六年级下册数学奥数题

合集下载

六年级下册人教版数学奥数题

六年级下册人教版数学奥数题

六年级下册人教版数学奥数题第一章几何运算1.1 三角形的判定根据给定的条件判定下列图形是否为三角形,并给出理由。

1) 图形ABC,AB = AC = 3 cm,∠BAC = 60°。

解析:由于两边相等且夹角为60°,符合边边角(SSA)判定三角形的条件,故图形ABC是一个三角形。

2) 图形PQR,PQ = 6 cm,QR = 7 cm,RP = 10 cm。

解析:根据三角形两边之和大于第三边的性质,可以得有:PQ +QR > RP,PQ + RP > QR,QP + RP > QR。

将给定的数值代入可以得到:6 + 7 > 10,6 + 10 > 7,7 + 10 > 6。

这些不等关系成立,因此图形PQR是一个三角形。

3) 图形XYZ,XY = 4 cm,YZ = 8 cm,ZX = 6 cm。

解析:同样利用三角形两边之和大于第三边的性质进行判定,我们可以得到:XY + YZ > ZX,XY + ZX > YZ,YZ + ZX > XY。

将给定的数值代入可以得到:4 + 8 > 6,4 + 6 > 8,8 + 6 > 4。

这些不等关系成立,因此图形XYZ是一个三角形。

1.2 相似与全等判断下列图形是否相似,并给出相似的理由。

1) 图形ABC与图形DEF。

解析:两个三角形相似的条件是对应角相等且对应边成比例。

通过观察可以发现∠A = ∠D,∠B = ∠E,∠C = ∠F。

并且,AC : DF = 2 : 4 = 1 : 2,BC : EF = 3 : 6 = 1 : 2。

因此,图形ABC与图形DEF相似。

2) 图形GHJ与图形KLM。

解析:同样利用相似三角形的条件进行观察,我们可以发现∠G = ∠K,∠H = ∠L,∠J = ∠M,并且GH : KL = 4 : 6 = 2 : 3,HJ : LM = 6 : 9 = 2 : 3。

小学六年级下册数学奥数题带答案图文百度文库

小学六年级下册数学奥数题带答案图文百度文库

一、拓展提优试题1.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.2.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?3.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.4.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.5.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.6.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.7.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.8.已知A是B的,B是C的,若A+C=55,则A=.9.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?10.能被5和6整除,并且数字中至少有一个6的三位数有个.11.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.12.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.13.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.14.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.15.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.16.若(n是大于0的自然数),则满足题意的n的值最小是.17.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.18.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.19.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.20.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.21.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.22.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.23.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.24.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.25.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.26.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.27.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.28.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.29.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).30.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.31.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.32.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.33.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.34.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.35.已知自然数N的个位数字是0,且有8个约数,则N最小是.36.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)37.若质数a,b满足5a+b=2027,则a+b=.38.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.39.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.40.图中的三角形的个数是.【参考答案】一、拓展提优试题1.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.2.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.3.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.4.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.5.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.6.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.7.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.8.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.9.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.10.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.11.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%12.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.13.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.14.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4015.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.16.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:317.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.18.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.19.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.20.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.21.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.22.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.23.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.24.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.25.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.26.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.27.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.28.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.29.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.30.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.31.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.32.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.33.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.34.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.35.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.36.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.37.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.38.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.39.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.40.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.。

(完整)小学六年级奥数题100道带答案有解题过程

(完整)小学六年级奥数题100道带答案有解题过程

(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。

思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。

2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。

思路:根据数量关系列方程求解。

3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。

思路:先求两车行驶的路程和,再加上相距距离。

4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。

解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。

思路:根据圆柱侧面积和体积公式计算。

5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。

小学六年级奥数题(六篇)

小学六年级奥数题(六篇)

