八年级全等三角形测试

合集下载

八年级数学:全等三角形的判定测试题(含答案)

八年级数学:全等三角形的判定测试题(含答案)

八年级数学:全等三角形的判定测试题(含答案)一、选择题1.下列说法中,错误的有()个(1)周长相等的两个三角形全等。

(2)周长相等的两个等边三角形全等。

(3)有三个角对应相等的两个三角形全等。

(4)有三边对应相等的两个三角形全等A、1B、2C、3D、4【答案】B.【解析】(1)周长相等的两个三角形不一定全等,故该说法错误;(2)周长相等的两个等边三角形全等,该说法正确;(3)有三个角对应相等的两个三角形不一定全等,故该说法错误;(4)有三边对应相等的两个三角形全等,此说法正确.共有两个说法正确.故选B.2.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【答案】A.【解析】做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选A.3. 如图1所示,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△EBD≌△ECDD、以上答案都不对【答案】B.【解析】∵在△ABE和△ACE中AB ECEB ACAE AE=⎧⎪=⎨⎪=⎩,∴△ABE≌△ACE(SSS),故选B.4. 如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF【答案】D.【解析】A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选D.5. 在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【答案】D.【解析】以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.6. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C.【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C.二、填空题7.如图,已知AB=AD,需要条件(用图中的字母表示),可得△ABC≌△ADC,根据是.【答案】BC=DC,SSS.【解析】添加条件BC=DC,∵在△ABC和△ADC中AB ADBC CDAC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),8.如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件,可以判断△ABF≌△DCE.【答案】AB=DC.【解析】由条件可再添加AB=DC,在△ABF和△DCE中,AB DCBE CFAF DE=⎧⎪=⎨⎪=⎩,∴△ABF≌△DCE(SSS).9.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【答案】ABD;SSS.【解析】∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).10.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB= .【答案】46°【解析】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=12∠AFB=46°.11.如图,已知AE=DF、EC=BF,添加,可得△AEC≌△DFB.【答案】AC=DB【解析】AC=DB,在△AEC和△DFB中,AE DFAC BDEC BF=⎧⎪=⎨⎪=⎩,∴△AEC≌△DFB(SSS).12.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.【答案】SSS【解析】由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中AB ADAC ACCB CD=⎧⎪=⎨⎪=⎩∴△ABC≌△ADC(SSS),三、解答题13.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。

八年级数学:全等三角形测试题(含答案)

八年级数学:全等三角形测试题(含答案)

八年级数学:全等三角形测试题(含答案)一、选择题1.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【答案】D.【解析】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选D.2.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30° B.50° C.60° D.100°【答案】D.【解析】∵△ABC≌△DEF,∠A=50°,∠C=30°,∴∠F=∠C=30°,∠D=∠A=50°,∴∠D=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°,故选D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【答案】D.【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°【答案】D.【解析】如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选D.5.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等【答案】C.【解析】A.如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B.图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;C.全等图形的面积相等,但是面积相等的两个图形不一定是全等图形,故此选项错误,符合题意;D.全等三角形的对应边相等,对应角相等,正确,不合题意;故选C.6.如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°【答案】B.【解析】∵△ABC≌△DCB,∴∠ACB=∠DBC,∠ABC=∠DCB,△ABC中,∠A=80°,∠ACB=40°,∴∠ABC=180°﹣80°﹣40°=60°,∴∠BCD=∠ABC=60°,故选B.7.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°【答案】B.【解析】∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=12(∠BAE﹣∠DAC)=12(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.二、填空题8.如图,△AEB≌△ACD,AB=10cm,∠A=60°,∠ADC=90°,则AD= .【答案】5cm.【解析】∵∠A=60°,∠ADC=90°,∴∠C=30°,∵△AEB≌△ACD,∴AC=AB=10cm,∴AD=12AC=5cm.9.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=度,A′B′=cm.【答案】70;15.【解析】∵△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∴∠C′与∠C是对应角,A′B′与边AB是对应边,故填∠C′=70°,A′B′=15cm.10.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=°.【答案】110.【解析】∵△ABC≌△DEF,∴∠E=∠B=40°,∴∠F=180°﹣∠E﹣∠D=180°﹣40°﹣30°=110°.11.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.【答案】30°.【解析】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=12∠BAC=30°,∴∠CAE=∠DAE﹣∠DAC=60°﹣30°=30°.12.如图,△ABC≌△D CB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的长是 cm.【答案】7.【解析】由题意得:AB=DC,∠A=∠D,∠AOB=∠DOC,∴△AOB≌△DOC,∴OC=BO=BD﹣DO=AC﹣OD=7.13.已知△ABD≌△CDB,AD=BD,BE⊥AD于E,∠EBD=20°,则∠CDE的度数为【答案】125°或15°.【解析】∵BE⊥AD于E,∠EBD=20°,∴∠BDA=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD=55°,∵△ABD≌△CDB,∴∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,分两种情况:①如图1所示:∠CDE=70°+55°=125°;②如图2所示:∠CDE=70°﹣55°=15°;综上所述:∠CDE的度数为125°或15°.三、解答题14.,如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.【答案】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,【解析】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.【答案】(1)∠D=50°,∠E=40°,∠EBD=90°;(2)3. 【解析】(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=12(AD﹣BC)=3.16.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【答案】(1)EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM, ∴FH=GM,∠EGM=∠NHF;(2)2.1cm.2.2cm.【解析】(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.。

2022学年人教版八年级数学上册第12章《全等三角形》测试卷附答案解析

2022学年人教版八年级数学上册第12章《全等三角形》测试卷附答案解析

2022-2023学年八年级数学上册第12章《全等三角形》测试卷一、选择题(每小题3分,共30分)1.如图,两个三角形为全等三角形,则∠α的度数是()A.72°B.60°C.58°D.50°第1题图第2题图第3题图2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD3.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SAS B.SSS C.ASA D.AAS4.工人师傅常用角尺平分一个任意角.做法如下:如图所示,∠AOB是一个任意角在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的道理是()A.HLB.SSSC.SASD.ASA第4题图第5题图第6题图5.如图,已知∠MAN=55°,点B为AN上一点.用尺规按如下过程作图:以点A为圆心,以任意长为半径作弧,交AN于点D,交AM于点E;以点B为圆心,以AD为半径作弧,交AB于点F;以点F为圆心,以DE为半径作弧,交前面的弧于点G;连接BG并延长交AM于点C.则∠BCM的度数为()A.70°B.110°C.125°D.130°6.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②7.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,下列选项正确的是()A.PQ≥5B.PQ>5C.PQ<5D.PQ≤58.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处第8题图第9题图第10题图9.如图,在Rt△ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N 为圆心,大于MN 的长为半径画弧,两弧交于点P,作射线AP 交边BC 于点D,若CD=4,AB=15,则△ABD 的面积是()A.15B.30C.45D.6010.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(每小题3分,共15分)11.如图,Rt△ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD,则∠A′DB 为.第11题图第12题图第13题图12.已知,如图,∠AOB=60°,CD⊥OA 于D,CE⊥OB 于E,若CD=CE,则∠COD+∠AOB=度.13.如图在等腰Rt△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE⊥AB 于E,若AB=10,则△BDE 的周长等于.14.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP=.第14题图第15题图15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,DE⊥AB 于E.则下列结论:①CD=ED,②AC+BE=AB,③∠BDE=∠BAC,④AD 平分∠CDE,⑤S △ABD :S △ACD =AB:AC,其中正确的是.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.17.(9分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.18.(9分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.19.(9分)已知如图AD为△ABC上的高,E为AC上一点BE交AD于F且有BF=AC,FD=CD.求证:(1)△ADC≌△BDF;(2)BE⊥AC.20.(9分)图为人民公园的荷花池,现要测量此荷花池两旁A、B两棵树间的距离(不能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB的长(要求画出草图,写出测量方案和理由).21.(10分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?22.(10分)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.23.(11分)(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.第十二章全等三角形单元测试卷参考答案一、选择题1.A2.D3.C 4.B5.B6.C7.A8.D9.B10.D 二、填空题11.10°12.90°13.1014.6或12.15.①②③④⑤.三、解答题16.证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.17.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.18.(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.19.证明:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°.又∵BF=AC,FD=CD,∴△ADC≌△BDF(HL).(2)∵△ADC≌△BDF,∴∠EBC=∠DAC.又∵∠DAC+∠ACD=90°,∴∠EBC+∠ACD=90°.∴BE⊥AC.20.解:分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.理由:由上面可知:PC=BC,QC=AC,又∠PCQ=∠BCA,∴△PCQ≌△BCA∴AB=PQ.21.解:(1)△BPD≌△CQP,理由如下:∵t=1s,∴BP=CQ=3×1=3(cm),∵AB=10cm,点D 为AB 的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5(cm),∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD 和△CQP 中,∴△BPD≌△CQP(SAS);(2)∵v P ≠v Q ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4,CQ=BD=5,∴点P,点Q 运动的时间t==(s),∴v Q ===(cm/s),答:当点Q 的运动速度为cm/s,能够使△BPD 与△CQP 全等.22.解(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD 和Rt△ACE 中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.23.解:(1)△ABC 与△AEG 面积相等.理由:过点C 作CM⊥AB 于M,过点G 作GN⊥EA 交EA 延长线于N,则∠AMC=∠ANG=90°,∵四边形ABDE 和四边形ACFG 都是正方形,∴∠BAE=∠CAG=90°,AB=AE,AC=AG,∵∠BAE+∠CAG+∠BAC+∠EAG=360°,∴∠BAC+∠EAG=180°,∵∠EAG+∠GAN=180°,∴∠BAC=∠GAN,在△ACM 和△AGN 中,,∴△ACM≌△AGN,∴CM=GN,∵S △ABC =AB•CM,S △AEG =AE•GN,∴S △ABC =S △AEG ,(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.∴这条小路的面积为(a+2b)平方米.。

八年级数学:全等三角形练习(含答案)

八年级数学:全等三角形练习(含答案)

八年级数学:全等三角形练习(含答案)一、选择题1.已知图中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°2.如图,Rt ABC △沿直角边BC 所在的直线向右平移得到DEF △,下列结论中错误的是( ) A.ABC DEF △≌△B.90DEF ∠= C.AC DF = D.EC CF =3. 如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若B A AC ''⊥,则BAC ∠的度数是…( )A .50°B .60°C .70°D .80°4.边长都为整数的△ABC ≌△DEF ,AB 与DE 是对应边, AB=2 ,BC=4 ,若△DEF 的周长为偶数,则 DF 的取值为 ( )(A ). 3 (B). 4 (C). 5 (D). 3或4或5二、填空题1.全等三角形的______相等,______相等。

2.若△ABC 与△DEF 全等,则相等的边有:____________________________,相等的角有_______________________。

A DB C E F3.如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .4.已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD=____ ,∠A=______________;三、解答题1.如图,已知△ABE ≌△ACD ,∠ADE =∠AED ,∠B =∠C ,•指出其他的对应边和对应角.2.如图, △ABD ≌△ACE , AB=AC,写出图中的对应边和对应角。

参考答案:一、选择题 1.D , 2.D , 3.C , 4.B二、填空题 1.对应边 对应角 2.AB=DE,AC=DF,BC=EF 3.30° 4.CB ∠C三、解答题 1. 对应边:AB 与AC,AD 与AE,BE 与CD.对应角:BAE ∠与CAD ∠ ,AEB ∠与ADC ∠AB CC 1 A 1 B 1 AD EBC _D _C_A _B _E2.对应边:AB 与AC,AD 与AE,BD 与CE. 对应角:A ∠与A ∠,B ∠与C ∠,ADB ∠与AEC ∠.。

初二数学全等三角形测试题

初二数学全等三角形测试题

初二数学全等三角形测试题一、填空1、 (1)如右图,已知AB=DE,∠B=∠E,若要使△AB C≌△DEF,那么还要需要一个条件,这个条件可以是:_____________,理由是:_____________;这个条件也可以是:_____________,理由是:_____________;(2) 如右图,已知∠B=∠D=90°,,若要使△AB C≌△ABD,那么还要需要一个条件,这个条件可以是:_____________,理由是:_____________;这个条件也可以是:_____________,理由是:_____________;这个条件还可以是_____________,理由是:_____________;2.如图5,⊿ABC≌⊿ADE,若∠B=40°,∠EAB=80°,∠C=45°,则∠EAC= ,∠D= ,∠DAC= 。

3。

4_____________;AOC≌ΔBOC。

6.如图9,AE=BF,AD∥BC,AD=BC,则有ΔADF≌,且DF= 。

ABCDABCDEF7.如图10,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠ =∠ 或 ∥ ,就可证明ΔABC ≌ΔDEF 。

