STATISTICS PREKNOWLEDGE Slides 1 - probability theory
a moden introductio to probability and statistics
a moden introductio to probability andstatistics“A Modern Introduction to Probability and Statistics” is a comprehensive textbook that provides a broad overview of the principles and techniques of probability and statistics. It is an excellent resource for anyone who wants to gain a deep understanding of the subject matter.Step 1: IntroductionThe book begins with an introduction that outlines the principles of probability and statistics. It provides a clear understanding of what these two fields are all about and how they are used in various applications. The authors also introduce the key concepts that will be covered in the restof the book.Step 2: ProbabilityThe next section of the book focuses on probability. It covers the basics of probability theory and explains how to calculate probabilities of events. The authors also introduce different probability distributions, such as the normal distribution and the binomial distribution.Step 3: StatisticsThe third section of the book covers statistics. It explains how to gather and analyze data using various statistical techniques. These include descriptive statistics, inferential statistics, and hypothesis testing. The authors also cover regression analysis and the methods used to analyze time series data.Step 4: ApplicationsThe final section of the book provides a range of applications of probability and statistics. These include applications in finance, engineering, and the social sciences. The authors use real-world examples to demonstrate how these concepts are applied in practice.Step 5: ExercisesThroughout the book, there are numerous exercises that can be used to test your knowledge and understanding of the concepts covered. These exercises range from simple calculations to more complex applications. There are also detailed solutions provided at the back of the book.Conclusion:“A Modern Introduction to Probability and Statistics”is an excellent textbook that provides a comprehensive overview of the subject matter. The authors use clear and concise language throughout the book, making it accessible to beginners, while also providing in-depth coverage of the principles and techniques involved. The exercises andsolutions provided also make it an excellent resource for anyone who wants to test their knowledge and understanding of the material. Overall, this book is a must-read for anyonewho is serious about learning probability and statistics, and its applications to real-world problems.。
数据采集和营销工具(英文版)
Motivations for DM
Abundance of business and industry data
Competitive focus - Ke, powerful computing engines
Strong theoretical/mathematical foundations
1. Decision Trees and Fraud Detection
2. Association Rules and Market Basket Analysis 3. Clustering and Customer Segmentation
3. Trends in technology
1. Knowledge Discovery Support Environment 2. Tools, Languages and Systems
Provide a systematization to the many many concepts around this area, according the following lines
the process the methods applied to paradigmatic cases the support environment the research challenges
1970s:
Relational data model, relational DBMS implementation.
1980s:
RDBMS, advanced data models (extended-relational, OO, deductive, etc.) and application-oriented DBMS (spatial, scientific, engineering, etc.).
slides1
Texts
Required:
• “Introduction to Machine Learning” • Ethem Alpaydin, MIT Press, 2004
Various other good, but optional, texts:
• “Pattern Classification”, Duda, Hart, Stork, Wiley, 2001 • “Elements of Statistical Learning”, Hastie, Tibshirani, Fredman, 2001 • “Pattern Recognition and Machine Learning”, C.M. Bishop, Springer, 2007.
x
f (· )
ˆ = f ( x) ≈ y y
This is called training or learning. Two major types of learning:
• • Unsupervised: only X is known, usually referred to as clustering. Supervised : both X and target value Y are known during training, only X is known at test time. Usually referred to as classification or regression.
2
Homework policy
Homework is individual OK to work on problems with someone else but you have to:
Procedia Computer Science
Unlocking the promise of mobile value-added services byapplying new collaborative business models Original ResearchArticleTechnological Forecasting and Social Change , Volume 77, Issue 4, May 2010, Pages 678-693Peng-Ting Chen, Joe Z. Cheng Show preview | Related articles | Related reference work articlesPurchase $ 41.95 602 Software performance simulation strategies for high-level embedded system design Original ResearchArticlePerformance Evaluation , Volume 67, Issue 8, August2010, Pages 717-739Zhonglei Wang, Andreas Herkersdorf Close preview | Related articles |Related reference work articlesAbstract | Figures/Tables | ReferencesAbstractAs most embedded applications are realized in software, softwareperformance estimation is a very important issue in embedded system design.In the last decades, instruction set simulators (ISSs) have become anessential part of an embedded software design process. However, ISSs areeither slow or very difficult to develop. With the advent of multiprocessorsystems and their ever-increasing complexity, the software simulation strategybased on ISSs is no longer efficient enough for exploring the large designspace of multiprocessor systems in early design phases. Motivated by thelimitations of ISSs, a lot of recent research activities focused on softwaresimulation strategies based on native execution. In this article, we firstintroduce some existing software performance simulation strategies as well asour own approach for source level simulation, called SciSim , and provide adiscussion about their benefits and limitations. The main contribution of thisarticle is to introduce a new software performance simulation approach, callediSciSim (intermediate Source code instrumentation based Simulation), whichachieves high estimation accuracy, high simulation speed and lowPurchase $ 41.95implementation complexity. All these advantages make iSciSim well-suited for system level design. To show the benefits of the proposed approach, we present a quantitative comparison between iSciSim and the other discussed techniques, using a set of benchmarks.Article Outline1. Introduction2. Software performance simulation strategies2.1. Instruction set simulators2.2. Binary (Assembly) level simulation2.3. Source level simulation2.4. IR level simulation3. The SciSim approach for source level simulation3.1. Source code instrumentation3.2. Simulation3.3. Advantages and limitations of SciSim4. The iSciSim approach for performance simulation of compiler-optimized embedded software4.1. Intermediate source code generation4.2. Intermediate source code instrumentation4.2.1. Machine code extraction and mapping list construction4.2.2. Basic block list construction4.2.3. Static timing analysis4.2.4. Back-annotation of timing information4.3. Simulation4.3.1. Dynamic timing analysis4.3.2. Hardware and software co-simulation in SystemC5. Experimental results5.1. Source code vs. ISC5.2. Benchmarking SW simulation strategies 5.3. Dynamic cache simulation5.4. Simulation in SystemC6. Discussions and conclusions AcknowledgementsReferencesVitae603Computer anxiety and ICT integration in English classesamong Iranian EFL teachers Original Research ArticleProcedia Computer Science, Volume 3, 2011, Pages 203-209Mehrak Rahimi, Samaneh YadollahiClose preview | PDF (190 K) | Related articles | Related reference work articlesAbstract | ReferencesAbstractThe purpose of this study was to determine Iranian EFL teachers’ level of computeranxiety and its relationship with ICT integration into English classes and teachers’ personalcharacteristics. Data were collected from 254 Iranian EFL teachers by Computer AnxietyRating Scale, ICT integration rating scale, and a personal information questionnaire. Theresults indicated a positive relationship between computer anxiety and age; however,computer anxiety, gender, and experience of teaching were not found to be related. Aninverse correlation was found between computer anxiety and ICT integration. While ICTintegration correlated negatively with age and years of teaching experience, it was notfound to be related to gender.604An environmental decision support system for spatialassessment and selective remediation OriginalResearch ArticleEnvironmental Modelling & Software, Volume 26, Issue 6,June 2011, Pages 751-760Purchase$ 19.95Robert N. Stewart, S. Thomas Purucker Close preview | Related articles | Related reference work articles Abstract | Figures/Tables | ReferencesAbstractSpatial Analysis and Decision Assistance (SADA) is a Windows freewareprogram that incorporates spatial assessment tools for effective environmentalremediation. The software integrates modules for GIS, visualization,geospatial analysis, statistical analysis, human health and ecological riskassessment, cost/benefit analysis, sampling design, and decision support.SADA began as a simple tool for integrating risk assessment with