小学六年级奥数题(六篇)整理的《小学六年级奥数题(六篇)》相关资料,希望帮助到您。

【篇一】小学六年级奥数题 1、哥哥今年18岁,弟弟今年12岁。

当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。

甲、乙、丙原来各有多少本故事书?3、有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。

最少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。

第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的’足球中拿出与这时甲校个数相同的足球并入甲校。

经过这样的变动后,三校足球的个数正好相等。

已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。

后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。

问售货员从两个油桶里各卖了多少千克油?【篇二】小学六年级奥数题 1、求下列时刻的时针与分针所形成的角的度数。

(1)9点整(2) 2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。

【篇三】小学六年级奥数题 1、小明和小英各自在公路上往返于甲、乙两地。

六年级下册数学期中必考奥数题型汇总带答案(共10题)

六年级下册数学期中必考奥数题型汇总带答案(共10题)

01有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有多少种?【答案】768种。

根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种02搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为60.甲每小时搬运6,乙每小时搬运5,丙每小时搬运4,三人共同搬完,需要:60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运:(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运:(60- 5× 8)÷4= 5(小时)03由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1.5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5×20=30颗奶糖=20-10=10颗04王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。

小学六年级奥数题[5篇]

小学六年级奥数题[5篇]

小学六年级奥数题[5篇]1.小学六年级奥数题篇一某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。

在保证一星期内完成的前提下,选择哪个队单独承包费用最少?【解析】甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元三人合作一天完成(5/12+4/15+7/20)÷2=31/60,三人合作一天支付(750+400+560)÷2=855元甲单独做每天完成31/60-4/15=1/4,支付855-400=455元乙单独做每天完成31/60-7/20=1/6,支付855-560=295元丙单独做每天完成31/60-5/12=1/10,支付855-750=105元所以通过比较选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元2.小学六年级奥数题篇二(1)写出除以7所得商和余数(不为0)相同的所有数。

()。

答案:8、16、24、32、40、48。

(2)一个数被2,3,7除都余1,这个数最小是()。

答案:43。

(3)一个两位数加上3能被5整除,减去3能被6整除。

所有满足上述条件的两位数是()。

答案:27、57、87。

(4)求一个最小的自然数,使它除以3余1,除以4余2,除以5余3,除以6余4。

这个数是()。

答案:58。

(5)如果某数除492、2241、3195都余15,那么这个数最小是(),是()。

答案:53、159。

3.小学六年级奥数题篇三1、ABCDE参赛,AB平均95分,CDE平均85分,5个平均分是多少?2、小明9次考试成绩分别为:92,88,84,96,99,81,100,80,90问平均分是多少分?3、小红7次考试分别为:96,95,89,90,91,100,97问7次平均分?4、小明第一次考了82分,第二次85分,第三次84分,第四次89分,第五次分数比五次平均分多9.6分,问第五次考多少分?5、小明做题,第一周做了83道,第二周做了74道,第三周做了71道,第四周做64道,第五周做的比前四周平均多4道,问第五周做了几道?4.小学六年级奥数题篇四1、停车场共停24辆车,其中汽车有4个轮子,摩托车有3个轮子,车轮共86个,求汽车和摩托车各几辆?2、一辆汽车共坐50人,其中部分人买A种票,每张0.80元,另一部分买B种票,每张0.30元,售票员统计买A种票比B种票多收18元,求买A种票和B种票各几个人买?3、十元币和五元币共45张,合计350元,求十元币和5元币各几张?4、数学考试共有5题,全班52人参加,共做对181道题,已知每人至少做对一题,对一题的有7人,5题全对有6人,做对二题和三题的人数一样多,求做对4题有几人?5、买4元8元10元的笔记本58本,用去468元,已知4元和8元笔记本数量一样多,三种笔记本各买了几本?5.小学六年级奥数题篇五1、甲乙两人骑自行车同时从西镇出发到东镇,甲每小时行15km,乙每小时行10km,甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试问两镇的距离?2、李叔叔到苹果产地去收购苹果,收购价为每千克0.6元,从产地到水果店距离300千米,运费为每吨每千米1.05元,其他费用为每吨30元,在批发及运输、售出的过程中,苹果的损耗是10%,李叔叔要达到20%的利润,每千克苹果应定价为多少元?3、灌满—个水池,只打开A管要8小时,只打开B管要10小时,只打开C管要15小时。

