高考物理相互作用解题技巧及练习题及解析(1)
【物理】物理高考物理相互作用练习题含解析
【物理】物理高考物理相互作用练习题含解析一、高中物理精讲专题测试相互作用1.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
平台足够宽,高为h=0.8m ,长为L=3.3m 。
一个质量m 1=0.2kg 的小球以v0=3m/s 的速度沿x 轴运动,到达O 点时,给小球施加一个沿y 轴正方向的水平力F 1,且F 1=5y (N )。
经一段时间,小球到达平台上坐标为(1.2m ,0.8m )的P 点时,撤去外力F1。
在小球到达P 点的同时,平台与地面相交处最内侧的M 点,一个质量m2=0.2kg 的滑块以速度v 在水平地面上开始做匀速直线运动,滑块与地面间的动摩擦因数μ=0.5,由于摩擦力的作用,要保证滑块做匀速运动需要给滑块一个外力F2,最终小球落在N 点时恰好与滑块相遇,小球、滑块均视为质点, 210/g m s =, sin370.6cos370.8︒=︒=,。
求:(1)小球到达P 点时的速度大小和方向; (2)M 、N 两点间的距离s 和滑块速度v 的大小; (3)外力F 2最小值的大小(结果可用根式表示)【答案】(1)5m/s 方向与x 轴正方向成53°(2)1.5m ;3.75m/s (325N 【解析】(1)小球在平台上做曲线运动,可分解为沿x 轴方向的匀速直线运动和沿y 轴方向的变加速运动,设小球在P 点受到p v 与x 轴夹角为α 从O 点到P 点,变力1F 做功50.80.8 1.62p y J J ⨯=⨯= 根据动能定理有221101122P W m v m v =-,解得5/p v m s = 根据速度的合成与分解有0cos p v v α=,得53α=︒,小球到达P 点时速度与x 轴正方向成53︒(2)小球离开P 点后做平抛运动,根据平抛运动规律有212h gt =,解得t=0.4s 小球位移在水平面内投影2p l v t m ==设P 点在地面的投影为P ',则 2.5P P M L y m ='=-由几何关系可得2222cos s P M l l P M θ=+-⋅⋅'',解得s=1.5m滑块要与小球相遇,必须沿MN 连线运动,由s vt =,得 3.75/v m s = (3)设外力2F 的方向与滑块运动方向(水平方向)的夹角为β,根据平衡条件 水平方向有: 2cos F f β=,其中f N μ=,竖直方向有22sin N F m g β+= 联立解得22cos sin m gF μβμβ=+由数学知识可得()2221sin F μβθ=++,其最小值22min 2251F N μ==+。
高考物理相互作用常见题型及答题技巧及练习题(含答案)
高考物理相互作用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试相互作用1.如图所示,置于水平面上的木箱的质量为m=3.8kg ,它与水平面间的动摩擦因数μ=0.25,在与水平方向成37°角的拉力F 的恒力作用下从A 点向B 点做速度V 1=2.0m /s 匀速直线运动.(cos37°=0.8,sin37°=0.6,g 取10N/kg ) (1)求水平力F 的大小;(2)当木箱运动到B 点时,撤去力F ,木箱在水平面做匀减速直线运动,加速度大小为2.5m/s 2,到达斜面底端C 时速度大小为v 2=1m/s ,求木箱从B 到C 的位移x 和时间t ; (3)木箱到达斜面底端后冲上斜面,斜面质量M=5.32kg ,斜面的倾角为37°.木箱与斜面的动摩擦因数μ=0.25,要使斜面在地面上保持静止.求斜面与地面的摩擦因数至少多大.、【答案】(1)10N (2)0.4s 0.6m (3)13(答0.33也得分) 【解析】(1)由平衡知识:对木箱水平方向cos F f θ=,竖直方向:sin N F F mg θ+= 且N f F μ=, 解得F=10N(2)由22212v v ax -=,解得木箱从B 到C 的位移x=0.6m ,21120.12.5v v t s s a --===- (3)木箱沿斜面上滑的加速度21sin 37cos378/mg mg a m s mμ︒+︒==对木箱和斜面的整体,水平方向11cos37f ma =︒竖直方向:()1sin37N M m g F ma +-=︒,其中11N f F μ=,解得113μ=点睛:本题是力平衡问题,关键是灵活选择研究对象进行受力分析,根据平衡条件列式求解.求解平衡问题关键在于对物体正确的受力分析,不能多力,也不能少力,对于三力平衡,如果是特殊角度,一般采用力的合成、分解法,对于非特殊角,可采用相似三角形法求解,对于多力平衡,一般采用正交分解法.2.如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m ,长为2d ,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为36μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.【答案】(1)2m/s(2)0.125C(3)0.2625J【解析】试题分析:(1)导体棒在粗糙轨道上受力平衡:mgsin θ="μmgcos" θ+BILE=BLv解得:v=2m/s(2)进入粗糙导轨前:解得:q=0.125C(3)由动能定理得:考点:法拉第电磁感应定律;物体的平衡;动能定理【名师点睛】本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.3.明理同学平时注意锻炼身体,力量较大,最多能提起m=50kg的物体.一重物放置在倾角θ=15°的粗糙斜坡上,重物与斜坡间的摩擦因数为试求该同学向上拉动的重物质量M的最大值?【答案】【解析】【详解】由题意可知,该同学的最大拉力:F=mg设该同学与斜面方向的夹角是β的时候拉动的物体的最大质量是M,对物体受力分析知:垂直于斜面的方向:F N+Fsinβ=Mgcosθ沿斜面的方向:Fcosβ=f+Mgsinθ若恰好拉动物体,则有:f=μF N联立解得:令μ=tanα,代入上式可得:要使该同学向上拉动的物体的质量最大,上式分子取最大值,即:cos(β﹣α)=1由μ=tanα=可得:α=30°联立以上各式得:M max=【点睛】该题中按照常规的步骤对物体进行受力分析即可,题目的难点是如何利用三角函数的关系,化简并得出正确的结论.4.如图所示,质量M=10 kg、上表面光滑、下表面粗糙的足够长木板在F="50" N的水平拉力作用下,以初速度v0=5 m/s沿水平地面向右做匀速直线运动。
高考物理相互作用解题技巧(超强)及练习题(含答案)含解析
高考物理互相作用解题技巧( 超强 ) 及练习题 ( 含答案 ) 含分析一、高中物理精讲专题测试互相作用1.以下图,竖直轻弹簧 B 的下端固定于水平面上,上端与 A 连结,开始时A静止。
A 的质量为 m= 2kg,弹簧 B 的劲度系数为k1= 200N/m 。
用细绳越过定滑轮将物体 A 与另一根劲度系数为 k2的轻弹簧 C 连结,当弹簧C处在水平川点且未发生形变时,其右端点位于a 地点,此时 A 上端轻绳恰巧竖直挺直。
将弹簧 C 的右端点沿水平方向迟缓拉到b 地点时,弹簧 B 对物体 A 的拉力大小恰巧等于 A 的重力。
已知ab= 60cm,求:(1)当弹簧 C 处在水平川点且未发生形变时,弹簧 B 的形变量的大小;(2)该过程中物体 A 上涨的高度及轻弹簧 C 的劲度系数 k2。
【答案】( 1) 10cm;( 2) 100N/m 。
【分析】【详解】(1)弹簧 C 处于水平川点且没有发生形变时, A 处于静止,弹簧 B 处于压缩状态;依据胡克定律有: k1x1= mg代入数据解得: x1= 10cm(2)当 ab= 60cm 时,弹簧 B 处于伸长状态,依据胡克定律有:k1x2= mg代入数据求得:x2= 10cm故 A 上涨高度为: h= x1+x2= 20cm由几何关系可得弹簧 C 的伸长量为: x3= ab﹣ x1﹣ x2= 40cm依据均衡条件与胡克定律有:mg+k1x2=k2x3解得 k2=100N/m2.如图,两条间距定搁置,磁感觉强度L=0.5m 且足够长的平行圆滑金属直导轨,与水平川面成B=0.4T 的匀强磁场方向垂直导轨所在的斜面向上,质量30角固m ab0.1kg 、 m cd0.2kg 的金属棒ab、cd垂直导轨放在导轨上,两金属棒的总电阻r=0.2 Ω,导轨电阻不计.ab 在沿导轨所在斜面向上的外力 F 作用下,沿该斜面以v2m/s 的恒定速度向上运动.某时辰开释cd, cd 向下运动,经过一段时间其速度达到最大.已知重力加快度g=10m/s 2,求在cd 速度最大时,(1) abcd 回路的电流强度I 以及 F 的大小;(2) abcd 回路磁通量的变化率以及cd 的速率.【答案】 (1)I =5A , =1.5N(2)1.0Wb/s , v m3m/sF t【分析】【详解】(1)以 cd 为研究对象,当cd 速度达到最大值时,有:m cd g sin BIL ①代入数据,得:I=5A因为以后两棒均沿斜面方向做匀速运动,可将两棒看作整体,作用在ab 上的外力:F(m ab m cd ) g sin ②(或对 ab:F m ab g sin BIL )代入数据,得:F=1.5N(2)设 cd 达到最大速度时abcd 回路产生的感觉电动势为E,依据法拉第电磁感觉定律,有: Et③由闭合电路欧姆定律,有:E④Ir联立③④并代入数据,得:=1.0Wb/st设 cd 的最大速度为 v m, cd 达到最大速度后的一小段时间t 内,abcd 回路磁通量的变化量:B S BL (v m v)t ⑤回路磁通量的变化率:BL( v m v)⑥t联立⑤⑥并代入数据,得:v m 3m/s【点睛】本题是电磁感觉中的力学识题,综合运用电磁学知识和力均衡知识;剖析清楚金属棒的运动过程与运动性质是解题的前提,应用均衡条件、欧姆定律即可解题.3.以下图,质量为M=5kg 的物体放在倾角为θ=30o的斜面上,与斜面间的动摩擦因数为 /5,最大静摩擦力等于滑动摩擦力,M 用平行于斜面的轻绳绕过圆滑的定滑轮与不计质量的吊盘连结,两个劲度系数均为k=1000N/m 的轻弹簧和两个质量都是m 的物体均固连, M 恰巧不上滑,取g=10m/s 2。
