2x与g(x)=2-x+1在同一坐标系下的图象大致是( )9.若f(x)=,则f(x)的定义域为( )A.(-,0)B.(-,0]C.(,+∞)D.(0,+∞)10.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=ln(x+2)B.y=-C.y=()xD.y=x+11.给出下列四个等式:f(x+y)=f(x)+f(y),f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),f(xy)=f(x)f(y),下列函数中不满足以上四个等式中的任何一个等式的是( )A.f(x)=3xB.f(x)=x+x-1C.f(x)=log2xD.f(x)=kx(k≠0)12.某市房价(均价)经过6年时间从1200元/m2增加到了4800元/m2,则这6年间平均每年的增长率是( )A.-1B.+1C.50%D.600元二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若函数f(x+1)=x2-1,则f(2)= .14.计算(的结果是.15.已知函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为.16.给出下列四个判断:①若f(x)=x2-2ax在[1,+∞)上是增函数,则a=1;②函数f(x)=2x-x2只有两个零点;③函数y=2|x|的最小值是1;④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.其中正确的序号是.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)设集合A={x|0<x-a<3},B={x|x≤0或x≥3},分别求满足下列条件的实数a的取值范围:(1)A∩B= .(2)A∪B=B.18.(12分)(2012·冀州高一检测)计算下列各式的值:(1)(2-(-9.6)0-(+()-2.(2)log 3+lg 25+lg 4+.19.(12分)已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.(1)求f(x)的解析式.(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围. 20.(12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?21.(12分)定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为f(x)=-22x+a2x(a∈R).(1)求f(x)在[-1,0]上的解析式.(2)求f(x)在[0,1]上的最大值h(a).22.(12分)(能力挑战题)设f(x)=ax2+x-a,g(x)=2ax+5-3a.(1)若f(x)在[0,1]上的最大值为,求a的值.(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0)成立,求a的取值范围.答案解析1.【解析】选B.因为A∪B={1,2,3,4},所以ð(A∪B)={5,6}.U2. 【解析】选C.y=x-2为偶函数,且在(0,1)上单调递减.3.【解析】选B.f(f(1))=f(4)=2.4.【解析】选A.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则其对称轴x=a≥3或x=a≤2.【误区警示】本题易出现选C或选D的错误,原因为没有想到在区间[2,3]上既可以单调递增也可以单调递减.5.【解题指南】先利用换底公式将各个对数化为同底的对数,再根据对数的运算性质求值.【解析】选D.log29×log34=×=×=4.6.【解析】选 A.b=()-0.8=20.8<a=21.2,c=2log52=log54<log55=1<b=20.8,所以c<b<a.【变式备选】已知三个数a=60.7,b=0.70.8,c=0.80.7,则三个数的大小关系是( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c【解析】选A.a=60.7>1,b=0.70.8<1,c=0.80.7<1,又0.70.8<0.70.7<0.80.7,所以a>c>b.7.【解析】选A.f(x)=与g(t)=t-3(t≠-3)定义域、值域及对应关系均相同,是同一函数;g(x)==x与f(x)=x定义域,值域及对应关系均相同,是同一函数;故(1)(4)正确.8.【解析】选C.f(x)=1+log2x过点(1,1),g(x)=2-x+1也过点(1,1).9.【解析】选A.要使函数f(x)=的解析式有意义,自变量x需满足:lo(2x+1)>0,2x+1>0,即0<2x+1<1,解得-<x<0,故选A.【变式备选】函数f(x)=的值域是( )A.RB.[1,+∞)C.[-8,1]D.[-9,1]【解析】选C.0≤x≤3时,2x-x2∈[-3,1];-2≤x<0时,x2+6x∈[-8,0),故函数值域为[-8,1].10.【解题指南】本小题考查函数的图象及性质,要逐一进行判断.对于复合函数的单调性的判断要根据内外函数单调性“同则增,异则减”的原则进行判断.【解析】选A.对选项A,因为内外函数在(0,+∞)上都是增函数,根据复合函数的单调性,此函数在(0,+∞)上是增函数,故正确;对选项B,内函数在(0,+∞)上是增函数,外函数在(0,+∞)上是减函数,根据复合函数的单调性,此函数在(0,+∞)上是减函数,故不正确;对选项C,指数函数y=a x(0<a<1)在R上是减函数,故不正确;对选项D,函数y=x+在(0,1)上是减函数,在[1,+∞)上是增函数,故不正确.11.【解析】选B.f(x)=3x满足f(x+y)=f(x)f(y);f(x)=log2x满足f(xy)= f(x)+f(y);f(x)=kx(k≠0)满足f(x+y)=f(x)+f(y);故选B.12.【解析】选A.设这6年间平均每年的增长率是x,则1200(1+x)6=4800,解得1+x==,即x=-1.13.【解析】f(2)=f(1+1)=12-1=0.答案:014.【解析】(=(=(=2.答案:215.【解析】∵f(x)在[0,1]上为单调函数,∴最值在区间的两个端点处取得,∴f(0)+f(1)=a,即a0+log a(0+1)+a1+log a(1+1)=a,解得a=.答案:16.【解析】若f(x)=x2-2ax在[1,+∞)上是增函数,其对称轴x=a≤1,故①不正确;函数f(x)=2x-x2有三个零点,所以②不正确;③函数y=2|x|的最小值是1正确;④在同一坐标系中,函数y=2x与y=2-x的图象关于y 轴对称正确.答案:③④17.【解析】∵A={x|0<x-a<3},∴A={x|a<x<a+3}.(1)当A∩B=∅时,有解得a=0.(2)当A∪B=B时,有A⊆B,所以a≥3或a+3≤0,解得a≥3或a≤-3.18.【解析】(1)原式=(-1-(+()-2=(-1-()2+()2=-1=.(2)原式=log3+lg(25×4)+2=log3+lg 102+2=-+2+2=.19.【解析】(1)设f(x)=ax2+bx+c(a≠0),由题意可知:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x;c=1.整理得:2ax+a+b=2x,∴∴f(x)=x2-x+1.(2)当x∈[-1,1]时,f(x)>2x+m恒成立,即x2-3x+1>m恒成立; 令g(x)=x2-3x+1=(x-)2-,x∈[-1,1],则g(x)min=g(1)=-1,∴m<-1.20.【解析】(1)设f(x)=k 1x,g(x)=k2,所以f(1)==k1,g(1)==k2,即f(x)=x(x≥0),g(x)=(x≥0).(2)设投资债券类产品x万元,则股票类投资为(20-x)万元. 依题意得:y=f(x)+g(20-x)=+(0≤x≤20),令t=(0≤t≤2),则y=+t=-(t-2)2+3,所以当t=2,即x=16万元时,收益最大,y max=3万元.21.【解析】(1)设x∈[-1,0],则-x∈[0,1],f(-x)=-2-2x+a2-x,又∵函数f(x)为偶函数,∴f(x)=f(-x),∴f(x)=-2-2x+a2-x,x∈[-1,0].(2)∵f(x)=-22x+a2x,x∈[0,1],令t=2x,t∈[1,2].∴g(t)=at-t2=-(t-)2+.当≤1,即a≤2时,h(a)=g(1)=a-1;当1<<2,即2<a<4时,h(a)=g()=;当≥2,即a≥4时,h(a)=g(2)=2a-4.综上所述,h(a)=22.【解析】(1)①当a=0时,不合题意.②当a>0时,对称轴x=-<0,所以x=1时取得最大值1,不合题意.③当a≤-时,0<-≤1,所以x=-时取得最大值-a-=.得:a=-1或a=-(舍去).④当-<a<0时,->1,所以x=1时取得最大值1,不合题意.综上所述,a=-1.(2)依题意a>0时,f(x)∈[-a,1],g(x)∈[5-3a,5-a],所以解得,a∈[,4],a=0时不符题意舍去.a<0时,g(x)∈[5-a,5-3a],f(x)开口向下,最小值为f(0)或f(1),而f(0)=-a<5-a,f(1)=1<5-a不符题意舍去,所以a∈[,4].关闭Word文档返回原板块。

高中数学 第二章 基本初等函数(Ⅰ)2.2.1.2 对数的运算课后提升训练 新人教A版必修1

高中数学 第二章 基本初等函数(Ⅰ)2.2.1.2 对数的运算课后提升训练 新人教A版必修1

对数的运算(30分钟60分)一、选择题(每小题5分,共40分)1.(2017·大同高一检测)2log32-log3+log38的值为( )A. B.2 C.3 D.【解析】选B.原式=log322-log332+log39+log38=log34+log38- log332+2=log332-log332+2=2. 【补偿训练】(2017·杭州高一检测)2log510+log50.25= ( )A.0B.1C.2D.4【解析】选C.2log510+log50.25=log5100+log50.25=log525=2.2.下列各式中正确的个数是( )①log a(b2-c2)=2log a b-2log a c;②(log a3)2=2log a3;③=lg5.A.0B.1C.2D.3【解析】选A.由对数的运算性质和换底公式知,它们均不正确.3.(2017·黑龙江高一检测)已知lg2=a,lg3=b,则log36等于( )A. B. C. D.【解析】选B.log36===.4.若log5·log36·log6x=2,则x等于( )A.9B.C.25D.【解题指南】利用对数的换底公式将原式中的对数转化为常用对数,再计算.【解析】选D.由换底公式,得··=2,所以-=2.所以lgx=-2lg5=lg.所以x=.5.声强级L I(单位:dB)由公式L I=10lg给出,其中I为声音强度(单位:W/m2).交响音乐会坐在铜管乐前的声音强度约为 5.01×10-2W/m2,则其声强级为(其中lg5.01≈0.7) ( )A.99dBB.100dBC.107dBD.109dB【解析】选 C.当I=5.01×10-2时,其声强级为L I=10lg=10lg(5.01×1010)=10(lg5.01+10)≈107(dB).6.(2017·大连高一检测)若lna,lnb是方程3x2-6x+2=0的两个根,则的值等于( )A. B. C.4 D.【解析】选 A.由根与系数的关系,得lna+lnb=2,lna·lnb=,所以=(lna-lnb)2=(lna+lnb)2-4lna·lnb=22-4×=.7.(2017·北京高一检测)函数f(x)=log a x(a>0且a≠1),若f(x1x2…x n)=16,则f()+f()+…+f()的值等于( )A.2log216B.32C.16D.8【解析】选B.f(x)=log a x,f(x1x2…x n)=16,所以log a(x1x2…x n)=16,所以f()+f()+…+f()=log a+log a+…+log a=2(log a x1+log a x2+…+log a x n)=2log a(x1x2…x n)=32.8.(2017·武汉高一检测)已知2m=5n=10,则+= ( )A.0B.1C.2D.3【解析】选B.因为2m=5n=10,所以m=log210,n=log510,即=lg2,=lg5,故+=lg2+lg5=1.二、填空题(每小题5分,共10分)9.已知f(x)=lgx,若f(ab)=1,则f(a2)+f(b2)=________.【解析】因为f(ab)=1,所以lg(ab)=1,即lga+lgb=1,所以f(a2)+f(b2)=lga2+lgb2=2(lga+lgb)=2.答案:210.若lg3=a,lg5=b,那么lg=________.【解析】lg=lg4.5=lg=lg=(lg5+lg9-1)=(2a+b-1). 答案:三、解答题11.(10分)(2017·兰州高一检测)计算下列各式的值:(1)log535+2lo-log5-log514.(2)[(1-log63)2+log62·log618]÷log64.【解析】(1)原式=log535+log550-log514+2lo=log 5+lo2=log553-1=2.(2)原式=[(log66-log63)2+log62·log6(2×32)]÷log64=÷log622=[(log62)2+(log62)2+2log62·log63]÷2log62=log62+log63=log6(2×3)=1.【能力挑战题】已知2lg(x+y)=lg2x+lg2y,则log2=________.【解析】因为2lg(x+y)=lg2x+lg2y,所以lg(x+y)2=lg(4xy),所以(x+y)2=4xy,所以(x-y)2=0,所以x=y,所以=1,所以log2=log21=0. 答案:0。