小学六年级奥数题【6篇】

小学六年级奥数题【6篇】

小学六年级奥数题【6篇】1.小学六年级奥数题1、有鸡兔共20只,脚44只,鸡兔各几只?2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?4、有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同。

这两桶油各有多少千克?5、瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268。

6元,求打破了几只花瓶?6、学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?7、蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶。

现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付 1.8元。

该校每学期买两种墨水各多少瓶?8、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。

小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?9、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。

问小毛做对几道题?10、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张。

他兑换了两种面额的人民币各多少张?2.小学六年级奥数题1、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379。

6元,问这次搬运中玻璃损坏了几只?2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?3、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?4、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?5、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?6、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?7、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?8、大油瓶一瓶装4千克,小油瓶2瓶装1千克。

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。

小学六年级下册奥数题

小学六年级下册奥数题

小学六年级下册奥数题1.小学六年级下册奥数题篇一幼儿园的老师们捧着3只纸箱,给大班的小朋友送来好吃的东西。

大纸箱里有74只桔子,中等大小的纸箱里有200块饼干,小纸箱里有120颗糖。

平均分发完毕,每种小食品都剩下些零头,纸箱里还有2只桔子、12棵糖和20块饼干。

大班里共有多少位小朋友?解答:带来74只桔子,还剩2只,发下去的是72只。

可见大班小朋友的人数是72的。

约数;带来200块饼干,还剩20块,发下去的是180块。

可见大班小朋友的人数也是180的约数。

带来120颗糖,还剩12颗,发下去的是108颗。

可见大班小朋友的人数又是108的约数。

所以,大班小朋友的人数是72、180和108的公约数。

3个数72、180和108的公约数是36,其余公约数都不超过18。

由于发到后来剩下的零头里有20块饼干,可见小朋友的人数大于20。

所以大班的小朋友共有36人。

幸亏饼干剩得多,如果剩下的饼干只有17块,就不能确定人数是36个还是18个了。

2.小学六年级下册奥数题篇二1、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?2、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行4 0km,乙车每小时行45km,两地相距多少km?(交换乘客的时间略去不计)参考答案:1、解析:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答:每支铅笔0.2元。

2、解析:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。

根据两车的速度和行驶的时间可求两车行驶的总路程。

小学六年级数学下册奥数必考题目及参考答案,期末必看

小学六年级数学下册奥数必考题目及参考答案,期末必看

1、某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款答案:取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案:加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1.5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

奥数练习题六年级下册

奥数练习题六年级下册

奥数练习题六年级下册奥数练习题(六年级下册)一、选择题1. 下列哪个数是一个偶数?A. 15B. 22C. 37D. 412. 用下划线表示的数字是多少?A. 105B. 510C. 501D. 1503. 如果一个正方形的边长是4厘米,那么它的周长是多少?A. 12厘米B. 16厘米C. 24厘米D. 32厘米4. 把1、2、3、4这四个数字各不相同地排列,一共可以排出多少个两位数?A. 2B. 6C. 12D. 24二、填空题1. 222 ÷ 6 = ____2. 32 + 17 - 21 = ____3. 如果 2x + 5 = 13,那么 x = ____4. 甲乙两个数的和是67,甲比乙大13,那么甲的值是____三、解答题1. 请计算:102 × 17 = ____2. 把一个正方形的边长扩大为原来的3倍,那么新正方形的面积是原正方形的多少倍?3. 甲乙两人一起跑步,甲的速度是每小时8公里,乙的速度是每小时10公里。