高考物理相互作用(一)解题方法和技巧及练习题含解析
高考物理相互作用(一)解题方法和技巧及练习题含解析一、高中物理精讲专题测试相互作用1.如图所示,质量均为M 的A 、B 两滑块放在粗糙水平面上,滑块与粗糙水平面间的动摩擦因数为μ,两轻杆等长,且杆长为L,杆与滑块、杆与杆间均用光滑铰链连接,杆与水平面间的夹角为θ,在两杆铰合处悬挂一质量为m 的重物C,整个装置处于静止状态。
重力加速度为g ,最大静摩擦力等于滑动摩擦力,试求:(1)地面对物体A 的静摩擦力大小;(2)无论物块C 的质量多大,都不能使物块A 或B 沿地面滑动,则μ至少要多大? 【答案】(1)2tan mgθ (2)1tan θ【解析】 【分析】先将C 的重力按照作用效果分解,根据平行四边形定则求解轻杆受力;再隔离物体A 受力分析,根据平衡条件并结合正交分解法列式求解滑块与地面间的摩擦力和弹力.要使得A 不会滑动,则满足m f f ≤,根据数学知识讨论。
【详解】(1)将C 的重力按照作用效果分解,如图所示:根据平行四边形定则,有:12122mgmg F F sin sin θθ=== 对物体A 水平方向:1cos 2tan mgf F θθ==(2)当A 与地面之间的摩擦力达到最大静摩擦力时:1(sin )m f Mg F μθ=+ 且m f f ≤ 联立解得:1=2tan (2)tan (1)m M M m mμθθ≥++ ,当m →∞时,112tan tan (1)M mθθ→+,可知无论物块C 的质量多大,都不能使物块A 或B 沿地面滑动,则μ至少等于1tan θ。
2.如图所示,置于水平面上的木箱的质量为m=3.8kg ,它与水平面间的动摩擦因数μ=0.25,在与水平方向成37°角的拉力F 的恒力作用下从A 点向B 点做速度V 1=2.0m /s 匀速直线运动.(cos37°=0.8,sin37°=0.6,g 取10N/kg ) (1)求水平力F 的大小;(2)当木箱运动到B 点时,撤去力F ,木箱在水平面做匀减速直线运动,加速度大小为2.5m/s 2,到达斜面底端C 时速度大小为v 2=1m/s ,求木箱从B 到C 的位移x 和时间t ; (3)木箱到达斜面底端后冲上斜面,斜面质量M=5.32kg ,斜面的倾角为37°.木箱与斜面的动摩擦因数μ=0.25,要使斜面在地面上保持静止.求斜面与地面的摩擦因数至少多大.、【答案】(1)10N (2)0.4s 0.6m (3)13(答0.33也得分) 【解析】(1)由平衡知识:对木箱水平方向cos F f θ=,竖直方向:sin N F F mg θ+= 且N f F μ=, 解得F=10N(2)由22212v v ax -=,解得木箱从B 到C 的位移x=0.6m ,21120.12.5v v t s s a --===- (3)木箱沿斜面上滑的加速度21sin 37cos378/mg mg a m s mμ︒+︒==对木箱和斜面的整体,水平方向11cos37f ma =︒竖直方向:()1sin37N M m g F ma +-=︒,其中11N f F μ=,解得113μ=点睛:本题是力平衡问题,关键是灵活选择研究对象进行受力分析,根据平衡条件列式求解.求解平衡问题关键在于对物体正确的受力分析,不能多力,也不能少力,对于三力平衡,如果是特殊角度,一般采用力的合成、分解法,对于非特殊角,可采用相似三角形法求解,对于多力平衡,一般采用正交分解法.3.如图所示,一质量m=4.0kg 的小球在轻质弹簧和细线的作用下处于静止状态,细线AO 与竖直方向的夹角θ=370,弹簧BO 水平并处于压缩状态,小球与弹簧接触但不粘连,已知弹簧的劲度系数k=100N/m ,取sin370=0.6,cos370=0.8,求:(1)小球静止时,细线中的拉力T 和弹簧的压缩量x ; (2)剪断细线AB 瞬间,小球的加速度a 。
高考物理力学知识点之相互作用难题汇编含答案解析(1)
高考物理力学知识点之相互作用难题汇编含答案解析(1)一、选择题1.如图,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为N 1,球对木板的压力大小为N 2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中A .N 1始终减小,N 2始终增大B .N 1始终减小,N 2始终减小C .N 1先增大后减小,N 2始终减小D .N 1先增大后减小,N 2先减小后增大2.如图所示为小朋友喜欢的磁性黑板,下面有一个托盘,让黑板撑开一个安全角度(黑板平面与水平面的夹角为θ),不易倾倒,小朋友不但可以在上面用专用画笔涂鸦,磁性黑板擦也可以直接吸在上面.图中就有小朋友把一块质量m 为黑板擦吸在上面保持静止,黑板与黑板擦之间的动摩擦因数μ,则下列说法正确的是( )A .黑板擦对黑板的压力大小为mgcosθB .黑板斜面对黑板的摩擦力大小为μmgcosθC .黑板对黑板擦的摩擦力大于mgsinθD .黑板对黑板擦的作用力大小为mg3.如图,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球。
在a 和b 之间的细线上悬挂一小物块。
平衡时,a 、b 间的距离恰好等于圆弧的半径。
不计所有摩擦。
小物块的质量为A .2mB .32mC .mD .2m4.如图,在挪威的两座山峰间夹着一块岩石,吸引了大量游客前往观赏。
该景观可简化成如图所示的模型,右壁竖直,左壁稍微倾斜。
设左壁与竖直方向的夹角为θ,由于长期的风化,θ将会减小。
石头与山崖间的摩擦很小,可以忽略不计。
若石头质量一定,θ减小,石头始终保持静止,下列说法正确的是A.山崖左壁对石头的作用力将增大B.山崖右壁对石头的作用力不变C.山崖对石头的作用力减小D.石头受到的合力将增大5.磁力棒是可拆卸类拼搭玩具。
如图所示为一磁力棒吸着一颗钢球,下列说法正确的是()A.磁力棒对刚球弹力是由于钢球发生形变产生的B.钢球受到磁力棒的磁力等于钢球的重力C.钢球受到磁力棒的作用力方向竖直向上D.钢球和磁力棒整体一起白由下落,则磁力棒对钢球弹力等于零6.木块沿粗糙斜面(斜面相对地面静止)运动,下列对木块的受力分析正确的是(G是重力,N是支持力,f是摩擦力)A. B. C. D.7.如图所示,某球用一根轻绳悬在空中,球的重量为G,轻绳对球的拉力大小为F1,墙壁对球的支持力大小为F2,则()A.若增加悬绳的长度,则F1、F2都增大B.若增加悬绳的长度,则F1、F2都减小C.若增大球的半径,则F1增大、F2减小D.若增大球的半径,则F1减小、F2增大8.灯笼,又称彩灯,是一种古老的中国传统工艺品.每年的农历正月十五元宵节前后,人们都挂起红灯笼,来营造一种喜庆的氛围.如图是某节日挂出的一只灯笼,轻绳a、b将灯笼悬挂于O点绳a与水平方向的夹角为,绳b水平.灯笼保持静止,所受重力为G,绳a、b对O点拉力分別为F1、F2,下列说法正确的是()A.B.C.F1和F2的合力与灯笼对地球的引力是一对平衡力D.灯笼只有重心位置处受重力作用,其他位置不受重力9.用斧头劈木柴的情景如图甲所示。
高考物理相互作用解题技巧和训练方法及练习题(含答案)及解析
高考物理相互作用解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试相互作用1.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.2.如图所示:一根光滑的丝带两端分别系住物块A 、C ,丝带绕过两定滑轮,在两滑轮之间的丝带上放置了球B,D 通过细绳跨过定滑轮水平寄引C 物体。
整个系统处于静止状态。
已知,,,B 物体两侧丝带间夹角为600,与C 物体连接丝带与水平面夹角为300,此时C 恰能保持静止状态。
高考物理相互作用解题技巧讲解及练习题(含答案)及解析