高中数学 周练卷1测评(含解析)新人教A版必修1-新人教A版高一必修1数学试题

高中数学 周练卷1测评(含解析)新人教A版必修1-新人教A版高一必修1数学试题

周练卷(一)一、选择题(每小题5分,共40分)1.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩(∁U B)=(B)A.{3}B.{2,5}C.{1,4,6} D.{2,3,5}解析:∵∁U B={2,5},A={2,3,5},∴A∩(∁U B)={2,5}.故选B.2.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是(C)A.1 B.3C.5 D.9解析:因为x∈A,y∈A,x-y的值分别为0,-1,-2,1,0,-1,2,1,0,由集合中元素互异性知,B={x-y|x∈A,y∈A}={-2,-1,0,1,2}.故选C.3.已知下面的关系式:①a⊆{a};②0∈{0};③0∈∅;④{1}∈{1,2}.其中正确的个数是(A)A.1 B.2C.3 D.4解析:根据元素与集合、集合与集合的关系可知,①错误,②正确,③错误,④错误.故选A.4.集合M={(x,y)|(x+3)2+(y-1)2=0},N={-3,1},则M与N的关系是(D)A.M=N B.M⊆NC.M⊇N D.M,N无公共元素解析:因为M={(x,y)|(x+3)2+(y-1)2=0}={(-3,1)}是点集,而N={-3,1}是数集,所以两个集合没有公共元素,故选D.5.已知:全集U={x|-3<x≤4},A={x|-3<x≤-1},B={x|-1<x≤4},则不正确的选项是(C)A.A∪B=U B.A∩B=∅C.A∪(∁U B)=U D.(∁U A)∩(∁U B)=∅解析:∁U B={x|-3<x≤-1},A∪(∁U B)={x|-3<x≤-1},故C 不正确,故选C.6.有关集合的性质:(1)∁U(A∩B)=(∁U A)∪(∁U B);(2)∁U(A∪B)=(∁U A)∩(∁U B);(3)A∪(∁U A)=U;(4)A∩(∁U A)=∅.其中正确的个数有(D)A.1个B.2个C.3个D.4个解析:(1)∁U (A ∩B )=(∁U A )∪(∁U B ),正确;(2)∁U (A ∪B )=(∁U A )∩(∁U B ),正确;(3)A ∪(∁U A )=U ,正确;(4)A ∩(∁U A )=∅,正确,则正确的个数有4个,故选D.7.已知全集U =R ,集合A ={x |x <3或x ≥7},B ={x |x <a }.若(∁U A )∩B ≠∅,则实数a 的取值X 围为( A )A .{a |a >3}B .{a |a ≥3}C .{a |a ≥7}D .{a |a >7}解析:因为A ={x |x <3或x ≥7},所以∁U A ={x |3≤x <7},又(∁U A )∩B ≠∅,则a >3.故选A.8.对于数集M ,N ,定义M +N ={x |x =a +b ,a ∈M ,b ∈N },M ÷N ={x |x =a b ,a ∈M ,b ∈N }.若集合P ={1,2},则集合(P +P )÷P的所有元素之和为( D )A.272B.152C.212D.232解析:由题意得P +P ={2,3,4},(P +P )÷P ={2,3,4}÷{1,2}={1,32,2,3,4},所以集合(P +P )÷P 的所有元素之和为1+32+2+3+4=232.故选D.二、填空题(每小题5分,共15分)9.已知a 2∈{a,1,0},则a 的值为-1.解析:由元素的确定性可知a2=a或a2=1或a2=0.若a2=a,求得a=0或a=1,此时集合为{0,1,0}或{1,1,0},不符合集合中元素的互异性,舍去;若a2=1,求得a=-1或a=1,a=1时,集合为{1,1,0},不符合集合中元素的互异性,舍去,所以a=-1;若a2=0,求得a =0,此时集合为{0,1,0},不符合集合中元素的互异性,舍去.综上所述,a=-1.10.设A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a =1.解析:由A∩B={3}得3∈B,又a2+4≥4,所以a+2=3,解得a=1.11.设集合M={x|x>1,x∈R},N={y|y=2x2,x∈R},P={(x,y)|y=x-1,x∈R,y∈R},则(∁R M)∩N={x|0≤x≤1},M∩P=∅.解析:因为M={x|x>1,x∈R},所以∁R M={x|x≤1,x∈R},又N ={y|y=2x2,x∈R}={y|y≥0},所以(∁R M)∩N={x|0≤x≤1}.因为M ={x|x>1,x∈R}表示数集,而P={(x,y)|y=x-1,x∈R,y∈R}表示点集,所以M∩P=∅.三、解答题(共45分)12.(15分)已知集合A={2,5,a+1},B={1,3,a},且A∩B={2,3}.(1)某某数a 的值及A ∪B ;(2)设全集U ={x ∈N |x ≤6},求(∁U A )∩(∁U B ).解:(1)∵A ∩B ={2,3},∴3∈A ,即a +1=3,得a =2,则A ={2,5,3},B ={1,3,2},A ∪B ={1,2,3,5}.(2)由题得U ={0,1,2,3,4,5,6},(∁U A )∩(∁U B )={0,1,4,6}∩{0,4,5,6}={0,4,6}.13.(15分)已知集合A ={x |2<x <7},B ={x |2<x <10},C ={x |5-a <x <a }.(1)求A ∪B ,(∁R A )∩B ;(2)若C ⊆B ,某某数a 的取值X 围.解:(1)A ∪B ={x |2<x <10}.∵∁R A ={x |x ≤2或x ≥7},∴(∁R A )∩B ={x |7≤x <10}.(2)①当C =∅时,满足C ⊆B ,此时5-a ≥a ,得a ≤52;②当C ≠∅时,要C ⊆B ,则⎩⎪⎨⎪⎧ 5-a <a ,5-a ≥2,a ≤10,解得52<a ≤3.由①②,得a ≤3.∴a的取值X围是{a|a≤3}.14.(15分)对于集合A,B,我们把集合{(a,b)|a∈A,b∈B}记作A×B.例如,A={1,2},B={3,4},则有A×B={(1,3),(1,4),(2,3),(2,4)},B×A={(3,1),(3,2),(4,1),(4,2)},A×A={(1,1),(1,2),(2,1),(2,2)},B×B={(3,3),(3,4),(4,3),(4,4)}.据此,试回答下列问题:(1)已知C={a},D={1,2,3},求C×D;(2)已知A×B={(1,2),(2,2)},求集合A,B;(3)若集合A中有3个元素,集合B中有4个元素,试确定A×B 中有多少个元素.解:(1)C×D={(a,1),(a,2),(a,3)}.(2)因为A×B={(1,2),(2,2)},所以A={1,2},B={2}.(3)由题意可知A×B中元素的个数与集合A和B中的元素个数有关,即集合A中的任何一个元素与B中的任何一个元素对应后,得到A×B中的一个新元素.若A中有m个元素,B中有n个元素,则A×B中应有m×n个元素.于是,若集合A中有3个元素,集合B中有4个元素,则A×B 中有12个元素.。

高中数学第二章基本初等函数(Ⅰ)2.2.1.1对数练习(含解析)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.2.1.1对数练习(含解析)新人教A版必修1

课时21 对数对数的意义①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2. A .①与② B .②与④ C .② D .①②③④ 答案 C解析 对于①,当M =N ≤0时,log a M 与log a N 无意义,因此①不正确;对于②,对数值相等,底数相同,因此,真数相等,所以②正确;对于③,有M 2=N 2,即|M |=|N |,但不一定有M =N ,③错误;对于④,当M =N =0时,log a M 2与log a N 2无意义,所以④错误,由以上可知,只有②正确.2.求下列各式中x 的取值范围: (1)lg (x -10); (2)log (x -1)(x +2); (3)log (x +1)(x -1)2.解 (1)由题意有x -10>0,即x >10,即为所求; (2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2;(3)由题意有⎩⎪⎨⎪⎧x -2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.3答案507解析 因为m =log 37,所以3m =7,则3m +3-m =7+7-1=507.4.将下列指数式化成对数式,对数式化成指数式: (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)13-4=81;(4)27=128.对数性质的应用(1)log 8x =-23;(2)log x 27=34;(3)log 3(2x +2)=1.解 (1)由log 8x =-23,得x =8-23=(23)-23=23×⎝ ⎛⎭⎪⎫-23=2-2=14;(2)由log x 27=34,得x 34=27.∴x =2743=(33)43=34=81;(3)由log 3(2x +2)=1,得2x +2=3, 所以x =12.对数恒等式的应用(2)计算23+log23+35-log39.解(1)令t=10x,则x=lg t,∴f(t)=lg t,即f(x)=lg x,∴f(3)=lg 3;(2)23+log23+35-log39=23·2log23+353log39=23×3+359=24+27=51.一、选择题1.下列四个命题,其中正确的是( )①对数的真数是非负数;②若a>0且a≠1,则log a1=0;③若a>0且a≠1,则log a a=1;④若a>0且a≠1,则a log a2=2.A.①②③ B.②③④C.①③ D.①②③④答案 B解析①对数的真数为正数,①错误;②∵a0=1,∴log a1=0,②正确;③∵a1=a,∴log a a=1,③正确;④由对数恒等式a log a N=N,得a log a2=2,④正确.2.2x=3化为对数式是( )A.x=log32 B.x=log23C.2=log3x D.2=log x3答案 B解析由2x=3得x=log23,选B.3.化简:0.7log 0.78等于( ) A .2 2 B .8 C.18 D .2答案 B解析 由对数恒等式a log aN =N ,得0.7log 0.78=8.∴选B. 4.若log 2(log x 9)=1,则x =( ) A .3 B .±3 C.9 D .2 答案 A解析 ∵log 2(log x 9)=1,∴log x 9=2,即x 2=9, 又∵x >0,∴x =3.5.若log a 3=m ,log a 2=n ,则a m +2n的值是( )A .15B .75C .12D .18 答案 C解析 由log a 3=m ,得a m=3,由log a 2=n ,得a n=2, ∴am +2n=a m ·(a n )2=3×22=12.二、填空题6.已知log 2x =2,则x -12=________.答案 12解析 ∵log 2x =2,∴x =22=4, 4-12=⎝ ⎛⎭⎪⎫1412=12.7.若lg (ln x )=0,则x =________. 答案 e解析 ∵lg (ln x )=0,∴ln x =1,∴x =e.8.若集合{x ,xy ,lg xy }={0,|x |,y },则log 8(x 2+y 2)=________. 答案 13解析 ∵x ≠0,y ≠0,∴lg xy =0,∴xy =1, 则{x,1,0}={0,|x |,y },∴x =y =-1, log 8 (x 2+y 2)=log 82=log 8813=13.三、解答题9.(1)已知log 189=a ,log 1854=b ,求182a -b的值;(2)已知log x 27=31+log 32,求x 的值.解 (1)18a =9,18b=54,182a -b=a218b=9254=8154=32; (2)∵log x 27=31×3log 32=31×2=6, ∴x 6=27,∴x =2716=(33)16= 3.10.求下列各式中x 的值:(1)log 4(log 3x )=0;(2)lg (log 2x )=1; (3)log 2[log 12(log 2x )]=0.解 (1)∵log 4(log 3x )=0,∴log 3x =40=1, ∴x =31=3;(2)∵lg (log 2x )=1,∴log 2x =10,∴x =210=1024;(3)由log 2[log 12(log 2x )]=0,得log 12(log 2x )=1,log 2x =12,x = 2.。