如果他们同时开始跑步,那么多久后,两人距离相差10公里?四、应用题某书店购进了300本书,其中20%是小说,30%是科普书籍,剩下的是其他类型的图书。

请回答以下问题:1. 这300本书中,小说的数量是多少?2. 这300本书中,科普书籍的数量是多少?3. 这300本书中,其他类型的图书的数量是多少?五、挑战题某个年份的2月份只有4个周末,那么这个年份是否是闰年?为什么?六、探究题1. 现有一个三位数,百位数比十位数小2,十位数比个位数小3,这个三位数是多少?2. 在一个宾馆里,花了6小时才清理完所有房间的大厅6名服务员一起工作,那么需要几小时才能仅靠3名服务员清理完所有房间?以上是奥数练习题的部分题目,通过解答这些题目,可以提升你的数学思维和计算能力。

希望你能够认真思考,并且写下自己的解题过程。

祝你成功!。

六年级下册数学必考奥数题型汇总带答案(共10题)

六年级下册数学必考奥数题型汇总带答案(共10题)
1 甲乙两校共有 22 人参加竞赛, 甲校参加人数的 5 分之 1 比乙校参加人数的 4 分之 1 少 1 人, 甲乙两校各多少人参赛?
解:设甲校有 x 人参加,则乙校有( 22-x)人参加。 0.2 x=( 22-x) × 0.25-1 0.2x=5.5-0.25x-1 0.45x=4.5 x=10 22-10=12 (人) 答:甲校有 10 人参加,乙校有 12 人参加。
答案: 根据甲乙丙村可灌溉的面积比算出总份数: 8+7+5=20 份 每份需要的人数:( 60+40) ÷20=5人 甲村需要的人数: 8×5=40人,多出劳力人数: 60-40=20 人 乙村需要的人数: 7×5=35人,多出劳力人数: 40-35=5 人 丙村需要的人数: 5×5=25人 或 20+5=25 人 每人应得的钱数: 1350÷25=54元 甲村应得的工钱: 54×20=1080元 乙村应得的工钱: 54×5=270元 答: 甲村 1080 元,乙村 270 元。
2 倍,中年级
解:设低年级段分得 x 本书,则高年级段分得 x+2x+3x-120=840
6x-120=840 6x=840+120 6x=960 x=960/6 x=160
高年级段为: 160*2=320( 本 ), 中年级段为: 160*3-120=360( 本 )
2x 本 ,中年级段分得( 3x-120)本
8 小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的 而且小张比小王多做了 72 道 ,小王 ,小张 ,小李各做多少道 ?
答案:设小王做了 a 道,小李做了 b 道,小张做了 c 道 由题意 1/2a=1/3b=1/8c c-a=72 解得 a=24 b=36 c=96 答:小王做了 24 道,小李做了 36 道,小张做了 96 道

小学六年级下册奥数题及答案

小学六年级下册奥数题及答案

小学六年级下册奥数题及答案The pony was revised in January 2021小学六年级奥数题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数9.....2005,这个多位数除以9余数是多少2.A和B是小于100的两个非零的不同自然数。

六年级下册数学奥数题

六年级下册数学奥数题

六年级下册数学奥数题1.某工厂2月份比元月份增产10%, 3月份比2月份减产10%, 问3月份比2月份是增产了还是减少了。

2.育红小学六年级举行数学竞赛,参加竞赛的女生比男生多28 人。

根据成绩,男生全部获奖,而女生则有25%的人未获奖。

获奖总2人数是42人,又知参加竞赛的是全年级的5 .六年级学生共有多少人?3.水果批发部里的苹果比梨多20吨,梨比苹果少20%,梨是多少吨?4.六年级有学生146人,达到《国家体育锻炼标准》的有124人。

求这个年级的达标率。

(百分号前保留一位小数)5.一种半导体收音机,现在售价165元,比去年降低了85元,降低了百分之几?6.甲乙两人分别从A、B两地同时相向而行,4时相遇,这时甲行了全程的40%。