8、已知如图,∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF , (1)若以“ASA ”为依据,还缺条件 . (2)若以“AAS ”为依据,还缺条件 . (3)若以“SAS ”为依据,还缺条件 .9.如图12,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于D ,若AB =10,则△BDE 的周长等于____.10、如图13,直线l 过正方形ABCD 的顶点B ,点C A 、到直线l 的距离分别是1和2,则正方形的边长为 .图13二、选择题1.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章全等三角形》单元测试卷及答案(人教版)班级姓名学号一、单选题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.70°B.75°C.60°D.80°3.如图,三条直线表示相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A.一处B.两处C.三处D.四处4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.16≤x<14B.18≤x<14C.16<x<14D.18<x<145.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对6.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°7.如图,点O在△ABC内,且到三边的距离相等,∠A=64°,则∠BOC的度数为()A.58°B.64°C.122°D.124°8.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题9.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=10.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.11.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=9cm,BD=7cm,AD=4cm,则DC= cm.12.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面AC•BD.正确的是(填写所有正确结论的序号)积S= 1213.如图,在△ABC中AC=BC,∠ACB=50°,AD⊥BC于点D,MC⊥BC于点C,MC=BC点E,点F分别在线段AD,AC上CF=AE,连接MF,BF,CE.(1)图中与MF相等的线段是;(2)当BF+CE取最小值时∠AFB=°三、解答题14.将Rt△ABC的直角顶点C置于直线l上AC=BC,分别过点A、B作直线l的垂线,垂足分别为点D、E连接AE若BE=3,DE=5求△ACE的面积.15.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.16.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则线段AB与AC、BD有什么数量关系?请说明理由.17.如图,已知B,C,E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B .求证:△ABC≌△EDC .18.如图,点D为锐角∠ABC的平分线上一点,点M在边BA上,点N在边BC上,∠BMD+∠BND=180°.试说明:DM=DN.19.已知:AD=BC,AC=BD.(1)如图1,求证:AE=BE;(2)如图2,若AB=AC,∠D=2∠BAC,在不添加任何辅助线的情况下,请直接写出图2中四个度数为36°的角.参考答案 1.C 2.A 3.D 4.A 5.D 6.A 7.C 8.B 9.110° 10.AB=DC 11.5 12.①④ 13.(1)EC (2)9514.解:∵AD ⊥CE ,BE ⊥CE ∴∠ADC =∠CEB =90° ∵∠ACB =90°∴∠ACD =∠CBE =90°−∠ECB 在 △ACD 与 △CBE 中{∠ADC =∠CEB∠ACD =∠CBE AC =BC∴△ACD ≌△CBE (AAS) ∴CD =BE =3 AD =CE ∵CE =CD +DE =3+5=8 ∴AD =8 .S △ACE =12CE ·AD =12×8×8=32 . 15.证明:∵CE ∥DF ∴∠ACE=∠D 在△ACE 和△FDB 中{AC=FD ∠ACE=∠D EC=BD∴△ACE≌△FDB(SAS)∴AE=FB.16.解:AB=AC+BD理由是:在AB上截取AC=AF,连接EF∵AE平分∠CAB∴∠CAE=∠BAE在△CAE和△FAE中{AC=AF∠CAE=∠BAE AE=AE∴△CAE≌△FAE(SAS)∴∠C=∠AFE∵AC∥BD∴∠C+∠D=180°∴∠AFE+∠D=180°∵∠EFB+∠AFE=180°∴∠D=∠EFB∵BE平分∠ABD∴∠DBE=∠FBE在△BEF和△BED中{∠D=∠EFB∠FBE=∠DBEBE=BE∴△BEF≌△BED(AAS)∴BF=BD∵AB=AF+BF,AC=AF,BF=BD ∴AB=AC+BD.17.证明:∵AC//DE∴∠BCA =∠E ∠ACD =∠D . 又∵∠ACD =∠B ∴∠B =∠D .在 △ABC 和 △EDC 中{∠B =∠D∠BCA =∠E AC =EC∴△ABC ≌△EDC .18.解:过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F . ∴∠DEB =∠DFB =90°. 又∵BD 平分∠ABC ∴DE =DF .∵∠BMD+∠DME =180°,∠BMD+∠BND =180° ∴∠DME =∠BND . 在△EMD 和△FND 中{∠DEM =∠DFN∠EMD =∠FND DE =DF∴△EMD ≌△FND (AAS ). ∴DM =DN .19.(1)证明:在△ABD 和△BAC 中:{AB =BAAD =BC BD =AC∴△ABD ≌△BAC (SSS ) ∴∠ABD=∠BAC ∴AE=BE ;(2)∠BAC ,∠ABD ,∠DAC ,∠DBC。

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。

八年级数学上册《全等三角形》单元测试题(有答案解析)

八年级数学上册《全等三角形》单元测试题(有答案解析)

八年级数学上册《全等三角形》单元测试题(有答案解析)一.选择题1.已知△ABC≌△A′B′C′,∠A=80°,∠B=40°,那么∠C′的度数为()A.80°B.40°C.60°D.120°2.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两个直角三角形的面积相等3.如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°4.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°5.下列说法中,错误的是()A.全等三角形对应角相等 B.全等三角形对应边相等C.全等三角形的面积相等 D.面积相等的两个三角形一定全等6.如图,在△ABC和△DEF中,∠C=∠F=90°,添加下列条件,不能判定这两个三角形全等的是()A.∠A=∠D,∠B=∠E B.AC=DF,AB=DEC.∠A=∠D,AB=DE D.AC=DF,CB=FE7.如图所示,∠C=∠D=90°,添加下列条件①AC=AD;②∠ABC=∠ABD;③∠BAC=∠BAD;④BC=BD,能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.1 B.2 C.3 D.48.如图,AB=AC,点D,E分别在AB,AC上,补充下列一个条件后,不能判断△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BE=CD9.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()A.3 B.5 C.6 D.710.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF的长度为()A.2 B.1 C.4 D.3二.填空题11.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.12.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件.13.如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=.14.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是.15.如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于.16.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=.17.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.18.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=cm.19.如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为时,能够使△BPE与△CQP全等.20.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是(填序号)三.解答题21.求证:全等三角形的对应边中线相等.22.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q 运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.23.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,求证:Rt△ADE≌Rt△CDF.24.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.25.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.26.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)27.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.参考答案与解析一.选择题1.解:在△ABC中,∠A=80°,∠B=40°,∴∠C=180°﹣80°﹣40°=60°,∵△ABC≌△A′B′C′,∴∠C′=∠C=60°,2.解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确;如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS可判断两三角形全等,故选项B正确;如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL可判断两三角形全等,故选项C正确;如果两个直角三角形的面积相等,那么无法判定两个直角三角形全等,故D错误;故选:D.3.解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB=70°,∵∠ACB′=100°,∴∠BCB′=∠ACB′﹣∠ACB=30°,∴∠BCA′=∠A′CB′﹣∠BCB′=40°,故选:C.4.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.5.解:A、全等三角形对应角相等,说法正确;B、全等三角形对应边相等,说法正确;C、全等三角形的面积相等,说法正确;D、面积相等的两个三角形一定全等,说法错误,例如一边长为6,这边上的高为3和一边长为3,这边上的高为6的两个三角形,面积相等,却不全等;6.解:A.添加条件∠A=∠D,∠B=∠E时,没有边的条件,故不能判定△ABC≌△DEF,B.添加条件AC=DF,AB=DE,根据HL可证明△ABC≌△DEF,C.添加条件∠A=∠D,AB=DE,根据AAS可证明△ABC≌△DEF,D.添加条件AC=DF,CB=FE,根据SAS可证明△ABC≌△DEF,故选:A.7.解:①当AC=AD时,由∠C=∠D=90°,AC=AD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);②当∠ABC=∠ABD时,由∠C=∠D=90°,∠ABC=∠ABD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);③当∠BAC=∠BAD时,由∠C=∠D=90°,∠BAC=∠BAD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);④当BC=BD时,由∠C=∠D=90°,BC=BD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);故选:D.8.解:A、根据ASA即可证明三角形全等,本选项不符合题意.B、根据SAS即可证明三角形全等,本选项不符合题意.C、根据AAS或ASA即可证明三角形全等,本选项不符合题意.D、SSA不能判定三角形全等,本选项符合题意.故选:D.9.解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.10.证明:∵F是高AD和BE的交点,∴∠ADC=∠FDB=∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴DF=CD=2,∴AD=BD=BC﹣DF=4,∴AF=AD﹣DF=4﹣2=2;故选:A.二.填空题11.解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5.12.解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.13.解:如图,∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE⊥AB,DF⊥BC,∴∠BED=∠CDF=90°,在Rt△BDE与△Rt△CFD中,,∴Rt△BDE≌△Rt△CFD(HL),∴∠BDE=∠CFD=35°,∴∠EDF+∠BDE=∠EDF+∠CFD=90°,∴∠EDF=55°.故答案是:55°.14.解:当△ABD≌△ABC时,△ABD和△ABC关于y轴对称,∴点D的坐标是(﹣4,3),当△ABD′≌△BAC时,△ABD′的高D′G=△BAC的高CH=4,AG=BH=1,∴OG=2,∴点D′的坐标是(﹣4,2),故答案为:(﹣4,3)或(﹣4,2).15.解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案为:225°.16.解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.17.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.18.解:∵在Rt△ABC中,∠BAC=90°,∠ADB=∠AEC=90°∴∠BAD+∠EAC=90°,∠BAD+∠B=90°∴∠EAC=∠B∵AB=AC∴△ABD≌△ACE(AAS)∴AD=CE,BD=AE∴DE=AD+AE=CE+BD=7cm.故填7.19.解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8﹣3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t=,∴点Q的运动速度为5÷=厘米/秒;故答案为:3厘米/秒或厘米/秒.20.解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC,∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④由③知AD=AE=EC,∴④正确;综上所述,正确的结论是①②④.故答案是:①②④.三.解答题21.已知:如图,△ABC≌△A1B1C1,AD、A1D1分别是对应边BC、B1C1的中线,求证:AD=A1D1,证明:∵△ABC≌△A1B1C1,∴AB=A1B1,BC=B1C1,∠B=∠B1,∵AD、A1D1分别是对应边BC、B1C1的中线,∴BD=BC,B1D1=B1C1,∴BD=B1D1,在△ABD和△A1B1D1中,,∴△ABD≌△A1B1D1(SAS),∴AD=A1D1.22.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.23.解:连接BD,∵∠BAD=∠BCD=90°,在Rt△ABD和Rt△CBD中,,∴Rt△ABD≌Rt△CBD(HL),∴AD=CD,∵AE⊥EF于E,CF⊥EF于F,∴∠E=∠F=90°,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL).24.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.25.解:(1)如图1,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)DE=BD+CE.如图2,证明如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠C AE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中..∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.26.解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∠DAC=∠ACB,AC=CA,∴△ACD≌△CAB(SAS),∴∠ACD=∠CAB,∴AB∥CD.27.解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.。

八年级数学《全等三角形》试卷(含答案)

八年级数学《全等三角形》试卷(含答案)

八年级数学《全等三角形》试卷(含答案)考试时间100分钟满分100分一、选择题(每题3分共30分)1、如图1;已知∠A=∠D;∠1=∠2;那么要得到△ABC≌△DEF;还应给出的条件是()A、∠E=∠BB、ED=BCC、AB=EFD、AF=CD2、如图2在△ABC中;D、E分别是边AC、BC上的点;若△ADB≌△EDB≌△EDC;则∠C的度数为()A、15°B、20°C、25°D、30°3、如图3所示;在△ABC中;∠B=∠C;AD为△ABC的中线;那么下列结论错误的是()A、△ABD≌△ACDB、AB=AC、AD是△ACD的高D、△ABC是等边三角形图1 图2 图34、如图4;已知△ABC的六个元素;则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A、甲和乙B、乙和丙C、只有乙D、只有丙图45、如图5;AO=BO;CO=DO;AD与BC交于E;则图中全等三角形的对数为()A、2对B、3对C、4对D、5对6、如图6;已知∠1=∠2;欲证△ABD≌△ACD;还必须从下列选项中补选一个;则错误的选项是()A、∠ADB=∠ADCB、∠B=∠CC、BD=CDD、AB=AC图5 图67、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个8、如果△ABC≌△DEF;△DEF的周长为13;DE=3;EF=4;则AC的长()A、13B、3C、4D、69、已知如图7;AC⊥BC;DE⊥AB;AD平分∠BAC;下面结论错误的是()A、BD+ED=BCB、DE平分∠ADBC、AD平分∠EDCD、ED+AC>AD10、如图8;某同学把一块三角形的玻璃打碎成了三块;现在要到玻璃店去配一块完全一样的玻璃;那么最省事的办法是()A、带①去B、带②去C、带③去D、带①②③去图7 图8二、填空(每题3分;共15分)11、如图9已知△OA`B`是△AOB 绕点O 旋转60°得到的;那么△OA`B`与△OAB 的 关系是 ;如果∠AOB=40°;∠B=50°;则∠A`OB`= ∠AOB`= 。

(必考题)初中八年级数学上册第十二章《全等三角形》经典测试卷(含答案解析)

(必考题)初中八年级数学上册第十二章《全等三角形》经典测试卷(含答案解析)