第二章直线和圆的方程章末质量检测试卷 - 高二新教材数学上学期(人教A版2019选择性必修第一册)

第二章直线和圆的方程章末质量检测试卷 - 高二新教材数学上学期(人教A版2019选择性必修第一册)

第二章直线和圆的方程质量检测卷(时间:120分钟分值:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为()A.6B.1C.2D.4解析:由题意知直线l的斜率为-2,则m+4=-2,解得m=6.-2-3答案:A2.过点(-1,2),且斜率为2的直线的方程是()A.2x-y+4=0B.2x+y=0C.2x-y+5=0D.x+2y-3=0解析:因为直线过点(-1,2),且斜率为2,所以该直线方程为y-2=2(x+1),即2x-y+4=0.答案:A3.圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析:由题意,知圆的半径r=√12+12=√2,所以圆的方程为(x-1)2+(y-1)2=2.答案:D4.过点(2,0)且与直线2x-4y-1=0平行的直线的方程是()A.x-2y-1=0B.2x+y-4=0C.x-2y-2=0D.x+2y-2=0解析:由题意,知直线2x-4y-1=0的斜率k=1,故所求直线的方程为2(x-2),化简得x-2y-2=0.y-0=12答案:C5.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()A.√3B.2C.√6D.2√3解析:由题意,知过原点且倾斜角为60°的直线方程为y=√3x.因为圆的方程可化为x2+(y-2)2=4,所以半径r=2,圆心为(0,2),且(0,2)到直线y=√3x的距离d=1,所以弦长为2√22-12=2√3.答案:D6.当点P在圆x2+y2=1上运动时,连接点P与定点Q(3,0),线段PQ 的中点M的轨迹方程是()A.(x+3)2+y2=1B.(x -3)2+y 2=1C.(2x -3)2+4y 2=1D.(2x +3)2+4y 2=1解析:设动点P 的坐标为(x 0,y 0),PQ 的中点M 的坐标为(x ,y ), 可得{x =x 0+32,y =y 02,解得{x 0=2x -3,y 0=2y . 因为点P (x 0,y 0)在圆x 2+y 2=1上, 所以(2x -3)2+(2y )2=1,即(2x -3)2+4y 2=1. 所以点M 的轨迹方程是(2x -3)2+4y 2=1. 答案:C7.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为 ( )A.x 2+y 2-2x -3=0B.x 2+y 2+4x =0C.x 2+y 2+2x -3=0D.x 2+y 2-4x =0解析:由题意设圆心坐标为C (a ,0)(a >0).因为圆C 与直线3x +4y +4=0相切,圆C 的半径为2,所以√9+16=2,解得a =2,所以圆心为C (2,0),所以圆C 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0. 答案:D8.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (3,0)处出发,河岸线所在直线方程为x +y =4,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为 ( )A.√17-1B.√17-√2C.√17D.3-√2解析:如图所示,设点A 关于直线x +y =4的对称点为A'(a ,b ),军营所在区域的圆心为O ,连接A'O.根据题意,|A'O |-1为最短距离. 所以线段AA'的中点为(a+32,b 2),直线AA'的斜率为1, 所以直线AA'的方程为y =x -3. 根据题意,得{a+32+b2=4,b =a -3,解得{a =4,b =1,所以点A'的坐标为(4,1),所以|A'O |=√42+12=√17, 所以|A'O |-1=√17-1,即“将军饮马”的最短总路程为√17-1.答案:A二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知A(-2,-4),B(1,5)两点到直线l:ax+y+1=0的距离相等,则实数a 的值为()A.-3B.3C.-1D.1解析:因为A(-2,-4),B(1,5)两点到直线l:ax+y+1=0的距离相等,所以√a2+1=√a2+1,即|2a+3|=|a+6|,解得a=3或a=-3.故选AB.答案:AB10.已知直线l1:x+ay-a=0和直线l2:ax-(2a-3)y-1=0,下列说法正确的是()A.直线l2始终过定点(23,1 3 )B.若l1∥l2,则a=1或a=-3C.若l1⊥l2,则a=0或a=2D.当a>0时,l1始终不过第三象限解析:直线l2:a(x-2y)+3y-1=0始终过定点(23,13),A项正确;当a=1时,l1,l2重合,B项错误;由1×a +a ×(3-2a )=0,得a =0或a =2,C 项正确;直线l 1的方程可化为y =-1a x +1,可知其始终过点(0,1).当a >0时,直线l 1的斜率为负,不会过第三象限,D 项正确.故选ACD . 答案:ACD11.过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线的方程为 ( ) A.x =-2 B.x =2 C.4x -3y +4=0 D.4x +3y -4=0解析:根据题意,知圆(x -1)2+(y -1)2=1的圆心为(1,1),半径r =1. 过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,若切线的斜率不存在,此时切线的方程为x =2,符合题意;若切线的斜率存在,设此时切线的斜率为k ,则其方程为y -4=k (x -2),即kx -y -2k +4=0,所以√k 2+1=1,解得k =43,则切线的方程为4x -3y +4=0.综上所述,切线的方程为x =2或4x -3y +4=0. 故选BC . 答案:BC12.若圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2+2x -4y =0的交点为A ,B ,则有( )A.公共弦AB 所在直线的方程为x -y =0B.线段AB 的垂直平分线的方程为x +y -1=0C.公共弦AB 的长为√22D.P 为圆O 1上一动点,则点P 到直线AB 的距离的最大值为√22+1 解析:已知圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2+2x -4y =0的交点为A ,B ,两圆的方程相减可得圆O 1与圆O 2的公共弦AB 所在直线的方程为 x -y =0,故A 项正确;由题意,知O 1(1,0),O 2(-1,2),线段O 1O 2所在直线斜率为-1,线段O 1O 2的中点为(0,1),所以线段AB 的垂直平分线的方程为y -1=-x ,即x +y -1=0,故B 项正确;由题意,知圆O 1:x 2+y 2-2x =0的圆心为O 1(1,0),半径r 1=1,圆心O 1(1,0)到直线x -y =0的距离d =√2=√22,所以点P 到直线AB 的距离的最大值为√22+1,圆O 1与圆O 2的公共弦AB 的长为2√1-12=√2,故C 项错误,D 项正确.故选ABD . 答案:ABD三、填空题:本题共4小题,每小题5分,共20分.13.若直线l 1:ax +y +2a =0与直线l 2:x +ay +3=0互相平行,则实数a =±1.解析:由两直线平行的条件,得{a 2-1=0,3a -2a ≠0,解得a =±1.14.圆C :x 2+y 2-2x -4y +4=0的圆心到直线l :3x +4y +4=0的距离d =3. 解析:由题意,知圆心坐标为(1,2),所以圆心到直线l :3x +4y +4=0的距离d =√32+42=3.15.已知圆C 1:x 2+y 2=1和圆C 2:(x -4)2+(y -3)2=r 2(r >0)外切,则r 的值为4;若点A (x 0,y 0)在圆C 1上,则x 02+y 02-4x 0的最大值为5.(本题第一空2分,第二空3分)解析:由两个圆外切可得圆心距等于两个圆的半径之和, 所以√(4-0)2+(3-0)2=1+r ,解得r =4.因为点A (x 0,y 0)在圆C 1上,所以x 02+y 02=1,且x 0∈[-1,1], 所以x 02+y 02-4x 0=1-4x 0∈[-3,5], 所以x 02+y 02-4x 0的最大值为5.16.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,角A 的平分线所在直线的方程为y =0,顶点B 的坐标为(1,2),则△ABC 的面积为12.解析:由方程组{x -2y +1=0,y =0,求得点A 的坐标为(-1,0).因为边AB所在直线的斜率为k AB =1,且角A 的平分线所在直线的方程为y =0,所以边AC 所在直线的斜率为-1,其方程为y =-(x +1),即y =-x -1.因为BC 边上的高所在直线的方程为x -2y +1=0,所以边BC 所在直线的斜率为-2,所以边BC 所在直线的方程为y -2=-2(x -1),即y =-2x +4.联立方程,得{y =-2x +4,y =-x -1,解得{x =5,y =-6,即顶点C 的坐标为(5,-6),所以|BC |=4√5,点A 到直线BC 的距离d =√5=√5,所以△ABC 的面积为S =12|BC |·d =12×4√5×√5=12.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在△ABC 中,点A 的坐标为(0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程; (2)求直线BC 的方程.解:(1)由已知,得直线AB 的斜率为2, 所以AB 边所在直线的方程为y -1=2(x -0), 即2x -y +1=0.(2)由{2x -y +1=0,2x +y -3=0,得{x =12,y =2, 即点B 的坐标为(12,2).设点C 的坐标为(m ,n ),则由已知条件得{m +2n -4=0,2×m 2+n+12-3=0, 解得{m =2,n =1,所以点C 的坐标为(2,1).所以BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.18.(12分)已知直线l 1:mx +8y +n =0和直线l 2:2x +my -1=0,试分别确定满足下列条件的m ,n 的值.(1)l 1与l 2相交于点(m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1. 解:(1)因为l 1与l 2相交于点(m ,-1), 所以点(m ,-1)在l 1,l 2上.将点(m ,-1)代入l 2的方程,得2m -m -1=0,解得m =1. 所以交点的坐标为(1,-1).把点(1,-1)的坐标代入l 1的方程,得n =7. 所以m =1,n =7.(2)要使l 1∥l 2,则有{m 2-16=0,m ×(-1)-2n ≠0,解得{m =4,n ≠-2或{m =-4,n ≠2.(3)要使l 1⊥l 2,则有2m +8m =0,解得m =0. 将m =0代入直线l 1的方程,得y =-n8.因为l 1在y 轴上的截距为-1, 所以-n8=-1,解得n =8.所以m =0,n =8.19.(12分)已知直线l :y =kx +3(k >0)与x 轴、y 轴围成的三角形面积为94,圆M 的圆心在直线l 上,与x 轴相切,且在y 轴上截得的弦长为4√6.(1)求直线l 的方程(结果用一般式表示); (2)求圆M 的标准方程.解:(1)在直线方程y =kx +3(k >0)中,令x =0,得y =3;令y =0,得x =-3k . 所以12×3×|-3k |=94. 因为k >0,所以k =2.所以直线l 的方程为2x -y +3=0.(2)设圆M 的标准方程为(x -a )2+(y -b )2=r 2(r >0).由题意可知{2a -b +3=0,|b |=r ,(2√6)2+|a |2=r 2,解得{a =-5,b =-7,r =7或{a =1,b =5,r =5.故圆M 的标准方程为(x +5)2+(y +7)2=49 或(x -1)2+(y -5)2=25.20.(12分)一座圆拱桥,当水面在如图所示的位置时,拱顶离水面2 m,水面宽12 m,当水面下降1 m 后,水面宽多少米?解:以圆拱顶点为原点,以过圆拱顶点的竖直直线为y 轴,建立如图所示的平面直角坐标系.设圆拱所在圆的圆心为C ,水面所在弦的端点为A ,B ,则由已知可得A (6,-2).设圆的半径为r ,则C (0,-r),即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入可得r =10,所以圆的方程为x 2+(y +10)2=100.当水面下降1 m 后,可设A'(x 0,-3)(x 0>0)在圆上,代入x 2+(y +10)2=100,解得x 0=√51,即当水面下降1 m 后,水面宽为2x 0=2√51 m .21.(12分)在平面直角坐标系Oxy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a 的值. 解:(1)由题意,得曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+2√2,0), (3-2√2,0).故可设圆C 的圆心为(3,t ),则有32+(t -1)2=(2√2)2+t 2,解得t =1, 所以圆C 的半径为√32+(1-1)2=3,所以圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),则两点的坐标满足方程组{x -y +a =0,(x -3)2+(y -1)2=9.消去y 整理,得2x 2+(2a -8)x +a 2-2a +1=0.由已知可得,判别式Δ=56-16a -4a 2>0,且x 1+x 2=4-a ,x 1x 2=a 2-2a+12.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0.因为y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 1+x 2)+a 2=0. ②由①②,得a =-1,经检验a =-1满足Δ>0,所以a =-1.22.(12分)已知圆M 与直线x =2相切,圆心M 在直线x +y =0上,且直线x -y -2=0被圆M 截得的弦长为2√2.(1)求圆M 的方程,并判断圆M 与圆N :x 2+y 2-6x +8y +15=0的位置关系.(2)若在x 轴上的截距为-1且不与坐标轴垂直的直线l 与圆M 交于A ,B 两点,在x 轴上是否存在定点Q , 使得k AQ +k BQ =0?若存在,求出Q 点坐标;若不存在,说明理由.解:(1)设圆M 的圆心为M (a ,-a ),半径为r ,则{r =|a -2|,√2=√r 2-(2√22)2,解得{a =0,r =2,即圆心坐标为(0,0),r =2, 所以圆M 的方程为x 2+y 2=4.由题意知,圆N 的圆心为(3,-4),半径R =√10,r +R =2+√10,R -r =√10-2.因为|MN |=5,√10-2<5<√10+2,所以圆M 与圆N 相交.(2)存在.方法一:设l :x =my -1(m ≠0),A (x 1,y 1),B (x 2,y 2),由{x =my -1,x 2+y 2=4,得(m 2+1)y 2-2my -3=0.由根与系数的关系,得{y 1+y 2=2mm 2+1,y 1y 2=-3m 2+1. 假设存在Q (t ,0)满足条件, 则k AQ =y 1x 1-t =y 1my 1-t -1,k BQ =y 2x 2-t =y 2my 2-t -1,由k AQ +k BQ =0,得y 1my 1-t -1+y 2my 2-t -1=0, 即y 1[my 2-(t+1)]+y 2[my 1-(t+1)](my 1-t -1)(my 2-t -1) =2my 1y 2-(t+1)(y 1+y 2)(my 1-t -1)(my 2-t -1) =-6m -2m (t+1)(m 2+1)(my 1-t -1)(my 2-t -1)=0, 即2m (t +4)=0且m ≠0,所以t =-4. 所以存在Q (-4,0)满足条件. 方法二:设l :y =k (x +1)(k ≠0),A (x 1,y 1),B (x 2,y 2). 由{y =k (x +1),x 2+y 2=4,得(k 2+1)x 2+2k 2x +k 2-4=0, 则{x 1+x 2=-2k 2k 2+1,x 1x 2=k 2-4k 2+1. 假设存在Q (t ,0)满足条件, 则k AQ +k BQ =y 1x 1-t +y 2x 2-t =k (x 1+1)x 1-t +k (x 2+1)x 2-t =k [(x 1+1)(x 2-t )+(x 2+1)(x 1-t )](x 1-t )(x 2-t ) =k [2x 1x 2-t (x 1+x 2)-2t+x 1+x 2](x 1-t )(x 2-t ) =k [2k 2-8+2k 2t -2k 2t -2t -2k 2](k 2+1)(x 1-t )(x 2-t )=k(-8-2t)=0,(k2+1)(x1-t)(x2-t)解得t=-4.所以存在Q(-4,0)满足条件.。