两人继续前进,当乙到达A地时,甲还需行全程的几分之几就可以到达B地了?7、一个工人由于改进生产技术,生产一个零件的时间由12分减到8分,以前每天生产40个零件,现在的生产效率比以前生产效率提高了百分之几?8、东乡去年春季植树450棵,成活率为80%,去年秋季植树的成活率为90%,已知去年春季比秋季多死了18棵,这个乡去年一共种活了多少棵树?9、某校选派360名学生参加夏令营,结果发现男生占40%,为了使男生占50%,又增派了一批男生,问被增派的男生有多少名?110、一根铁丝全长4.8米,第一次用去全长的3,第二次用去余下的60%,最后还剩下多少米?11、修一条长2400米的公路,如果由甲工程队单独修建,需要20天;乙工程队单独修建,需要30天。

现在由甲乙两工程队合修,需要多少天?12、一项工程,由甲单独修做12天可以完成。

甲队做了3天后,另有任务,余下的工程由乙队做15天完成,由乙队单独做这项工程要多少天?13、老刘和小李合做一件工作,要12天完成,如果让老刘先做8天,剩下的工作由小李单独做,小李还要14天才能完成,小李单独做这件工作需几天完成。

14、甲.乙两队开挖一条水渠。

六年级下册数学奥数题带答案

六年级下册数学奥数题带答案

一、拓展提优试题1.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.2.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.3.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.4.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.5.若一个十位数是99的倍数,则a+b=.6.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.7.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.8.根据图中的信息可知,这本故事书有页页.9.若质数a,b满足5a+b=2027,则a+b=.10.已知A是B的,B是C的,若A+C=55,则A=.11.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.12.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.13.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.14.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.15.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.16.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.17.若(n是大于0的自然数),则满足题意的n的值最小是.18.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.19.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.20.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).21.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.22.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.23.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.24.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.25.分子与分母的和是2013的最简真分数有个.26.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.27.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.28.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.29.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.30.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.31.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.32.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.33.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.34.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.35.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?36.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.37.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.38.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.39.已知自然数N的个位数字是0,且有8个约数,则N最小是.40.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.【参考答案】一、拓展提优试题1.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.2.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.3.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%4.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.5.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.6.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.7.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.8.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.11.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.12.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.13.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.14.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100015.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30016.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4017.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:318.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.19.解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.20.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.21.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.22.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.23.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.24.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.25.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.26.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.27.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.28.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.29.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.30.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.31.解:根据分析可得,,=,=2;故答案为:2.32.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.33.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.34.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.35.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.36.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.37.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.38.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.39.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.40.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.。