spatialmodeling tools. It has since evolved into a freeware product primarily targetedfor spatial site investigation and soil remediation design, though itsapplications have extended into many diverse environmental disciplines thatemphasize the spatial distribution of data. Because of the variety of algorithmsincorporated, the user interface is engineered in a consistent and scalablemanner to expose additional functionality without a burdensome increase incomplexity. The scalable environment permits it to be used for both applicationand research goals, especially investigating spatial aspects important forestimating environmental exposures and designing efficient remedial designs.The result is a mature infrastructure with considerable environmental decisionsupport capabilities. We provide an overview of SADA’s central functions anddiscuss how the problem of integrating diverse models in a tractable mannerwas addressed.Article OutlineNomenclature1. Introduction2. Methods2.1. Sample design2.2. Data management and exploratory data analysis2.3. Spatial autocorrelation2.4. Spatial models3. Results 3.1. Scalable interfacing and decision support3.2. Risk assessment3.2.1. Human health risk3.2.2. Ecological risk3.3. Selective remedial design4. Discussion and ConclusionAcknowledgementsReferencesResearch highlights ► SADA is mature software for data visualization, processing, analysis, and modeling. ► User interface balances functional scalability and decision support. ► Widely used due to free availability and shallow learning curve . ► Integration of spatial estimation and risk tools allows for rich decision support. 605 CoDBT: A multi-source dynamic binary translator using hardware –software collaborativetechniques Original Research ArticleJournal of Systems Architecture , Volume 56, Issue 10,October 2010, Pages 500-508Haibing Guan, Bo Liu, Zhengwei Qi, Yindong Yang,Hongbo Yang, Alei LiangShow preview | Related articles | Related reference work articles Purchase $ 31.50606 An analysis of third-party logistics performance and service provision Original Research ArticleTransportation Research Part E: Logistics andTransportation Review , Volume 47, Issue 4, July 2011, Pages 547-570Chiung-Lin Liu, Andrew C. Lyons Purchase$ 41.95Show preview | Related articles | Related reference work articles 607 Intelligent QoS management for multimedia services support in wireless mobile ad hoc networks OriginalResearch ArticleComputer Networks , Volume 54, Issue 10, 1 July 2010, Pages 1692-1706Lyes Khoukhi, Soumaya Cherkaoui Show preview | Related articles | Related reference work articlesPurchase $ 31.50 608 Limit to improvement: Myth or reality?: Empirical analysis of historical improvement on threetechnologies influential in the evolution ofcivilization Original Research ArticleTechnological Forecasting and Social Change ,Volume 77,Issue 5, June 2010, Pages 712-729 Yu Sang Chang, Seung Jin Baek Show preview| Supplementary content| Related articles | Relatedreference work articlesPurchase $ 41.95 609An enhanced concept map approach to improving children’s storytelling ability Original Research ArticleComputers & Education , Volume 56, Issue 3, April 2011, Pages 873-884Chen-Chung Liu, Holly S.L. Chen, Ju-Ling Shih, Guo-Ting Huang, Baw-Jhiune Liu Show preview | Related articles | Related reference work articlesPurchase $ 24.95610Human –computer interaction: A stable discipline, a nascent science, and the growth of the longtail Original Research ArticleInteracting with Computers , Volume 22, Issue 1, January 2010,Pages 13-27Alan Dix Show preview | Related articles | Related reference work articlesPurchase$ 31.50 611Post-agility: What follows a decade of agility? Original Research ArticleInformation and Software Technology , Volume 53, Issue 5,May 2011, Pages 543-555Richard Baskerville, Jan Pries-Heje, Sabine MadsenShow preview | Related articles | Related reference work articlesPurchase $ 19.95612Confidentiality checking an object-oriented class hierarchy Original Research ArticleNetwork Security , Volume 2010, Issue 3, March 2010, Pages 16-20S. Chandra, R.A KhanShow preview | Related articles | Related reference work articlesPurchase $ 41.95 613 European national news Computer Law & Security Review , Volume 26, Issue 5, September 2010, Pages 558-563 Mark Turner Show preview | Related articles | Related reference work articlesPurchase $ 41.95 614 System engineering approach in the EU Test Blanket Systems Design Integration Original Research ArticleFusion Engineering and Design , In Press, CorrectedProof , Available online 23 February 2011D. Panayotov, P. Sardain, L.V. Boccaccini, J.-F. Salavy, F.Cismondi, L. Jourd’Heuil Show preview | Related articles | Related reference work articlesPurchase $ 27.95 615A knowledge engineering approach to developing mindtools for context-aware ubiquitouslearning Original Research ArticleComputers & Education, Volume 54, Issue 1, January 2010, Pages 289-297Hui-Chun Chu, Gwo-Jen Hwang, Chin-Chung Tsai Show preview | Related articles |Related reference work articles Purchase $ 24.95616“Hi Father”, “Hi Mother”: A multimodal analysis of a significant, identity changing phone call mediated onTV Original Research Article Journal of Pragmatics, Volume 42, Issue 2, February 2010,Pages 426-442Pirkko Raudaskoski Show preview | Related articles | Related reference work articlesPurchase $ 19.95 617Iterative Bayesian fuzzy clustering toward flexible icon-based assistive software for the disabled OriginalResearch ArticleInformation Sciences , Volume 180, Issue 3, 1 February 2010, Pages 325-340Purchase$ 37.95Sang Wan Lee, Yong Soo Kim, Kwang-Hyun Park,Zeungnam BienShow preview | Related articles | Related reference work articles 618 A framework of composable access control features: Preserving separation of access control concerns from models to code Original Research ArticleComputers & Security , Volume 29, Issue 3, May 2010, Pages 350-379Jaime A. Pavlich-Mariscal, Steven A. Demurjian, LaurentD. MichelShow preview | Related articles | Related reference work articlesPurchase $ 31.50 619 Needs, affect, and interactive products – Facets ofuser experience Original Research ArticleInteracting with Computers , Volume 22, Issue 5, September 2010, Pages 353-362Marc Hassenzahl, Sarah Diefenbach, Anja Göritz Show preview | Related articles | Related reference work articlesPurchase $ 31.50 620 An IT perspective on integrated environmental modelling: The SIAT case Original Research ArticleEcological Modelling , Volume 221, Issue 18, 10 September 2010,Pages 2167-2176P.J.F.M. Verweij, M.J.R. Knapen, W.P. de Winter, J.J.F. Wien, J.A. te Roller, S. Sieber, J.M.L. JansenShow preview | Related articles | Related reference work articlesPurchase $ 31.50。
Appendix C Slides
Simulation with Arena, 3rd ed.
Appendix C – A Refresher on Probability and Statistics
Slide 5 of 33
Probability Basics (cont'd.)
Conditional probability
Knowing that an event F occurred might affect the probability that another event E also occurred Reduce the effective sample space from S to F, then measure "size" of E relative to its overlap (if any) in F, rather than relative to S Definition (assuming P(F) ≠ 0):
E and F are independent if P(E ∩ F) = P(E) P(F)
Implies P(E|F) = P(E) and P(F|E) = P(F), i.e., knowing that one event occurs tells you nothing about the other If E and F are mutually exclusive, are they independent?
Slide 1 of 33
What We'll Do ...
Ground-up review of probability and statistics necessary to do and understand simulation Assume familiarity with
行为科学统计精要 (1)[50页]
Parameters and Statistics
• Parameter
– A value, usually a numerical value, that describes a population
– Derived from measurements of the individuals in the population
Chapter 1: Introduction to Statistics
PowerPoint Lecture Slides
Essentials of Statistics for the Behavioral Sciences
Eighth Edition by Frederick J Gravetter and Larry B. WallnauFigure 1.1
Relationship between population and sample
Variables and Data
• Variable
– Characteristic or condition that changes or has different values for different individuals
justified based on the results that were obtained
• Goals of statistical procedures
– Accurate and meaningful interpretation – Provide standardized evaluation procedures
Math Skills Assessment
• Statistics requires basic math skills • Inadequate basic math skills puts you at
英语口语训练:常用英语口语PPT课件
learning method
• Using PPT courseware: This course adopts PowerPoint presentations as the main teaching material, providing visual and auditory support for students' learning.
Enhancing language comprehension
The course aims to improve students' ability to understand English-speaking materials and media.
Developing communication skills
used in the afternoon, usually after noon.
03
04
Good evening
used in the evening, usually after sunset.
Hello
a general greeting, can be used at any time of the day.
learning method
• Using PPT courseware: This course adopts PowerPoint presentations as the main teaching material, providing visual and auditory support for students' learning.