一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .64B解析:B【分析】 过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.2.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠D .PC PE = D解析:D【分析】 根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.3.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A 、如果 ab =0,那么a =0或b =0或a 、b 同时为0,本选项说法是假命题,不符合题意;B 、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C 、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D 、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.4.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.5.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .12A【分析】根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.6.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A 、根据AB =3,BC =4,∠C =40°,不能画出唯一三角形,故本选项不合题意; B 、∠A =60°,AB =4,∠B =45°,能画出唯一△ABC ,故此选项符合题意;C 、∠C =90°,AB =6,不能画出唯一三角形,故本选项不合题意;D 、AB =4,BC =3,∠A =30°,不能画出唯一三角形,故本选项不合题意;故选:B .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.7.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF A解析:A【分析】欲使△AED ≌△BFC ,已知AC=DB ,AE ∥BF ,可证明全等三角形判定定理AAS 、SAS 、ASA 添加条件,逐一证明即可;【详解】∵ AC=BD ,∴ AD=CE ,∵ AE ∥BF ,∴ ∠A=∠E ,A 、如添加ED=CF ,不能证明△AED ≌△BFC ,故该选项符合题意;B 、如添加AE=BF ,根据SAS ,能证明△AED ≌△BFC ,故该选项不符合题意;C 、如添加∠E=∠F ,利用AAS 即可证明△AED ≌△BFC ,故该选项不符合题意; D 、如添加ED ∥CF ,得出∠EDC=∠FCE ,利用ASA 即可证明△AED ≌△BFC ,故该选项不符合题意;故选:A .【点睛】本题考查了全等三角形的判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理;8.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒D 解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.9.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC B解析:B【分析】 本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等;【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角;10.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ D解析:D【分析】 根据HL 定理分别证明Rt △ABC ≌Rt △ADE 和Rt △AEO ≌Rt △ACO ,根据全等三角形的性质可判断各选项.【详解】解:解:∵90,,ACB AED AB AD AC AE ∠=∠===,∴Rt △ABC ≌Rt △ADE (HL )∴BC DE =,∠BAC=∠DAE ,故A 选项正确;∴∠BAC-∠EAC=∠DAE-∠EAC ,即BAE DAC ∠=∠,故B 选项正确;连接AO ,∵AE=AC ,AO=AO ,∴Rt △AEO ≌Rt △ACO (HL ),∴OC OE =,故C 选项正确;无法得出EAC ABC ∠=∠,故D 选项错误;故选:D .【点睛】本题全等三角形的性质与判断.掌握证明直角三角形全等的HL 定理是解题关键.二、填空题11.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.【分析】过点D 作DE ⊥BA 的延长线于点E 利用角平分线的性质可得出DE =DC =8再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD 的面积【详解】解:过点D 作DE ⊥B 解析:120【分析】过点D 作DE ⊥BA 的延长线于点E ,利用角平分线的性质可得出DE =DC =8,再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD ,可求出四边形ABCD 的面积.【详解】解:过点D 作DE ⊥BA 的延长线于点E ,如图所示.又∵BD 平分∠ABC ,∠BCD =90°,∴DE =DC =8,∴S 四边形ABCD =S △ABD +S △BCD , =12AB•DE +12BC•CD , =12×12×8+12×18×8, =120.故答案为:120.【点睛】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE =8是解题的关键.12.如图,已知四边形,90,3,4,5,ABCD B AB BC AC ︒∠====180BAD CAD ︒∠+∠=,180BCD ACD ︒∠+∠=,则四边形ABCD 的面积是_________.21【分析】如图作DHBA 交BA 的延长线于H 作DFBC的延长线于F 作DEAC 于E 首先证明利用面积法求出DE 即可解决问题【详解】解:作DHBA 交BA 的延长线于H 作DFBC 的延长线于F 作DEAC 于E 设则 解析:21【分析】如图,作DH ⊥BA 交BA 的延长线于H ,作DF ⊥BC 的延长线于F ,作DE ⊥AC 于E ,首先证明DH DE DF ==,利用面积法求出DE ,即可解决问题.【详解】解:作DH ⊥BA 交BA 的延长线于H ,作DF ⊥BC 的延长线于F ,作DE ⊥AC 于E ,180,180BAD CAD BAD DAH ∠+∠=︒∠+∠=︒,CAD DAH ∴∠=∠,180,180BCD ACD BCD DCF ∠+∠=︒∠+∠=︒,ACD DCF ∴∠=∠,,,DH BH DE AC DF BF ⊥⊥⊥,DH DE DF ∴==,设DH DE DF x ===, 则有:11112222AB DH BC DF AB BC AC DE ⋅⋅+⋅⋅=⋅⋅+⋅⋅, ∴34125x x x +=+,6x ∴=,∴S 四边形ABCD=11113456212222AB CB AC DE ⋅+⋅=⨯⨯+⨯⨯=. 故答案为:21.【点睛】本题考查了角平分线的性质、三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.13.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm . 6【分析】根据CF ∥AB 得到∠DAE=∠FCE 结合AE=CE ∠AED=∠FEC 可得△AED ≌△CEF 根据即可得出结果【详解】解:∵CF ∥AB ∴∠DAE=∠FCE 又∵AE=CE ∠AED=∠FEC ∴△A解析:6【分析】根据CF ∥AB ,得到∠DAE=∠FCE ,结合AE=CE ,∠AED=∠FEC ,可得△AED ≌△CEF ,AED CEF S S =,根据 ABC AED CEF DBCE DBCE DBCF S S S S S S =+=+=四边形四边形四边形,即可得出结果.【详解】解:∵CF ∥AB ,∴∠DAE=∠FCE ,又∵AE=CE ,∠AED=∠FEC ,∴△AED ≌△CEF ,∴AED CEF SS =, ∴26ABC AED CEF DBCE DBCE DBCF S S S S S S cm =+=+==四边形四边形四边形,故答案为:6.【点睛】本题考查全等三角形的判定与性质,解题的关键是证得△AED ≌△CEF .14.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CDAC =AE 加上BC =AC 三角形的周长为BE+BD+DE =BE+CB =AE+BE 于是周长可得【详解】解:∵AD 平分∠BAC 交B解析:10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CD ,AC =AE ,加上BC =AC ,三角形的周长为BE+BD+DE =BE+CB =AE+BE ,于是周长可得.【详解】解:∵AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,∠C =90°,∴CD =DE ,∵AD=AD ,∴ACD AED ≅,∴AC=AE ,又∵AC =BC , ∴△DEB 的周长=DB+DE+BE =AC+BE =AB =10.故填:10.【点睛】本题主要考查角平分线的性质以及全等三角形的证明,解题的关键是理解并掌握角平分线的性质以及全等三角形的证明方法.15.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AD 上运动,当AQ =______时,ABC 和PQA △全等.5或10【分析】分两种情况:当AQ=5时当AQ=10时利用全等三角形的判定及性质定理得到结论【详解】分两种情况:当AQ=5时∵∴AQ=BC ∵AD ⊥AC ∴∠QAP=∠ACB=∵AB=PQ ∴≌△PQA (解析:5或10【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论.【详解】分两种情况:当AQ=5时,∵5BC =,∴AQ=BC ,∵AD ⊥AC ,∴∠QAP=∠ACB=90︒,∵AB=PQ ,∴ABC ≌△PQA (HL );当AQ=10时,∵10AC =,∴AQ=AC ,∵AD ⊥AC ,∴∠QAP=∠ACB=90︒,∵AB=PQ ,∴△ABC ≌△QPA ,故答案为:5或10.【点睛】 此题考查全等三角形的判定及性质定理,运用分类思想,动点问题,熟记三角形的判定定理及性质定理是解题的关键.16.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.5【分析】根据角平分线的性质及垂线段最短解答【详解】根据垂线段最短可知:当PM ⊥OC 时PM 最小∵OP 平分PD=5∴PM=PD=5故答案为:5【点睛】此题考查角平分线的性质垂线段最短掌握点到直线的所有 解析:5【分析】根据角平分线的性质及垂线段最短解答.【详解】根据垂线段最短可知:当PM ⊥OC 时,PM 最小,∵OP 平分AOC ∠,PD OA ⊥,PD=5,∴PM=PD=5,故答案为:5.【点睛】此题考查角平分线的性质,垂线段最短,掌握点到直线的所有连线中垂线段最短是解题的关键.17.已知70COB ∠=,30AOB ∠=,OD 平分AOC ∠,则BOD ∠=_________20°或50°【分析】根据题意分两种情况进行讨论然后根据角平分线的性质计算解决即可【详解】解:①如图∵∠BOC=70°∴∠AOC=100°∵OD 平分∠AOC ∴∠AOD=∠AOC=50°∠AOD-=2解析:20°或50°【分析】根据题意,分两种情况进行讨论,然后根据角平分线的性质计算解决即可.【详解】解:①如图∵30AOB ∠=︒,∠BOC=70°,∴∠AOC=100°,∵OD平分∠AOC∠AOC=50°,∴∠AOD=12∠=20°;BOD∠=∠AOD-AOB②如图,∵30AOB∠=︒,∠BOC=70°,∴∠AOC=40°,∵OD平分∠AOC∠AOC=20°,∴∠AOD=12∠=50°;∠=∠AOD+AOBBOD故答案为:20°或50°【点睛】本题考查了角平分线的性质,解决本题的关键是正确理解题意,熟练掌握角平分线的性质,能够由角平分线得出相等的角,在解决问题时注意要分类讨论.△的面积是18.如图,ABC中,∠C=90°,AD平分∠BAC, AB=5,CD=2,则ABD______5【分析】根据角平分线的性质求出DE根据三角形的面积公式计算即可;【详解】如图:作DE⊥AB于点E∵AD平分∠BAC∠C=90°DE⊥AB∴DE=DC=2∵AB=5∴△ABD的面积=×AB×DE=5解析:5【分析】根据角平分线的性质求出DE,根据三角形的面积公式计算即可;【详解】如图:作DE⊥AB于点E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∵AB=5∴△ABD的面积=1×AB×DE=5,2故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 19.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,若12AB =,4CD =,则ABD △ 的面积为__________.24【分析】过D 作DE ⊥AB 垂足为E 根据角平分线定理可得DE=CD=4然后根据三角形的面积公式计算即可【详解】解:如图:过D 作DE ⊥AB 垂足为E ∵AD 平分交BC 边于点D ∴DE=CD=4∴的面积为AB解析:24【分析】过D 作DE ⊥AB 垂足为E ,根据角平分线定理可得DE=CD=4,然后根据三角形的面积公式计算即可.【详解】解:如图:过D 作DE ⊥AB 垂足为E ,∵90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,∴DE=CD=4,∴ABD △ 的面积为12AB·DE=12×12×4=24. 故答案为:24.【点睛】本题主要考查了角平分线的性质定理,正确作出辅助线、构造角平分线定理所需条件成为解答本题的关键.20.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1解析:55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.三、解答题21.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.解析:见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.22.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.23.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.解析:(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.24.如图,在四边形ABCD 中,//AD BC ,E 为AC 的中点,连接DE 并延长,交BC 于点F .(1)求证:DE EF =.(2)若12AD =,:2:3BF CF =,求BC 的长.解析:(1)见解析;(2)20【分析】(1)根据平行线的性质可得:EAD ECF ∠=∠,EDA EFC ∠=∠,继而根据全等三角形的判定证得()ADE CFE AAS ≅△△,继而即可求证结论;(2)由全等三角形的性质可得:12AD CF ==,求得8BF =,继而即可求解.【详解】(1)证明:∵//AD BC ,∴EAD ECF ∠=∠,EDA EFC ∠=∠.∵E 为AC 的中点,∴AE CE =.在ADE 和CFE 中,,,,EAD ECF EDA EFC AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADE CFE AAS ≅△△.∴DE EF =.(2)解:∵ADE CFE ≅,∴12AD CF ==.∵:2:3BF CF =,∴8BF =,∴81220BC BF CF =+=+=.【点睛】 本题考查全等三角形的判定和性质,平行线的性质,解题的关键是熟练掌握全等三角形的判定方法和性质.25.如图,点E ,F 在BC 上,A D ∠=∠,AF DE =,AFC DEB ∠=∠.求证:BE CF =.解析:见详解【分析】先证明∠AFB=∠DEC ,再根据ASA 证明∆AFB ≅∆DEC ,进而即可得到结论. 【详解】∵AFC DEB ∠=∠,∴∠AFB=∠DEC ,又∵A D ∠=∠,AF DE =,∴∆AFB ≅∆DEC (ASA ),∴BF=CE ,∴BF-EF= CE-EF ,∴BE CF =.【点睛】本题主要考查三角形全等的判定和性质定理,熟练掌握ASA 证明三角形全等,是解题的关键.26.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .解析:见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF ≌∴∠B =∠C .【点睛】 本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.27.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且180AGE DHE ∠+∠=︒(1)如图1,求证://AB CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:M AGM CHM ∠=∠+∠;(3)如图3,在(2)的条件下,射线GH 是BGM ∠的平分线,在MH 的延长线上取点N ,连接GN ,若N AGM ∠=∠,12M N FGN ∠=∠+∠,求MHG ∠的度数. 解析:(1)见解析;(2)见解析;(3)60°【分析】(1)推出同旁内角互补即可(2)如图,过点M 作//MR AB ,利用平行线性质推出////AB CD MR .得GMR AGM ∠=∠,HMR CHM ∠=∠.利用角的和M GMR HMR ∠=∠+∠代换即可.(3)如图,令2AGM α∠=,CHM β∠=,由N AGM ∠=∠推得2N α∠=,2M αβ∠=+,由射线GH 是BGM ∠的平分线,推得1902FGM BGM α∠=∠=︒-, 则90AGH AGM FGM α∠=∠+∠=︒+,由12M N FGN ∠=∠+∠,求出2FGN β∠=,过点N 作//HT GN ,由平行线的性质22GHM MHT GHT αβ∠=∠+∠=+,求出∠CHG 23αβ=+,利用//AB CD 的性质180AGH CHG ∠+∠=︒,即9023180ααβ︒+++=︒,求出30αβ+=︒,再求()260MHG αβ∠=+=︒即可.【详解】(1)证明:如图,∵180AGE DHE ∠+∠=︒,AGE BGF ∠=∠.∴180BGF DHE ∠+∠=︒,∴//AB CD .(2)证明:如图,过点M 作//MR AB ,又∵//AB CD ,∴////AB CD MR .∴GMR AGM ∠=∠,HMR CHM ∠=∠.∴M GMR HMR AGM CHM ∠=∠+∠=∠+∠;(3)解:如图,令2AGM α∠=,CHM β∠=,∵N AGM ∠=∠则2N α∠=,2M αβ∠=+,∵射线GH 是BGM ∠的平分线, ∴()111809022FGM BGM AGM α∠=∠=︒-∠=︒-, ∴29090AGH AGM FGM ααα∠=∠+∠=+︒-=︒+, ∵12M N FGN ∠=∠+∠, ∴1222FGN αβα+=+∠, ∴2FGN β∠=,过点N 作//HT GN ,则2MHT N α∠=∠=,2GHT FGN β∠=∠=,∴22GHM MHT GHT αβ∠=∠+∠=+,∴CHG CHM MHT GHT ∠=∠+∠+∠2223βαβαβ=++=+,∵//AB CD ,∴180AGH CHG ∠+∠=︒,∴9023180ααβ︒+++=︒,∴30αβ+=︒,∴()260MHG αβ∠=+=︒.【点睛】本题主要考查平行线的性质, 角平分线的定义,解决问题的关键是作平行线构造内错角,和同位角,利用两直线平行,内错角相等,同位角相等来计算是解题关键.28.命题:有两个内角相等的三角形必有两条高线相等,写出它的逆命题,并判断逆命题的真假,若是真命题,给出证明;若是假命题,请举反例.解析:逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;证明见解析.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可得到原命题的逆命题,再得出命题的正确性.【详解】解:有两个内角相等的三角形必有两条高线相等的逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;在Rt BCE 与Rt CBD △中,BD CE BC CB =⎧⎨=⎩∴()Rt BCE Rt CBD HL ≌,∴DCB EBC ∠=∠.【点睛】此题主要考查了命题与定理的证明,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,进而利用全等三角形的证明方法求出即可.。