六下数学奥数题及解析

六下数学奥数题及解析

六下数学奥数题及解析1、下列说法正确的是[单选题] *A.两个数的和必定大于每一个加数B.两个数的和必定不大于每一个加数C.两个有理数和的绝对值等于这两个有理数绝对值的和D.如果两个数的和是负数,那么这两个数中至少有一个是负数(正确答案)2、10.下列各数:5,﹣,03003,,0,﹣,12,1010010001…(每两个1之间的0依次增加1个),其中分数的个数是()[单选题] *A.3B.4(正确答案)C.5D.63、19.对于实数a、b、c,“a>b”是“ac2(c平方)>bc2(c平方) ; ”的()[单选题] * A.充分不必要条件B.必要不充分条件(正确答案)C.充要条件D.既不充分也不必要条件4、33.若x2﹣6x+k是完全平方式,则k的值是()[单选题] *A.±9B.9(正确答案)C.±12D.125、28.已知点A(2,3)、B(1,5),直线AB的斜率是()[单选题] *A.2B.-2C.1/2D.-1/2(正确答案)6、30.圆的方程+=4,则圆心到直线x-y-4=0的距离是()[单选题] *A.√2(正确答案)B.√2/2C.2√2D.27、26.已知(x﹣a)(x+2)的计算结果为x2﹣3x﹣10,则a的值为()[单选题] * A.5(正确答案)B.﹣5C.1D.﹣18、19、如果点M是第三象限内的整数点,那么点M的坐标是()[单选题] *(-2,-1)(-2,-2)(-3,-1)(正确答案)(-3,-2)9、8.如图,在数轴上表示的点可能是()[单选题] *A.点PB.点Q(正确答案)C.点MD.点N10、10. 如图所示,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他一次选对路的概率是(? ? ?).[单选题] *A.1/2B.1/3(正确答案)C.1/4D.111、35、下列判断错误的是()[单选题] *A在第三象限,那么点A关于原点O对称的点在第一象限.B在第二象限,那么它关于直线y=0对称的点在第一象限.(正确答案) C在第四象限,那么它关于x轴对称的点在第一象限.D在第一象限,那么它关于直线x=0的对称点在第二象限.12、下列各对象可以组成集合的是()[单选题] *A、与1非常接近的全体实数B、与2非常接近的全体实数(正确答案)C、高一年级视力比较好的同学D、与无理数相差很小的全体实数13、已知x-y=3,x2-y2=12,那么x+y的值是( ??) [单选题] *A. 3B. 4(正确答案)C. 6D. 1214、8.如果直角三角形的三条边为2,4,a,那么a的取值可以有()[单选题] *A. 0个B. 1个C. 2个D. 3个(正确答案)15、下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()[单选题] *A. ①②(正确答案)B. ①③C. ②③D. ②④16、47.已知(x﹣2021)2+(x﹣2023)2=50,则(x﹣2022)2的值为()[单选题]* A.24(正确答案)B.23C.22D.无法确定17、10.若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长[单选题] *A. 12(正确答案)B. 13C. 15D. 1418、22、在平面直角坐标系中,已知点P,在轴上有点Q,它到点P的距离等于3,那么点Q的坐标是()[单选题] *(0,3)(0,5)(0,-1)(0,5)或(0,-1) (正确答案)19、的单调递减区间为()[单选题] *A、(-1,1)(正确答案)B、(-1,2)C、(-∞,-1)D、(-∞,+∞)20、45、下列说法错误的是()[单选题] *A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点(正确答案)21、9、横坐标为3的点一定在()[单选题] *A.与x轴平行,且与x轴的距离为3的直线上B.与y轴平行,且与y轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上(正确答案)D.与y轴正半轴相交,与x轴平行,且与x轴的距离为3的直线上22、下列计算正确的是( ) [单选题] *A. 9a3·2a2=18a?(正确答案)B. 2x?·3x?=5x?C. 3 x3·4x3=12x3D. 3y3·5y3=15y?23、18.如果A、B、C三点在同一直线上,且线段AB=4cm,BC=2cm,那么AC两点之间的距离为()[单选题] *A.2cmB.6cmC.2或6cm(正确答案)D.无法确定24、3.如果两个数的和是正数,那么[单选题] *A.这两个数都是正数B.一个为正,一个为零C.这两个数一正一负,且正数的绝对值较大D.必属上面三种情况之一(正确答案)25、5.在数轴上点A,B分别表示数-2,-5,则A,B两点之间的距离可表示为()[单选题] *A.-2+(-5)B.-2-(-5)(正确答案)C.(-5)+2D(-5)-226、若10?=3,10?=2,则10的值为( ) [单选题] *A. 5B. 6(正确答案)C. 8D. 927、下列函数中奇函数是()[单选题] *A、y=2sin x(正确答案)B、y=3sin xC、y=2D、y=28、10.下列四个数中,属于负数的是().[单选题] *A-3(正确答案)B 3C πD 029、1.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()[单选题] *A.(0,-2)B.(2,0)(正确答案)C.(4,0)D.(0,-4)30、2.(2020·新高考Ⅱ,1,5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=( ) [单选题] * A.{1,8}B.{2,5}C.{2,3,5}(正确答案) D.{1,2,3,5,7,8}。

六年级奥数下册练习题

六年级奥数下册练习题

六年级奥数下册练习题第一部分:选择题1. ( ) 求49的算术平方根是多少?A. 6B. 7C. 8D. 92. ( ) 关于无理数,以下哪个说法是不正确的?A. 无理数可以表示为一个无限不循环小数B. 无理数无法用分数表示C. 无理数可以表示为一个循环小数D. π是一个无理数3. ( ) 如果一个数是4的倍数,那么这个数一定是()。