Digital Communication ——slides1
Course Lay-out
Lec1: Introduction. Important concepts to comprehend. Difficulty: 2. Importance: 2. Lec2: Formatting and transmission of baseband signals. (Sampling, Quantization, baseband modulation). Difficulty: 6. Importance: 7. Lec3: Receiver structure (demodulation, detection, matched filter receiver). Diff.: 5. Imp: 5. Lec4: Receiver structure (detection, signal space). Diff: 4. Imp.=:4 Lec5: Signal detection; Probability of symbol errors. Diff: 7. Imp: 8. Lec6: ISI, Nyquist theorem. Diff: 6. Imp: 6. Lec7: Modulation schemes; Coherent and non-coherent detection. Diff: 8. Imp: 9. Lec8: Comparing different modulation schemes; Calculating symbol errors. Diff: 7. Imp: 9. Lec9: Channel coding; Linear block codes. Diff: 3. Imp:7. Lec10: Convolutional codes. Diff: 2. Imp:8. Lec11: State and Trellis diagrams; Viterbi algorithm. Diff: 2. Imp: 9. Lec12: Properties of convolutional codes; interleaving; concatenated codes. Diff: 2. Imp: 5. Lec13:
高级 Citrix NetScaler 环境配置和管理说明书
OverviewDesigned for students with previous NetScaler experience, this course is best suited for individuals who will be deploying or managing advanced NetScaler environments.Learn the skills required to configure and manage advanced NetScaler features through hands-on lab exercises. Students will learn how to implement advanced NetScaler components including Application Firewall, Advanced Traffic Management features including Http Callouts, and Troubleshooting. At the end of the course students will be able to configure their NetScaler environments to address advanced traffic delivery and management requirements including application security, optimization, and NetScaler operation management.Recommended pre-requisite courses:∙CNS-205 Citrix NetScaler 11.0 Essentials and NetworkingNote: This course is based on the Citrix NetScaler 11 product, but the skills and fundamental concepts learned are common to earlier product versions.Key Skills∙Upon successful completion of this course, students will be able to:∙Identify common web attacks and vulnerabilities ∙Write PERL compatible regular expressions ∙Configure Citrix Application Firewall to protect web applications ∙Troubleshoot Citrix Application Firewall ∙Install and configure NetScaler Insight Center to monitor performance ∙Install, configure, and use Citrix Command Center to manage NetScaler devices ∙Configure and use additional advanced features of NetScaler including NetScaler Web Logging,HTTP callout, and AAA authentication for web applicationsAudienceStudents interested in learning how to implement and manage the advanced NetScaler features using leading practices. Specifically:∙Administrators ∙Implementers / Engineers ∙Architects(CNS-301) Citrix NetScaler 11 Advance ImplementationInstructional MethodThis course is offered in instructor-led training (ILT)/virtual instructor-led training (vILT) formats with application of concepts through hands-on exercises in a live lab environment.Course Length5 daysCourse MaterialsAs part of this course, students will receive the following materials:∙Access to a lab environment for the duration of the course∙Lab exercise guide∙Access to final course deliverables once the course is available in general availability including copies of all official materials presented by the instructor with additional notes and references as well as videos with experts throughout Citrix around course topics and lab exercises.Preparatory RecommendationsCitrix recommends students prepare for this course by taking the following course: ∙CNS-205 Citrix NetScaler Essentials and NetworkingIt is also recommended to gain a basic understanding of the following concepts and technologies: ∙Experience configuring NetScaler systems, including an understanding of services, virtual servers, and policies∙Experience with network devices, such as routers and switches, various networking protocols, and aspects of application and site architectures (such as DMZs and VLANs)∙Knowledge of network security threats and site protection concepts such as firewalls, worms, and DDoS attacks∙Understanding of concepts related to monitoring and management including basics of SNMPCertification PreparationIn addition to field experience, this course helps prepares candidates for the 1Y0-351: Citrix NetScaler 10.5 Essentials for Networking exam. By passing the 1Y0-351: Citrix NetScaler 10.5 Essentials for Networking exam, candidates will gain the Citrix Certified Professional – Networking (CCP-N) certification.Topic Outline∙Getting Startedo Introduction to the NetScaler System∙Advanced Troubleshootingo Troubleshooting Resourceso NetScaler System Overviewo nCore Configuration Architectureo Built-In Toolso Real-Time Performance Statisticso Historical Statisticso Third-Party Tools∙Introducing Application Firewallo Application Attackso The Benefits of Application Firewallo Payment Card Industry Data Security Standardo Packet Processing Inspectiono Profiles and Policies∙Profiles and Policieso Profileso Policieso Engine Settings∙Regular Expressionso Forms of Regular Expressionso Using Regular Expressionso Metacharacters and Literal Characterso Metacharacterso Escapeso Quantifierso Back referencingo Look headso Regular Expression Scope∙Attacks and Protectionso Security Checkso HTTPS Web Applicationso Buffer Overflow Exploits and Protectiono Parameter Manipulationo Server Misconfigurationo Deny URL Protectiono SQL Injectiono HTML SQL Injection Protectiono Command Injectiono Field Format Protectiono Cookie Tampering and Poisoningo Cookie Consistency Protectiono Form/Hidden Field Manipulationo Form Field Consistency Protectiono Forceful Browsingo Start URLso Backdoors and Misconfigurationso URL Closureo Identity Theft Attackso Credit Card Protectiono Protecting Credit Cardso Errors Triggering Sensitive Information Leakso Safe Object Protection∙Application Firewall Troubleshootingo Application Firewall ando Configuration Issues∙Queuing and Connection Tuningo HTTP Connectionso HTTP Connection Management and NetScalero HTTP Behavioro TCP Bufferingo Surge Queueo Surge Protectiono Priority Queuingo HTTP Denial-of-Service Protection∙Authentication, Authorization, and Auditingo Users, Groups and Command Policieso External Authentication for System Userso AAA for Traffic Managemento Configurationo Audit Logging∙AppExpert Rate Limiting, HTTP Service Callout, and Policy-based Logging o HTTP Calloutso Configuring HTTP Calloutso HTTP Callout Use Caseso Configuring Rate Controlo Rate Control Policy Scenarioso Policy-based Logging∙Command Centero Command Center Introductiono Command Center Clientso Server Requirementso Port Setting Requirementso Command Center Installationo Command Center Functionalityo Command Center Administration∙Insight Centero Insight Center Overviewo AppFlow on the NetScaler Systemo How Insight Center Collects AppFlow Datao HDX Insighto HTML Injection∙NetScaler Web Loggingo NetScaler Web Logging Introductiono NetScaler System Configurationo NSWL Client Installationo NSWL Client Configurationo Troubleshooting Web Logging。