高考物理互相作用解题技巧解说及练习题( 含答案 ) 及分析一、高中物理精讲专题测试互相作用1.如下图, A、 B 都是重物, A 被绕过小滑轮P 的细线悬挂, B 放在粗拙的水平桌面上,滑轮 P 被一根斜短线系于天花板上的 O 点, O′是三根细线的结点,细线 bO′水平拉着物体 B,cO′沿竖直方向拉着弹簧.弹簧、细线、小滑轮的重力不计,细线与滑轮之间的摩擦力可忽视,整个装置处于静止状态.若重物 A 的质量为2kg,弹簧的伸长量为5cm ,∠cO′a=120,°重力加快度g 取 10m/s 2,求:(1)桌面对物体 B 的摩擦力为多少?(2)弹簧的劲度系数为多少?(3)悬挂小滑轮的斜线中的拉力F 的大小和方向?【答案】( 1)103N (2)200N/m(3) 20 3N ,方向在O′a与竖直方向夹角的角均分线上 .【分析】【剖析】(1)对结点O′受力剖析,依据共点力均衡求出弹簧的弹力和bO′绳的拉力,经过B 均衡求出桌面对 B 的摩擦力大小.(2)依据胡克定律求弹簧的劲度系数.(3)悬挂小滑轮的斜线中的拉力 F 与滑轮双侧绳索拉力的协力等大反向.【详解】(1)重物 A 的质量为2kg,则 O′a绳上的拉力为F O′a=G A=20N对结点 O′受力剖析,如下图,依据平行四边形定章得:水平绳上的力为:F ob=F O′a sin60 =10° 3 N物体 B 静止,由均衡条件可得,桌面对物体 B 的摩擦力f=F ob=10 3 N(2)弹簧的拉力大小为 F 弹 =F O′a cos60 °=10N.依据胡克定律得 F 弹 =kxF弹10得 k===200N/mx0.05(3)悬挂小滑轮的斜线中的拉力 F 与滑轮双侧绳索拉力的协力等大反向,则悬挂小滑轮的F F=2F ′a3N=20 3 N斜线中的拉力的大小为:O cos30 =2°×20×2方向在 O′a与竖直方向夹角的角均分线上2.( 18 分)如下图,金属导轨水平面夹角为α,N、Q连线与MN MNC 和垂直,PQD, MN 与 PQ平行且间距为L,所在平面与M、 P 间接有阻值为R 的电阻;圆滑直导轨NC和 QD 在同一水平面内,与NQ 的夹角都为锐角θ。
高考物理相互作用解题技巧和训练方法及练习题(含答案)及解析
高考物理互相作用解题技巧和训练方法及练习题( 含答案 ) 及分析一、高中物理精讲专题测试互相作用1.轻绳下端悬挂200N 的重物,用水平力拉轻绳上的点,使轻绳上部分偏离竖直方向=角保持静止,如下图。
(1)求水平力的大小;(2)保持轻绳上部分与竖直方向的夹角=及与水平方向的夹角。
【答案】( 1)(2)【分析】试题剖析:(1)对点受力剖析,可得(2)力有最小值时,解得不变,改变力的方向,求力,与水平方向夹角为,解得,与水平方向夹角为的最小值考点:考察了共点力均衡条件【名师点睛】在办理共点力均衡问题时,重点是对物体进行受力剖析,而后依据正交分解法将各个力分解成两个方向上的力,而后列式求解,假如物体遇到三力处于均衡状态,则可依据矢量三角形法,将三个力挪动到一个三角形中,而后依据角度列式求解2.如下图, B、 C 两小球的重力均为 G,用细线悬挂于 A、 D 两点,系统处于静止状态.求:(1) AB 和 CD 两根细线的拉力各为多大?(2)细线 BC与竖直方向的夹角是多大?【答案】( 1)F13G 、F2G (2)600【分析】【剖析】【详解】(1)对 B、 C 整体研究,如下图:由图可得AB 线的拉力为:,CD线的拉力为:(2)对 C球研究,如下图:,可得:,.【考点定位】考察了共点力均衡条件的应用【点睛】在办理共点力均衡问题时,重点是对物体进行受力剖析,而后依据正交分解法将各个力分解成两个方向上的力,而后列式求解,假如物体遇到三力处于均衡状态,则可依据矢量三角形法,将三个力挪动到一个三角形中,而后依据角度列式求解,3.如下图,两平行金属导轨间的距离L=0.4 m,金属导轨所在的平面与水平面夹角θ=37 °,在导轨所在空间内,散布着磁感觉强度B=0.5 T、方向垂直于导轨平面的匀强磁场。
金属导轨的一端接有电动势E=6.0 V、内阻 r=0.5 Ω的直流电源。
现把一个质量m=0.05kg 的导体棒 ab 垂直放在金属导轨上,导体棒静止。
高考物理相互作用解题技巧及练习题(含答案)及解析
高考物理相互作用解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试相互作用1.如图所示,质量的木块A套在水平杆上,并用轻绳将木块与质量的小球B相连.今用跟水平方向成角的力,拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,取.求:(1)运动过程中轻绳与水平方向夹角;(2)木块与水平杆间的动摩擦因数为.(3)当为多大时,使球和木块一起向右匀速运动的拉力最小?【答案】(1)30°(2)μ=(3)α=arctan.【解析】【详解】(1)对小球B进行受力分析,设细绳对N的拉力为T由平衡条件可得:Fcos30°=TcosθFsin30°+Tsinθ=mg代入数据解得:T=10,tanθ=,即:θ=30°(2)对M进行受力分析,由平衡条件有F N=Tsinθ+Mgf=Tcosθf=μF N解得:μ=(3)对M、N整体进行受力分析,由平衡条件有:F N+Fsinα=(M+m)gf=Fcosα=μF N联立得:Fcosα=μ(M+m)g-μFsinα解得:F=令:sinβ=,cosβ=,即:tanβ=则:所以:当α+β=90°时F有最小值.所以:tanα=μ=时F的值最小.即:α=arctan【点睛】本题为平衡条件的应用问题,选择好合适的研究对象受力分析后应用平衡条件求解即可,难点在于研究对象的选择和应用数学方法讨论拉力F的最小值,难度不小,需要细细品味.2.如图所示,放在粗糙的固定斜面上的物块 A 和悬挂的物体 B 均处于静止状态.轻绳 AO 绕过光滑的定滑轮与轻弹簧的右端及轻绳 BO 的上端连接于 O 点,轻弹簧中轴线沿水平方向,轻绳的 OC 段与竖直方向的夹角θ=53°,斜面倾角α=37°,物块 A 和 B 的质量分别为m A=5kg ,m B=1.5kg,弹簧的劲度系数 k=500N/m ,(sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2),求:(1)弹簧的伸长量 x;(2)物块 A 受到的摩擦力.【答案】(1);(2)5N,沿斜面向上【解析】(1)对结点O受力分析如图所示:根据平衡条件,有:,,且:,解得:;(2)设物体A所受摩擦力沿斜面向下,对物体A做受力分析如图所示:根据平衡条件,有:,解得:,即物体A所受摩擦力大小为,方向沿斜面向上。
高考物理相互作用解题技巧和训练方法及练习题(含答案)含解析
高考物理相互作用解题技巧和训练方法及练习题(含答案)含解析一、高中物理精讲专题测试相互作用1.如图所示,一质量为m 的金属球,固定在一轻质细绳下端,能绕悬挂点O 在竖直平面内转动.整个装置能自动随着风的转向而转动,使风总沿水平方向吹向小球.无风时细绳自然下垂,有风时细绳将偏离竖直方向一定角度,求:(1)当细绳偏离竖直方向的角度为θ,且小球静止时,风力F 及细绳对小球拉力T 的大小.(设重力加速度为g )(2)若风向不变,随着风力的增大θ将增大,判断θ能否增大到90°且小球处于静止状态,说明理由.【答案】(1)cos mgT θ=,F=mgtanθ (2)不可能达到90°且小球处于静止状态 【解析】 【分析】 【详解】(1)对小球受力分析如图所示(正交分解也可以)应用三角函数关系可得:F=mgtanθ(2)假设θ=90°,对小球受力分析后发现合力不能为零,小球也就无法处于静止状态,故θ角不可能达到90°且小球处于静止状态.2.用质量为m 、总电阻为R 的导线做成边长为l 的正方形线框MNPQ ,并将其放在倾角为θ的平行绝缘导轨上,平行导轨的间距也为l ,如图所示,线框与导轨之间是光滑的,在导轨的下端有一宽度为l (即ab l =)、磁感应强度为B 的有界匀强磁场,磁场的边界'aa 、'bb 垂直于导轨,磁场的方向与线框平面垂直,线框从图示位置由静止释放,恰能匀速穿过磁场区域,重力加速度为g ,求:(1)线框通过磁场时的速度v ;(2)线框MN 边运动到'aa 的过程中通过线框导线横截面的电荷量q ; (3)通过磁场的过程中,线框中产生的热量Q 。
【答案】(1)22?mgRsin v B l θ=(2)2Bl q R =(3)2Q mglsin θ= 【解析】试题分析:(1)感应电动势: E Blv =,感应电流: EI R=,安培力: F BIl = 线框在磁场区域做匀速运动时,其受力如图所示F mgsin θ=解得匀速运动的速度:22?mgRsin v B l θ=(2)解法一:由BIl mgsin θ=得,sin mg I Bl θ=,23sin l B l t v mgR θ==, 所以2Bl q It R==解法二:平均电动势E n t ϕ∆=∆,E I R =,q I t n Rϕ∆=∆= ,所以2Bl q R =。
高考物理相互作用解题技巧及经典题型及练习题(含答案)及解析
高考物理相互作用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试相互作用1.如图所示,斜面倾角为θ=37°,一质量为m=7kg的木块恰能沿斜面匀速下滑,(sin37°=0.6,cos37°=0.8,g=10m/s2)(1)物体受到的摩擦力大小(2)物体和斜面间的动摩擦因数?(3)若用一水平恒力F作用于木块上,使之沿斜面向上做匀速运动,此恒力F的大小.【答案】(1)42N(2)0.75(3)240N【解析】【分析】【详解】(1)不受推力时匀速下滑,物体受重力,支持力,摩擦力,沿运动方向有:mg sinθ-f=0所以:f=mg sinθ=7×10×sin37°=42N(2)又:f=μmg cosθ解得:μ=tanθ=0.75(3)受推力后仍匀速运动则:沿斜面方向有:F cosθ-mg sinθ-μF N=0垂直斜面方向有:F N-mg cosθ-F sinθ=0解得:F=240N【点睛】本题主要是解决摩擦因数,依据题目的提示,其在不受推力时能匀速运动,由此就可以得到摩擦因数μ=tanθ.2.如图所示,质量均为M的A、B两滑块放在粗糙水平面上,滑块与粗糙水平面间的动摩擦因数为μ,两轻杆等长,且杆长为L,杆与滑块、杆与杆间均用光滑铰链连接,杆与水平面间的夹角为θ,在两杆铰合处悬挂一质量为m的重物C,整个装置处于静止状态。