(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案

第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .若ac bc >,则a b>B .若22a b >,则a b >C .若a b >,0c <,则a c b c++<D .a b<2.若++,则a ,b 必须满足的条件是( )A .0a b >>B .0a b <<C .a b>D .0a ≥,0b ≥,且a b≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ÎR 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k <≤C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +”的充分不必要条件,则k 的取值范围是( )A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( )A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( )A .22ac bc <B .11a b<C .baab>D .22a ab b >>7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( )A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( )A .1c a>B .02c a<C .13c a <<D .03c a<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x $ÎR ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1B C .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________.14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题.16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ÎR ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式.(1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ì-+íî,324x üýþ≤≤,{}2=|1B x x m +≥.p x A Î:,q x B Î:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ÎR .(1)当=1a 时,求A B I ;(2)若=A B A U ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+.(1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D .2.【答案】D【解析】2=()=a b +-+-((.++Q a \,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ÎR 恒成立,需22=36480k k k D -+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A .4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++<,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +ìí-î´,,解得=4=3a b ìí-î,,所以4=3=81a b -().故选B .6.【答案】D【解析】选项A ,c Q 为实数,\取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b aa b ab--,0a b Q <<,0b a \->,0ab >,0b a ab -\,即11a b>,故选项B 不成立;选项C ,0a b Q <<,\取=2a -,=1b -,则11==22b a --,2==21a b --,\此时b aa b<,故选项C 不成立;选项D ,0a b Q <<,2=0a ab a a b \--()>,2=0ab b b a b --()>,22a ab b \>>,故选项D 正确.7.【答案】D【解析】210x a x a -++Q ()<,10x x a \--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D .8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x\--≥在02x <<时恒成立.11=2x x x x ---+--Q ()≤(当且仅当=1x 时取等号),2a \-≥,\实数a 的最小值是2-.故选B .9.【答案】A【解析】由题知{}=20N -,,则{}=0M N I .故选A .10.【答案】C【解析】2x Q >,20x \->.11==222=422y x x x x \+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a \.11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +ìï+íï+î<≤,>,>,即1311b ca abc a a c b a aì+ïïï+íïï+ïî<≤,>,>,1311b c a ac b a a ì+ïï\íï--ïî<≤,<<,两式相加得024c a ´<.c a \的取值范围为02ca<.12.【答案】D【解析】Q 二次三项式220ax x b ++≥对一切实数x 恒成立,0a \>,且=440ab D -≤,1ab \≥.又0x $ÎR ,使2002=0ax x b ++成立,则=0D ,=1ab \,又a b >,0a b \->.22222==a b a b ab a b a b a b a b +-+\-+---()()当且仅当a b -时等号成立.22a b a b+\-的最小值为故选D .二、13.【答案】111a a-+【解析】由1a <,得11a -<<.10a \+>,10a ->.2111=11a a a +--.2011a -Q <≤,2111a \-,111a a\-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a D -´´≤,解得a ,\实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则c dab ab a b--()<(),即bc ad --<,bc ad \>,即③成立;若①③成立,则bc ad ab ab ,即c d a b >,c d a b \--<,即②成立;若②③成立,则由②得c d a b >,即0bc ad ab -,Q ③成立,0bc ad \->,0ab \>,即①成立.故可组成3个正确命题.16.【答案】42x -<<【解析】不等式2162a b x x ba ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++m i n <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<.三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a D -,9=4a .所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94.若=A Æ,则=940a D -<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分)18.【答案】(1)2560x x --+Q <,2560x x \+->,160x x \-+()()>,解得6x -<或1x >,\不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x \--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x \--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >.当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<;当=0a 时,原不等式的解集是Æ;当02a <<时,原不等式的解集是{|x x a <或}2x >;当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+,配方得237=416y x -+().因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ìüíýîþ≤≤.(6分)由21x m +≥,得21x m -≥,所以{}2=|1B x x m -≥.(8分)因为p 是q 的充分条件,所以A B Í.所以27116m -≤,(10分)解得实数m 的取值范围是34m ≥或34m -≤.(12分)20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤,则{}=|23A B x x I ≤≤.(3分)(2)因为=A B A U ,所以B A Í.①当=B Æ,即23a a +>,3a >时,B A Í成立,符合题意.(8分)②当=B Æ,即23a a +≤,3a ≤时,由B A Í,有0233a a ìí+î≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a Q 、b 为正实数,且11a b+.11a b \+=a b 时等号成立),即12ab ≥.(3分)2221122=a b ab +´Q ≥≥(当且仅当=a b 时等号成立),22a b \+的最小值为1.(6分)(2)11a b+Q,a b \+.234a b ab -Q ()≥(),2344a b ab ab \+-()≥(),即2344ab ab -()≥(),2210ab ab -+()≤,210ab -()≤,a Q 、b 为正实数,=1ab \.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ÎR .当0a <时,解得1a x a +>.当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ;当0a <时,原不等式的解集为1|a x x a +ìüíýîþ>;当0a >时,原不等式的解集为1|a x x a +ìüíýîþ<.(6分)(2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤,因为2y x x a --≤在0+¥(,)上恒成立,所以11a x x+-≤在0+¥(,)上恒成立.令1=1t x x+-,只需min a t ≤,因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立.所以a 的取值范围是1a ≤.(12分)。

人教A版 新教材高中数学必修第一册 第一章 章末检测试卷(一)

人教A版 新教材高中数学必修第一册 第一章 章末检测试卷(一)