云南师大附中2024届高考适应性月考卷(八)英语(云南版)-答案
英语参考答案第一部分听力(共20小题;每小题1.5分,满分30分)1~5 CAACB 6~10 BCCAB 11~15 BABCA 16~20 BABAC第二部分阅读(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)21~25 ABABD 26~30 CBCBA 31~35 CADDC第二节(共5小题;每小题2.5分,满分12.5分)36~40 GABCF第三部分语言运用(共两节,满分30分)第一节(共15小题;每小题1分,满分15分)41~45 DCBAD 46~50 CBADC 51~55 BADBC第二节(共10小题;每小题1.5分,满分15分)56.an 57.statistics/stats 58.minority 59.has been attached 60.talented 61.Known 62.as 63.what 64.carefully 65.to enjoy第四部分写作(共两节,满分40分)第一节(满分15分)【参考范文】Good morning,everyone.Today,I’d like to talk about a famous Chinese proverb:“There is no royal road to learning.”,which resonates deeply with my understanding of education.In my experience,this proverb holds a profound truth.Whether it’s learning a new language or understanding scientific concepts,there is no shortcut to success.Just like climbing a high mountain or sailing across an endless sea,learning requires persistent effort and devotion.Moreover,this proverb encourages a growth mindset,which leads us to take on challenges and view them as opportunities for improvement.In conclusion,the proverb is a powerful reminder that inspires us to embrace the journey of learning with determination and resilience.Thank you for listening.第二节(满分25分)【参考范文】I did get a response from this young girl,revealing there was not only verbal abuse but physical abuse as well.It brought tears to my eyes that this innocent sweetheart’s life was being threatened in英语参考答案·第1页(共9页)ways I never could have imagined.Her letters were full of despair and misery.She said for the bullying boyfriend she turned her back to all her families and friends.In my reply I tried my best to comfort and encourage her to reach out to those who actually love her.“It is you who have the power to rescue yourself! Do not hesitate to seek any help you need!”,I wrote,and offered my phone number this time.It turned out that my note had started getting the girl on the path to saving herself.With a lot of hard work in therapy and many people’s support,this smart,articulate,and beautiful young woman finally got rid of the abuser and is now doing amazing things in her life.I don’t want to think about what could have been if I had not listened to that soft voice in my mind guiding me to write a note on a napkin on a plane that changed a beautiful life.This experience reminds me again:Always have a willing hand to help someone;you might be the only one that does.【解析】第二部分阅读第一节A主题语境:人与社会——游轮旅行【语篇导读】本文是应用文。
DB33∕T 1136-2017 建筑地基基础设计规范
5
地基计算 ....................................................................................................................... 14 5.1 承载力计算......................................................................................................... 14 5.2 变形计算 ............................................................................................................ 17 5.3 稳定性计算......................................................................................................... 21
主要起草人: 施祖元 刘兴旺 潘秋元 陈云敏 王立忠 李冰河 (以下按姓氏拼音排列) 蔡袁强 陈青佳 陈仁朋 陈威文 陈 舟 樊良本 胡凌华 胡敏云 蒋建良 李建宏 王华俊 刘世明 楼元仓 陆伟国 倪士坎 单玉川 申屠团兵 陶 琨 叶 军 徐和财 许国平 杨 桦 杨学林 袁 静 主要审查人: 益德清 龚晓南 顾国荣 钱力航 黄茂松 朱炳寅 朱兆晴 赵竹占 姜天鹤 赵宇宏 童建国浙江大学 参编单位: (排名不分先后) 浙江工业大学 温州大学 华东勘测设计研究院有限公司 浙江大学建筑设计研究院有限公司 杭州市建筑设计研究院有限公司 浙江省建筑科学设计研究院 汉嘉设计集团股份有限公司 杭州市勘测设计研究院 宁波市建筑设计研究院有限公司 温州市建筑设计研究院 温州市勘察测绘院 中国联合工程公司 浙江省电力设计院 浙江省省直建筑设计院 浙江省水利水电勘测设计院 浙江省工程勘察院 大象建筑设计有限公司 浙江东南建筑设计有限公司 湖州市城市规划设计研究院 浙江省工业设计研究院 浙江工业大学工程设计集团有限公司 中国美术学院风景建筑设计研究院 华汇工程设计集团股份有限公司
OmniGraffle Pro 7.17.5 软件破解说明书
OmniGraffle Pro 7.17.5 Crack MAC With License Number Keygen 2020Mar 24, 2021 — Alfred PowerPack Crack is an award-winning application for Mac OS X that reinforces its potential with quick buttons, key phrases. ... Alfred 4 Powerpack Crack 4.3.3 (1205) + License Code Free Download. Alfred PowerPack Crack is ... Display any phone number or text in large text on the screen. See how .... OmniGraffle Pro 7.18.5 Crack & Full Keygen Download {Latest ... —OmniGraffle Pro Full Keygen is a great software designed for Mac systems that allow users to create graphics. Organization charts of all .... May 30, 2021 — OmniGraffle Professional has all of the great features include canvases, templates, stencils, vector drawing, and grid guides. Other features .... OmniGraffle Pro Crack 2020 is Here. OmniGraffle Pro 7.17.5 Crack Mac helps you draw lovely diagrams, household timber, move charts, org charts, layouts, and .... Apr 10, 2021 — OmniGraffle Crack With License Key new options allows you to create charts. It provides all ... OmniGraffle Serial Key For Mac is a well-made diagram editor. Also ... Moreover, OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts. ... EAGLE Crack 9.6.2 Full Keys May 29, 2020 In "Mac".. Jul 15, 2020 — All Omni applications purchased prior to June 2020 from our online store ... OmniFocus for Mac 3.8.1 and earlier; OmniGraffle for Mac 7.16 and earlier ... If you've received a license key, uninstall the Mac App Store version by .... Apr 10, 2021 — How To Activate? OmniGraffle Pro 7 Crack & Full Activation Key. OmniGraffle Pro Crack is an excellent software designed for your Mac system .... Nov 8, 2020 — OmniGraffle Pro 7.17.5 Crack Latest Version for Mac OS: In addition, if you want to use storage locations and options to manage your ideas, set .... OmniGraffle Pro 7.17.5 Crack MAC/Win With License Key Download ... The OmniGraffle Pro Crack Mac helps you bring in beautiful designs, lumber, offset graphics, ...Apr 18, 2021 — 5 Crack + Full Torrent Download (Mac/OS). OmniGraffle Pro 7.15 Crack + Full License Key Download 2020 In addition to the above, it is more .... OmniGraffle Pro 7.18.5 Crack + License Key For Mac [Latest] — So, it offers to collect the basic ideas with the minimum effort.. Doload provides direct link: to download cracked software, apps, and wp themes, ... VideoPad Video Editor Pro 8.84 Crack Registration Code ... OmniGraffle 7.17.5 Free Download with License Crack ... Paragon APFS for