重力加速度为g,最大静摩擦力等于滑动摩擦力,试求:(1)地面对物体A 的静摩擦力大小;(2)无论物块C 的质量多大,都不能使物块A 或B 沿地面滑动,则μ至少要多大? 【答案】(1)2tan mgθ (2)1tan θ【解析】 【分析】先将C 的重力按照作用效果分解,根据平行四边形定则求解轻杆受力;再隔离物体A 受力分析,根据平衡条件并结合正交分解法列式求解滑块与地面间的摩擦力和弹力.要使得A 不会滑动,则满足m f f ≤,根据数学知识讨论。
高考物理相互作用技巧和方法完整版及练习题含解析
高考物理相互作用技巧和方法完整版及练习题含解析一、高中物理精讲专题测试相互作用1.如图所示,斜面倾角为θ=37°,一质量为m=7kg的木块恰能沿斜面匀速下滑,(sin37°=0.6,cos37°=0.8,g=10m/s2)(1)物体受到的摩擦力大小(2)物体和斜面间的动摩擦因数?(3)若用一水平恒力F作用于木块上,使之沿斜面向上做匀速运动,此恒力F的大小.【答案】(1)42N(2)0.75(3)240N【解析】【分析】【详解】(1)不受推力时匀速下滑,物体受重力,支持力,摩擦力,沿运动方向有:mg sinθ-f=0所以:f=mg sinθ=7×10×sin37°=42N(2)又:f=μmg cosθ解得:μ=tanθ=0.75(3)受推力后仍匀速运动则:沿斜面方向有:F cosθ-mg sinθ-μF N=0垂直斜面方向有:F N-mg cosθ-F sinθ=0解得:F=240N【点睛】本题主要是解决摩擦因数,依据题目的提示,其在不受推力时能匀速运动,由此就可以得到摩擦因数μ=tanθ.2.质量m=5kg的物体在20N的水平拉力作用下,恰能在水平地面上做匀速直线运动.若改用与水平方向成θ=37°角的力推物体,仍要使物体在水平地面上匀速滑动,所需推力应为多大?(g=10N/kg,sin37°=0.6,cos37°=0.8)【答案】35.7N ; 【解析】解:用水平力拉时,物体受重力、支持力、拉力和滑动摩擦力, 根据平衡条件,有:f mg μ= 解得:200.450f mg μ=== 改用水平力推物体时,对物块受力分析,并建正交坐标系如图:由0X F =得:cos F f θ= ① 由0Y F =得:sin N mg F θ=+ ② 其中:f N μ= ③ 解以上各式得:35.7F N =【点睛】本题关键是两次对物体受力分析,然后根据共点力平衡条件列方程求解,注意摩擦力是不同的,不变的是动摩擦因数.3.一架质量m 的飞机在水平跑道上运动时会受到机身重力、竖直向上的机翼升力F 升、发动机推力、空气阻力F 阻、地面支持力和跑道的阻力f 的作用。
高考物理相互作用技巧(很有用)及练习题及解析
高考物理相互作用技巧(很有用)及练习题及解析一、高中物理精讲专题测试相互作用1.如图所示,A、B都是重物,A被绕过小滑轮P的细线悬挂,B放在粗糙的水平桌面上,滑轮P被一根斜短线系于天花板上的O点,O′是三根细线的结点,细线bO′水平拉着物体B,cO′沿竖直方向拉着弹簧.弹簧、细线、小滑轮的重力不计,细线与滑轮之间的摩擦力可忽略,整个装置处于静止状态.若重物A的质量为2kg,弹簧的伸长量为5cm,∠cO′a=120°,重力加速度g取10m/s2,求:(1)桌面对物体B的摩擦力为多少?(2)弹簧的劲度系数为多少?(3)悬挂小滑轮的斜线中的拉力F的大小和方向?【答案】(1)103N(2)200N/m(3)203N,方向在O′a与竖直方向夹角的角平分线上.【解析】【分析】(1)对结点O′受力分析,根据共点力平衡求出弹簧的弹力和bO′绳的拉力,通过B平衡求出桌面对B的摩擦力大小.(2)根据胡克定律求弹簧的劲度系数.(3)悬挂小滑轮的斜线中的拉力F与滑轮两侧绳子拉力的合力等大反向.【详解】(1)重物A的质量为2kg,则O′a绳上的拉力为 F O′a=G A=20N对结点O′受力分析,如图所示,根据平行四边形定则得:水平绳上的力为:F ob=F O′a sin60°=103N物体B静止,由平衡条件可得,桌面对物体B的摩擦力 f=F ob=103N(2)弹簧的拉力大小为 F弹=F O′a cos60°=10N.根据胡克定律得 F弹=kx得 k=Fx弹=100.05=200N/m(3)悬挂小滑轮的斜线中的拉力F与滑轮两侧绳子拉力的合力等大反向,则悬挂小滑轮的斜线中的拉力F的大小为:F=2F O′a cos30°=2×20×3N=203N方向在O′a与竖直方向夹角的角平分线上2.如图所示,在倾角=30°的斜面上放一木板A,重为G A=100N,板上放一重为G B=500N的木箱B,斜面上有一固定的挡板,先用平行于斜面的绳子把木箱与挡板拉紧,然后在木板上施加一平行斜面方向的拉力F,使木板从木箱下匀速抽出此时,绳子的拉力T=400N。
高考物理高考物理相互作用解题技巧和训练方法及练习题(含答案)
高考物理高考物理相互作用解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试相互作用1.如图所示,一质量为m 的金属球,固定在一轻质细绳下端,能绕悬挂点O 在竖直平面内转动.整个装置能自动随着风的转向而转动,使风总沿水平方向吹向小球.无风时细绳自然下垂,有风时细绳将偏离竖直方向一定角度,求:(1)当细绳偏离竖直方向的角度为θ,且小球静止时,风力F 及细绳对小球拉力T 的大小.(设重力加速度为g )(2)若风向不变,随着风力的增大θ将增大,判断θ能否增大到90°且小球处于静止状态,说明理由.【答案】(1)cos mgT θ=,F=mgtanθ (2)不可能达到90°且小球处于静止状态 【解析】 【分析】 【详解】(1)对小球受力分析如图所示(正交分解也可以)应用三角函数关系可得:F=mgtanθ(2)假设θ=90°,对小球受力分析后发现合力不能为零,小球也就无法处于静止状态,故θ角不可能达到90°且小球处于静止状态.2.如图所示,质量为m 的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小. 【答案】(1)3(2)60° 【解析】试题分析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足sin 30cos30mg mg μ︒=︒ 解得3μ=(2)设斜面倾角为α,由匀速直线运动的条件:cos sin f F mg F αα=+cos sin N F mg F αα=+,f N F F μ=解得:sin cos cos sin mg mg F αμααμα+=-当cos sin 0αμα-=,即cot αμ=时,F→∞,即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行此时,临界角060θα==︒ 考点:考查了共点力平衡条件的应用【名师点睛】本题是力平衡问题,关键是分析物体的受力情况,根据平衡条件并结合正交分解法列方程求解.利用正交分解方法解体的一般步骤:①明确研究对象;②进行受力分析;③建立直角坐标系,建立坐标系的原则是让尽可能多的力落在坐标轴上,将不在坐标轴上的力正交分解;④x 方向,y 方向分别列平衡方程求解.3.如图所示,两足够长的平行光滑的金属导轨MN 、PQ 相距为1L =m ,导轨平面与水平面夹角30α=︒,导轨电阻不计,磁感应强度为12T B =的匀强磁场垂直导轨平面向上,长为1L =m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为12m =kg 、电阻为11R =Ω,两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为0.5d =m ,定值电阻为23R =Ω,现闭合开关S 并将金属棒由静止释放,取10g =m/s 2,求:(1)金属棒下滑的最大速度为多大?(2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率υ为多少?(3)当金属棒稳定下滑时,在水平放置的平行金属板间加一垂直于纸面向里的匀强磁场,在下板的右端且非常靠近下板的位置处有一质量为4110q -=-⨯kg 、所带电荷量为C 的液滴以初速度υ水平向左射入两板间,该液滴可视为质点,要使带电粒子能从金属板间射出,初速度υ应满足什么条件? 