二、多项选择题(本大题共 4 小题,每小题 5 分,共 20 分.全部选对的得 5 分,部分选对的
得 3 分,有选错的得 0 分)
9.已知 U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则( )
A.M∩N={4,6}
B.M∪N=U
C.(∁UN)∪M=M 答案 BCD
(2)∵B={x|x<1},∴∁RB={x|x≥1}. ∴A∩(∁RB)={x|1≤x≤2}. 15.已知集合 A={x|-1<x<2},B={x|-1<x<m+1},若 x∈A 是 x∈B 成立的一个充分不必
要条件,则实数 m 的取值范围是________.
答案 {m|m>1}
解析 由 x∈A 是 x∈B 成立的一个充分不必要条件,
解 (1)由 x-1>0 得 x>1,即 B={x|x>1}. 所以 A∩B={x|1<x<2},A∪B={x|x>-1}. (2)集合 A-B 如图中的阴影部分所示.
由于 A-B={x|x∈A,且 x∉B}, 又 A={x|-1<x<2},B={x|x>1}, 所以 A-B={x|-1<x≤1}. 21.(12 分)已知非空集合 P={x|a+1≤x≤2a+1},Q={x|-2≤x≤5}. (1)若 a=3,求(∁RP)∩Q; (2)若“x∈P”是“x∈Q”的充分不必要条件,求实数 a 的取值范围. 解 因为 P 是非空集合,所以 2a+1≥a+1,即 a≥0. (1)当 a=3 时,P={x|4≤x≤7},∁RP={x|x<4 或 x>7}, Q={x|-2≤x≤5}, 所以(∁RP)∩Q={x|-2≤x<4}. (2)若“x∈P”是“x∈Q”的充分不必要条件,即 PQ,

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。

人教A版必修一高中数学单元测试卷第二章章末检测B(含答案)

人教A版必修一高中数学单元测试卷第二章章末检测B(含答案)

章末检测(B)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N 等于()A .MB .NC .[0,4)D .[0,+∞)2.函数y =3|x |-1的定义域为[-1,2],则函数的值域为()A .[2,8]B .[0,8]C .[1,8]D .[-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为()A .1B .2C .-1 D.124.21log 52 等于()A .7B .10C .6 D.925.若100a =5,10b =2,则2a +b 等于()A .0B .1C .2D .36.比较13.11.5、23.1、13.12的大小关系是()A .23.1<13.12<13.11.5B .13.11.5<23.1<13.12C .13.11.5<13.12<23.1D .13.12<13.11.5<23.17.式子log 89log 23的值为()A.23B.32C .2D .38.已知ab >0,下面四个等式中:①lg(ab )=lg a +lg b ;②lg a b =lg a -lg b ;③12lg(ab )2=lg a b;④lg(ab )=1log ab 10.其中正确命题的个数为()A .0B .1C .2D .39.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.函数y =2x 与y =x 2的图象的交点个数是()A .0B .1C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于()A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是()A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )x ,x ≥41),x <4,则f (2+log 23)的值为______.14.函数f (x )=log a 3-x 3+x(a >0且a ≠1),f (2)=3,则f (-2)的值为________.15.函数y =212log (32)x x -+的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x +5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x>1且x≠43,f(x)=1+log x3,g(x)=2log x2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x),14≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=log a1+x1-x (a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.章末检测(B)1.C [由题意,得M ={x |x <4},N ={y |y ≥0},∴M ∩N ={x |0≤x <4}.]2.B [当x =0时,y min =30-1=0,当x =2时,y max =32-1=8,故值域为[0,8].]3.D [由f (3x )=log 29x +12,得f (x )=log 23x +12,f (1)=log 22=12.]4.B [21log 52 =2·2log 52=2×5=10.]5.B [由100a =5,得2a =lg 5,由10b =2,得b =lg 2,∴2a +b =lg 5+lg 2=1.]6.D[∵13.11.5=1.5-3.1=(11.5)3.1,13.12=2-3.1=(12)3.1,又幂函数y =x 3.1在(0,+∞)上是增函数,12<11.5<2,∴(12)3.1<(11.5)3.1<23.1,故选D.]7.A [∵log 89=log 232log 223=23log 23,∴原式=23.]8.B [∵ab >0,∴a 、b 同号.当a 、b 同小于0时①②不成立;当ab =1时④不成立,故只有③对.]9.C [y =lg x +310=lg(x +3)-1,即y +1=lg(x +3).故选C.]10.D [分别作出y =2x 与y =x 2的图象.知有一个x <0的交点,另外,x =2,x =4时也相交,故选D.]11.B [∵f (x )=2x -4(x ≥0),∴令f (x )>0,得x >2.又f (x )为偶函数且f (x -2)>0,∴f (|x -2|)>0,∴|x -2|>2,解得x >4或x <0.]12.A [由f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),可知a >1,而f (-4)=a |-4+1|=a 3,f (1)=a |1+1|=a 2,∵a 3>a 2,∴f (-4)>f (1).]13.124解析∵log 23∈(1,2),∴3<2+log 23<4,则f (2+log 23)=f (3+log 23)=23log 312+⎛⎫ ⎪⎝⎭=(12)3·12log 32-=18×13=124.14.-3解析∵3-x 3+x>0,∴-3<x <3∴f (x )的定义域关于原点对称.∵f (-x )=log a 3+x 3-x =-log a 3-x 3+x=-f (x ),∴函数f (x )为奇函数.∴f (-2)=-f (2)=-3.15.(-∞,1)解析函数的定义域为{x |x 2-3x +2>0}={x |x >2或x <1},令u =x 2-3x +2,则y =12log u 是减函数,所以u =x 2-3x +2的减区间为函数y =()212log 32x x -+的增区间,由于二次函数u =x 2-3x +2图象的对称轴为x =32,所以(-∞,1)为函数y 的递增区间.16.5212解析y =124x --3·2x +5=12(2x )2-3·2x +5.令t =2x ,x ∈[0,2],则1≤t ≤4,于是y =12t 2-3t +5=12(t -3)2+12,1≤t ≤4.当t =3时,y min =12;当t =1时,y max =12×(1-3)2+12=52.17.解(1)指数函数f (x )=a x (a >0且a ≠1),则f (x )的反函数g (x )=log a x (a >0且a ≠1).(2)∵g (x )≤log a (2-3x ),∴log a x ≤log a (2-3x )若a >1>0-3x >0≤2-3x ,解得0<x ≤12,若0<a <1>0-3x >0≥2-3x ,解得12≤x <23,综上所述,a >1时,不等式解集为(0,12];0<a <1时,不等式解集为[12,23).18.解(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈[18,1],故y =2t 2-t -1=2(t -14)2-98,t ∈[18,1],故值域为[-98,0].(2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2ax 2-x -1=0在(0,+∞)上有解.记g (x )=2ax 2-x -1,当a =0时,解为x =-1<0,不成立;当a <0时,开口向下,对称轴x =14a<0,过点(0,-1),不成立;当a >0时,开口向上,对称轴x =14a>0,过点(0,-1),必有一个根为正,符合要求.故a 的取值范围为(0,+∞).19.解f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0.即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.解(1)∵t =log 2x ,14x ≤4,∴log 214≤t ≤log 24,即-2≤t ≤2.(2)f (x )=(log 24+log 2x )(log 22+log 2x )=(log 2x )2+3log 2x +2,∴令t =log 2x ,则y =t 2+3t +2=(t +32)2-14,∴当t =-32即log 2x =-32,x =322 时,f (x )min =-14.当t =2即x =4时,f (x )max =12.21.解(1)由对数函数的定义知1+x 1-x>0,故f (x )的定义域为(-1,1).(2)∵f (-x )=log a 1-x 1+x =-log a 1+x 1-x=-f (x ),∴f (x )为奇函数.(3)(ⅰ)对a >1,log a 1+x 1-x >0等价于1+x 1-x>1,①而从(1)知1-x >0,故①等价于1+x >1-x 又等价于x >0.故对a >1,当x ∈(0,1)时有f (x )>0.(ⅱ)对0<a <1,log a 1+x 1-x >0等价于0<1+x 1-x<1,②而从(1)知1-x >0,故②等价于-1<x <0.故对0<a <1,当x ∈(-1,0)时有f (x )>0.综上,a >1时,x 的取值范围为(0,1);0<a <1时,x 的取值范围为(-1,0).22.解(1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0⇒b =1.∴f (x )=1-2x 2+2x +1.(2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1,设x 1<x 2则f (x 1)-f (x 2)=12112121x x -++=()()2112222121x x x x -++.因为函数y =2x 在R 上是增函数且x 1<x 2,∴22x -12x >0.又(12x +1)(22x +1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因为f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0.等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13.。