人教版八年级数学上册《第十二章 全等三角形》测试卷-含参考答案

人教版八年级数学上册《第十二章 全等三角形》测试卷-含参考答案

人教版八年级数学上册《第十二章全等三角形》测试卷-含参考答案一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,点E在AC上△ABC≌△DAE,BC=3,DE=7,则CE的长为()A.2 B.3 C.4 D.53.如图,在等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件中的一个,不能判定△ABE≌△ACD 的是( )A.AD=AE B.∠DCB=∠EBC C.∠ADC=∠AEB D.BE=CD4.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,则过角尺顶点C的射线OC便是∠AOB的平分线.在证明△MOC≌△NOC时运用的判定定理是()A.SSS B.SAS C.ASA D.AAS5.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2.4cm2B.3cm2C.4cm2D.5cm26.如图,在ΔABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,ΔBCD 的面积为5,则ED的长为()B.1C.2D.5A.127.如图,D、E分别为AB、AC边上的点∠B=∠C,BE=CD .若AB=7,CE=4则AD的长度为()A.2 B.3 C.4 D.58.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是()A.①②③B.①③④C.①②④D.②③④二、填空题9.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF相等,那么判定△ABC与△DEF全等的依据是.10.若△ABC≌△DEF,A与D,B与E分别是对应顶点∠A=50°,∠B=60°则∠F=11.如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为;12.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知BC=8,DE=2则△BCE的面积等于.13.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.三、解答题14.已知:如图,点A、D、C、F在同一直线上AB//DE,∠B=∠E,BC=EF求证:AD=CF15.如图AE⊥BD,CD⊥BD,AB=BC,BE=CD求∠ABC的度数16.如图:在△ABC,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.17.如图,线段AD是△ABC的中线,分别过点B、C作AD所在直线的垂线,垂足分别为E、F(1)请问△BDE与△CDF全等吗?说明理由;(2)若△ACF的面积为10,△CDF的面积为6,求△ABE的面积18.如图,在和中连接、交于点,连接.求证:(1);(2)平分.参考答案1.A2.C3.D4.A5.C6.C7.B8.C9.HL10.70°11.12.5cm 212.813.1214.证明:∵AB//DE∴∠A =∠EDF在△ABC 和△DEF 中{∠A =∠EDF∠B =∠E BC =EF∴△ABC ≌△DEF(AAS)∴AC =DF∴AC −DC =DF −DC即:AD =CF15.解:∵AE ⊥BD ,CD ⊥BD∴∠AEB =∠BDC =90°在Rt △AEB 和Rt △BDC 中 ∵{AB =BC BE =CD∴Rt △AEB ≌Rt △BDC∴∠A =∠CBD∵∠AEB =90°∴∠A +∠ABE =90°∴∠ABC =∠ABE +∠CBD =∠ABE +∠A =90°16.证明:∵BD ⊥AC 于D ,CE ⊥AB 于E∴∠AEC =∠ADB =90°在△ABD 和△ACE 中{∠BAC =∠BAC∠ADB =∠AEC AB =AC∴△ABD ≌△ACE(AAS)∴AE =AD在Rt △AEF 和Rt △ADF 中{AE =AD AF =AF∴Rt △AEF ≌Rt △ADF(HL)∴EF =DF∴AF 平分∠BAC .17.(1)解:△BDE ≌△CDF ,理由如下:∵AD 是△ABC 的中线∴BD =CD∵BE ⊥AE ,CF ⊥AE ∴∠BED =∠CFD =90° 在△BDE 和△CDF 中{∠BED =∠CFD∠BDE =∠CDF BD =CD∴c △BDE 与△CDF (AAS )(2)解:∵S △ACF =10△BDE ≌△CDF∴S △ACD =S △ACF +S △CDF =10+6=16S △BDE =S △CDF =6∵BD =CD ∴△ABD 和△ACD 是等底同高的三角形 ∴S △ABD =S △ACD =16∴S △ABE =S △ABD +S △BDE =16+6=2218.(1)解:证明:∵∴,即在和中∴∴∵是和的外角∴∴;(2)解:如图所示,作于,于∴是中边上的高,是中边上的高由(1)知:∴∴点在的平分线上即平分。