【答案】(1)10m/s (2)100W (3)v≤0.25m/s 或v≥0.5m/s【解析】试题分析:(1)当金属棒匀速下滑时速度最大,设最大速度v m ,则有1sin m g F α=安F 安=B 1IL112mB Lv I R R =+所以()112221sin m m g R R v B L α+=代入数据解得:v m =10m/s(2)金属棒匀速下滑时,动能不变,重力势能减小,此过程中重力势能转化为电能,重力做功的功率等于整个电路消耗的电功率P=m 1gsinαv m =100W (或)(3)金属棒下滑稳定时,两板间电压U=IR 2=15V 因为液滴在两板间有2Um g qd=所以该液滴在两平行金属板间做匀速圆周运动 当液滴恰从上板左端边缘射出时: 2112m v r d B q== 所以v 1=0.5m/s 当液滴恰从上板右侧边缘射出时: 22222m v d r B q== 所以v 2=0.25m/s 初速度v 应满足的条件是:v≤0.25m/s 或v≥0.5m/s考点:法拉第电磁感应定律;物体的平衡;带电粒子在匀强磁场中的运动.视频4.明理同学平时注意锻炼身体,力量较大,最多能提起m=50kg 的物体.一重物放置在倾角θ=15°的粗糙斜坡上,重物与斜坡间的摩擦因数为 试求该同学向上拉动的重物质量M 的最大值?【答案】【解析】 【详解】由题意可知,该同学的最大拉力:F=mg设该同学与斜面方向的夹角是β的时候拉动的物体的最大质量是M,对物体受力分析知:垂直于斜面的方向:F N+Fsinβ=Mgcosθ沿斜面的方向:Fcosβ=f+Mgsinθ若恰好拉动物体,则有:f=μF N联立解得:令μ=tanα,代入上式可得:要使该同学向上拉动的物体的质量最大,上式分子取最大值,即:cos(β﹣α)=1由μ=tanα=可得:α=30°联立以上各式得:M max=【点睛】该题中按照常规的步骤对物体进行受力分析即可,题目的难点是如何利用三角函数的关系,化简并得出正确的结论.5.如图所示,用内壁光滑的薄壁细管弯成的“S”形轨道固定于竖直平面内,弯曲部分是由两个半径均为R=0.2 m的半圆平滑对接而成(圆的半径远大于细管内径)。
高考物理相互作用技巧和方法完整版及练习题含解析
高考物理相互作用技巧和方法完整版及练习题含解析一、高中物理精讲专题测试相互作用1.质量m =5kg 的物体在20N 的水平拉力作用下,恰能在水平地面上做匀速直线运动.若改用与水平方向成θ=37°角的力推物体,仍要使物体在水平地面上匀速滑动,所需推力应为多大?(g =10N/kg ,sin37°=0.6,cos37°=0.8)【答案】35.7N ; 【解析】解:用水平力拉时,物体受重力、支持力、拉力和滑动摩擦力, 根据平衡条件,有:f mg μ= 解得:200.450f mg μ=== 改用水平力推物体时,对物块受力分析,并建正交坐标系如图:由0X F =得:cos F f θ= ① 由0Y F =得:sin N mg F θ=+ ② 其中:f N μ= ③ 解以上各式得:35.7F N =【点睛】本题关键是两次对物体受力分析,然后根据共点力平衡条件列方程求解,注意摩擦力是不同的,不变的是动摩擦因数.2.如图,两条间距L =0.5m 且足够长的平行光滑金属直导轨,与水平地面成30α=︒角固定放置,磁感应强度B =0.4T 的匀强磁场方向垂直导轨所在的斜面向上,质量0.1kg ab m =、0.2kg cd m =的金属棒ab 、cd 垂直导轨放在导轨上,两金属棒的总电阻r =0.2Ω,导轨电阻不计.ab 在沿导轨所在斜面向上的外力F 作用下,沿该斜面以2m/s v =的恒定速度向上运动.某时刻释放cd , cd 向下运动,经过一段时间其速度达到最大.已知重力加速度g =10m/s 2,求在cd 速度最大时,(1)abcd 回路的电流强度I 以及F 的大小; (2)abcd 回路磁通量的变化率以及cd 的速率. 【答案】(1) I =5A ,F =1.5N (2)Δ 1.0Wb/s ΔtΦ=,m 3m/s v = 【解析】 【详解】(1)以cd 为研究对象,当cd 速度达到最大值时,有:sin cd m g BIL α=①代入数据,得: I =5A由于之后两棒均沿斜面方向做匀速运动,可将两棒看作整体,作用在ab 上的外力:()sin ab cd F m m g α=+②(或对ab :sin ab F m g BIL α=+) 代入数据,得: F =1.5N(2) 设cd 达到最大速度时abcd 回路产生的感应电动势为E ,根据法拉第电磁感应定律,有:ΔΔE tΦ=③ 由闭合电路欧姆定律,有:EI r=④ 联立③④并代入数据,得:ΔΔtΦ=1.0Wb/s 设cd 的最大速度为v m ,cd 达到最大速度后的一小段时间t ∆内, abcd 回路磁通量的变化量:ΔΔ()Δm B S BL v v t Φ=⋅=+⋅⑤ 回路磁通量的变化率:Δ()Δm BL v v tΦ=+⑥ 联立⑤⑥并代入数据,得:m 3v =m/s 【点睛】本题是电磁感应中的力学问题,综合运用电磁学知识和力平衡知识;分析清楚金属棒的运动过程与运动性质是解题的前提,应用平衡条件、欧姆定律即可解题.3.如图所示,质量为m 的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小. 【答案】(132)60° 【解析】试题分析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足sin 30cos30mg mg μ︒=︒ 解得3μ=(2)设斜面倾角为α,由匀速直线运动的条件:cos sin f F mg F αα=+cos sin N F mg F αα=+,f N F F μ=解得:sin cos cos sin mg mg F αμααμα+=-当cos sin 0αμα-=,即cot αμ=时,F→∞,即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行此时,临界角060θα==︒ 考点:考查了共点力平衡条件的应用【名师点睛】本题是力平衡问题,关键是分析物体的受力情况,根据平衡条件并结合正交分解法列方程求解.利用正交分解方法解体的一般步骤:①明确研究对象;②进行受力分析;③建立直角坐标系,建立坐标系的原则是让尽可能多的力落在坐标轴上,将不在坐标轴上的力正交分解;④x 方向,y 方向分别列平衡方程求解.4.如图所示,倾角为θ=30°、宽度为d =1 m 、长为L =4 m 的光滑倾斜导轨,导轨C 1D 1、C 2D 2顶端接有定值电阻R 0=15 Ω,倾斜导轨置于垂直导轨平面斜向上的匀强磁场中,磁感应强度为B =5 T ,C 1A 1、C 2A 2是长为s =4.5 m 的粗糙水平轨道,A 1B 1、A 2B 2是半径为R =0.5 m 处于竖直平面内的1/4光滑圆环(其中B 1、B 2为弹性挡板),整个轨道对称.在导轨顶端垂直于导轨放一根质量为m =2 kg 、电阻不计的金属棒MN ,当开关S 闭合时,金属棒从倾斜轨道顶端静止释放,已知金属棒到达倾斜轨道底端前已达到最大速度,当金属棒刚滑到倾斜导轨底端时断开开关S ,(不考虑金属棒MN 经过C 1、C 2处和棒与B 1、B 2处弹性挡板碰撞时的机械能损失,整个运动过程中金属棒始终保持水平,水平导轨与金属棒MN 之间的动摩擦因数为μ=0.1,g =10 m/s 2).求:(1)开关闭合时金属棒滑到倾斜轨道底端时的速度大小;(2)金属棒MN在倾斜导轨上运动的过程中,电阻R0上产生的热量Q;(3)已知金属棒会多次经过圆环最低点A1A2,求金属棒经过圆环最低点A1A2时对轨道压力的最小值.【答案】(1)6m/s;(2)4J;(3)56N【解析】试题分析:(1)开关闭时,金属棒下滑时切割磁感线运动,产生感应电动势,产生感应电流,受到沿斜面向上的安培力,做加速度逐渐减小的加速运动,当加速度为0时,速度最大.根据牛顿第二定律和安培力与速度的关系式结合,求解即可.(2)下滑过程中,重力势能减小,动能增加,内能增加,根据能量守恒求出整个电路产生的热量,从而求出电阻上产生的热量.(3)由能量守恒定律求出金属棒第三次经过A1A2时速度,对金属棒进行受力分析,由牛顿定律求解.(1)金属棒最大速度时,电动势,电流,安培力金属棒最大速度时加速度为0,由牛顿第二定律得:所以最大速度(2)金属棒MN在倾斜导轨上运动的过程中,由能量守恒定律得:代入数据,得(3)金属棒第三次经过A1A2时速度为V A,由动能定理得:金属棒第三次经过A1A2时,由牛顿第二定律得由牛顿第三定律得,金属棒对轨道的压力大小5.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角θ=30°,导轨电阻不计.磁感应强度为B=2T的匀强磁场垂直导轨平面向上,长为L=0.5m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒ab的质量m=1kg、电阻r=1Ω.两金属导轨的上端连接右端电路,灯泡电阻R L=4Ω,定值电阻R1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g=10m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:(1)金属棒下滑的最大速度v m;(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q.【答案】(1)30m/s(2)50J【解析】解:(1)由题意知,金属棒匀速下滑时速度最大,设最大速度为v m,则有:mgsinθ=F安又 F安=BIL,即得mgsinθ=BIL…①ab棒产生的感应电动势为 E=BLv m…②通过ab的感应电流为 I=…③回路的总电阻为 R=r+R1+…④联解代入数据得:v m=30m/s…⑤(2)由能量守恒定律有:mg•2s0sinθ=Q+…⑥联解代入数据得:Q=50J…⑦答:(1)金属棒下滑的最大速度v m是30m/s.