高中数学 单元素养评价(一)新人教A版必修第一册-新人教A版高一第一册数学试题

高中数学 单元素养评价(一)新人教A版必修第一册-新人教A版高一第一册数学试题

单元素养评价(一)(第一、二章)(120分钟150分)一、单项选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若ab≠0且a<b,则下列不等式一定成立的是( )A.>B.a2<b2C.a2>b2D.-a>-b【解析】选D.A.a=-3,b=2排除;B.a=-2,b=1排除;C.a=,b=1排除;D正确.2.命题“存在实数x,使x>1”的否定是( )A.对任意实数x,都有x>1B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤1【解析】选C.利用存在量词命题的否定是全称量词命题求解,“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”.3.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.a=3时A={1,3},显然A⊆B.但A⊆B时,a=2或3.4.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(R P)∩Q等于( )A.{x|0≤x<1}B.{x|0<x≤2}C.{x|1<x<2}D.{x|1≤x≤2}【解析】选C.因为P={x|x≥2或x≤0},R P={x|0<x<2},所以(R P)∩Q={x|1<x<2}.5.已知(a2-1)x2-(a-1)x-1<0的解集是R,则实数a的取值X围是 ( )A.a<-或a>1B.-<a<1C.-<a≤1或a=-1D.-<a≤1【解析】选D.a=1显然满足题意,若该不等式为一元二次不等式,则必有a2<1,由Δ=(a-1)2+4(a2-1)<0,解得-<a<1.综上可知-<a≤1.6.已知4枝郁金香和5枝丁香的价格小于22元,而6枝郁金香和3枝丁香的价格大于24元.设2枝郁金香的价格为A元,3枝丁香的价格为B元,则A,B的大小关系为( )A.A>BB.A=BC.A<BD.不确定【解析】选 A.设每枝郁金香和每枝丁香的价格分别为x元和y元,由已知,得即不等式①两边同乘以4,不等式②两边同乘以11,得所以22x+11y>16x+20y.所以6x>9y, 即2x>3y.故2枝郁金香的价格比3枝丁香的价格贵,即A>B.7. 一次函数y=-x+的图象同时经过第一、三、四象限的必要不充分条件是( ) A.m>1,且n<1 B.mn<0C.m>0且n<0D.m<0且n<0【解析】选B.因为y=-x+经过第一、三、四象限,故->0,<0,即m>0,n<0,但此为充要条件,因此,其必要不充分条件为mn<0.8.已知正实数a,b满足4a+b=30,使得+取最小值时,实数对(a,b)是()A.(5,10)B.(6,6)C.(10,5)D.(7,2)【解析】选A.因为a,b为正实数,所以+=(4a+b)=≥×(5+2)=,当且仅当时取“=”.即a=5,b=10.9.已知条件p:x2+2x-3>0;条件q:x>a,且q的一个充分不必要条件是p,则a的取值X围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]【解析】选A.由x2+2x-3>0,得x<-3或x>1,由q的一个充分不必要条件是p,可知p是q 的充分不必要条件,等价于q是p的充分不必要条件,所以{x|x>a}⊆{x|x<-3或x>1},所以a ≥1.10.已知不等式(x+y)≥9对任意正实数x,y恒成立,则正实数a的最小值为( )A.2B.4C.6D.8【解析】选B.不等式(x+y)≥9对任意正实数x,y恒成立,则1+a++≥a+2+1≥9,所以≥2或≤-4(舍去),所以正实数a的最小值为4.二、多项选择题(本大题共3小题,每小题4分,共12分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得4分,选对但不全的得2分,有选错的得0分)11.已知集合A={-2,-1,0,1},B={x|(x-1)(x+2)≤0},则( )A.A∩B={-2,-1,0,1}B.A∪B={-2,-1,0,1}C.A∩B={-1,0,1}D.A∪B={x|-2≤x≤1}【解析】选A、D.由A={-2,-1,0,1},B={x|(x-1)(x+2)≤0}={x|-2≤x≤1},得A∩B={-2,-1,0,1},A∪B={x|-2≤x≤1}.12.下列四个命题,其中假命题为( )A.∀x∈R,x2-3x+2>0恒成立B.∃x∈Q,x2=2C.∃x∈R,x2+1=0D.∀x∈R,4x2>2x-1+3x2【解析】选A、B、C、D.因为在x2-3x+2=0中,Δ=(-3)2-4×2>0,所以当x>2或x<1时,x2-3x+2>0才成立,所以A为假命题.当且仅当x=±时,x2=2,所以不存在x∈Q,使得x2=2,所以B为假命题.对∀x∈R,x2+1≠0,所以C为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时, 4x2=2x-1+3x2成立,所以D为假命题.13.若0<a<b,且a+b=1,则在a,a2+b2,2ab,b四个数中( )A.a2+b2>2abB.a<C.b<D.b>a2+b2【解析】选A、B、D.由于0<a<b,则a2+b2>2ab,又a+b=1则0<a<<b<1,又a2+b2-b=(a+b)2-2ab-b=1-2ab-b=a-2ab=a(1-2b)<0则b>a2+b2.三、填空题(本大题共4小题,每小题4分,共16分,将答案填在题中的横线上)14.命题“∀x∈R,x2+2x+5≠0”是________命题(填“真”或“假”),它的否定是________. 【解析】x2+2x+5=(x+1)2+4>0,故该命题为真命题,又因为全称量词命题的否定为存在量词命题,故命题的否定为“∃x∈R,使得x2+2x+5=0”.答案:真∃x∈R,使得x2+2x+5=015.若关于x的不等式tx2-6x+t2<0的解集为(-∞,a)∪(1,+∞),则a的值为________. 【解析】不等式tx2-6x+t2<0的解集为(-∞,a)∪(1,+∞),所以1,a是方程tx2-6x+t2=0的两根,由根与系数的关系可得1+a=,a=t,所以a=-3,a=2(舍去).答案:-316.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值X围是________.【解析】因为1∉{x|x2-2x+a>0},所以1∈{x|x2-2x+a≤0},即1-2+a≤0,所以a≤1.答案:{a|a≤1}17.设正数a,b,c满足++≤,则=________.【解析】由++≤得:(a+b+c)≤36.即1+++4+++9++≤36,即+++++≤22,因为+++++=++≥22,所以b=2a,c=3a时取等号,所以==.答案:四、解答题(本大题共6小题,共82分.解答应写出文字说明,证明过程或演算步骤)18.(12分)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0}且A∩B=(-1,n),求m,n.【解析】A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n)可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.19.(14分)已知p:(a-1)2≤1,q:∀x∈R,ax2-ax+1≥0,判断p是q成立的什么条件.【解析】由(a-1)2≤1解得0≤a≤2,所以p:0≤a≤2.当a=0时,ax2-ax+1≥0对∀x∈R恒成立;当a≠0时,由得0<a≤4,所以q:0≤a≤4.所以p是q成立的充分不必要条件.20.(14分)设x∈R,比较与1-x的大小.【解析】作差:-(1-x)=,①当x=0时,因为=0,所以=1-x;②当1+x<0,即x<-1时,因为<0,所以<1-x;③当1+x>0且x≠0,即-1<x<0或x>0时,因为>0,所以>1-x.21.(14分) 已知关于x的不等式kx2-2x+6k<0(k≠0).(1)若不等式的解集为{x|x<-3或x>-2},求k的值.(2)若不等式的解集为R,求k的取值X围.【解析】(1)因为不等式kx2-2x+6k<0的解集为{x|x<-3或x>-2},所以x1=-3与x2=-2是方程kx2-2x+6k=0(k≠0)的两根,所以-==-3-2,所以k=-.(2)若不等式的解集为R,即x∈R,kx2-2x+6k<0恒成立,则满足所以k<-.22.(14分) 已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}.(1)求a,b的值.(2)解不等式ax2-(ac+b)x+bc<0.【解析】(1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,b>0且a>0由根与系数的关系得解得(2)不等式ax2-(ac+b)x+bc<0,即x2-(2+c)x+2c<0,即(x-2)(x-c)<0,当c>2时,不等式(x-2)(x-c)<0的解集为{x|2<x<c};当c<2时不等式(x-2)(x-c) <0的解集为{x|c<x<2};当c=2时,不等式(x-2)(x-c)<0的解集为∅.23.(14分)玩具所需成本费用为P元,且P与生产套数x的关系为P=1 000+5x+ x2,而每套售出的价格为Q元,其中Q(x)=a+(a,b∈R),(1)问:该玩具厂生产多少套时,使得每套所需成本费用最少?(2)若生产出的玩具能全部售出,且当产量为150套时利润最大,此时每套价格为30元,求a,b的值.(利润=销售收入-成本)【解析】(1)每套玩具所需成本费用为==x++5≥2+5=25,当x=,即x=100时等号成立,故该玩具厂生产100套时每套所需成本最少.(2)利润为x·Q(x)-P=x-=x2+(a-5)x-1 000,由题意得解得a=25,b=30.。

【新教材】人教A版(2019)高中数学必修第一册测试卷

【新教材】人教A版(2019)高中数学必修第一册测试卷

本册检测考试时间120分钟,满分150分.一'单项选择题(本大题共8小题,每小题5分,共40分.在每小题给岀的四个选项中,只有一项是符合题目要求的)21.已知集合A={L2), B={2,〒},若则实数《的值为(D )A.1或2 B・*C・1 D・22[解析I ••集合A={1,2}2・•・由集合元素的互异性及子集的概念可知〒二1 ,解彳导斤二2•故选D・2.下列关于命题"3xGR・使得F+x+l<0”的否泄说法正确的是(B )A・VxGR,均有.F+x+lvO,假命题B・V A ER.均有Q+X+120,真命题C・3A均有F+x+l^O,假命题D・R,均有.¥2+x4-1 =0>真命题[解析I根据存在呈词命题的否走是全称星词命题,対筛在量词改为全称呈词,然后1 3 否走结论,故该命题的否走为“也WR ,均有W十x + 1 M0”,因为%2十x十1二Cv十护十訐0恒成立,所以原命题的否定是真命题•3・sink cosl, tanl的大小关系为(A )A. tanl>sinl>cosl B・ sinl>tanl>coslC・ sinl>cosl>tanl D・ tanl>cosl>sinl兀胚<2 兀[解析]\*sinl>sin^= 2 / coslvcos^ 二吉-,tanl>tan^= 1 r.\tanl>sinl>cos 1.i [丄_______4. lg2 —lg§—曲2 —切迄+寸(_2)2的值为(A )A. — 1B. yC・3 D・一 5[解析]原式= lg2 + lg5-2-2 + 2 = lglO-2=l -2= - 1.故选 A ・5•设角a=35TI2sin(n+a )cos(7r—a)—cos(兀+a)1 + sin2a+sin(n—a)—cos2(n -F的值为(B.一sinaA.c.、2sin(兀十a)cos(n - a) - cos(n + a) 所以 .=.1 + siira + sin(7r - a) - cos■(兀 + a)2sinacosa + cosa 2sinacosa + cosa cosa1 十sin2a + sina - cos% 2sin2a 十sina35兀7Tcos( - —) COS- 二「二萌•故选D.sin( - sin-6.若关于x的方程•心)一2=0在(一P 0)内有解,则)=九)的图象可以是(D )【解析]因为关于x的方程沧)・2二0在(・8,0)内有解,所以函数y二心)与y二2的图象在(-8,0)内有交点,观察题中图象可知只有D中图象满足要求•7・泄义在R上的偶函数/U)在[0, +8)上单调递增,且肩)=0,贝IJ满足/(tog! x)>0的X的取值范用是(B )A. (0, +8)B・(0, |)U(2, +oo)c. (0, |)U(|, 2) D. (0, |)[解析]由题意知/U)=J( - X)二他I),所以./(llogi X I)>A|)•因为.心)在[0 ,十8)上单调递8增r所以llogi则>£ /又人>0・解得0<Y|或入>2・8 3 28.具有性质卅:)=一心)的函数,我们称为满足“倒负”变换.给岀下列函数:D0<v <l ♦B.①③D.①[解析]①用)二X In -- 二In—; ./U)1-X1+x1不满足二-人尤),满足“倒负”变换.1 +x21 "~*X 1 """F①尸山币:<§)y=7^2:③y其中满足“倒负”变换的是(CA.①②C.②③变换.③当0<y 1 时,+> 1 ,心)=.¥,.用)=-x=-.心);当Q1 时,0<+<1 ,.心)二-£ ,几弓二£ 二- f(X);当X二1 时,+二1 , f(x) = 0,用)二夬1)二0 二 + 二-A') r 满足“倒负”变换•综上,②③是符合要求的函数,故选C•二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中, 有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.将函数y=sin(A-|)的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向左平移竽个单位长度得g(x)的图象,则下列说法正确的是(ACD )A.g(x)是奇函数B.x=j是g(x)图象的一条对称轴C.g(x)的图象关于点(3兀,0)对称D.2吶=1【解析I将函数y二sin(.r -予的图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得y 二sin(f -为的图象,再向左平移弓个单位长度得曲)二_ n = s确的图象,所以A. B. C. D.A 正确;因为g (彳)H±1 ■所以B 错;因为g (3jr ) = sin n = 0 ,所以C 正确;又g (0)二0 ,所以 2?(0)= 1 ,所以D 正确•综上,ACD 正确.10. 已知0<a<b<\<c,则下列不等式不成立的是(BD ) A. a c<b (B."<出C ・ log fl c>log/x-D ・ sin a>sin b[解析]取 a = ^ , b = ^ , c = 2 ,则(扌)2<(*)2 , A 成立;2? >2 彳 朋不成立;log’2二log ] 2 二・ 1 ■・\logi 2>logj 2 f C 成立;*/0<6/</xl<z . .\sin t/<sin h t D 不成立.故选 BD . 2 "4 211. 将函数y=sin (2r+0)的图象沿x 轴向左平移頁个单位后,得到一个偶函数的图象,则 卩的一个可能取值为(AB )3 c 71A ・一卩B ・4C ・0D.—睿【解析|将函数y = sin (2r + °)的图象沿x 轴向左平移外单位,得到函数y = sin (2(x +殳)十卩]二sin (2v 十扌十卩),因为此时函数为偶函数,所以扌十卩二号十航,kWZ ,即+ kn , kE. Z,k = 0 时,(p = ^ , k= -1 时,0 二-竽.12.下列命题正确的是(CD )VxG (2, +8),都有 %2>2X=$'是函数“尸COS22" — Si22w 的最小正周期为7T”的充要条件命题 p : 3x<)R> /(x ())=ax3+xo+d = 0 是假命题,则“丘(一°°,—㊁)U (y + °°)已知% pg 则 *=矿是细皿=帥八的既不充分也不必要条件[解析]A 错,当 x 二 4 时,42= 24,故不等式不成立;B 错,y = cos 22<u- - sin 22t/.v = cos4t/x#当"二抽,y = cosZr ,当"二冷时, y = cos( - 2v) = cos2.v ,其最小正[解周期为兀,故说法不正确;C 正确,因为〃为假命题f 所以"为真命题,即不存在xoER , 使./Uo )二0 ,故J= 1 - 4"2<0 ,且“H0 '解得或</< - | ; D 正确,如果两个角为直角,那么它们的正切值不存在,反过来,如果两个角的正切值相等,那么它们可能相差 WeZ ), 故反之不成立・综上,CD 正确.三、填空题(本大题共4小题,每小题5分,共20分)2sin47°-V3sin 17° 丄门・ 2cos 17° =—2—•2sin( 17° + 30。