Windows 2.1.82 Crack Serial Number ... Windows Software · Mac Software · Android Apps · Blog .... May 28, 2021 — 5: Therefore, To Improved efficiency when scrolling and dragging objects in sure eventualities. Key Features: Visio import/export .... ... Pro 7.17. OmniGraffle Pro 7.17 is a completely redesigned version of the. ... OmniGraffle 7.17.5 Crack + Licence Key (Mac) Free Download. OmniGraffle Crack is a popular ... OmniGraffle Pro Crack 2020 Is Here. OmniGraffle Pro ... The OmniGraffle license number is used to create graphics and visuals. The device selects .... Apr 7, 2021 — 5 – Create diagrams, flow charts and more. Keygen OmniGraffle Productivity. by NMac Ked. OmniGraffle Pro helps you draw beautiful .... More, it likewise changes over your thoughts into a graphical shape. It is additionally extremely quick! OmniGraffle License Key shows your interest data in various .... OmniGraffle Pro Crack offers everything in Stand Explain, from simple ... OmniGraffle Pro Crack 7.17.5 MAC + Activation Key 2020 Creative Design, Your Design.. Windows · Android · Mac · Laptops · Firmwares · E-Books · Courses · Blog · Contact Me · Windows Android Mac Laptops Firmwares E-Books Courses .... Apr 26, 2021 — OmniGraffle 7.18.5 Crack + License Key (MAC) Free Download is the world's best ... OmniGraffle's Pro Torrent inspector is a new thin implementation on the ... You need to use a number of layers, canvases, or pages in the identical doc. ... OmniGraffle Crack 2020 Free Download, OmniGraffle For MAC Free .... Mar 7, 2021 — OmniGraffle 7 Keygen + Crack is the best mac drawing application to draw stunning diagrams, charts, trees and layouts as the user .... OmniGraffle Pro Crack 7.17.5 MAC Activation Key 2020. /r/crackthecode ... OmniGraffle Pro Crack 7.17.6 MAC & License Number [Latest] 2020 · /r/blogger .... Niresh Mac OS X Yosemite 10.10.1 dmg for mac DVD ISO free download full version. Niresh Mac OS X ... All in all, it's far a number of the ultra-modern running structures for Macintosh. It's miles a ... Browsec VPN Premium 2020 Crack Latest Version Free Download ... OmniGraffle 7.17.5 Crack + License Key Free Download.OmniGraffle 7.17.5 Free Download with License Crack. OmniGraffle Pro Crack is an excellent software designed for your Mac system to help users create diagrams. Any type of chart ... Paragon APFS for Windows 2.1.82 Crack Serial Number. Paragon APFS for ... Kaspersky Vpn Secure Connection 2020 License key Crack.. Omnigraffle 7.12 License KeyOmnigraffle Pro License Key EsetNod32 ... OmniGraffle Crack 7.17.5 (Mac) & Latest License Keygen Free Here ... OmniGraffle Pro Crack MAC Full License Code 2020 ... A number of modifying home windows.. Nov 27, 2020 — Sugar Bytes Obscurium v1.0.7 Crack Mac + Torrent Free Download. Sugar Bytes ... Apple Logic Pro X Crack v10.6.0 + Activation Code Full Torrent Download. Apple Logic Pro ... OmniGraffle Crack 7.17.5 (Mac) & Latest License Keygen Free Here ... SparkoCam 2.7.3 Crack & Full Serial Number 2020 Latest.. Mar 22, 2021 — Isyu sa pilipinas 2020 brainly ... If you want to download the software on your pc or mac, you could either first visit the Mac ... Site Licenses — The process for licensing OmniGraffle via a site license has been simplified: ... Omnigraffle Pro Serial Number allows you to design beautiful works of art, family trees, .... Jun 7, 2021 — Create OmniGraffle Pro License Key 2021 (Mac/win) yours, each and every and each way. Through flexible inspectors to your own themes and .... Download Torrent for OmniGraffle Pro 7.17.5 - Software for macOS. OmniGraffle Pro 7.17.5. Date: 18.09.2020. Category:.. Key Features — Key Features: What's New? OmniGraffle Pro Features: License Keys;; System Requirements: Pros: Cons: How To Install?. As when we try to google then we can see number of people using windows 10 on Lumia 620!! ... OmniGraffle Pro 7 Crack & Full Activation Key OmniGraffle Pro Crack is an ... OmniGraffle Pro 7.17.5 Crack Mac helps you draw lovely diagrams, ... OmniGraffle Pro Crack MAC Full License Code 2020 OmniGraffle Pro 7.16 ...Boot Option For Mac • Apple Computer Not Booting Up • Boot Settings Mac • Mac ... I also try again on my MacBook Pro and its able to boot up to Windows with no problem ... Nov 1st, 2020 ... Thanks to its extensive advertising campaign, which uses a number of ... OmniGraffle 7.17.5 Crack + License Key Free Download.. Feb 12, 2021 — OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, ... Torrent Button; Download on Your Mac; Open; Extract; Install .... OmniGraffle 7.18.5 Crack + License Key (MAC) Download OmniGraffle 7.18.5 Crack is the world's best application for your Mac system. It helps the user to .... OmniGraffle 6.5 for Mac User Manual - The Omni Group. ... Premium Download, Ms Office 2003 Key, Microsoft Office Standard 2013 Crack. ... 1994–2020 The Omni Group; Apple, MacBook, the Apple logo, iPad, and iPhone are ... Omnigraffle pro 5.3.6 license Cara membuka kata sandi file nfs most wanted Driver finder ... 8d69782dd3Charlotte,************Girlies44,****************padayappa full movie hd 1080p blu ray with english subtitlesChaud Jeunes Minets LatinosRegarderManchester United FC vs Paris Saint-Germain FC | Manchester United FC vs Paris Saint-Germain FC Streaming en ligne Link 7Grains From Grass Aging Gender And Famine In Rural AfricaRuissiangirlArinaL11-17yrs,АринаЛ************MixedFun,*************Toad For Oracle Full Version CrackDownload Stefanie zip。
Bones骨骼英文版专题知识
Bones骨骼英文版专题知识
Non Commercial Use Only Information and material on slide kit may be reproduced and distributed for educational use only
Commercial use of these materials is prohibited without prior written permission. Copyright © 2006, Les Laboratoires Servier - all rights reserved.
第10页
第13页
Knee (1)
Bones骨骼英文版专题知识
Posterior view
Parasagittal section
Non Commercial Use Only Information and material on slide kit may be reproduced and distributed for educational use only
第12页
Femur
Bones骨骼英文版专题知识
Non Commercial Use Only Information and material on slide kit may be reproduced and distributed for educational use only
面对小白的pandas命令手册+练习题【三万字详解】
⾯对⼩⽩的pandas命令⼿册+练习题【三万字详解】⼤家好,我是辣条。
Pandas 是Python的核⼼数据分析⽀持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。
Pandas常⽤于处理带⾏列标签的矩阵数据、与SQL 或 Excel 表类似的表格数据,应⽤于⾦融、统计、社会科学、⼯程等领域⾥的数据整理与清洗、数据分析与建模、数据可视化与制表等⼯作。