(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q是50J.【点评】本题对综合应用电路知识、电磁感应知识和数学知识的能力要求较高,但是常规题,要得全分.6.如图所示,粗糙的地面上放着一个质量M=1.5 kg的斜面,底面与地面的动摩擦因数μ=0.2,倾角θ=37°.用固定在斜面挡板上的轻质弹簧连接一质量m=0.5 kg的小球(不计小球与斜面之间的摩擦力),已知弹簧劲度系数k=200 N/m,现给斜面施加一水平向右的恒力F,使整体以a=1 m/s2的加速度向右匀加速运动.(已知sin 37°=0.6、cos37°=0.8,g=10 m/s2)(1)求F的大小;(2)求出弹簧的形变量及斜面对小球的支持力大小.【答案】(1)6N(2)0.017m;3.7N【解析】试题分析:(1)以整体为研究对象,列牛顿第二定律方程(2)对小球受力分析,水平方向有加速度,竖直方向受力平衡解:(1)整体以a 匀加速向右运动,对整体应用牛顿第二定律:F﹣μ(M+m)g=(M+m)a得F=6N(2)设弹簧的形变量为x,斜面对小球的支持力为F N对小球受力分析:在水平方向:Kxcosθ﹣F N sinθ=ma在竖直方向:Kxsinθ+F N cosθ=mg解得:x=0.017mF N=3.7N答:(1)F的大小6N;(2)弹簧的形变量0.017m斜面对小球的支持力大小3.7N【点评】对斜面问题通常列沿斜面方向和垂直于斜面方向的方程,但本题的巧妙之处在于对小球列方程时,水平方向有加速度,竖直方向受力平衡,使得解答更简便.7.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距lm,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.求:(1)金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10rn/s2,sin37°=0.6, cos37°=0.8)【答案】(1)4m/s2(2)10m/s(3)0.4T,方向垂直导轨平面向上【解析】试题分析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律:①由①式解得=10×(O.6-0.25×0.8)m/s2=4m/s2②(2)设金属棒运动达到稳定时,速度为,所受安培力为F,棒在沿导轨方向受力平衡③此时金属棒克服安培力做功的功率等于电路中电阻消耗的电功率:④由③、④两式解得⑤(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B⑥⑦由⑥、⑦两式解得⑧磁场方向垂直导轨平面向上考点: 导体切割磁感线时的感应电动势;牛顿第二定律【名师点睛】本题主要考查了导体切割磁感线时的感应电动势、牛顿第二定律 。
高考必备物理相互作用技巧全解及练习题(含答案)及解析
高考必备物理相互作用技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试相互作用1.如图所示,放在粗糙的固定斜面上的物块 A 和悬挂的物体 B 均处于静止状态.轻绳 AO 绕过光滑的定滑轮与轻弹簧的右端及轻绳 BO 的上端连接于 O 点,轻弹簧中轴线沿水平方向,轻绳的 OC 段与竖直方向的夹角θ=53°,斜面倾角α=37°,物块 A 和 B 的质量分别为m A=5kg ,m B=1.5kg,弹簧的劲度系数 k=500N/m ,(sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2),求:(1)弹簧的伸长量 x;(2)物块 A 受到的摩擦力.【答案】(1);(2)5N,沿斜面向上【解析】(1)对结点O受力分析如图所示:根据平衡条件,有:,,且:,解得:;(2)设物体A所受摩擦力沿斜面向下,对物体A做受力分析如图所示:根据平衡条件,有:,解得:,即物体A所受摩擦力大小为,方向沿斜面向上。
点睛:本题主要考查了平衡条件和胡克定律得直接应用,要求同学们能选择合适的研究对象并能正确对物体受力分析,注意正交分解法在解题中的应用。
2.轻绳下端悬挂200N的重物,用水平力拉轻绳上的点,使轻绳上部分偏离竖直方向=角保持静止,如图所示。
(1)求水平力的大小;(2)保持轻绳上部分与竖直方向的夹角=不变,改变力的方向,求力的最小值及与水平方向的夹角。
【答案】(1)(2),与水平方向夹角为【解析】试题分析:(1)对点受力分析,可得,解得 (2)力有最小值时,解得,与水平方向夹角为考点:考查了共点力平衡条件【名师点睛】在处理共点力平衡问题时,关键是对物体进行受力分析,然后根据正交分解法将各个力分解成两个方向上的力,然后列式求解,如果物体受到三力处于平衡状态,则可根据矢量三角形法,将三个力移动到一个三角形中,然后根据角度列式求解3.如图所示,一质量为m 的金属球,固定在一轻质细绳下端,能绕悬挂点O 在竖直平面内转动.整个装置能自动随着风的转向而转动,使风总沿水平方向吹向小球.无风时细绳自然下垂,有风时细绳将偏离竖直方向一定角度,求:(1)当细绳偏离竖直方向的角度为θ,且小球静止时,风力F 及细绳对小球拉力T 的大小.(设重力加速度为g )(2)若风向不变,随着风力的增大θ将增大,判断θ能否增大到90°且小球处于静止状态,说明理由.【答案】(1)cos mgT θ=,F=mgtanθ (2)不可能达到90°且小球处于静止状态 【解析】 【分析】 【详解】(1)对小球受力分析如图所示(正交分解也可以)应用三角函数关系可得:F=mgtanθ(2)假设θ=90°,对小球受力分析后发现合力不能为零,小球也就无法处于静止状态,故θ角不可能达到90°且小球处于静止状态.4.如图所示,两平行金属导轨间的距离L=0.4 m,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在空间内,分布着磁感应强度B=0.5 T、方向垂直于导轨平面的匀强磁场。
高考物理相互作用解题技巧和训练方法及练习题(含答案)
高考物理相互作用解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试相互作用1.如图所示,A、B都是重物,A被绕过小滑轮P的细线悬挂,B放在粗糙的水平桌面上,滑轮P被一根斜短线系于天花板上的O点,O′是三根细线的结点,细线bO′水平拉着物体B,cO′沿竖直方向拉着弹簧.弹簧、细线、小滑轮的重力不计,细线与滑轮之间的摩擦力可忽略,整个装置处于静止状态.若重物A的质量为2kg,弹簧的伸长量为5cm,∠cO′a=120°,重力加速度g取10m/s2,求:(1)桌面对物体B的摩擦力为多少?(2)弹簧的劲度系数为多少?(3)悬挂小滑轮的斜线中的拉力F的大小和方向?【答案】(1)103N(2)200N/m(3)203N,方向在O′a与竖直方向夹角的角平分线上.【解析】【分析】(1)对结点O′受力分析,根据共点力平衡求出弹簧的弹力和bO′绳的拉力,通过B平衡求出桌面对B的摩擦力大小.(2)根据胡克定律求弹簧的劲度系数.(3)悬挂小滑轮的斜线中的拉力F与滑轮两侧绳子拉力的合力等大反向.【详解】(1)重物A的质量为2kg,则O′a绳上的拉力为 F O′a=G A=20N对结点O′受力分析,如图所示,根据平行四边形定则得:水平绳上的力为:F ob=F O′a sin60°=103N物体B静止,由平衡条件可得,桌面对物体B的摩擦力 f=F ob=103N(2)弹簧的拉力大小为 F弹=F O′a cos60°=10N.根据胡克定律得 F弹=kx得 k=Fx弹=100.05=200N/m(3)悬挂小滑轮的斜线中的拉力F 与滑轮两侧绳子拉力的合力等大反向,则悬挂小滑轮的斜线中的拉力F 的大小为:F=2F O′a cos30°=2×20×3N=203N 方向在O′a 与竖直方向夹角的角平分线上2.一架质量m 的飞机在水平跑道上运动时会受到机身重力、竖直向上的机翼升力F 升、发动机推力、空气阻力F 阻、地面支持力和跑道的阻力f 的作用。
高考物理相互作用解题技巧和训练方法及练习题(含答案)