(人教版A版)高中数学必修第一册 第二章综合测试试卷02及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷02及答案

第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知,,a b c ÎR ,那么下列命题中正确的是( )A .若a b >,则22ac bc >B .若a bc c>,则a b>C .若33a b >,且0ab <,则11a b >D .若22a b >,且0ab >,则11a b<2.如果a ÎR ,且20a a +<,那么2,,a a a -的大小关系为( )A .2a a a ->>B .2a a a ->>C .2a a a ->>D .2a a a->>3.若函数14(2)2y x x x =+-->,则函数y 有( )A .最大值0B .最小值0C .最大值2-D .最小值2-4.不等式1021x x -+的解集为( )A .1|12x x ìü-íýîþ<≤B .1|12x x ìü-íýîþ≤C .1| 12x x x ìü-íýîþ<或≥D .1|| 12x x x x ìü-íýîþ≤或≥5.若不等式220ax bx ++<的解集为11|| 23x x x x ìü-íýîþ<或>,则a b a -的值为( )A .16B .16-C .56D .56-6.若不等式()(2)3x a x a a --->对任意实数x 都成立,则实数a 的取值范围是( )A .(1,3)-B .(3,1)-C .(2,6)-D .(6,2)-7.若0,0a b >>,且4a b +=,则下列不等式恒成立的是( )A .114ab B .111a b+≤C 2D .228a b +≥8.不等式3112x x--≥的解集是( )A .3|24x x ìüíýîþ≤B .3|24x x ìüíýîþ≤<C .3| 24x x x ìüíýîþ≤或>D .{|2}x x <9.若命题“0x $ÎR ,使得200230x mx m ++-<”为假命题,则实数m 的取值范围是( )A .26m ≤≤B .62m --≤≤C .26m <<D .62m --<<10.若正数,x y 满足35x y xy +=,则34x y +的最小值是( )A .245B .285C .5D .611.已知210a +<,关于x 的不等式22450x ax a -->的解集是( )A .{|5 }x x a x a -<或>B .{|5 }x x a x a ->或<C .{|5}x a x a -<<D .{|5}x a x a -<<12.某厂以x 千克/时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是310051x x æö+-ç÷èø元.若使生产该产品2小时获得的利润不低于3 000元,则x 的取值范围为( )A .{|3}x x ≥B .1| 35x x x ìü-íýîþ≤或≥C .{|310}x x ≤≤D .{|13}x x ≤≤二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.若1x ->,则当且仅当x =________时,函数111x x y +++=的最小值为________.14.若不等式20x ax b ++<的解集为{}|12x x -<<,则不等式210bx ax ++<的解集为________.15.已知,x y +ÎR ,且满足22x y xy +=,那么34x y +的最小值为________.16.若x ÎR ,不等式224421ax x x ++-+≥恒成立,则实数a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.[10分]已知不等式2340x x --<的解集为A ,不等式260x x --<的解集为B .(1)求A B I ;(2)若不等式20x ax b ++<的解集为A B I ,求,a b 的值.18.[12分]已知命题p :方程210x mx ++=有两个不相等的实根,命题p 是真命题.(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a ---<的解集为N ,若x N Î是x M Î的充分条件,求a 的取值范围.19.[12分](1)若0,0x y >>,且281x y+=,求xy 的最小值;(2)已知0,0x y >>满足21x y +=,求11x y+的最小值.20.[12分]要制作一个体积为39m ,高为1m 的有盖长方体容器,已知该容器的底面造价是每平方米10元,侧面造价是每平方米5元,盖的总造价为100元.求该长方体容器的长为多少时总造价最低,最低为多少元?21.[12分]已知,,a b c 均为正实数.求证:(1)()2()4a b ab c abc ++≥;(2)若3a b c ++=+.22.[12分]设2()1g x x mx =-+.(1)若()0g x x对任意0x >恒成立,求实数m 的取值范围;(2)讨论关于x 的不等式()0g x ≥的解集.第二章综合测试答案解析一、1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】A 5.【答案】C 6.【答案】D 7.【答案】D 8.【答案】B 9.【答案】A 10.【答案】C【解析】由35x y xy +=可得13155y x+=,所以139431213131234(34)5555555555x y x y x y y x y x æö+=++=++++=+=ç÷èø,当且仅当31255x yy x =且35x y xy +=,即1x =,12y =时取等号.故34x y +的最小值是5.11.【答案】A【解析】方程22450x ax a --=的两根为,5a a -.1210,,52a a a a +\-\-Q <<>.结合2245y x ax a =--的图像,得原不等式的解集是{|5 }x x a x a -<或>.12.【答案】C【解析】根据题意,得3200513000x x æö+-ç÷èø≥,整理,得35140x x --≥,即251430x x --≥.又110x ≤≤,可解得310x ≤≤.即要使生产该产品2小时获得的利润不低于3000元,x 的取值范围是|310{}x x ≤≤.二、13.【答案】0214.【答案】1| 1 2x x x ìü-íýîþ<或>15.【答案】5+16.【答案】2|3a a ìü-íýîþ≥【解析】不等式224421ax x x ++-+≥恒成立2(2)430a x x Û+++≥恒成立220443(2)0a a +>ìïÛí-´´+ïî≤23a Û-≥,故实数a 的取值范围是2|3a a ìü-íýîþ≥.三、17.【答案】(1)解:{|14},{|23}A x x B x x =-=-<<<<,{|13}A B x x \Ç=-<<.(2)解:Q 不等式20x ax b ++<的解集为{|13}x x -<<,1,3\-为方程20x ax b ++=的两根.10,930,a b a b -+=ì\í++=î2,3.a b =-ì\í=-î18.【答案】(1)解:命题p :方程210x mx ++=有两个不相等的实根,所以240m D =->,解得2m >或2m -<.所以{| 2 2}M m m m =->或<.(2)解:因为x N Î是x M Î的充分条件,所以N M Í.因为{|2}N x a x a =+<<,所以22a +-≤或2a ≥,所以4a -≤或2a ≥.19.【答案】(1)解:0,0x y Q >>且281x y+=,281x y \=+=≥,8,当且仅当82x y =且281x y+=即4x =,16y =时取等号.64xy \≥..故xy 的最小值是64.(2)解:0,0,21x y x y >>+=Q11112(2)1233x y x y x y x y y x æö\+=++=++++=+ç÷èø≥当且仅当x =且21x y +=.即x =,y =.故11x y+的最小值是3+20.【答案】解:设该长方体容器的长为m x ,则宽为9m x.又设该长方体容器的总造价为y 元,则9991021510019010y x x x x æöæö=´++´´+=++ç÷ç÷èøèø.因为96x x +=≥(当且仅当9x x =即3x =时取“=”).所以min 250y =.即该长方体容器的长为3m 时总造价最低,最低为250元.答:该长方体容器的长为3m 时总造价最低,最低为250元.21.【答案】(1)证明:因为,,a b c 均为正实数,由基本不等式得a b +≥,2ab c +≥,两式相乘得()2()4a b ab c abc ++≥,当且仅当a b c ==时取等号.所以()2()4a b ab c abc ++≥..(2)解:因为,,a b c 12322a a +++=,当且仅当12a +=时取等号;12322b b +++=,当且仅当12b +=时取等号;12322c c +++=.当且仅当12c +=时取等号.以上三式相加,得962a b c ++++=≤,当且仅当1a b c ===时取等号.22.【答案】(1)解:由题意,若()0g x x≥对任意0x >恒成立,即为10x m x-+对0x >恒成立,即有1(0)m x x x+≤>的最小值.由12(0)x x x +≥>,可得1x =时,1x x+取得最小值2.所以2m ≤.(2)解:2()1g x x mx =-+对应的一元二次方程为210x mx -+=.当240m D =-≤,即22m -≤≤时,()0g x ≥的解集为R ;当0D >,即2m >或2m -<时,方程的两根为x =可得()0g x ≥的解集为|x x x ìïíïî.。

2019-2020学年高中数学人教A版必修一阶段质量检测:第二章 基本初等函数(Ⅰ) 含解析

2019-2020学年高中数学人教A版必修一阶段质量检测:第二章 基本初等函数(Ⅰ) 含解析

阶段质量检测(二)基本初等函数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(lg 9-1)2等于()A.lg 9-1 B.1-lg 9C.8 D.2 2解析:因为lg 9<lg 10=1,所以(lg 9-1)2=1-lg 9.答案:B解析:方法一当a>1时,y=x a与y=log a x均为增函数,但y=x a 增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除由于y=x a递增较慢,所以选D.=x a的图象不过(0,1)点,故A的图象知0<a<1,而此时幂函数f(x)=xB错,D对;C项中由对数函数x)=x a的图象应是增长越来越快的变化趋势,2⎝⎭4a =±3,又a >0,∴a = 3.答案:A12.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫a -14x ,x ≥1,a x ,x <1,在R 上为减函数,则实数的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫-∞,14D.⎝ ⎛⎭⎪⎫14,1∴f(x)的减区间为(-∞,1].答案:(-∞,1]16.若函数f(x)=(m-1)xα是幂函数,则函数g(x)=log a(x-m)(其中a>0≠1)的图象过定点A的坐标为________.解析:若函数f(x)=(m-1)xα是幂函数,则m=2,则函数g(x)=log a(x-m)=log a(x-2)(其中a>0,a≠1),令x-2=1,则x=3,g(x)=0,其图象过定点A的坐标为(3,0).答案:(3,0)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)43所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2323,所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2334.19.(12分)已知f (x )=log 2(1+x )+log 2(1-x ). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并加以说明;(3)求f ⎝ ⎛⎭⎪⎫22的值.解析:(1)由⎩⎪⎨⎪⎧ 1+x >0,1-x >0,得⎩⎪⎨⎪⎧x >-1x <1,即-1<x <1.⎩⎪g (x ),f (x )>g (x ),解析:(1)设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以(2)2,解得α=2,即f (x )=x 2.设g (x )=x β,因为点⎝ ⎛⎭⎪⎫2,12在幂函数g (x )的图象上,所以2β=12,解得=-1,即g (x )=x -1.(2)在同一平面直角坐标系中画出函数f (x )=x 2和g (x )=x -1的图象,可得函数h (x )的图象如图所示.的解析式及图象可知,函数h (。