A. 偶数B. 奇数C. 质数D. 合数4. ( ) 把24写成2的幂的形式是()。

A. 2²B. 2³C. 2⁴D. 2⁵第二部分:填空题1. 6² - 3² = _______2. √25 = _______3. 72 ÷ 8 = _______4. 5⁴ = _______第三部分:解答题1. 用分数表示下列有线循环小数:0.333...0.888...2. 简化下列分数:15/246/93. 选择相应的计算法则来计算下列算式的值:(1)(3² + 2³) × 4 - 5(2)8 × (2⁴ + 1) ÷ 94. 某种水果的一箱重量是3千克,现在有20箱这种水果,要用多少个50克的袋子才能把这些水果分装完整?第四部分:证明题1. 证明√16 = 42. 证明有理数的和与积仍然是有理数3. 证明若 a > b,则 a² > b²4. 证明无理数与无理数的和不一定是无理数第五部分:应用题1. 三个数相乘为144,其中两个数是8和9,求第三个数。

2. 甲乙两位数的乘积是1361,如果乙的个位上的数字比十位上的数字大2,求甲、乙分别是多少。

3. 牛顿以1英里每秒的速度走路,一段时间后以2英里每秒的速度跑步,现在离起点3英里,在第二段时间结束后,离起点还有多远?4. 小明有36块巧克力,他打算平分给8个同学,每个同学能分到多少块巧克力?如果多出来的巧克力不够一整块,则剩余的巧克力应该怎样分配?这是一个关于六年级奥数下册练习题的题目集。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册数学奥数题
六年级下册数学奥数题
1.某工厂2月份比元月份增产10%,3月份比2月份减产10%,问3月份比2月份是增产了还是减少了。

2.育红小学六年级举行数学竞赛,参加竞赛的女生比男生多28人。

根据成绩,男生全部获奖,而女生则有25%的人未获奖。

获奖
总人数是42人,又知参加竞赛的是全年级的52
.六年级学生共有多少人?
3.水果批发部里的苹果比梨多20吨,梨比苹果少20%,梨是多少吨?
4.六年级有学生146人,达到《国家体育锻炼标准》的有124人。

求这个年级的达标率。

(百分号前保留一位小数)
5.一种半导体收音机,现在售价165元,比去年降低了85元,降低了百分之几?
6.甲乙两人分别从A 、B 两地同时相向而行,4时相遇,这时甲行了全程的40%。

两人继续前进,当乙到达A 地时,甲还需行全程的几分之几就可以到达B 地了?
7、一个工人由于改进生产技术,生产一个零件的时间由12分减到8分,以前每天生产40个零件,现在的生产效率比以前生产效率提高了百分之几?
8、东乡去年春季植树450棵,成活率为80%,去年秋季植树的成活率为90%,已知去年春季比秋季多死了18棵,这个乡去年一共种活了多少棵树?
9、某校选派360名学生参加夏令营,结果发现男生占40%,为了使男生占50%,又增派了一批男生,问被增派的男生有多少名?
10、一根铁丝全长4.8米,第一次用去全长的31
,第二次用去余下的60%,最后还剩下多少米?
11、修一条长2400米的公路,如果由甲工程队单独修建,需要20天;乙工程队单独修建,需要30天。

现在由甲乙两工程队合修,需要多少天?
12、一项工程,由甲单独修做12天可以完成。

甲队做了3天后,另有任务,余下的工程由乙队做15天完成,由乙队单独做这项工程要多少天?
13、老刘和小李合做一件工作,要12天完成,如果让老刘先做8天,剩下的工作由小李单独做,小李还要14天才能完成,小李单独做这件工作需几天完成。