练习题索引习题编号内容相应数据集练习1 - 开始了解你的数据探索Chipotle快餐数据chipotle.tsv练习2 - 数据过滤与排序探索2012欧洲杯数据Euro2012_stats.csv[练习3 - 数据分组]探索酒类消费数据drinks.csv[练习4 -Apply函数]探索1960 - 2014 美国犯罪数据US_Crime_Rates_1960_2014.csv[练习5 - 合并]探索虚拟姓名数据练习中⼿动内置的数据[练习6 - 统计探索风速数据wind.data[练习7 - 可视化]探索泰坦尼克灾难数据train.csv[练习8 - 创建数据框探索Pokemon数据练习中⼿动内置的数据[练习9 - 时间序列探索Apple公司股价数据Apple_stock.csv[练习10 - 删除数据探索Iris纸鸢花数据iris.csv练习1-开始了解你的数据探索Chipotle快餐数据步骤1 导⼊必要的库In [7]:# 运⾏以下代码import pandas as pd步骤2 从如下地址导⼊数据集In [5]:# 运⾏以下代码path1 = "./exercise_data/chipotle.tsv" # chipotle.tsv步骤3 将数据集存⼊⼀个名为chipo的数据框内In [8]:# 运⾏以下代码chipo = pd.read_csv(path1, sep = '\t')步骤4 查看前10⾏内容In [9]:# 运⾏以下代码chipo.head(10)Out[9]:order_id quantity item_name choice_description item_price011Chips and Fresh Tomato Salsa NaN$2.39111Izze[Clementine]$3.39211Nantucket Nectar[Apple]$3.39311Chips and Tomatillo-Green Chili Salsa NaN$2.39422Chicken Bowl[Tomatillo-Red Chili Salsa (Hot), [Black Beans...$16.98531Chicken Bowl[Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou...$10.98631Side of Chips NaN$1.69741Steak Burrito[Tomatillo Red Chili Salsa, [Fajita Vegetables...$11.75841Steak Soft Tacos[Tomatillo Green Chili Salsa, [Pinto Beans, Ch...$9.25951Steak Burrito[Fresh Tomato Salsa, [Rice, Black Beans, Pinto...$9.25步骤6 数据集中有多少个列(columns)In [236]:# 运⾏以下代码chipo.shape[1]Out[236]:5步骤7 打印出全部的列名称In [237]:# 运⾏以下代码chipo.columnsOut[237]:Index(['order_id', 'quantity', 'item_name', 'choice_description','item_price'],dtype='object')步骤8 数据集的索引是怎样的In [238]:# 运⾏以下代码chipo.indexOut[238]:RangeIndex(start=0, stop=4622, step=1)步骤9 被下单数最多商品(item)是什么?In [239]:# 运⾏以下代码,做了修正c = chipo[['item_name','quantity']].groupby(['item_name'],as_index=False).agg({'quantity':sum})c.sort_values(['quantity'],ascending=False,inplace=True)c.head()Out[239]:item_name quantity17Chicken Bowl76118Chicken Burrito59125Chips and Guacamole50639Steak Burrito38610Canned Soft Drink351步骤10 在item_name这⼀列中,⼀共有多少种商品被下单?In [240]:# 运⾏以下代码chipo['item_name'].nunique()Out[240]:50步骤11 在choice_description中,下单次数最多的商品是什么?In [241]:# 运⾏以下代码,存在⼀些⼩问题chipo['choice_description'].value_counts().head()Out[241]:[Diet Coke] 134[Coke] 123[Sprite] 77[Fresh Tomato Salsa, [Rice, Black Beans, Cheese, Sour Cream, Lettuce]] 42[Fresh Tomato Salsa, [Rice, Black Beans, Cheese, Sour Cream, Guacamole, Lettuce]] 40 Name: choice_description, dtype: int64步骤12 ⼀共有多少商品被下单?In [242]:# 运⾏以下代码total_items_orders = chipo['quantity'].sum()total_items_ordersOut[242]:4972步骤13 将item_price转换为浮点数In [243]:# 运⾏以下代码dollarizer = lambda x: float(x[1:-1])chipo['item_price'] = chipo['item_price'].apply(dollarizer)步骤14 在该数据集对应的时期内,收⼊(revenue)是多少In [244]:# 运⾏以下代码,已经做更正chipo['sub_total'] = round(chipo['item_price'] * chipo['quantity'],2)chipo['sub_total'].sum()Out[244]:39237.02步骤15 在该数据集对应的时期内,⼀共有多少订单?In [245]:# 运⾏以下代码chipo['order_id'].nunique()Out[245]:1834步骤16 每⼀单(order)对应的平均总价是多少?In [246]:# 运⾏以下代码,已经做过更正chipo[['order_id','sub_total']].groupby(by=['order_id']).agg({'sub_total':'sum'})['sub_total'].mean()Out[246]:21.39423118865867步骤17 ⼀共有多少种不同的商品被售出?In [247]:# 运⾏以下代码chipo['item_name'].nunique()Out[247]:练习2-数据过滤与排序探索2012欧洲杯数据步骤1 - 导⼊必要的库In [248]:# 运⾏以下代码import pandas as pd步骤2 - 从以下地址导⼊数据集In [249]:# 运⾏以下代码path2 = "./exercise_data/Euro2012_stats.csv" # Euro2012_stats.csv步骤3 - 将数据集命名为euro12In [250]:# 运⾏以下代码euro12 = pd.read_csv(path2)euro12Out[250]:Team Goals ShotsontargetShotsofftargetShootingAccuracy%Goals-to-shotsTotalshots(inc.Blocked)HitWoodworkPenaltygoalsPenaltiesnotscored...SavesmadeSaves-to-shotsratioFoulsWonFoulsConcededOffsides YellowCardsRedCardsSubsonSubsoffPlayersUsed0Croatia4131251.9%16.0%32000...1381.3%416229099161CzechRepublic4131841.9%12.9%39000...960.1%53738701111192Denmark4101050.0%20.0%27100...1066.7%25388407715 3England5111850.0%17.2%40000...2288.1%4345650111116 4France3222437.9% 6.5%65100...654.6%3651560111119 5Germany10323247.8%15.6%80210...1062.6%63491240151517 6Greece581830.7%19.2%32111...1365.1%67481291121220 7Italy6344543.0%7.5%110200...2074.1%1018916160181819 8Netherlands2123625.0% 4.1%60200...1270.6%35303507715 9Poland2152339.4% 5.2%48000...666.7%48563717717 10Portugal6224234.3%9.3%82600...1071.5%73901012014141611Republic ofIreland171236.8% 5.2%28000...1765.4%4351116110101712Russia593122.5%12.5%59200...1077.0%34434607716 13Spain12423355.9%16.0%100010...1593.8%102831911017171814Sweden 5171947.2%13.8%39300...861.6%3551770991815Ukraine 272621.2% 6.0%38000...1376.5%48314509918Team Goals Shots on target Shots off target Shooting Accuracy %Goals-to-shots Total shots (inc.Blocked)Hit Woodwork Penalty goals Penalties not scored...Saves made Saves-to-shots ratioFouls Won Fouls Conceded OffsidesYellow Cards Red Cards Subs on Subs off PlayersUsed16 rows × 35 columns 步骤4 只选取 Goals 这⼀列In [251]:# 运⾏以下代码euro12.GoalsOut[251]:0 41 42 43 54 35 106 57 68 29 210 611 112 513 1214 515 2Name: Goals, dtype: int64步骤5 有多少球队参与了2012欧洲杯?In [252]:# 运⾏以下代码euro12.shape[0]Out[252]:16步骤6 该数据集中⼀共有多少列(columns)?In [253]:# 运⾏以下代码()<class 'pandas.core.frame.DataFrame'>RangeIndex: 16 entries, 0 to 15Data columns (total 35 columns):Team 16 non-null object Goals 16 non-null int64Shots on target 16 non-null int64Shots off target 16 non-null int64Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64Hit Woodwork 16 non-null int64Penalty goals 16 non-null int64Penalties not scored 16 non-null int64Headed goals 16 non-null int64Passes 16 non-null int64Passes completed 16 non-null int64Passing Accuracy 16 non-null object Touches 16 non-null int64Crosses 16 non-null int64Dribbles 16 non-null int64Corners Taken 16 non-null int64Tackles 16 non-null int64Clearances 16 non-null int64Interceptions 16 non-null int64Clearances off line 15 non-null float64Clean Sheets 16 non-null int64Blocks 16 non-null int64Goals conceded 16 non-null int64Saves made 16 non-null int64Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64Fouls Conceded 16 non-null int64Offsides 16 non-null int64Yellow Cards 16 non-null int64Red Cards 16 non-null int64Subs on 16 non-null int64Subs off 16 non-null int64Players Used 16 non-null int64dtypes: float64(1), int64(29), object(5)memory usage: 4.5+ KB步骤7 将数据集中的列Team, Yellow Cards 和Red Cards 单独存为⼀个名叫discipline 的数据框In [254]:# 运⾏以下代码discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']]disciplineOut[254]:TeamYellow Cards Red Cards 0Croatia 901Czech Republic 702Denmark 403England54France605Germany406Greece917Italy1608Netherlands509Poland7110Portugal12011Republic of Ireland6112Russia6013Spain11014Sweden7015Ukraine50Team Yellow Cards Red Cards步骤8 对数据框discipline按照先Red Cards再Yellow Cards进⾏排序In [255]:# 运⾏以下代码discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False)Out[255]:Team Yellow Cards Red Cards6Greece919Poland7111Republic of Ireland617Italy16010Portugal12013Spain1100Croatia901Czech