人教版八年级数学上册第十二章《全等三角形》测试带答案解析

人教版八年级数学上册第十二章《全等三角形》测试带答案解析

人教版八年级数学上册第十二章《全等三角形》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD △的面积是( )A .12B .10C .8D .62.小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程,他发现OCD 与'''O C D 全等,请你说明小华得到全等的依据是( )A .SSSB .SASC .ASAD .AAS 3.如图,OB 平分∠AOC ,D 、E 、F 分别是射线OA 、射线OB 、射线OC 上的点,D 、E 、F 与O 点都不重合,连接ED 、EF 若添加下列条件中的某一个.就能使DOE ≅FOE ,你认为要添加的那个条件是( )A .OD =OEB .OE =OFC .∠ODE =∠OED D .∠ODE =∠OFE 4D E BC,,12110,60AD AE BE CD BAE ==∠=∠∠=︒=︒,则BAC ∠的度数为( )A .90°B .80°C .70°D .60°5.如图,在Rt ABC 中,90ACB ∠=︒,按以下步骤作图:①以B 为圆心,任意长为半径作弧,分别交BA 、BC 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线BP ,交边AC 于D 点,若5,3AB BC ==,则线段CD 的长为( )A .32B .53C .43D .856.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A .图2B .图1与图2C .图1与图3D .图2与图37.如图,在△ABC 中,∠A =90°,BE 是△ABC 的角平分线,ED ⊥BC 于点D ,CD =4,△CDE 周长为12,则AC 的长是( )8.如图,点E 是△ABC 内一点,∠AEB =90°,AE 平分∠BAC ,D 是边AB 的中点,延长线段DE 交边BC 于点F ,若AB =6,EF =1,则线段AC 的长为( )A .7B .8C .9D .109.如图,AI 、BI 、CI 分别平分BAC ∠、ABC ∠、ACB ∠,ID BC ⊥,ABC 的周长为18,3ID =,则ABC 的面积为( )A .18B .30C .24D .2710.数学课上老师布置了“测量锥形瓶内部底面的内径”的探究任务,善思小组想到了以下方案:如图,用螺丝钉将两根小棒AD ,BC 的中点O 固定,只要测得C ,D 之间的距离,就可知道内径AB 的长度.此方案依据的数学定理或基本事实是( )A .边角边B .三角形中位线定理C .边边边D .全等三角形的对应角相等11.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②2180ABC APC ∠+∠=︒;③2BAC BPC ∠=∠;④PAC MAP NCP S S S ∆∆∆=+.其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.如图,在四边形ABCD 中,AD ∥BC .若∠DAB 的角平分线AE 交CD 于E ,连接BE ,且BE 边平分∠ABC ,得到如下结论:①∠AEB =90°;②BC +AD =AB ;③BE =12CD ;④BC =CE ;⑤若AB =x ,则BE 的取值范围为0<BE <x ,那么以上结论正确的是( )A .①②③B .②③④C .①④⑤D .①②⑤二、填空题13.如图,ABC DCB △≌△,若AB =4cm ,BC =6cm ,AC =5cm ,则DC =________cm .14.嘉淇为了测量建筑物墙壁AB 的高度,采用了如图所示的方法:①把一根足够长的竹竿AC 的顶端对齐建筑物顶端A ,末端落在地面C 处;②把竹竿顶端沿AB 下滑至点D ,使DB =_____,此时竹竿末端落在地面E 处;③测得EB 的长度,就是AB 的高度.以上测量方法直接利用了全等三角形的判定方法 _____(用字母表示).15.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 的长是_____.16.如图,任意画一个60BAC ∠=︒的ABC ,再分别作ABC 的两条角平分线BE 和CD ,BE 和CD 交于点P ,连结AP .有以下结论:①AP 平分BAC ∠;②PD PE =;③BD CE BC =+;④PBD PCE PBC S S S +=.其中正确的序号是_____.三、解答题17.如图,点E 、F 在线段BC 上,//AB CD ,A D ∠=∠,BE CF =,证明:AE DF =.18.如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .19.如图,点E ,F 在线段AD 上,AB ∥CD ,B C ∠=∠,BE CF =.求证:AF DE =.20.如图,ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE CF ∥.(1)求证:BDE △≌CDF ;(2)若15AE =,8AF =,试求DE 的长.21.如图,已知ABC 中,2C B ∠=∠.(1)请用基本尺规作图:作∠BAC 的角平分线交BC 于点D ,在AB 上取一点E ,使AE =AC ,连接DE .(不写作法,不下结论,保留作图痕迹);(2)在(1)所作的图形中,求证:AB AC CD =+.请完成下面的证明过程:证明:∵AD 平分BAC ∠,∴DAC ∠=______,在EAD 与CAD 中AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()SAS EAD CAD ≌△△,∴______C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+______,且2C B ∠=∠,∴B BDE=,∠=∠,∴BE DE∴BE=______,=+.∵AB AE BE=+,∴AB AC CD22.如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.(1)AB=DC;(2)△ABC≌△DCB.23.如图,已知△ABC≌△DEF,AF=5cm.(1)求CD的长.(2)AB与DE平行吗?为什么?解:(1)∵△ABC≌△DEF(已知),∴AC=DF(),∴AC﹣FC=DF﹣FC(等式性质)即=∵AF=5cm∴=5cm(2)∵△ABC≌△DEF(已知)∴∠A=()∴AB()24.在△ABC中,AB=BC,∠ABC=90°,点D为BC上一点,BF⊥AD于点E,交AC于点F,连接DF.(1)如图①,当AD平分∠BAC时,①AB与AF相等吗?为什么?②判断DF与AC的位置关系,并说明理由;(2)如图②,当点D为BC的中点时,试说明:∠FDC=∠ADB.25.如图1,在△ABC中,∠BAC=90°,AB=AC,点D在边AC上,CD⊥DE,且CD =DE,连接BE,取BE的中点F,连接DF.(1)请直接写出∠ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中∠ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;②如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.参考答案:1.A【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边的距离相等可得DE =CD =2,然后根据三角形的面积公式求解即可.【详解】解:如图,过点D 作DE ⊥AB 于E ,∵AD 是∠BAC 的角平分线,90C ∠=︒,CD =3,∴DE =CD =3,∵AB =8,∴△ABD 的面积118312.22AB DE =⋅=⨯⨯= 故选A.【点睛】本题主要考查角了平分线的性质,掌握角平分线上的点到角两边的距离相等是解答本题的关键.2.A【分析】利用全等三角形的判定定理即可求解.【详解】解:在OCD ∆和O C D '''∆中, OD O D OC O C DC D C '''''=⎧'⎪=⎨⎪=⎩,()OCD O C D SSS '''∴∆≅∆.故选:A .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.3.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∵OB 平分∠AOC∴∠AOB =∠BOC当△DOE ≌△FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是△DOE ≌△FOE 的对应边,A 不正确;B 答案中OE 与OF 不是△DOE ≌△FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是△DOE ≌△FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在△DOE 和△FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△DOE ≌△FOE (AAS )∴D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.4.B【分析】先证明BD =CE ,然后证明△ADB ≌△AEC ,∠ADE =∠AED =70°,得到∠BAD =∠CAE ,根据三角形内角和定理求出∠DAE =40°,从而求出∠BAD 的度数即可得到答案.【详解】解:∵BE =CD ,∴BE -DE =CD -DE ,即BD =CE ,∵∠1=∠2=110°,AD =AE ,∴△ADB ≌△AEC (SAS ),∠ADE =∠AED =70°,∴∠BAD =∠CAE ,∠DAE =180°-∠ADE -∠AED =40°,∵∠BAE =60°,∴∠BAD =∠CAE =20°,∴∠BAC =80°,故选B .【点睛】本题主要考查了全等三角形的性质与判定,邻补角互补,三角形内角和定理,熟知全等三角形的性质与判定条件是解题的关键.5.A【分析】利用基本作图得BD平分∠ABC,过D点作DE⊥AB于E,如图,根据角平分线的性质得到则DE=DC,再利用勾股定理计算出AC=4,然后利用面积法得到12•DE×5+12•CD×3=12×3×4,最后解方程即可.【详解】解:由作法得BD平分∠ABC,过D点作DE⊥AB于E,如图,则DE=DC,在Rt△ABC中,AC BC222253=4,∵S△ABD+S△BCD=S△ABC,∴12•DE×5+12•CD×3=12×3×4,即5CD+3CD=12,∴CD=32,故选:A.【点睛】本题考查了基本作图:作解平分线,角平分线的性质,勾股定理,熟练掌握基本作图(作已知角的角平分线),角平分线的性质是解题的关键.6.C【分析】利用基本作图可对图1和图2进行判断;利用基本作图和全等三角形的判定与性质、角平分线性质定理的逆定理对图3进行判断.【详解】在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,根据作法可知:AE =AF ,AM =AN ,在△AMF 和△ANE 中,AF AE MAF NAE AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△AMF ≌△ANE (SAS ),∴∠AMD =∠AND ,∵AE =AF ,AM =AN ,∴ME =NF ,在△MDE 和△NDF 中,MDE NDF AMD AND ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NDF (AAS ),MDE NDF S S ∴=△△所以D 点到AM 和AN 的距离相等,∴AD 平分∠BAC .综上,能判断射线AD 平分∠BAC 的是图1和图3.故选:C .【点睛】本题考查了作图-基本作图,全等三角形的判定与性质,角平分线的判定,解决本题的关键是掌握角平分线的作法.7.B【分析】根据角平分线的性质得到AE =DE ,根据三角形的周长公式计算,得到答案.【详解】解:∵BE 是△ABC 的角平分线,ED ⊥BC ,∠A =90°,∴AE =DE ,∵△CDE 的周长为12,CD =4,∴DE +EC =8,∴AC =AE +EC =8,故选:B .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.B【分析】延长BE 交AC 于H ,证明HAE BAE ∆≅∆,根据全等三角形的性质求出AH ,根据三角形中位线定理解答即可.【详解】解:延长BE 交AC 于H , AE 平分BAC ∠,HAE BAE ∴∠=∠,在HAE ∆和BAE ∆中,HAE BAE AE AEAEH AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()HAE BAE ASA ∴∆≅∆,6AH AB ∴==,HE BE =,HE BE =,AD DB =,//DF AC ∴,HE BE =,22HC EF ∴==,8AC AH HC ∴=+=,故选:B .【点睛】本题考查的是全等三角形的判定和性质、三角形中位线定理,掌握全等三角形的判定定理和性质定理是解题的关键.9.D【分析】过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,利用角平分线的性质得到IE =IF =ID =3,然后根据三角形面积公式得到ABC IAB IBC IAC S S S S =++△△△△,据此即可求得.【详解】解:过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,∵AI ,BI ,CI 分别平分∠BAC ,∠ABC ,∠ACB ,∴IE =IF =ID =3,∴ABC IAB IBC IAC S S S S =++△△△△111333222AB BC AC =⨯⨯+⨯⨯+⨯⨯ 3()2AB BC AC =++ 3182=⨯ 27=故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积.10.A【分析】根据O 是AD 与BC 的中点,得到OA =OD ,OB =OC ,根据∠AOB =∠DOC ,推出△AOB ≌△DOC ,是SAS .【详解】∵O 是AD 与BC 的中点,∴OA =OD ,OB =OC ,∵∠AOB =∠DOC ,∴△AOB ≌△DOC (SAS).故选A .【点睛】本题考查了测量原理,解决此类问题的关键是根据测量方法和工具推导测量原理.11.D【分析】过点P 作PD ⊥AC 于D ,根据角平分线的判定定理和性质定理判断①;证明Rt △P AM ≌Rt △P AD ,根据全等三角形的性质得出∠APM =∠APD ,同理得出∠CPD =∠CPN ,可判断②;根据三角形的外角性质判断③;根据全等三角形的性质判断④.【详解】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PN =PD ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △P AM 和Rt △P AD 中,PM PD PA PA=⎧⎨=⎩, ∴Rt △P AM ≌Rt △P AD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵PC 平分∠FCA ,BP 平分∠ABC ,∴∠ACF =∠ABC +∠BAC =2∠PCN ,∠PCN =12∠ABC +∠BPC , ∴()1122PCN ABC BPC ABC BAC ∠=∠+∠=∠+∠ ∴∠BAC =2∠BPC ,③正确;④由②可知Rt △P AM ≌Rt △P AD (HL ),Rt △PCD ≌Rt △PCN (HL )∴S △APD =S △APM ,S △CPD =S △CPN ,∴S △APM +S △CPN =S △APC ,故④正确,故选:D【点睛】本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.12.D【分析】根据两直线平行,同旁内角互补可得∠ABC +∠BAD =180°,又BE 、AE 都是角平分线,可以推出∠ABE +∠BAE =90°,从而得到∠AEB =90°,然后延长AE 交BC 的延长线于点F ,先证明△ABE 与△FBE 全等,再根据全等三角形对应边相等得到AE =EF ,然后证明△AED 与△FEC 全等,从而可以证明①②⑤正确,AB 与CD 不一定相等,所以③④不正确.【详解】解:∵AD ∥BC ,∴∠ABC +∠BAD =180°,∵AE 、BE 分别是∠BAD 与∠ABC 的平分线,∴∠BAE =12∠BAD ,∠ABE =12∠ABC ,∴∠BAE +∠ABE =12(∠BAD +∠ABC )=90°,∴∠AEB =180°﹣(∠BAE +∠ABE )=180°﹣90°=90°,故①小题正确;如图,延长AE 交BC 延长线于F ,∵∠AEB =90°,∴BE ⊥AF ,∵BE 平分∠ABC ,∴∠ABE =∠FBE ,在△ABE 与△FBE 中,90ABE FBE BE BEAEB FEB ∠∠⎧⎪⎨⎪∠∠︒⎩==== , ∴△ABE ≌△FBE (ASA ),∴AB =BF ,AE =FE ,∵AD ∥BC ,∴∠EAD =∠F ,在△ADE 与△FCE 中,EAD F AE FE AED FEC ∠∠⎧⎪⎨⎪∠∠⎩=== ,∴△ADE ≌△FCE (ASA ),∴AD =CF ,∴AB =BF =BC +CF =BC +AD ,故②小题正确;∵△ADE ≌△FCE ,∴CE =DE ,即点E 为CD 的中点,∵BE 与CE 不一定相等∴BE 与12CD 不一定相等,故③小题错误;若AD =BC ,则CE 是Rt △BEF 斜边上的中线,则BC =CE ,∵AD 与BC 不一定相等,∴BC 与CE 不一定相等,故④小题错误;∵BF =AB =x ,BE ⊥EF ,∴BE 的取值范围为0<BE <x ,故⑤小题正确.综上所述,正确的有①②⑤.故选:D .【点睛】本题主要考查了全等三角形的判定及性质,平行线的性质,角平分线的定义,证明BE ⊥AF 并作出辅助线是解题的关键,本题难度较大,对同学们的能力要求较高. 13.4【分析】由ABC DCB △≌△,可得AB =DC ,已知AB =4cm ,即可得DC 的长度,做题时要找准对应边.【详解】解:∵ABC DCB △≌△,∴AB =DC =4cm .故答案为4.【点睛】本题考查了全等三角形的性质,题中条件虽多但找到相应关系即可得解,不需要用到所有条件,关键是找准对应边.14. CB ##BC HL【分析】根据题意,将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌即可求解.【详解】解:由③可得将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌,故把竹竿顶端沿AB 下滑至点D ,使DB =CB ,证明90,,ABC EBD AC ED DB CB ∠=∠=︒==,∴Rt Rt ABC EBD ≌(HL )故答案为:CB ,HL .【点睛】本题考查了HL 证明三角形全等,全等三角形的性质,掌握HL 的性质与判定是解题的关键.15.3【分析】根据角平分线上的点到角的两边距离相等可得DE =DF ,再根据三角形的面积公式列式计算即可得解.【详解】解:过D 作DF ⊥AC 于F ,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∴S △ABC =12AB ×DE +12AC ×DF =12×4×2+12AC ×2=7,解得AC =3.故答案为:3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键. 16.①②③④【分析】首先由三角形内角和定理和角平分线得出PBC PCB ∠+∠的度数,再由三角形内角和定理可求出120BPC ∠=︒可知120DPE ∠=︒,过点P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,由角平分线的性质可知AP 是BAC ∠的平分线,由此判断①;由全等三角形的判定定理可得出PFD PGE ≌,由此判断②;由三角形全等的判定定理可得出BHP BFP ≌,CHP CGP ≌,然后根据全等三角形推出BC BD CE =+,由此判断③,根据全等可得PBD S 、PCE S 和PBC S 的关系,由此判断④,由此即可解答本题.【详解】∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,60BAC ∠=︒, ∴11(180)(18060)6022BA B C PBC PC ︒-∠=︒+∠-︒=∠=︒, ∴()180********BPC PBC PCB ∠=︒-∠+∠=︒-︒=︒,∴120DPE ∠=︒,过点P 作PF AB ⊥于F 点,PG ⊥AC 于G 点,PH ⊥BC 于H 点,∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,PF AB ⊥,PG AC ⊥,PH BC ⊥, ∴PF PH PG ==,∴AP 平分BAC ∠,故①正确;由①可知:PF PH PG ==,∵60BAC ∠=︒,90AFP AGP ∠=∠=︒,∴120FPG ∠=︒,∵120DPE ∠=︒,∴DPF DPE EPF FPG EPF EPG ∠=∠-∠=∠-∠=∠,∴PFD PGE ASA ≌(), ∴PD PE =,故②正确;又∵BP BP =,PF PH =,∴()Rt BHP Rt BFP HL ≌,同理:Rt CHP Rt CGP ≌,∴BH BD DF =+,CH CE GE =-,两式相加得:+=++BH CH BD DF CE GE -,∵PFD PGE ASA ≌(), ∴DF GE =,∴BD CE BC =+,故③正确;∵PF PH PG ==,∴PBD △,PCE ,PBC △,的高相等,∵BD CE BC =+,∴PBD PCE PBC S S S +=,故④正确;故答案是:①②③④.【点睛】本题主要考查全等三角形的判定和性质定理,角平分线的性质定理以及四边形内角为360°等知识,添加辅助线,构造全等三角形,是解题的关键.17.见解析【分析】利用AAS 证明△ABE ≌△DCF ,即可得到结论.【详解】证明:∵//AB CD ,∴∠B =∠C ,∵A D ∠=∠,BE CF =,∴△ABE ≌△DCF (AAS ),∴AE DF =.【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.18.证明见解析【分析】利用角边角证明△CDE ≌△ABC ,即可证明DE =BC .【详解】证明:∵DE ∥AB ,∴∠EDC =∠B .又∵CD =AB ,∠DCE =∠A ,∴△CDE ≌△ABC (ASA).∴DE =BC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.19.见详解【分析】由题意易得A D ∠=∠,然后可证ABE DCF △≌△,进而问题可求证.【详解】证明:∵AB ∥CD ,∴A D ∠=∠,∵B C ∠=∠,BE CF =,∴ABE DCF △≌△(AAS ),∴AE DF =,∵,AF AE EF DE DF EF =-=-,∴AF DE =.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.20.(1)见解析; (2)72;【分析】(1)根据两直线平行内错角相等;全等三角形的判定(角角边);即可证明;(2)由(1)结论计算线段差即可解答;(1)证明:∵BE ∥CF ,∴∠BED =∠CFD ,∵∠BDE =∠CDF ,BD =CD ,∴△BDE ≌△CDF (AAS );(2)解:由(1)结论可得DE =DF ,∵EF =AE -AF =15-8=7,∴DE =72; 【点睛】本题考查了平行线的性质,全等三角形的判定(AAS )和性质;掌握全等三角形的判定和性质是解题关键.21.(1)见详解(2)∠DAE ,∠AED ,∠B ,CD【分析】(1)利用尺规作出角平分线及相等的线段,然后连接即可;(2)先证明()EAD CAD SAS ≌,再结合AED BDE ∠=∠+∠B ,且2C B ∠=∠,即可得到结论.【详解】(1)解:如图所示即为所求;(2)证明:∵AD 平分BAC ∠,∴DAC ∠=∠DAE ,在EAD 与CAD 中,AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()EAD CAD SAS ≌,∴∠AED C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+∠B ,且2C B ∠=∠,∴B BDE ∠=∠,∴BE DE =,∴BE =CD ,∵AB AE BE =+,∴AB AC CD =+.故答案是:∠DAE ,∠AED ,∠B ,CD .【点睛】本题主要考查尺规作图—基本作图,全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质,是解题的关键.22.(1)证明见解析;(2)证明见解析【分析】(1)证明△ABO ≌△DCO (ASA ),即可得到结论;(2)由△ABO ≌△DCO ,得到OB =OC ,又OA =OD ,得到BD =AC ,又由∠A =∠D ,即可证得结论.【详解】(1)证明:在△ABO 与△DCO 中,A D OA ODAOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA )∴AB =DC ;(2)证明:∵△ABO ≌△DCO ,∴OB =OC ,∵OA =OD ,∴OB +OD =OC +OA ,∴BD =AC ,在△ABC 与△DCB 中,AC BD A D AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ).【点睛】此题考查了全等三角形的判定和性质,熟练掌握并灵活选择全等三角形的判定方法是解题的关键.23.(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【分析】(1)根据△ABC ≌△DEF ,AF =5cm,可以得到CD =AF ,从而可以得到CD 的长;(2)根据△ABC ≌△DEF ,可以得到∠A =∠D ,从而可以得到AB 与DE 平行.【详解】解:(1)∵△ABC ≌△DEF (已知),∴AC =DF (全等三角形对应边相等),∴AC ﹣FC =DF ﹣FC (等式性质)即AF =CD ,∵AF =5cm∴CD =5cm ;(2)∵△ABC ≌△DEF (已知)∴∠A =∠D (全等三角形对应角相等)∴AB DE (内错角相等,两直线平行).故答案为:(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【点睛】本题考查全等三角形的性质和平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)①AB AF =,理由见解析;②DF AC ⊥,理由见解析;(2)见解析【分析】(1)①SAS 证明AEF AEB △≌△,即可推出AB AF =;②根据AD 垂直平分BF 可得BD DF =,进而SSS 证明ADF ADB ≌,可得90DFA DBA ∠=∠=︒,即可求解.(2)过点C 作CG BC ⊥,交BF 的延长线于点G ,ASA 证明ABD BCG △≌△,可得DB CG =,进而证明△FCG ≌FCD ()SAS ,得出FDC FGC ∠=∠,根据同角的余角相等,可得G ADB ∠=∠,等量代换可得∠FDC =∠ADB .(1)①AB AF=,理由如下,AD平分∠BAC,FAD BAE∴∠=∠,BF⊥AD,AEB AEF∠=∠∴,又AE AE=,∴AEF AEB△≌△,∴AB AF=;②DF AC⊥,理由如下,AEF AEB△≌△,EF EB∴=,又AD FB⊥,DF DB∴=,在ADF△与ADB中AD ADAF ABDF DB=⎧⎪=⎨⎪=⎩,∴ADF△≌ADB()SSS,90ABC∠=︒,∴90DFA DBA∠=∠=︒,即DF AC⊥;(2)过点C作CG BC⊥,交BF的延长线于点G,如图,90GCB DBA∴∠=∠=︒,BF AD⊥,90ABC∠=︒,∴90,90 GBD ADB ADB DAB∠+∠=︒∠+∠=︒,GBD DAB∴∠=∠,又AB BC=,∴ABD BCG △≌△()ASA ,DB CG ∴=,点D 为BC 的中点,BD CD ∴=12BC =, CG CD ∴=, ,90AB AC ABC =∠=︒,45ACB ∴∠=︒,45FCB FCG ∴∠=∠=︒,在△FCG 与FCD 中,CG CD GCF DCF CF CF =⎧⎪∠=∠⎨⎪=⎩,∴△FCG ≌FCD ()SAS ,FDC FGC ∴∠=∠,,CG CB AD BF ⊥⊥,FBD ADB FBD G ∴∠+∠=∠+∠,G ADB ∴∠=∠,∴∠FDC =∠ADB .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 25.(1)∠ADF =45°,ADDF ;(2)①成立,理由见解析;②1≤S △ADF ≤4.【分析】(1)延长DF 交AB 于H ,连接AF ,先证明△DEF ≌△HBF ,得BH =CD ,再证明△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;(2)①过B 作DE 的平行线交DF 延长线于H ,连接AH 、AF ,先证明△DEF ≌△HBF ,延长ED 交BC 于M ,再证明∠ACD =∠ABH ,得△ACD ≌△ABH ,得AD =AH ,等量代换可得∠DAH =90°,即△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;②先确定D 点的轨迹,求出AD 的最大值和最小值,代入S △ADF =214AD 求解即可.【详解】(1)解:∠ADF =45°,AD ,理由如下:延长DF 交AB 于H ,连接AF ,∵∠EDC =∠BAC =90°,∴DE ∥AB ,∴∠ABF =∠FED ,∵F 是BE 中点,∴BF =EF ,又∠BFH =∠DFE ,∴△DEF ≌△HBF ,∴BH =DE ,HF =FD ,∵DE =CD ,AB =AC ,∴BH =CD ,AH =AD ,∴△ADH 为等腰直角三角形,∴∠ADF =45°,又HF =FD ,∴AF ⊥DH ,∴∠F AD =∠ADF =45°,即△ADF 为等腰直角三角形,(2)解:①结论仍然成立,∠ADF=45°,AD DF,理由如下:过B作DE的平行线交DF延长线于H,连接AH、AF,如图所示,则∠FED=∠FBH,∠FHB=∠EFD,∵F是BE中点,∴BF=EF,∴△DEF≌△HBF,∴BH=DE,HF=FD,∵DE=CD,∴BH=CD,延长ED交BC于M,∵BH∥EM,∠EDC=90°,∴∠HBC+∠DCB=∠DMC+∠DCB=90°,又∵AB=AC,∠BAC=90°,∴∠ABC=45°,∴∠HBA+∠DCB=45°,∵∠ACD+∠DCB=45°,∴∠HBA=∠ACD,∴△ACD≌△ABH,∴AD=AH,∠BAH=∠CAD,∴∠CAD+∠DAB=∠BAH+∠DAB=90°,即∠HAD=90°,∴∠ADH=45°,∵HF=DF,∴AF⊥DF,即△ADF为等腰直角三角形,②由①知,S△ADF=12DF2=14AD2,由旋转知,当A、C、D共线时,且D在A、C之间时,AD取最小值为3-1=2,当A、C、D共线时,且C在A、D之间时,AD取最大值为3+1=4,∴1≤S△ADF≤4.【点睛】本题考查了等腰直角三角形性质及判定、全等三角形判定及性质、勾股定理等知识点.构造全等三角形及将面积的最值转化为线段的最值是解题关键.遇到题干中有“中点”时,采用平行线构造出对顶三角形全等是常用辅助线.。