高考物理相互作用解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试相互作用1.如图所示,A、B都是重物,A被绕过小滑轮P的细线悬挂,B放在粗糙的水平桌面上,滑轮P被一根斜短线系于天花板上的O点,O′是三根细线的结点,细线bO′水平拉着物体B,cO′沿竖直方向拉着弹簧.弹簧、细线、小滑轮的重力不计,细线与滑轮之间的摩擦力可忽略,整个装置处于静止状态.若重物A的质量为2kg,弹簧的伸长量为5cm,∠cO′a=120°,重力加速度g取10m/s2,求:(1)桌面对物体B的摩擦力为多少?(2)弹簧的劲度系数为多少?(3)悬挂小滑轮的斜线中的拉力F的大小和方向?【答案】(1)103N(2)200N/m(3)203N,方向在O′a与竖直方向夹角的角平分线上.【解析】【分析】(1)对结点O′受力分析,根据共点力平衡求出弹簧的弹力和bO′绳的拉力,通过B平衡求出桌面对B的摩擦力大小.(2)根据胡克定律求弹簧的劲度系数.(3)悬挂小滑轮的斜线中的拉力F与滑轮两侧绳子拉力的合力等大反向.【详解】(1)重物A的质量为2kg,则O′a绳上的拉力为 F O′a=G A=20N对结点O′受力分析,如图所示,根据平行四边形定则得:水平绳上的力为:F ob=F O′a sin60°=103N物体B静止,由平衡条件可得,桌面对物体B的摩擦力 f=F ob=103N(2)弹簧的拉力大小为 F弹=F O′a cos60°=10N.根据胡克定律得 F弹=kx得 k=Fx弹=100.05=200N/m(3)悬挂小滑轮的斜线中的拉力F 与滑轮两侧绳子拉力的合力等大反向,则悬挂小滑轮的斜线中的拉力F 的大小为:F=2F O′a cos30°=2×20×32N=203N 方向在O′a 与竖直方向夹角的角平分线上2.质量m =5kg 的物体在20N 的水平拉力作用下,恰能在水平地面上做匀速直线运动.若改用与水平方向成θ=37°角的力推物体,仍要使物体在水平地面上匀速滑动,所需推力应为多大?(g =10N/kg ,sin37°=0.6,cos37°=0.8)【答案】35.7N ; 【解析】解:用水平力拉时,物体受重力、支持力、拉力和滑动摩擦力, 根据平衡条件,有:f mg μ= 解得:200.450f mg μ=== 改用水平力推物体时,对物块受力分析,并建正交坐标系如图:由0X F =得:cos F f θ= ① 由0Y F =得:sin N mg F θ=+ ② 其中:f N μ= ③ 解以上各式得:35.7F N =【点睛】本题关键是两次对物体受力分析,然后根据共点力平衡条件列方程求解,注意摩擦力是不同的,不变的是动摩擦因数.3.如图所示,轻杆BC 的C 点用光滑铰链与墙壁固定,杆的B 点通过水平细绳AB 使杆与竖直墙壁保持30°的夹角.若在B 点悬挂一个定滑轮(不计重力),某人用它匀速地提起重物.已知重物的质量m =30 kg ,人的质量M =50kg ,g 取10 m/s 2.试求:(1)此时地面对人的支持力的大小;(2)轻杆BC所受力的大小.【答案】(1)200N(2)4003N和2003N【解析】试题分析:(1)对人而言:.(2)对结点B:滑轮对B点的拉力,由平衡条件知:考点:此题考查共点力的平衡问题及平行四边形法则.4.如图所示,质量为M=5kg的物体放在倾角为θ=30º的斜面上,与斜面间的动摩擦因数为/5,最大静摩擦力等于滑动摩擦力,M用平行于斜面的轻绳绕过光滑的定滑轮与不计质量的吊盘连接,两个劲度系数均为k=1000N/m的轻弹簧和两个质量都是m的物体均固连,M刚好不上滑,取g=10m/s2。
高考物理相互作用解题技巧(超强)及练习题(含答案)及解析
高考物理相互作用解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试相互作用1.如图所示,一质量为m 的金属球,固定在一轻质细绳下端,能绕悬挂点O 在竖直平面内转动.整个装置能自动随着风的转向而转动,使风总沿水平方向吹向小球.无风时细绳自然下垂,有风时细绳将偏离竖直方向一定角度,求:(1)当细绳偏离竖直方向的角度为θ,且小球静止时,风力F 及细绳对小球拉力T 的大小.(设重力加速度为g )(2)若风向不变,随着风力的增大θ将增大,判断θ能否增大到90°且小球处于静止状态,说明理由.【答案】(1)cos mgT θ=,F=mgtanθ (2)不可能达到90°且小球处于静止状态 【解析】 【分析】 【详解】(1)对小球受力分析如图所示(正交分解也可以)应用三角函数关系可得:F=mgtanθ(2)假设θ=90°,对小球受力分析后发现合力不能为零,小球也就无法处于静止状态,故θ角不可能达到90°且小球处于静止状态.2.如图所示,水平面上有一个倾角为的斜劈,质量为m .一个光滑小球,质量也m ,用绳子悬挂起来,绳子与斜面的夹角为,整个系统处于静止状态.(1)求出绳子的拉力T;(2)若地面对斜劈的最大静摩擦力等于地面对斜劈的支持力的k倍,为了使整个系统保持静止,k值必须满足什么条件?【答案】(1)(2)【解析】【分析】【详解】试题分析:(1)以小球为研究对象,根据平衡条件应用正交分解法求解绳子的拉力T;(2)对整体研究,根据平衡条件求出地面对斜劈的静摩擦力f,当f≤f m时,整个系统能始终保持静止.解:(1)对小球:水平方向:N1sin30°=Tsin30°竖直方向:N1cos30°+Tcos30°=mg代入解得:;(2)对整体:水平方向:f=Tsin30°竖直方向:N2+Tcos30°=2mg而由题意:f m=kN2为了使整个系统始终保持静止,应该满足:f m≥f解得:.点晴:本题考查受力平衡的应用,小球静止不动受力平衡,以小球为研究对象分析受力情况,建立直角坐标系后把力分解为水平和竖直两个方向,写x轴和y轴上的平衡式,可求得绳子的拉力大小,以整体为研究对象,受到重力、支持力、绳子的拉力和地面静摩擦力的作用,建立直角坐标系后把力分解,写出水平和竖直的平衡式,静摩擦力小于等于最大静摩擦力,利用此不等式求解.3.如图所示,用两根长度均为l的细线将质量为m的小球悬挂在水平的天花板下面,轻绳与天花板的夹角为θ.将细线BO剪断,小球由静止开始运动.不计空气阻力,重力加速度为g.求:(1)剪断细线前OB 对小球拉力的大小; (2)剪断细线后小球从开始运动到第一次 摆到最高点的位移大小;(3)改变B 点位置,剪断BO 后小球运动到最低点时细线OA 的拉力F 2与未剪断前细线的拉力F 1之比21F F 的最大值. 【答案】(1)2sin mg F θ= (2)2cos x l θ= (3) 21max 94F F = 【解析】 (1)1sin 2F mg θ= 得2sin mgF θ=(2)小球运动到左侧最高点时绳与天花板夹角为α mglsin α=mglsin θ 得α=θ X=2lcos θ(3)小球运动到最低点时速度为v21(1sin )2mgl mv θ-=22v F mg m l-=F 1=F得: 2216sin 4sin F F θθ=- 当3sin 4θ=时可得 21max9 =4F F4.如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m ,质量m=0.1㎏的导体棒ab ,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T 的匀强磁场方向垂直于导体框架所在平面,当导体棒在电动机牵引下上升h=3.8m 时,获得稳定速度,此过程导体棒产生热量Q=2J .电动机工作时,电压表、电流表的读数分别为7V 和1A ,电动机的内阻r=1Ω,不计一切摩擦,g=10m/s 2,求:(1)导体棒所达到的稳定速度是多少?(2)导体棒从静止到达稳定速度的时间是多少?【答案】(1)m/s (2)s【解析】:(1)导体棒匀速运动时,绳拉力T,有T-mg-F=0(2分),其中F=BIL,I=ε/R, ε=BLv,(3分)此时电动机输出功率与拉力功率应相等,即Tv=UI/-I/2r(2分),(U、I/、r是电动机的电压、电流和电阻),化简并代入数据得v=2m/s(1分).(2)从开始达匀速运动时间为t,此过程由能量守恒定律,UI/t-I/2rt=mgh+mv2+Q(4分),代入数据得t=1s(2分).5.长为5.25m轻质的薄木板放在水平面上,木板与水平面间的动摩擦因数为0.1,在木板的右端固定有一个质量为1kg的小物体A,在木板上紧邻A处放置有另一质量也为1kg的小物体B,小物体B与木板间的动摩擦因数为0.2,A、B可视为质点,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理相互作用解题技巧及练习题及解析(1)一、高中物理精讲专题测试相互作用1.质量m =5kg 的物体在20N 的水平拉力作用下,恰能在水平地面上做匀速直线运动.若改用与水平方向成θ=37°角的力推物体,仍要使物体在水平地面上匀速滑动,所需推力应为多大?(g =10N/kg ,sin37°=0.6,cos37°=0.8)【答案】35.7N ; 【解析】解:用水平力拉时,物体受重力、支持力、拉力和滑动摩擦力, 根据平衡条件,有:f mg μ= 解得:200.450f mg μ=== 改用水平力推物体时,对物块受力分析,并建正交坐标系如图:由0X F =得:cos F f θ= ① 由0Y F =得:sin N mg F θ=+ ② 其中:f N μ= ③ 解以上各式得:35.7F N =【点睛】本题关键是两次对物体受力分析,然后根据共点力平衡条件列方程求解,注意摩擦力是不同的,不变的是动摩擦因数.2.如图所示,在倾角=30°的斜面上放一木板A,重为G A =100N,板上放一重为G B =500N 的木箱B,斜面上有一固定的挡板,先用平行于斜面的绳子把木箱与挡板拉紧,然后在木板上施加一平行斜面方向的拉力F,使木板从木箱下匀速抽出此时,绳子的拉力T=400N 。
设木板与斜面间的动摩擦因数,求:(1)A、B间的摩擦力和摩擦因素;(2)拉力F的大小。
【答案】(1)A、B间的摩擦力f B为150N;摩擦因数μ2=;(2)拉力F的大小为325N。