Republic7014Sweden704France6012Russia603England508Netherlands5015Ukraine502Denmark405Germany40步骤9 计算每个球队拿到的黄牌数的平均值In [256]:# 运⾏以下代码round(discipline['Yellow Cards'].mean())Out[256]:7.0步骤10 找到进球数Goals超过6的球队数据In [257]:# 运⾏以下代码euro12[euro12.Goals > 6]Out[257]:Team Goals ShotsontargetShotsofftargetShootingAccuracy%Goals-to-shotsTotalshots(inc.Blocked)HitWoodworkPenaltygoalsPenaltiesnotscored...SavesmadeSaves-to-shotsratioFoulsWonFoulsConcededOffsides YellowCardsRedCardsSubsonSubsoffPlayersUsed5Germany10323247.8%15.6%80210...1062.6%63491240151517 13Spain12423355.9%16.0%100010...1593.8%10283191101717182 rows × 35 columns步骤11 选取以字母G开头的球队数据In [258]:# 运⾏以下代码euro12[euro12.Team.str.startswith('G')]Out[258]:Team Goals ShotsontargetShotsofftargetShootingAccuracy%Goals-to-shotsTotalshots(inc.Blocked)HitWoodworkPenaltygoalsPenaltiesnotscored...SavesmadeSaves-to-shotsratioFoulsWonFoulsConcededOffsides YellowCardsRedCardsSubsonSubsoffPlayersUsed5Germany10323247.8%15.6%80210...1062.6%63491240151517 6Greece581830.7%19.2%32111...1365.1%674812911212202 rows × 35 columns步骤12 选取前7列# 运⾏以下代码euro12.iloc[: , 0:7]Out[259]:Team Goals Shots on target Shots off target Shooting Accuracy% Goals-to-shots Total shots (inc. Blocked) 0Croatia4131251.9%16.0%321Czech Republic4131841.9%12.9%392Denmark4101050.0%20.0%273England5111850.0%17.2%404France3222437.9% 6.5%655Germany10323247.8%15.6%806Greece581830.7%19.2%327Italy6344543.0%7.5%1108Netherlands2123625.0% 4.1%609Poland2152339.4% 5.2%4810Portugal6224234.3%9.3%8211Republic of Ireland171236.8% 5.2%2812Russia593122.5%12.5%5913Spain12423355.9%16.0%10014Sweden5171947.2%13.8%3915Ukraine272621.2% 6.0%38步骤13 选取除了最后3列之外的全部列In [260]:# 运⾏以下代码euro12.iloc[: , :-3]Out[260]:Team Goals ShotsontargetShotsofftargetShootingAccuracy%Goals-to-shotsTotalshots(inc.Blocked)HitWoodworkPenaltygoalsPenaltiesnotscored...CleanSheetsBlocks GoalsconcededSavesmadeSaves-to-shotsratioFoulsWonFoulsConcededOffsides YellowCardsRedCards0Croatia4131251.9%16.0%32000...01031381.3%41622901CzechRepublic4131841.9%12.9%39000...1106960.1%53738702Denmark4101050.0%20.0%27100...11051066.7%2538840 3England5111850.0%17.2%40000...22932288.1%4345650 4France3222437.9% 6.5%65100...175654.6%3651560 5Germany10323247.8%15.6%80210...11161062.6%63491240 6Greece581830.7%19.2%32111...12371365.1%67481291 7Italy6344543.0%7.5%110200...21872074.1%1018916160 8Netherlands2123625.0% 4.1%60200...0951270.6%3530350 9Poland2152339.4% 5.2%48000...083666.7%4856371 10Portugal6224234.3%9.3%82600...21141071.5%73901012011Republic ofIreland171236.8% 5.2%28000...02391765.4%4351116112Russia593122.5%12.5%59200...0831077.0%3443460 13Spain12423355.9%16.0%100010...5811593.8%1028319110 14Sweden5171947.2%13.8%39300...1125861.6%3551770 15Ukraine272621.2% 6.0%38000...0441376.5%483145016 rows × 32 columns步骤14 找到英格兰(England)、意⼤利(Italy)和俄罗斯(Russia)的射正率(Shooting Accuracy)In [261]:# 运⾏以下代码euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']]Out[261]:Team Shooting Accuracy3England50.0%7Italy43.0%12Russia22.5%练习3-数据分组探索酒类消费数据步骤1 导⼊必要的库In [262]:import pandas as pd步骤2 从以下地址导⼊数据In [10]:# 运⾏以下代码path3 ='./exercise_data/drinks.csv' #'drinks.csv'步骤3 将数据框命名为drinksIn [11]:# 运⾏以下代码drinks = pd.read_csv(path3)drinks.head()Out[11]:country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent 0Afghanistan0000.0AS1Albania8913254 4.9EU2Algeria250140.7AF3Andorra24513831212.4EU4Angola2175745 5.9AF步骤4 哪个⼤陆(continent)平均消耗的啤酒(beer)更多?In [12]:# 运⾏以下代码drinks.groupby('continent').beer_servings.mean()Out[12]:continentAF 61.471698AS 37.045455EU 193.777778OC 89.687500SA 175.083333Name: beer_servings, dtype: float64步骤5 打印出每个⼤陆(continent)的红酒消耗(wine_servings)的描述性统计值In [13]:# 运⾏以下代码drinks.groupby('continent').wine_servings.describe()Out[13]:count mean std min25%50%75%maxcontinentAF53.016.26415138.8464190.0 1.0 2.013.00233.0AS44.09.06818221.6670340.00.0 1.08.00123.0EU45.0142.22222297.4217380.059.0128.0195.00370.0OC16.035.62500064.5557900.0 1.08.523.25212.0SA12.062.41666788.6201891.0 3.012.098.50221.0步骤6 打印出每个⼤陆每种酒类别的消耗平均值In [15]:# 运⾏以下代码drinks.groupby('continent').mean()Out[15]:beer_servings spirit_servings wine_servings total_litres_of_pure_alcoholcontinentAF61.47169816.33962316.264151 3.007547AS37.04545560.8409099.068182 2.170455EU193.777778132.555556142.2222228.617778OC89.68750058.43750035.625000 3.381250SA175.083333114.75000062.416667 6.308333步骤7 打印出每个⼤陆每种酒类别的消耗中位数In [268]:# 运⾏以下代码drinks.groupby('continent').median()Out[268]:beer_servings spirit_servings wine_servings total_litres_of_pure_alcoholcontinentAF32.0 3.0 2.0 2.30AS17.516.0 1.0 1.20EU219.0122.0128.010.00OC52.537.08.5 1.75SA162.5108.512.0 6.85beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol步骤8 打印出每个⼤陆对spirit饮品消耗的平均值,最⼤值和最⼩值In [269]:# 运⾏以下代码drinks.groupby('continent').spirit_servings.agg(['mean', 'min', 'max'])Out[269]:mean min maxcontinentAF16.3396230152AS60.8409090326EU132.5555560373OC58.4375000254SA114.75000025302练习4-Apply函数探索1960 - 2014 美国犯罪数据步骤1 导⼊必要的库In [16]:# 运⾏以下代码import numpy as npimport pandas as pd步骤2 从以下地址导⼊数据集In [27]:# 运⾏以下代码path4 = './exercise_data/US_Crime_Rates_1960_2014.csv' # "US_Crime_Rates_1960_2014.csv"步骤3 将数据框命名为crimeIn [28]:# 运⾏以下代码crime = pd.read_csv(path4)crime.head()Out[28]:Year Population Total Violent Property Murder Forcible_Rape Robbery Aggravated_assault Burglary Larceny_Theft Vehicle_Theft 01960179323175338420028846030957009110171901078401543209121001855400328200 11961182992000348800028939031986008740172201066701567609496001913000336000 21962185771000375220030151034507008530175501108601645709943002089600366800 319631884830004109500316970379250086401765011647017421010864002297800408300 419641911410004564600364220420040093602142013039020305012132002514400472800步骤4 每⼀列(column)的数据类型是什么样的?In [29]:# 运⾏以下代码()<class 'pandas.core.frame.DataFrame'>RangeIndex: 55 entries, 0 to 54Data columns (total 12 columns):Year 55 non-null int64Population 55 non-null int64Total 55 non-null int64Violent 55 non-null int64Property 55 non-null int64Murder 55 non-null int64Forcible_Rape 55 non-null int64Robbery 55 non-null int64Aggravated_assault 55 non-null int64Burglary 55 non-null int64Larceny_Theft 55 non-null int64Vehicle_Theft 55 non-null int64dtypes: int64(12)memory usage: 5.2 KB注意到了吗,Year的数据类型为int64,但是pandas有⼀个不同的数据类型去处理时间序列(time series),我们现在来看看。
海致大数据建模初级题库五环流程
海致大数据建模初级题库五环流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!海致大数据建模的五环流程解析在大数据时代,数据建模成为企业决策、市场分析、产品优化的重要工具。
云私塾pro集训讲义
云私塾pro集训讲义云私塾Pro集训讲义是一份专为学员们准备的学习指南,旨在帮助学员们更好地掌握知识,提升技能,实现个人的成长和发展。
本讲义内容丰富,涵盖了多个领域的知识和技能,包括但不限于计算机科学、人工智能、数据分析等。
通过系统的学习和实践,学员们将能够在各自的领域中取得更好的成绩和表现。