人教版八年级数学上册试题 第12章 全等三角形 单元测试卷 (含解析)

人教版八年级数学上册试题 第12章 全等三角形 单元测试卷 (含解析)

第12章《全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.老师布置了一份家庭作业:用三根小木棍首尾相连拼出一个三角形,三根小木棍的长度分别为5、9、10.5,并且只能对10.5的小木棍进行裁切(裁切后,参与拼图的小木棍的长度为整数),则同学们最多能拼出不同的三角形的个数为( )A .4B .5C .6D .72.如图,点B ,F ,C ,E 在同一条直线上,点A ,D 在直线BE 的两侧,AB ∥DE ,BF =CE ,添加一个适当的条件后,仍不能使得△ABC ≌△DEF ( )A .AC =DFB .AC ∥DF C .∠A =∠D D .AB =DE3.如图,的两条中线AD 、BE 交于点F ,若四边形CDFE 的面积为17,则的面积是( )A .54B .51C .42D .414.已知中,是边上的高,平分.若,,,则的度数等于( )A.B .C .D .5.如图,在四边形中,平分,,,,则面积的最大值为( )cm cm cm cm ABC ABC ABC CD AB CE ACB ∠A m ∠=︒B n ∠=︒m n ≠DCE ∠12m ︒12n ︒()12m n ︒-︒12m n ︒-︒ABDC AD BAC ∠AD DC ⊥2AC AB -=8BC =BDCA .B .C .D .6.如图,,,则下列结论错误的是( )A .≌B .≌C .D .7.如图,在正方形中,对角线相交于点O .E 、F 分别为上一点,且,连接.若,则的度数为( )A .B .C .D .8.如图,在△ABC 中,AB=BC ,,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠59.如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,∠EAF=∠BAD ,若DF =1,BE =5,则线段EF 的长为( )6834BE CD =B D ∠=∠∆BEF DCF∆ABC ∆ADE ∆AB AD =DF AC=ABCD AC BD 、AC BD 、OE OF =AF BE EF ,,25AFE ∠=︒CBE ∠55︒65︒45︒70︒90ABC ∠=︒12A .3B .4C .5D .610.如图,∠DAC 与∠ACE 的平分线相交于点P ,且PC =AB +AC ,若,则∠B 的度数是( )A .100°B .105°C .110°D .120°二、填空题(本大题共8小题,每小题4分,共32分)11.已知三角形的两边的长分别为2cm 和8cm ,设第三边中线的长为cm ,则的取值范围是12.如图,在中,的平分线与的外角平分线交于点.(1)当与满足 的关系时,;(2)当时, .13.我们把两个不全等但面积相等的三角形叫做一对偏等积三角形.已知与是一对面积都等于的偏等积三角形,且,,那么的长等于 (结果用含和的代数式表示).14.如图,在中,,以为斜边作,,E 为上一点,连接、,且满足,若,,则 的长为.60PAD ∠=︒x x ABC ABC ∠ACB ∠P A ∠ABC ∠PC AB ∥72A ∠=︒P ∠=ABC DEF S AB AC DE DF ===BC a =EF a S ABC AB AC =AB Rt ADB 90ADB ∠=︒BD AE CE 2BAC DAE ∠=∠17CE =10BE =DE15.如图,和都为等腰直角三角形,,五边形面积为,求 .16.如图,已知等边△ABC ,AB=6,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DF 交BC 于点P ,作DE ⊥BC 与点E ,则EP 的长是 .17.如图,等腰中,,,为内一点,且,,则 .18.如图,在,中,,,,C ,D ,E 三点在同一直线上,连接,以下四个结论ABC AED △90ABC AED ∠=∠=︒ABCDE S 2BE S =ABC AB AC =70BAC ∠=︒O ABC 5OCB ∠=︒25ABO ∠=︒OAC ∠=ABC ADE V 90BAC DAE ∠=∠=︒AB AC =AD AE =BD BE ,①;②; ③; ④.其中结论正确的是 .(把正确结论的序号填在横线上).三、解答题(本大题共6小题,共58分)19.(8分)已知:,求作一个,使,且.20.(8分)如图,在Rt ∆ABC 中,∠BAC =90°,∠ABC =60°,AD ,CE 分别平分∠BAC ,∠ACB .(1) 求∠AOE 得度数; (2) 求证:AC=AE +CD .BD CE =90ACE DBC ∠+∠=︒BD CE ⊥180BAE DAC ∠+∠=︒ABC BCD △BCD ABC S S =V V AD AB =21.(10分)在四边形中,,,是上一点,是延长线上一点,且.(1)试说明:;(2)在图中,若,,在上且,试猜想、、之间的数量关系并证明所归纳结论;(3)若,,G 在上,满足什么条件时,(2)中结论仍然成立?(只写结果不要证明).22.(10分)已知线段直线于点,点在直线上,分别以,为边作等边和△ADE ,直线交直线于点.(1)当点F 在线段上时,如图1,试说明:(ⅰ).ABDC DC DB =180C ABD ∠+∠=︒E AC F AB CE BF =DE DF =60CAB ∠=︒120CDB ∠=︒G AB 60EDG ∠=︒CE EG BG CAB α∠=180CDB α∠=︒-AB EDG ∠AB ⊥l B D l AB AD ABC CE l F BD BD CE =(ⅱ).(2)当点F 在线段延长线上时,如图2,请写出线段,,之间的关系,并说明理由.23.(10分)在中,,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E .(1)如图1,当,点A 、B 在直线m 的同侧时,求证:;(2)如图2,当,点A 、B 在直线m 的异侧时,请问(1)中有关于线段、和三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确结论,并说明理由;(3)如图3,当,,点A 、B 在直线m 的同侧时,一动点M 以每秒的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒的速度从B点出发DF CE CF =-BD DF CE CF ABC 90ACB ∠=︒AC CB =DE AD BE =+AC CB =DE AD BE 16cm AC =30cm CB =2cm 3cm沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作于P ,于Q .设运动时间为t 秒,当t 为何值时,与全等?24.(12分)在等边的顶点,处各有一只蜗牛,它们同时出发,分别以相同的速度由向和由向爬行,经过分钟后,它们分别爬行到,处,请问:MP m ⊥NQ m ⊥MPC NQC ABC A C A B C A t D E(1)如图1,爬行过程中,和的数量关系是________;(2)如图2,当蜗牛们分别爬行到线段,的延长线上的,处时,若的延长线与交于点,其他条件不变,蜗牛爬行过程中的大小将会保持不变,请你证明:;(3)如图3,如果将原题中“由向爬行”改为“沿着线段的延长线爬行,连接交于”,其他条件不变,求证:.CD BE AB CA D E EB CD Q CQE ∠60CQE ∠=︒C A BC DE AC F DF EF =答案:一、单选题1.C【分析】根据三角形的三边关系列出不等式组求解即可.【详解】解:设从10.5的小木棍上裁剪的线段长度为x ,则,即,∴整数x 的值为5、6 、7 、8、9、10,∴同学们最多能做出6个不同的三角形木架.故选:C .2.A【分析】根据AB ∥DE 证得∠B =∠E ,又已知BF =CE 证得BC =EF ,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.【详解】∵AB ∥DE ,∴∠B =∠E ,∵BF =CE ,∴BF +FC =CE +FC ,∴BC =EF ,若添加AC =DF ,则不能判定△ABC ≌△DEF ,故选项A 符合题意;若添加AC ∥DF ,则∠ACB =∠DFE ,可以判断△ABC ≌△DEF (ASA ),故选项B 不符合题意;若添加∠A =∠D ,可以判断△ABC ≌△DEF (AAS ),故选项C 不符合题意;若添加AB =DE ,可以判断△ABC ≌△DEF (SAS ),故选项D 不符合题意;故选:A .3.B【分析】连接CF ,依据中线的性质,推理可得 ,进而得出 ,据此可得结论.cm cm 9595x -<<+414x <<cm cm cm cm cm cm BCF BAF ACF S S S == 3ABC BAF S S =【详解】解:如图所示,连接CF ,∵△ABC 的两条中线AD 、BE 交于点F ,∴,∴,∵BE 是△ABC 的中线,FE 是△ACF 的中线,∴,,∴,同理可得,,∴,∴,故选:B .4.D【分析】题目由于在三角形中未确定大小,所以需要进行分类讨论:(1),作出符合题意的相应图形,由图可得:,根据角平分线的性质得:,在中,,故可得;(2)时,由图可得:,,在中,,故可得;综上可得:.【详解】解:(1)如图1所示:时,图1BCE ABD S S = 17ABF CDFE S S == 四边形BCE ABE S S = FCE FAE S S = 17BCF BAF S S == 17ACF BAF S S == 17BCF BAF ACF S S S === 331751ABC BAF S S ==⨯= A B ∠∠、A B ∠<∠DCE BCE BCD ∠=∠-∠()18022m n ACB BCE ︒-︒+︒∠∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()12DCE n m ∠=︒-︒A B ∠>∠DCE ACE ACD ∠=∠-∠()18022m n ACB ACE ︒-︒+︒∠∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒()12DCE m n ∠=︒-︒12DCE m n ∠=︒-︒A B ∠<∠∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,∴;(2)如图2所示:时,图2∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()()()18019022m n DCE BCE BCD n n m ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒A B ∠>∠CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒∴;综合(1)(2)两种情况可得:.故选:D .5.D【分析】本题考查了全等三角形的判定和性质,垂线段最短,分别延长与交于点,作交延长线于点,可证明,得到,求面积最大值转化成求线段的最大值即可,解题的关键是作出辅助线,构造出全等三角形.【详解】分别延长与 交于点, 作交 延长线于点 ,∵平分, ,∴,,又∵,∴,∴,,∵,∴,∴,∵,∴当点重合时,最大,最大值为,∴,故选:.6.D【分析】利用全等三角形的判定和性质逐一选项判断即可.【详解】解:在和中,()()()18019022m n DCE ACE ACD m m n ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒12DCE m n ∠=︒-︒CD AB G GH CB ⊥CB H ()ASA ADG ADC ≌2BG =GH CD AB G GH CB ⊥CB H AD BAC ∠AD DC ⊥GAD CAD ∠=∠90ADG ADC ∠==︒AD AD =()ASA ADG ADC ≌AC AG =CD GD =2AC AB -=2BG =111·2222BDC BCG S S BC GH GH ==⨯= GH BC ⊥B H 、GH 224BDC S GH == D ∆BEF DCF ∆,∴≌(),故选项A 正确,不合题意;连接,∵≌(),∴,∴,∵,∴,∴,故选项C 正确,不合题意;∵,证不出,∴选项D 错误,符合题意;在和中,∴≌(),故选项B 正确,不合题意;故选:D7.B【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【详解】解:∵四边形是正方形,∴.∵,B D BFE DFC BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∆BEF DCF ∆AAS BD ∆BEF DCF ∆AAS BF DF =FBD FDB ∠=∠ABC ADE ∠=∠ABD ADB ∠=∠AB AD =BF DF =DF AC =ABC ∆ADE ∆ABC ADE AB ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩ABC ∆ADE ∆ASA ABCD 90AOB AOD OA OB OD OC ∠=∠=︒===,OE OF =∴为等腰直角三角形,∴,∵,∴,∴.在和中,∴(SAS ).∴,∵,∴是等腰直角三角形,∴,∴.故选:B .8.A【分析】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,先根据直角三角形两锐角互余可得,再根据三角形全等的判定定理与性质推出,又根据三角形全等的判定定理与性质推出,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,即在和中,OEF 45OEF OFE ∠=∠=︒25AFE ∠=︒70AFO AFE OFE ∠=∠+∠=︒20FAO ∠=︒AOF BOE △90OA OB AOF BOE OF OE =⎧⎪∠=∠=︒⎨⎪=⎩AOF BOE ≌△△20FAO EBO ∠=∠=︒OB OC =OBC △45OBC OCB ∠=∠=︒65CBE EBO OBC ∠=∠+∠=︒CG BC ⊥BAD CBG ∠=∠1G ∠=∠3G ∠=∠CG BC ⊥90BCG ∠=︒,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD⊥ 1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG∴∠=∠BAD ∆CBG ∆90BAD CBG AB BCABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩点D 是BC 的中点在和中,故选:A .9.B【分析】在BE 上截取BG =DF ,先证△ADF ≌△ABG ,再证△AEG ≌△AEF 即可解答.【详解】在BE 上截取BG =DF ,∵∠B +∠ADC =180°,∠ADC +∠ADF =180°,∴∠B =∠ADF ,在△ADF 与△ABG 中,()BAD CBG ASA ∴∆≅∆,1BD CG G∴=∠=∠ CD BD CG∴==CDF ∆CGF ∆45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS ∴∆≅∆3G∴∠=∠13∠∠∴=AB AD B ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴AG =AF ,∠FAD =∠GAB ,∵∠EAF =∠BAD ,∴∠FAE =∠GAE ,在△AEG 与△AEF 中,∴△AEG ≌△AEF (SAS )∴EF =EG =BE ﹣BG =BE ﹣DF =4.故选:B .10.A【分析】在射线AD 上截取,连接PM ,证明,可得,,然后证明,利用相似三角形的性质进行求解可得到结论.【详解】解:如下图,在射线A D 上截取,连接PM ,∵PA 平分,∴ ,在和中,,∴,∴,.∵,∴,∴.∵PC 平分,∴.12AG AF FAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩AM AC =PAM PAC ≌PM PC =PMA PCA ∠=∠BC PM AM AC =DAC ∠60PAM PAC ∠=∠=︒PAM △PAC △PA PA PAM PAC AM AC =⎧⎪∠=∠⎨⎪=⎩PAM PAC SAS ≌()PM PC =PMA PCA ∠=∠PC AB AC =+PC AB MA MB =+=PC PM BM ==ACE ∠PCA PCE ∠=∠如下图,延长MB ,PC 交于点G ,∵,∴.∵,∴,∴,∴,∴,∴,∴,∴,∴.