14、甲.乙两队开挖一条水渠。

甲队独做8天完成,乙队独做12天完成。

现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。

乙队挖了几天?
15、加工一批零件,甲独做20天完成,乙独做30天完成。

现两人合作来完成任务,合作中甲休息了2.5天。

乙休息了若干天,这样共14天完工。

乙休息了几天?
16、抄一本书稿,甲每天的工作效率等于乙、丙两人每天的工作效率的和;丙的工作效率相当于甲、乙每天工作效率和的1/5;如果3人合作只需要8天就完成了,那么乙一人单独抄需要多少天才能完
成?
17、一项工程,甲队单独承建要20天完,乙队单独承建要30天完,如果两队合做,多少天才能完成全部工作的3/4?
18、甲从A 地出发到B 地去,2小时走了全程的1/3,乙从B 地到A 地去,2小时走了全程的1/2,两人同时出发相向而行,几小时相遇?
19、一项工程由甲、乙合做98
8
天可以完成,若甲先独做8天后再由乙独做10天可完工,问这项工程由甲、乙单独做各要几天完工?
20、一项工程,甲单独做要12小时可以完成,现在甲、乙两人
先合做2小时,剩下的工作乙又用了21
5
小时完成。

如果这件工作全都由乙来做,需要几小时才能完成?
21、一项工程甲单独做24小时完成,乙单独做36小时完成,现要求20小时完成,且两人合作的时间尽可能少;问甲、乙合作几小时完成?
22、修一条马路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成。

现在由甲、乙两队合修4天后,余下的由丙队修,还需要几天才能修完?
23、一件工程,甲、乙两人合做8天可以完成,乙、丙两人合做6天可以完成,丙、丁两人合做12天可以完成,那么甲、丁两人合做多少天可以完成?
24、一项工程,甲单独做要3小时完成,乙单独做要5小时完成,
两人合做这项工程的54
,需要几小时完成?
25、甲、乙两人共同加工一批零件,8小时可以完成任务。

如果
甲单独加工,便需要12小时完成,现在甲、乙两人共同加工了52
2
小时后,甲被调出做其他工作,由乙继续加工了420个零件才完成任务,问乙一共加工零件多少个?
26、有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要8天,单独完成乙工作要20天。

如果每项工作都可以由两人合做,那么这两项工作都完成最少需要多少天?
27、李师傅加工一批零件,如果每天做50个,要比原计划晚8天完成;如果每天做60个,就可以提前5天完成。

问:这批零件共有多少个?
28、5个工人加工735个零件,2天加工了135个零件。

已知这两天中有1个人因故请假1天,照这样的工作效率,如果以后几天中无人请假还要多少天才能完成任务?
29、甲、乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米,现由甲工程队先修3天,余下的路程由甲、乙两队合修,正好花6天时间修完。

问甲、乙两个工程队每天各修路多少米?
30、如果甲、乙、丙3根水管同时往一个空水池里灌水,1小时可以灌满;如果用甲、乙两根水管,1小时20分钟可以灌满;如果
用乙、丙两根水管,1小时15分可以灌满,那么乙管单独灌水的话,灌满这一池水需要多长时间?
31、一项工程,甲、乙合做9天完成,乙、丙合做6天完成,甲、丙合做12天完成,问3人合做多少天完成?
32、加工一批零件,甲独干要12天,乙独干要15天完,甲、乙合干3天后,还剩132个零件没有加工,如果甲单独加工这批零件每天应加工多少个?
33、抄一份稿件,甲要12小时,乙要15小时,两人合抄2小时后,剩下的由甲抄,还要几小时抄完?
34、一件工作,甲独做要10小时完工,乙独做要30小时完工,现两人合做,其间甲休2小时、乙休8小时(不在同一时间休息),从开始到完工共用多少时间?
35、一件工作,甲独做要12小时完,乙独做要18小时完,若由甲先做1小时,然后再由乙接替甲做1小时,再由甲接替乙工作1小时……两人如此交替工作,完成任务共用多少时间?
36、一批零件,由师傅单独做,需5小时完成,由徒弟单独做,需7小时完成,两人合做,完成任务时师傅做的比总数的一半还多18个,这批零件共有多少个?。

相关文档
最新文档