【解析】【详解】(1)对B受力分析如图由平衡条件,沿斜面方向有为:G B sinθ+f B=T…①代入数据,解得A、B间摩擦力为:f B=150N方向沿斜面向下,垂直斜面方向:N B=G B cosθ=500×=250N…②A、B动摩擦因数为:(2)以AB整体为研究对象,受力分析如图,由平衡条件得:F=f A+T-(G A+G B)sinθ…③N A=(G A+G B)cosθ…④f A=μ1N A…⑤联立③④⑤解得:F=325 N【点睛】本题考查共点力平衡条件的应用,要注意在解题时能正确选择研究对象,作出受力分析即可求解,本题要注意虽然两A运动B静止,但由于二者加速度均零,因此可以看作整体进行分析。
3.如图所示,劲度系数为的轻质弹簧B的两端分别与固定斜面上的挡板及物体A相连,A的质量为m,光滑斜面倾角为θ.用轻绳跨过定滑轮将物体A与另一根劲度系数为的轻质弹簧C连接.当弹簧C处在水平位置且未发生形变时,其右端点位于a位置.现将弹簧C的右端点用力沿水平方向缓慢拉到b位置时,弹簧B对物体A的拉力大小恰好等于A的重力.求:⑴当弹簧C处在水平位置且未发生形变时,弹簧B的形变量大小;⑵在将弹簧的右端由a缓慢拉到b的过程中,物体A移动的距离;⑶ab间的距离.【答案】(1)(2)(3)【解析】【分析】(1)对A进行受力分析,根据平衡条件和胡克定律即可求出;(2)将弹簧C的右端点用力沿水平方向缓慢拉到b位置时,弹簧B对物体A的拉力大小恰好等于A的重力,说明A受到弹簧B的拉力,对A 进行受力分析,结合胡克定律和几何关系即可求出;(3)先求出弹簧c的力,由胡克定律求出弹簧c的伸长量,最后求出ab之间的距离.【详解】(1)当弹簧C未发生形变时弹簧B处于压缩状态,设弹簧B对于物体A而言的压缩量为;根据平衡条件和胡克定律有:,解得:;(2)当弹簧C的右端点沿水平缓慢拉到b位置时,因弹簧B对物体A的拉力大小恰好等于A的重力,说明弹簧B处于伸长状态,且伸长量,所以物体A上升的高度为;(3)由(2)问可得:绳中张力,则弹簧C的伸长量,故ab间的距离为:;4.如图所示,质量为m的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小. 【答案】(1)3(2)60° 【解析】试题分析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足sin 30cos30mg mg μ︒=︒ 解得3μ=(2)设斜面倾角为α,由匀速直线运动的条件:cos sin f F mg F αα=+cos sin N F mg F αα=+,f N F F μ=解得:sin cos cos sin mg mg F αμααμα+=-当cos sin 0αμα-=,即cot αμ=时,F→∞,即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行此时,临界角060θα==︒ 考点:考查了共点力平衡条件的应用【名师点睛】本题是力平衡问题,关键是分析物体的受力情况,根据平衡条件并结合正交分解法列方程求解.利用正交分解方法解体的一般步骤:①明确研究对象;②进行受力分析;③建立直角坐标系,建立坐标系的原则是让尽可能多的力落在坐标轴上,将不在坐标轴上的力正交分解;④x 方向,y 方向分别列平衡方程求解.5.如图所示,一质量m=4.0kg 的小球在轻质弹簧和细线的作用下处于静止状态,细线AO 与竖直方向的夹角θ=370,弹簧BO 水平并处于压缩状态,小球与弹簧接触但不粘连,已知弹簧的劲度系数k=100N/m ,取sin370=0.6,cos370=0.8,求:(1)小球静止时,细线中的拉力T 和弹簧的压缩量x ; (2)剪断细线AB 瞬间,小球的加速度a 。
【答案】(1)50N , 0.3m (2)12.5m/s 2【解析】试题分析:(1)小球的受力图如图,根据平衡条件可知:弹簧的弹力F=mgtanθcos mgT θ=而F=kx解得:T=50N ,x=0.3m(2)剪断细线的瞬间,小球受到重力、弹力不变;合力与原细线中的拉力T 等大反向,则212.5/Ta m s m==方向与竖直方向成角370,斜向下沿原细线AB 方向。
考点:胡克定律;牛顿第二定律的应用【名师点睛】本题考查了共点力平衡和牛顿第二定律的基本运用,知道剪断细线的瞬间,弹簧的弹力不变。
6.如图所示,粗糙的地面上放着一个质量M =1.5 kg 的斜面,底面与地面的动摩擦因数μ=0.2,倾角θ=37°.用固定在斜面挡板上的轻质弹簧连接一质量m =0.5 kg 的小球(不计小球与斜面之间的摩擦力),已知弹簧劲度系数k =200 N/m ,现给斜面施加一水平向右的恒力F ,使整体以a =1 m/s 2的加速度向右匀加速运动.(已知sin 37°=0.6、cos 37°=0.8,g =10 m/s 2)(1)求F 的大小;(2)求出弹簧的形变量及斜面对小球的支持力大小. 【答案】(1)6N (2)0.017m ;3.7N 【解析】试题分析:(1)以整体为研究对象,列牛顿第二定律方程 (2)对小球受力分析,水平方向有加速度,竖直方向受力平衡 解:(1)整体以a 匀加速向右运动,对整体应用牛顿第二定律: F ﹣μ(M+m )g=(M+m )a 得F=6N(2)设弹簧的形变量为x ,斜面对小球的支持力为F N 对小球受力分析:在水平方向:Kxcosθ﹣F N sinθ=ma 在竖直方向:Kxsinθ+F N cosθ=mg 解得:x=0.017m F N =3.7N答:(1)F 的大小6N ;(2)弹簧的形变量0.017m斜面对小球的支持力大小3.7N【点评】对斜面问题通常列沿斜面方向和垂直于斜面方向的方程,但本题的巧妙之处在于对小球列方程时,水平方向有加速度,竖直方向受力平衡,使得解答更简便.7.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距lm,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.求:(1)金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10rn/s2,sin37°=0.6, cos37°=0.8)【答案】(1)4m/s2(2)10m/s(3)0.4T,方向垂直导轨平面向上【解析】试题分析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律:①由①式解得=10×(O.6-0.25×0.8)m/s2=4m/s2②(2)设金属棒运动达到稳定时,速度为,所受安培力为F,棒在沿导轨方向受力平衡③此时金属棒克服安培力做功的功率等于电路中电阻消耗的电功率:④由③、④两式解得⑤(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B⑥⑦由⑥、⑦两式解得⑧磁场方向垂直导轨平面向上考点:导体切割磁感线时的感应电动势;牛顿第二定律【名师点睛】本题主要考查了导体切割磁感线时的感应电动势、牛顿第二定律。
属于中等难度的题目,解这类问题的突破口为正确分析安培力的变化,根据运动状态列方程求解。
开始下滑时,速度为零,无感应电流产生,因此不受安培力,根据牛顿第二定律可直接求解加速度的大小;金属棒下滑速度达到稳定时,金属棒所受合外力为零,根据平衡条件求出安培力。
视频8.水平传送带以v=1.5m/s速度匀速运动,传送带AB两端距离为6.75m,将物体轻放在传送带的A端,它运动到传送带另一端B所需时间为6s,求:(1)物块和传送带间的动摩擦因数?(2)若想使物体以最短时间到达B端,则传送带的速度大小至少调为多少?(g=10m/s2)【答案】(1);(2)【解析】试题分析:(1)对物块由牛顿第二定律:,则经过时间的速度为:首先物块做匀加速然后做匀速则:由以上各式解得:(2)物块做加速运动的加速度为:物体一直做匀加速直线运动到B点的速度:v2=2ax解得:考点:牛顿运动定律综合【名师点睛】物体放上传送带先做匀加速直线运动,结合牛顿第二定律和运动学公式求出匀加速直线运动的时间和位移,当物体的速度达到传送带的速度时,一起做匀速直线运动.根据时间求出匀速运动的位移,从而得出物体的总位移,即传送带AB的长度;若想使物体以最短时间到达B端,物体需一直做匀加速直线运动,则传送带的速度需大于等于物体从A点匀加速到B点的速度。
9.质量 M=3kg的长木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,如图所示,当速度达到1m/s时,将质量m=4kg的物体轻轻放到木板的右端,已知物块与木板间动摩擦因数 =0.2,g取10m/s2,求:(1)物体经多长时间才与木板保持相对静止;(2)物块与木板相对静止后,物块受到的摩擦力大小.【答案】(1)1s(2)6.29N【解析】试题分析:(1)放上物体后,由牛顿第二定律可知:物体加速度212/a g m s μ==板的加速度221/F mga m s Mμ-== 当两物体达速度相等后保持相对静止,故12a t v a t =+,解得t 1s = (2)相对静止后,对整体F M m a =+(),对物体有=f ma 解得 6.28N f =考点:考查了牛顿第二定律的应用【名师点睛】物体与木板均做匀变速直线运动,由牛顿第二定律可求得二者的加速度,由速度公式可求得二者相对静止的时间;相对静止后,物体的静摩擦力充当合外力,由牛顿第二定律可求得物体受到的摩擦力10.如图所示小孩和雪橇的总质量,大人用与水平方向成角斜向上拉力F拉雪橇,使雪橇沿水平地面以速度做匀速直线运动。