∵,,,∴,∴,∴,∴,∴,∴,∴,∴.GCB PCE ∠=∠PMA GCB ∠=∠BGC PGM ∠=∠BGC PGM ∽GB GC GP GM=··GB GM GC GP =GB GB BM GC GC CP ⋅+=⋅+()()22GB GB BM GC GC CP +⋅=+⋅220GB GC GB BM GC CP -+⋅-⋅=()()()0GB GC GB GC PC GB GC +-+-=()()0GB GC GB GC PC -++=)0GB >0GC >0PC >0GB GC PC ++>0GB GC -=GB GC =∠=∠GBC GCB GBC BMP ∠=∠BC PM 180BMP B ∠+∠=︒180180ABC BMP PCA ∠=︒-∠=︒-∠∵,∴.∵,∴180°-∠PCA=2∠PCA-60°,∴,∴.故选:A .二、填空题11.3<x <5【分析】延长AD 至M 使DM=AD ,连接CM ,先说明△ABD ≌△CDM ,得到CM=AB=8,再求出2AD 的范围,最后求出AD 的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,∴△ABD ≌△MCD (SAS ),∴CM=AB=8.在△ACM 中:8-2<2x <8+2,解得:3<x <5.故答案为3<x <5.12.60PAM PAC ∠=∠=︒60BAC ∠=︒260ABC ACE BAC PCA ∠=∠-∠=∠-︒80PCA ∠=︒180********ABC PAC ∠=︒-∠=︒-︒=∠︒AD MD ADB MDCBD CD =⎧⎪∠=∠⎨⎪=⎩A ABC ∠=∠36︒【分析】(1)根据角平分线的性质平分,可得,再由两直线平行线同位角相等,内错角相等可得即可解答;(2)利用角平分线的性质和三角形的外角定理即可求解【详解】(1)解:平分,,,当时,,故答案为:;(2)解:平分,平分,,又,当时,,故答案为:13.【分析】本题考查全等三角形的判定和性质、等腰三角形的性质、三角形的面积等知识,由面积相等可得相应等式,作出三角形的高,作出辅助线构造三角形全等,证明三角形全等是是解题的关键.【详解】解:如图:,过作于,过作 交延长线于,延长到使,PC ACM ∠ACP PCM ∠=∠ABC PCM A ACP ∠=∠∠=∠,PC ACM ∠ACP PCM ∴∠=∠ PC AB ∥ABC PCM A ACP∴∠=∠∠=∠,ABC A∠=∠∴∴ABC A ∠=∠PC AB ∥ABC A ∠=∠ BP ABC ∠PC ACM ∠12ABP PBC ABC ∴∠=∠=∠,12ACP PCM ACM ∠=∠=∠ACM ABC A ∠=∠+∠ ,22PCM PBC A∴∠=∠+∠ PCM PBC P ∠=∠+∠222PBC P PBC A∴∠+∠=∠+∠2P A ∴∠=∠72A ∠=︒36P ∴∠=︒36︒4saAB AC DE DF ===C C M A B ⊥M F FN ED ⊥ED N BA K AK AB=12ABC S AB CM S == 12DEF S DE FN S ==,,,.故答案为:.14.【分析】延长至O 点,使得,连接,先证明,再证明CM FN∴=AC DF= Rt Rt (HL)AMC DNF ∴≌ MAC NDF∴∠=∠180CAK MAC ︒∠=-∠ 180EDF NDF︒∠=-∠CAK EDF∴∠=∠AK AC DE DF=== (SAS)ACK DFE ∴≌ EF CK ∴=2KBC S S= AK AC DE DF=== ABC ACB ∴∠=∠K ACK∠=∠1180902ACB ACK ABC K ︒︒∴∠+∠=∠+∠=⨯=90BCK ︒∴∠=122KBC S BC CK S ∴== BC a= 4S CK a ∴=4S EF a∴=4S a72ED OD DE =AO ≌ADO ADE V V,问题随之得解.【详解】延长至O 点,使得,连接,如图,∵,∴,∵,,∴△ADO ≌△ADE ,∴,,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,∴,∵,∴,故答案为:.15.【分析】过点作,且,连接、,交于点,则是等腰直角三角形,证明,则,,则,根据EAC OAB ≌△△ED OD DE =AO 90ADB ∠=︒18090ADO ADB ∠=︒-∠=︒AD AD =OD DE =OAD EAD ∠=∠OA AE =2OAE EAD ∠=∠2BAC DAE ∠=∠BAC OAE ∠=∠EAC OAB ∠=∠OA AE =AB AC =EAC OAB ≌△△OB EC =17CE =10BE =17OB EC ==7OE OB EB =-=OD DE =1722DE OE ==722B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABE CBF △≌△ABE CBF S S =△△CGF DGE ≌CGF DGE S S =,即可求解.【详解】解:如图所示,过点作,且,连接、,交于点,则是等腰直角三角形,∵和都为等腰直角三角形,,∴∵,∴∴∴∴,则∴,∴,∵∴又∴∴∴五边形面积∴故答案为:2.212BEF S S BE == B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABC AED △90ABC AED ∠=∠=︒,BA BC AE AD==BF BE ⊥90FBE ∠=︒ABE EBC FBC EBC∠+∠=∠+∠ABE CBF∠=∠ABE CBF △≌△ABE CBFS S =△△AE CF =AEB CFB∠=∠DE CF =45,45AEB GED CFB CFG∠=︒-∠∠=︒-∠CFG DEG∠=∠CGF DGE∠=∠CGF DGE≌CGF DGES S = ABCDE 212BEF S S BE == 2BE S =216.3【详解】如图,过点D 作DH ∥AC 交BC 于H ,∵△ABC 是等边三角形,∴△BDH 也是等边三角形,∴BD=HD ,∵BD=CF ,∴HD=CF ,∵DH ∥AC ,∴∠PCF=∠PHD ,在△PCF 和△PHD 中,∴△PCF ≌△PHD (AAS ),∴PC=PH ,∵△BDH 是等边三角形,DE ⊥BC ,∴BE=EH ,∴EP=EH+HP= BC ,∵等边△ABC ,AB=6,∴EP=╳6=3.故答案是:3.17.【分析】此题考查了全等三角形的判定与性质、等腰三角形的性质,延长交 的角平PCF PHD CPF HPD HD CF ∠∠⎧⎪∠∠⎨⎪⎩===121265︒BO BAC ∠分线于点,连结,根据等腰三角形的性质及角平分线定义求出,,进而得出,利用证明,根据全等三角形的性质求出,,根据角的和差及三角形内角和定理求出,结合平角定义求出,利用证明,根据全等三角形的性质得出,再根据等腰三角形的性质及角的和差求解即可.【详解】如图,延长交 的角平分线于点,连接.平分,,,,,,,,在和中,,,,,,,,,,,在和中,P CP 55ABC ACB ∠=∠=︒35BAP CAP ∠=∠=︒30OBC ∠=︒SAS APB ACP ≌△△25ABP ACP ∠=∠=︒APB APC ∠=∠120BPC ∠=︒120APC BPC ∠=︒=∠ASA APC OPC ≌△△AP OP =BO BAC ∠P CP AP BAC ∠70BAC ∠=︒35BAP CAP ∴∠=∠=︒AB AC = 70BAC ∠=︒55ABC ACB ∴∠=∠=︒25ABO ∠=︒ 30OBC ABC ABO ∴∠=∠-∠=︒APB △ACP △AB AC BAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩(SAS)APB ACP ∴ ≌25ABP ACP ∴∠=∠=︒APB APC ∠=∠30BCP ACB ACP ∴∠=∠-∠=︒180120BPC PBC BCP ∴∠=︒-∠-∠=︒360120240APB APC ∴∠+∠=︒-︒=︒120APB APC BPC ∴∠=∠=︒=∠5OCB ∠=︒ 25OCP BCP OCB ACP ∴∠=∠-∠=︒=∠APC △OPC,,,,,故答案为:.18.①③④【分析】由 ,利用等式的性质得到夹角相等,从而得出三角形 与三角形全等,由全等三角形的对应边相等得到,本选项正确;由三角形与三角形全等,得到一对角相等,由等腰直角三角形的性质得到,进而得到 ,本选项不正确;再利用等腰直角三角形的性质及等量代换得到,本选项正确;利用周角减去两个直角可得答案;【详解】解: ,即:在 和 中,本选项正确;为等腰直角三角形,,本选项不正确;ACP OCP CP CPAPC OPC ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)APC OPC ∴ ≌AP OP ∴=1(180)302OAP AOP APO ∴∠=∠=⨯︒-∠=︒65OAC OAP CAP ∴∠=∠+∠=︒65︒①AB AC =AD AE =ABD ACE BD CE =②ABD ACE 45ABD DBC ∠+∠=︒45ACE DBC ∠+∠=︒③BD CE ⊥④90BAC DAE ∠=∠=︒① BAC CAD DAE CAD∴∠+∠=∠+∠BAD CAE∠=∠BAD CAE V AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ∴≌ BD CE ∴=ABC ②45ABC ACB ∴∠=∠=︒45ABD DBC ∴∠+∠=︒BAD CAE ≌ ABD ACE ∴∠=∠45ACE DBC ∴∠+∠=︒即,∴,本选项正确;,本此选项正确;故答案为:①③④.三、解答题19.解:如图过点A 作BC 的平行线AE ,再在AE 上截取,交AE 于点D ,连接BD ,CD 即可得到△BCD .20.(1)解:∵,∴,∵平分,平分,∴,,∵是的外角,∴;(2)证明:在上截取,连接,45ABD DBC ∠+∠=︒③ 45ACE DBC ∴∠+∠=︒90DBC DCB DBC ACE ACB ∴∠+∠=∠+∠+∠=︒90BDC ∠=︒BD CE ⊥90BAC DAE ∠=∠=︒④ 3609090180BAE DAC ∴∠+∠=︒-︒-︒=︒AD AB =9060BAC ABC ∠=︒∠=︒,30ACB ∠=︒AD BAC ∠CE BAC ∠CAD ∠=1245BAC ∠=︒ACE ∠=1215ACB ∠=︒AOE ∠AOC 60AOE CAD ACE ∠=∠+∠=︒AC CF CD =OF∵平分,∴,在和中,,∴ ,∴,∵,∴,∴,∴,∵平分,∴,在和中, ∴ ,∴,∵,∴.21.(1),,(2)猜想:CE ACB ∠DCO FCO ∠=∠DCO FCO CD CF DCO FCO OC OC =⎧⎪∠=∠⎨⎪=⎩()DCO FCO SAS ≌COD COF ∠=∠60AOE =︒∠60COD COF ∠=∠=︒18060AOF AOE COF ∠=︒-∠-∠==︒AOE AOF ∠=∠AD BAC ∠EAO FAO ∠=∠EAO FAO EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAO FAO ASA ≌AE AF =AC AF CF =+=+AC AE CD 180ABD DBF ∠+∠= 180C ABD ∠+∠= C DBF∴∠=∠CE BF = DC DB=CED BFD∴ ≌DE DF∴=CE BG EG+=由(1)可知,,,,得证;(3)当成立由(1)可知,,,,得证.22.(1)(ⅰ)证明:和都是等边三角形,,,,CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=120CDB ∠= 60EDG ∠=1206060CED BDG CDB EDG ∴∠+∠=∠-∠=-=60BDG BDF ∴∠+∠=60GDF EDG∴∠==∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+1902EDG α∠=- CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=180CDB α∠=- 90EDG α∠=-o 11(180)(90)9022CED BDG CDB EDG ααα∴∠+∠=∠-∠=---=- 1902BDG BDF α∴∠+∠=- 1902GDF EDG α∴∠=-=∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+ABC ADE V AB AC ∴=AD AE =60BAC DAE ACB ABC ∠=∠=∠=∠=︒.在和中,,.(ⅱ),,.直线,,,.点,,在一条线上,,,,.,,即;(2)解:同理证明,,,,,,,即.23.(1)证明:∵,∴,∵于D ,于E ,∴,,∴,在和中,BAD CAE ∴∠=∠ABD △ACE △,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩ABD ACE ∴ ≌BD CE ∴=ABD ACE ≌BD CE ∴=ABD ACE ∠=∠AB ⊥Q l 90ABD ∴∠=︒90ACE ∠=︒30CBF ∠=︒ E C F 60ACB ∠=︒30BCF ∴∠=︒CBF BCF ∴∠=∠BF CF ∴=BD DF BF =+ BD DF CF CE ∴=+=DF CE CF=-ABD ACE ≌△△90ABD ACE ∴∠=∠=︒30FBC FCB ∠=∠=︒BD CE =BF CF ∴=BF BD DF ∴=+CF BD DF ∴=+DF CF CE =-90ACB ∠=︒90ACD BCE ∠∠+=︒AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90BCE CBE ∠∠+=︒ACD CBE ∠∠=ADC CEB,∴,∴,,∴;(2)解:结论:;理由:∵,,∴,∵,∴,∴,在和中,,∴,∴,,∴;(3)解:①当时,点M 在上,点N 在上,如图,∵,∴,解得:,不合题意;②当时,点M 在上,点N 也在上,如图,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADC CEB ≌AD CE =DC BE =DE DC CE BE AD =+=+DE AD BE =-AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90ACB ∠=︒90ACD CAD ACD BCE ∠∠∠∠+=+=︒CAD BCE ∠∠=ACD CBE ADC CEB CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ≌AD CE =CD BE =DE CE CD AD BE =-=-08t ≤<AC BC MC NC =162303t t -=-14t =810t ≤<BC BC∵,∴点M 与点N 重合,∴,解得:;③当时,点M 在上,点N 在上,如图,∵,∴,解得:;④当时,点N 停在点A 处,点M 在上,如图,∵,∴,解得:;综上所述:当或14或16秒时,与全等.24.(1)解:,理由如下:为等边三角形,MC NC =216303t t =﹣﹣9.2t =46103t ≤<BC AC MC NC =216330t t -=-14t =46233t ≤<BC MC NC =21616t -=16t =9.2t =MPC NQC CD BE = ABC,,由题意得:,在和中,,,;(2)证明如下:由(1)可知,,,,;(3)证明:过点作交于,,为等边三角形,为等边三角形,,,,在和中,,,.∴60A ACB ∠=∠=︒AC BC =AD CE =ADC △CEB AD CE A ACB AC CB =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADC CEB ≌∴CD BE =()SAS ADC CEB ≌∴ADC E ∠=∠ 60E ABE BAC ∠+∠=∠=︒DBQ ABE ∠=∠∴60CQE ADC DBQ ∠=∠+∠=︒D DH BC ∥AC H ∴HDF CEF ∠=∠ ABC ∴ADH ∴HD AD = AD CE =∴DH CE =DFH EFC HDF CEF DFH EFC DH CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS DFH EFC ≌∴DF EF =。

人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)

人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)

人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。

人教版八年级上:第12章《全等三角形》全章检测题(含答案)(含答案)