第一部分:计算机科学基础知识在这一部分,我们将介绍计算机科学的基础知识,包括计算机的发展历程、计算机硬件和软件的基本原理、计算机网络和操作系统等。
学员们将了解计算机的工作原理,掌握计算机的基本操作和维护技巧,为后续的学习打下坚实的基础。
第二部分:人工智能与机器学习人工智能是当今科技领域的热门话题,也是未来发展的重要方向。
在这一部分,我们将介绍人工智能的基本概念和原理,包括机器学习、深度学习、自然语言处理等。
学员们将学习如何使用Python等编程语言进行机器学习的实践,掌握数据预处理、模型训练和评估等技巧,为解决实际问题提供有效的解决方案。
第三部分:数据分析与可视化数据分析是现代社会中不可或缺的一项技能。
在这一部分,我们将介绍数据分析的基本概念和方法,包括数据收集、数据清洗、数据建模等。
学员们将学习如何使用Python和R等工具进行数据分析和可视化,掌握数据处理和分析的技巧,为企业决策提供有力的支持。
第四部分:项目实践与案例分析在这一部分,我们将组织学员们进行项目实践和案例分析,通过实际操作和实践经验的积累,提升学员们的实际能力和解决问题的能力。
学员们将参与到真实的项目中,与团队合作,解决实际问题,锻炼自己的团队合作和沟通能力。
第五部分:个人发展与职业规划在这一部分,我们将帮助学员们进行个人发展和职业规划,包括如何提升自己的技能和能力,如何制定个人发展计划,如何进行职业规划等。
学员们将了解不同行业的就业前景和发展趋势,为自己的未来做好准备。
通过云私塾Pro集训讲义的学习,学员们将能够全面提升自己的知识和技能,为未来的发展打下坚实的基础。
从0到1mac 本地训练和推理模型
在Mac上从零开始本地训练和推理模型,主要涉及以下步骤。
这里以Python环境下的深度学习框架PyTorch为例进行说明:准备环境1. 安装Python:确保你的Mac已经安装了Python 3.x版本。
如果未安装,可以通过Homebrew等包管理工具来安装。
2. 创建虚拟环境(可选):为了保持项目环境的独立性和整洁性,可以使用virtualenv或conda创建虚拟环境。
3. 安装PyTorch与相关依赖:根据你的Mac硬件类型(Intel或Apple Silicon),选择合适的PyTorch 版本进行安装,并确保包含CUDA支持(如果有GPU)。
4. 安装其他库:如果你需要额外的库如transformers、tqdm等,请使用pip进行安装。
数据准备5. 下载数据集:下载你想要训练模型的数据集并解压到本地指定目录,例如MNIST或其他开源数据集。
训练模型6. 编写代码:创建一个新的Python脚本文件,导入所需库,定义模型结构、损失函数、优化器以及训练和验证循环。
7. 加载数据:使用PyTorch的数据加载器(DataLoader)将数据集组织成适合训练的形式。
8. 启动训练:运行你的训练脚本,观察训练过程中的损失变化和模型性能指标。
模型推理9. 保存模型:在训练结束后,保存模型权重到本地文件。
python代码:10. 加载模型进行推理:创建一个单独的脚本用于加载模型并进行预测。
python代码:以上是一个大致流程,具体的实现会根据实际任务需求有所不同。
在M1 Mac上运行大模型时,需要注意内存限制和计算资源的有效利用。
对于较大的模型,可能需要采用量化技术(如int8量化)来减少内存占用和加快推理速度。
rocscienceslide基本方法
主程序界面
数据输 入窗口
File菜单
View菜单
Boundary菜单
Analysis菜单
Loading菜单
Support菜单
Properties菜单
Help菜单
Surfaces菜单
Window菜单
建立概念模型
150KN/m
填土 3
单元层 代号 / ③ ④
岩土名称 整平后回填土(夯实) 粘土(可塑或硬塑状态) 强风化粘土岩
5. 采用毕肖普法手工计算一实际边坡,然后与软件计算结果对比一下。 6. 运用新软件之前,应进行对比分析,确认其可靠性。
7. 不能盲从于数值计算软件,软件只是一工具,更应该学习其背后的理论 知识。
定义外部荷载
Loading→Add Distributed Load(分布荷载),或者Add Line Load(线性荷载),在本 例中选择分布荷载。
点击OK以后出现一窗口,输入两各荷载作用点的坐标,即可。如下一页的示意 图。
定义外部荷载
定义支护
先定义Support pattern,如下图
支护长度
⑦ ③ ①
⑥ ④ ②
定义地层参数
Properties→Define materials…,出现一窗口,如左下图。按照图示内容输入相应参 数。完成参数输入工作后的材料属性窗口如右下图所示。
未输入参数的窗口
输入参数后的窗口
定义地层参数
地层参数输入完毕后,在模型的各地层范围内按鼠标右键,选Assign Material后弹出 刚才定义的各地层的名称,选择与鼠标所点击地层对应的地层名称,即把属性赋予给 了地层,具备了参数的地层其颜色变化为定义材料参数及地层名称时所定义的颜色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
random experiment: throwing a die
Sample space {1, 2, 3, 4, 5, 6}; D = ‘low’ = {1, 2}, C = ‘high’ = {5, 6}; C ∩ D = ‘low and high’ = , C and D are disjoint.
Random variables
Setting: random experiment; outcomes in sample space ; model P. A random variable (shortly rv) is a prescript that attaches a value to each outcome of the sample space. (So, a mathematical function.) - working definition: quantity for which the actual outcome is determined by chance. - the actual outcome of a random variable is called the realisation. There are two types of rv: quantitative (the values are ordinary numbers) and qualitative (the values are categories)
Introduction probability theory
In Probability, the consequences of the presence of chance are considered. So, firstly there has to be chance. A random experiment is an experiment for which the actual outcome is determined by chance. (possible) outcomes : most basic possible results of that experiment sample space : set of all N possible outcomes Examples: - flipping a coin - throwing a die and observing the # eyes - arbitrarily choosing an element of a population - the result of a penalty (goal/miss) - next year’s profit of a company
Week 1, overview: Introduction probability theory (see Ch 6 and 7 Nieuwenhuis for more information). Discrete random variables (Ch 8): Density function, cumulative distribution function. Expectation, variance and standard deviation. Families of discrete distributions (Ch 9): Bernoulli distribution Binomial distribution
approaches a constant as n → ∞
This constant is P(A)
11
12
2
A and B are independent if: or equivalently: Example Throwing a die.
P ( A | B) = P ( A)P( A ∩ B)来自= P( A) × P( B)
Course: Statistiek voor HBO
Courseweek 1 Lecturer: Marieke Quant e-mail: M.Quant@uvt.nl Office: K 626
Course material:
Statistiek voor HBO: 14 weeks lecture (read the theory before the lecture), instruction lecture and tutorial. From week 5 onwards computer practicals. Practice yourself with weekly exercises in tutorials and practicals. In Blackboard you can find: handout lecture slides, weekly exercises tutorials and instructions classes, answers to odd exercises, datasets of the book, manual with additional exercises, computer manual, old exams. Grade: midexam (20%), TA (20%, only if this TA has not yet been made), final exam (60%, grade at least 5.0 to pass the course). A graphical/programmable calculator is not allowed; only a simple (but good) pocket-calculator is allowed (and necessary).
7
8
Setting: random experiment; sample space ; N outcomes. Central question: what do we mean by P(A), the probability that A will occur? A probability measure or model P assigns real numbers P(A) to all events A, in such a way that: P(A) ≥ 0 P() = 1 P(A∪B) = P(A) + P(B) if A, B disjoint.
Ac: complement of A (A doesn’t occur) Example random experiment: throwing a die; sample space: {1, 2, 3, 4, 5, 6} A = ‘even’ = {2, 4, 6}; B = ‘odd’ = {1, 3, 5}, B = Ac single events: {1}, {2}, , {6} C = ‘high’ = {5, 6};
a. Classical definition of probability Requirement: all outcomes are equally likely.
N ( A) (where N(A) = # outcomes in A) N Remark: this random experiment is like throwing a fair die with N sides. P ( A) =
4
Example
random experiment: flipping two coins
More definitions events A, B, …: subsets of the sample space single events; multiple events; empty event
“event A occurs”: the actual outcome falls in A
Sample space : {HH, TT, HT, TH}; a possible outcome: HH Venn diagram: useful method to represent sample space.
Example
random experiment: throwing a die
Sample space {1, 2, 3, 4, 5, 6}; A = ‘even’ = {2, 4, 6}; C = ‘high’ = {5, 6}; A ∪ C = ‘even and/or high’ = {2, 4, 5, 6}, A ∩ C = ‘even and high’ = {6}.
Example random experiment: flipping two coins. Sample space : {HH, TT, HT, TH}. Because all outcomes are equally likely: P(HH) = A = ‘at least one head’ = {HH, HT, TH}, P(A) = N(A)/ N = . Or P(A) = P(HH) + P(HT) + P(TH) = + + = . Or P(A) = 1 P(TT) = 1 = . 10
Consequence: probability that A occurs: add all probabilities of the outcomes that lead to event A.
9
b. Empirical definition of probability Requirement: the random experiment is independently and identically repeatable. (Is not always the case ....) Then the following definition of P can be used: In n trials, n(A) is the number of trials where A occurs The law of large numbers states that: The ratio