(人教版A版2017课标)高中数学必修第一册:第二章综合测试(含答案)

(人教版A版2017课标)高中数学必修第一册:第二章综合测试(含答案)

第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( ) A .若ac bc >,则a b >B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D .a b <2.若a ,b 必须满足的条件是( ) A .0a b >> B .0a b <<C .a b >D .0a ≥,0b ≥,且a b ≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤ C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +<”的充分不必要条件,则k 的取值范围是( ) A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( ) A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( ) A .22ac bc < B .11a b< C .b a a b>D .22a ab b >>7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( ) A .45a << B .32a --<<或45a << C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( ) A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( ) A .1c a>B .02c a<<C .13c a <<D .03c a<<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x ∃∈R ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已经1a <,则11a+与1a -的大小关系为________. 14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________. 15.已知三个不等式:①0ab >,②c dab--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题. 16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ∈R ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ⎧-+⎨⎩,324x ⎫⎬⎭≤≤,{}2=|1B x x m +≥.p x A ∈:,q x B ∈:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ∈R .(1)当=1a 时,求A B I ;(2)若=A B A U ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+. (1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D . 2.【答案】D【解析】2=()=a b -(.Q ,a ∴,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ∈R 恒成立,需22=36480k k k ∆-+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A . 4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++<,解得1x -<或2x >.因为“x k >”是“311x +<”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +⎧⎨-⎩⨯,,解得=4=3a b ⎧⎨-⎩,,所以4=3=81a b -().故选B . 6.【答案】D【解析】选项A ,c Q 为实数,∴取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b aa b ab--,0a b Q <<,0b a ∴->,0ab >,0b a ab -∴>,即11a b>,故选项B 不成立;选项C ,0a b Q <<,∴取=2a -,=1b -,则11==22b a --,2==21a b --,∴此时b a a b <,故选项C 不成立;选项D ,0a b Q <<,2=0a ab a a b ∴--()>,2=0ab b b a b --()>,22a ab b ∴>>,故选项D 正确.7.【答案】D【解析】210x a x a -++Q ()<,10x x a ∴--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D . 8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x∴--≥在02x <<时恒成立.11=2x x x x ---+--Q ()≤(当且仅当=1x 时取等号),2a ∴-≥,∴实数a 的最小值是2-.故选B . 9.【答案】A【解析】由题知{}=20N -,,则{}=0M N I .故选A . 10.【答案】C【解析】2x Q >,20x ∴->.11==222=422y x x x x ∴+-++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a ∴. 11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +⎧⎪+⎨⎪+⎩<≤,>,>,即1311b ca abc a a c b a a⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩<≤,>,>,1311b c a ac b a a ⎧+⎪⎪∴⎨⎪--⎪⎩<≤,<<,两式相加得024c a ⨯<<.c a ∴的取值范围为02ca<<.12.【答案】D【解析】Q 二次三项式220ax x b ++≥对一切实数x 恒成立,0a ∴>,且=440ab ∆-≤,1ab ∴≥.又0x ∃∈R ,使202=0ax x b ++成立,则=0∆,=1ab ∴,又a b >,0a b ∴->. 22222==a b a b ab a b a b a b a b +-+∴-+---()()≥,当且仅当a b -时等号成立.22a b a b+∴-的最小值为故选D .二、 13.【答案】111a a-+≥ 【解析】由1a <,得11a -<<.10a ∴+>,10a ->.2111=11a a a +--.2011a -Q <≤,2111a∴-≥,111a a∴-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a ∆-⨯⨯≤,解得a ,∴实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则cd ab ab a b --()<(),即bc ad --<,bc ad ∴>,即③成立;若①③成立,则bc ad ab ab>,即c d a b >,c d a b ∴--<,即②成立;若②③成立,则由②得c da b>,即0bc ad ab ->,Q ③成立,0bc ad ∴->,0ab ∴>,即①成立.故可组成3个正确命题.16.【答案】42x -<< 【解析】不等式2162a b x x b a ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++min <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<. 三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a ∆-,9=4a . 所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94. 若=A ∅,则=940a ∆-<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分) 18.【答案】(1)2560x x --+Q <,2560x x ∴+->,160x x ∴-+()()>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x ∴--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x ∴--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<; 当=0a 时,原不等式的解集是∅;当02a <<时,原不等式的解集是{|x x a <或}2x >; 当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+, 配方得237=416y x -+().因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤≤.所以7=|216A y y ⎧⎫⎨⎬⎩⎭≤≤.(6分)由21x m +≥,得21x m -≥, 所以{}2=|1B x x m -≥.(8分) 因为p 是q 的充分条件, 所以A B ⊆. 所以27116m -≤,(10分) 解得实数m 的取值范围是34m ≥或34m -≤.(12分) 20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤, 则{}=|23A B x x I ≤≤.(3分) (2)因为=A B A U ,所以B A ⊆.①当=B ∅,即23a a +>,3a >时,B A ⊆成立,符合题意.(8分)②当=B ∅,即23a a +≤,3a ≤时,由B A ⊆,有0233a a ⎧⎨+⎩≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a Q 、b 为正实数,且11a b+11a b ∴+=a b 时等号成立), 即12ab ≥.(3分)2221122=a b ab +⨯Q ≥≥(当且仅当=a b 时等号成立),22a b ∴+的最小值为1.(6分)(2)11a b+Q,a b ∴+.234a b ab -Q ()≥(), 2344a b ab ab ∴+-()≥(),即2344ab ab -()≥(), 2210ab ab -+()≤, 210ab -()≤,a Q 、b 为正实数,=1ab ∴.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ∈R .当0a <时,解得1a x a +>. 当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ; 当0a <时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭>; 当0a >时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭<.(6分) (2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤, 因为2y x x a --≤在0+∞(,)上恒成立, 所以11a x x+-≤在0+∞(,)上恒成立. 令1=1t x x+-,只需min a t ≤, 因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立. 所以a 的取值范围是1a ≤.(12分)。

人教A版数学必修一-高中必修一第二章能力检测试卷(新).doc

人教A版数学必修一-高中必修一第二章能力检测试卷(新).doc

2010-2011高中数学必修一第二章能力检测试卷(新人教版) 班级: 姓名: 座号:一 选择题 ( 共10题 每道题3分)1、已知134log >a ,则a 的取值范围是 ( ) A . 1>a B . 34>a C . 10<<a D. 341<<a 2. 设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( ) A .a b c << B .c b a << C .c a b << D .b a c <<3、已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4. 已知函数f (x )=2x , 则f (1—x )的图象为 ( ) A B C D5.当(1,2)x ∈,不等式2(1)log a x x -<恒成立,a 的取值范围是( ) A (1,2) B (1,2] C (1,2]- D (1,2)- 6.函数lg ||y x =( )A .是偶函数,在区间(-∞,0)上单调递增B .是偶函数,在区间(-∞,0)上单调递减C .是奇函数,在区间(0,+∞)上单调递增D .是奇函数,在区间(0,+∞)上单调递减7. 已知幂函数()f x 存在反函数1()fx -,且13()(33)3f x -==,则()f x 的表达式是 ( )A 3()f x x =B 3()f x x -=C 12()f x x = D 12()f x x -=8.函数y=1212x -+x (x <0)的反函数是( ) A .y=log 211-+x x (x<-1) B. y =log 211-+x x (x>1) C.y=log 211+-x x (x<-1) D. y =log 211+-x x (x>1) 9. 设函数f(x)= (]⎩⎨⎧+∞∈∞∈-),1(x ,x log ,1-x ,281x ,则满足f(x)= 41的x 值为( ) A .2 B. 3 C. -3 D. 2或310. 设函数()log ()a f x x b =+ (a >0,a ≠1)的图象过点(0,0),其反函数过点(1,2),则a+b 等于( )A .3B .4C .5D .6 二 填空题 (共5空, 每空4分)11.已知x x f 26log )(=,那么)8(f 等于 x y O x y O x y O xy O12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点13、函数44366399a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭等于 14、若函数()⎥⎦⎤⎢⎣⎡+-+=411log 22x a ax y 的定义域为R ,则实数a 的取值范围是 三 问答题 (共50分)15 (1) 求值:;2lg 5lg 100lg 20lg 5lg 50lg 2lg -+(5分)(2)求值: 21140324275()(0.002)10(52)()(52)89---+--+-++ (5分) 16. 已知f (x )=log a 11x x+- (a >0, 且a ≠1) (10分) (1) 求f (x )的定义域(2) 求使 f (x )>0的x 的取值范围.17、已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间及值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2011高中数学必修一第二章能力检测试卷(新人教版) 班级: 姓名: 座号:
一 选择题 ( 共10题 每道题3分)
1、已知13
4log >a ,则a 的取值范围是 ( ) A . 1>a B . 34>a C . 10<<a D. 3
41<<a 2. 设12
log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( ) A .a b c << B .c b a << C .c a b << D .b a c <<
3、已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
4. 已知函数f (x )=2x , 则f (1—x )的图象为 ( )
A B C D
5.当(1,2)x ∈,不等式2(1)log a x x -<恒成立,a 的取值范围是( )
A (1,2)
B (1,2]
C (1,2]-
D (1,2)-
6.函数lg ||y x =( )
A .是偶函数,在区间(-∞,0)上单调递增
B .是偶函数,在区间(-∞,0)上单调递减
C .是奇函数,在区间(0,+∞)上单调递增
D .是奇函数,在区间(0,+∞)上单调递减
7. 已知幂函数()f x 存在反函数1()f
x -,且13()(33)3f x -==,则()f x 的表达式是 ( )
A 3()f x x =
B 3()f x x
-= C 12()f x x = D 12()f x x -=
8.函数y=1
212x -+x (x <0)的反函数是( ) A .y=log 211-+x x (x<-1) B. y =log 21
1-+x x (x>1) C.y=log 211+-x x (x<-1) D. y =log 211+-x x (x>1) x y O x y O x y O x
y O。

相关文档
最新文档