人教版八年级上:第12章《全等三角形》全章检测题(含答案)(含答案)

第十二章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC=( C )A.3 B.4 C.7 D.8,第1题图),第2题图),第3题图)2.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于( B ) A.120°B.125°C.130°D.135°3.如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是( B )A.SAS B.ASA C.AAS D.SSS4.(2015·六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是( D )A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD,第4题图),第5题图),第6题图)5.如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( C )A.AB=ED B.AC=EF C.AC∥EF D.BF=DC6.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为( D )A.60°B.62°C.64°D.66°7.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( A )A.4个B.3个C.2个D.1个,第7题图),第8题图),第9题图) ,第10题图)8.如图,△ABC 的三边AB ,BC ,CA 的长分别为20,30,40,O 是△ABC 三条角平分线的交点,则S △ABO ∶S △BCO ∶S △CAO 等于( C )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶59.如图,在平面直角坐标系中,以点O 为圆心,适当的长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )A .a =bB .2a +b =-1C .2a -b =1D .2a +b =110.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ;③DE 平分∠ADB ;④BE +AC =AB.其中正确的有( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.已知△ABC ≌△DEF ,且△ABC 的周长为12 cm ,面积为6 cm 2,则△DEF 的周长为__12__cm ,面积为__6__cm 2.12.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:__AE =AF 或∠EDA =∠FDA 或∠AED =∠AFD __.,第12题图) ,第13题图) ,第14题图) ,第15题图)13.如图,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B ,D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__13__.14.如图,Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =5 cm ,则AE =__3__cm .15.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,CE ,BD 相交于O ,则图中全等的直角三角形有__4__对.16.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__135__度.,第16题图) ,第17题图),第18题图)17.如图,已知相交直线AB和CD及另一直线MN,如果要在MN上找出与AB,CD 距离相等的点,则这样的点至少有__1__个,最多有__2__个.18.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC =BC,若∠BAC=80°,则∠BOD的度数为__100°__.三、解答题(共66分)19.(7分)(2015·昆明)如图,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.解:由AAS证△ABC≌△DEF可得20.(8分)如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD =CF;③量出DE的长为a m,FG的长为b m.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?解:合理.理由:由SSS可证△BED≌△CGF,∴∠B=∠C21.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F 在AC上,BE=FC,求证:BD=DF.解:先由角平分线的性质得CD=DE,再由SAS证△CDF≌△EDB,得BD=DF22.(10分)如图,在△ABE和△ACF中,∠E=∠F=90°,∠B=∠C,BE=CF.求证:(1)∠1=∠2;(2)CM=BN.解:(1)由ASA 证△AEB ≌△AFC ,∴∠BAE =∠CAF ,∴∠1+∠3=∠2+∠3,∴∠1=∠2(2)∵△AEB ≌△AFC ,∴AE =AF ,AB =AC.由ASA 可证△AEM ≌△AFN ,∴AM =AN ,∴AC -AM =AB -AN ,即CM =BN23.(10分)如图①,点A ,E ,F ,C 在一条直线上,AE =CF ,过点E ,F 分别作ED ⊥AC ,FB ⊥AC ,AB =CD.(1)若BD 与EF 交于点G ,试证明BD 平分EF ; (2)若将△DEC 沿AC 方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.解:(1)先由HL 证Rt △ABF ≌Rt △CDE ,∴BF =DE ,再由AAS 证△GFB ≌△GED ,∴EG =FG ,即BD 平分EF(2)仍然成立,证法同(1)24.(11分)如图,在△ABC 中,∠B =∠C ,AB =10 cm ,BC =8 cm ,D 为AB 的中点,点P 在线段上以3 cm /s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上以相同速度由点C 向点A 运动,一个点到达终点后另一个点也停止运动.当△BPD 与△CQP 全等时,求点P 运动的时间.解:∵D 为AB 的中点,AB =10 cm ,∴BD =AD =5 cm.设点P 运动的时间是x s ,若BD 与CQ 是对应边,则BD =CQ ,∴5=3x ,解得x =53,此时BP =3×53=5 (cm ),CP =8-5=3 (cm ),BP ≠CP ,故舍去;若BD 与CP 是对应边,则BD =CP ,∴5=8-3x ,解得x =1,符合题意.综上,点P 运动的时间是1 s25.(12分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图②,线段BD,CE 有怎样的数量关系和位置关系?请说明理由.解:(1)BD=CE,BD⊥CE.证明:延长BD交CE于M,易证△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠BME=∠MBC+∠BCM=∠MBC+∠ACB+∠ACE=∠MBC+∠ABD+∠ACB=∠ABC+∠ACB=90°,∴BD⊥CE(2)仍有BD=CE,BD⊥CE,证法同(1)。

人教版八年级数学上册 第十二章 全等三角形 章节检测(含答案)

人教版八年级数学上册 第十二章 全等三角形 章节检测(含答案)

第十二章 全等三角形一、单选题1.下列各选项中的两个图形属于全等形的是( )A .B .C .D . 2.下列说法正确的是( )A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等3.△ABC≌≌ECD≌≌A≌48°≌≌D≌62°,点B≌C≌D 在同一条直线上,则图中∠B 的度数是( )A .38°B .48°C .62°D .70°4.如图,在ABC 中,D E 、分别是AC BC 、上的点,若ADB EDB EDC △≌△≌△,则C 的度数是( )A .15B .20C .25D .305.如图,BE=CF ,AB∥DE ,添加下列哪个条件不能证明∥ABC∥∥DEF 的是( )A .AB=DEB .∥A=DC .AC=DFD .AC∥DF6.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则∠BED 的度数为( )A .100°B .120°C .135°D .150°7.如图,在△ABC 中,AC =5,BC =12,AB =13,AD 是角平分线,DE ⊥AB ,垂足为E ,则△BDE 的周长为( )A .17B .18C .20D .258.如图,在OA ,OB 上分别截取OD ,OE ,使OD OE =,再分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C ,作射线OC ,OC 就是AOB ∠的角平分线.这是因为连CD ,CE ,可得到COD COE ∆∆≌,根据全等三角形对应角相等,可得COD COE ∠=∠.在这个过程中,得到COD COE ∆∆≌的条件是( )A .SASB .AASC .ASAD .SSS9.如图≌在≌ABC 中≌AB ≌AC ≌D 是BC 的中点≌AC 的垂直平分线交AC ≌AD ≌AB 于点E ≌O ≌F ≌则图中全等三角形的对数是≌ ≌A .1对B .2对C .3对D .4对10.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .1二、填空题11.如图,图中由实线围成的图形与①是全等形的有______.(填番号)12.已知:如图,ACB DBC ∠∠=,要使△ABC ≌△DCB ,只需增加的一个条件是_____(只需填写一个你认为适合的条件).13.如图所示,已知ABC 的周长是10,OB OC 、分别平分ABC ∠和,ACB OD BC ∠⊥于,D 且1,OD =则ABC 的面积是_______________________.14.如图,ABC ∆和DCE ∆都是等腰直角三角形,90ACB ECD ∠=∠=︒,42EBD ∠=︒,则AEB ∠=___________度.三、解答题15.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9cm,BC=5cm,求AB的长.16.如图,已知点B≌E≌C≌F在一条直线上,AB=DF≌AC=DE≌∠A=∠D≌1≌求证:AC∥DE≌≌2≌若BF=13≌EC=5,求BC的长.17.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.18.在ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)如图1所示位置时判断ADC与CEB是否全等,并说明理由;(2)如图2所示位置时判断ADC与CEB是否全等,并说明理由.答案1.A2.C3.D4.D5.C6.C7.C8.D9.D10.B11.②③12.∠A=∠D或∠ABC=∠DCB或BD=AC 13.514.13215.(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°∵∠F =62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA =BD .∴CA -CB=BD -CB .即AB =CD .∵AD =9 cm, BC=5 cm ,∴AB +CD=9-5=4 cm .∴AB =CD=2 cm .16.解:(1)在≌ABC 和≌DFE 中 AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌DFE (SAS ),≌≌ACE=≌DEF ,≌AC≌DE ;(2)≌≌ABC≌≌DFE ,≌BC=EF ,≌CB ﹣EC=EF ﹣EC ,≌EB=CF ,≌BF=13,EC=5,≌EB=4,≌CB=4+5=9.17.(1)证明:∵∠BAC =DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =BE +CE =BD +BE ;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE . 证明:∵∠BAC =∠DAE ,∴∠BAC +∠EAB =∠DAE +∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE .18.(1)如图1,全等,理由:∵∠ACB =90°,AD ⊥MN 于D ,BE ⊥MN 于E , ∴∠DAC+∠DCA =∠BCE+∠DCA ,∴∠DAC =∠BCE ,在△DAC 与△ECB 中,∵90DAC BCE ADC CEB AC BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△DAC ≌△ECB (AAS );(2)如图2,全等,理由:∵∠ACB=90°,AD⊥MN,∴∠DAC+∠ACD=∠ACD+∠BCE,∴∠DAC=∠BCE,在△ACD与△CBE中,∵DAC ECBADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS)。

八年级数学全等三角形测试题

八年级数学全等三角形测试题

八年级数学全等三角形测试题一、选择题(每题3分,共30分)1. 下列说法正确的是()A. 全等三角形是指形状相同的两个三角形B. 全等三角形的周长和面积分别相等C. 全等三角形是指面积相等的两个三角形D. 所有的等边三角形都是全等三角形解析:选项A:全等三角形不仅形状相同,而且大小也相同,所以A错误。

选项B:全等三角形能够完全重合,所以它们的周长和面积分别相等,B正确。

选项C:面积相等的三角形不一定全等,比如一个底为4,高为3的三角形和一个底为6,高为2的三角形面积相等,但不全等,C错误。

选项D:所有等边三角形形状相同,但大小不一定相同,所以不是所有的等边三角形都是全等三角形,D错误。

2. 如图,已知△ABC≌△DEF,∠A = 50°,∠B = 70°,则∠F的度数为()A. 50°B. 60°C. 70°D. 80°解析:在△ABC中,根据三角形内角和为180°,可得∠C=180°∠A ∠B = 180° 50°70° = 60°。

因为△ABC≌△DEF,全等三角形对应角相等,所以∠F = ∠C = 60°,答案为B。

3. 如图,在△ABC和△DEC中,已知AB = DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC = EC,∠B = ∠EB. BC = EC,AC = DCC. ∠B = ∠E,∠A = ∠DD. BC = DC,∠A = ∠D解析:选项A:AB = DE,BC = EC,∠B = ∠E,根据SAS(边角边)可判定△ABC≌△DEC。

选项B:AB = DE,BC = EC,AC = DC,根据SSS(边边边)可判定△ABC≌△DEC。

选项C:AB = DE,∠B = ∠E,∠A = ∠D,根据AAS(角角边)可判定△ABC≌△DEC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章《全等三角形》
一、填空题(每题2分,共20分)
1.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______________________________.
2.如图,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______.
3.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.
4.如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则A C E △ 的面积为______.
5.在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.
6.如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.
7.如图,A D
A D '',分别是锐角三角形ABC 和锐角三角形A
B
C '''中,BC B C '
'边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________.(填写一个你认为适
当的条件即可)
8.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.
9.如图,已知在ABC ∆中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △
的周长为 cm .
10.在数学活动课上,小明提出这样一个问题:∠B =∠C =900
,E 是BC 的中点,DE 平分
∠ADC ,∠CED =350
,如图所示,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.
(第1题) A D O C B (第2题) A D O C B (第3题) A D
C
B A
D C
B E (第4题)
(第6题)
E A B C D 'A 'B 'D 'C (第7、8题) (第9题)
B
E
(第10题)
(第15题) 二、选择题(每题3分,共24分) 11.下列判断中错误..
的是( ) A .有两角和一边对应相等的两个三角形全等
B .有两边和一角对应相等的两个三角形全等
C .有两边和其中一边上的中线对应相等的两个三角形全等
D .有一边对应相等的两个等边三角形全等
12.如图,DAC △和EBC △均是等边三角形,AE BD ,分别与CD CE ,交于点
M N ,,有如下结论: ①ACE DCB △≌△;②CM CN =;③AC DN =.
其中,正确结论的个数是( ) A .3个 B .2个 C .1个 D .0个
13.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全
一样的玻璃,那么最省事的方法是( ) A .带①去 B .带②去 C .带③去 D .带①②③去 14.△ABC ≌△DEF ,AB=2,AC =4,若△DEF 的周长为偶数,
则EF 的取值为( )
A .3
B .4
C .5
D .3或4或5
15.如图,已知,△ABC 的三个元素,则甲、乙、丙三个三角形中,和△ABC 全等的图形是( )
A .甲和乙
B .乙和丙
C .只有乙
D .只有丙 \
16.三角形ABC 的三条内角平分线为AE 、BF 、CG 、下面的说法中正确的个数有( )
①△ABC 的内角平分线上的点到三边距离相等 ②三角形的三条内角平分线交于一点 ③三角形的内角平分线位于三角形的内部
④三角形的任一内角平分线将三角形分成面积相等的两部分
A .1个
B .2个
C .3个
D .4个
17.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF =600,那么∠DAE 等于( )
A .150
B .300
C .450
D .600 18.如图所示,△AB
E 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶
3,则∠α的度数为( ) A .80° B .100° C .60° D .45° 三、解答题(共56分) 19.(5分)请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边 OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线 与AB 交于点C ,并量出AC 和OC 的长 .(结果精确到1mm ,不要求写画法)
(第13题)
(第17题)
(第18题) B
E D
A N M (第12题)
20.(5分)如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠.
求证:=ED EF . 证明:∵∠DEC =∠B +∠BDE ( ),
又∵∠DEF =∠B (已知), ∴∠______=∠______(等式性质).
在△EBD 与△FCE 中,
∠______=∠______(已证),
______=______(已知),
∠B =∠C (已知),
∴EBD FCE △≌△( ). ∴ED =EF ( ).
21.(5分)如图,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,
计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.
22.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 23.(5分)如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .
求证:∠OAB =∠OBA 24.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求
证:AD +BC =AB .
P
E D C B
A
A D E C B
F
25.(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B
26.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF
(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
27.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):
28.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C
点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .
O E D C B A
F
E
D
C
B
A D
C B A
一、填空题
1.略(答案不惟一)2.略(答案不惟一)3.54.8 5.1.5cm 6.4 7.略
8.互补或相等9.15 10.350
二、选择题
11.B 12.B 13.C 14.B 15.B 16.B 17.A 18.A
三、解答题
19.略20.三角形的一个外角等于与它不相邻两个内角的和,BDE,CEF,BDE,CEF,BD,CE,ASA,全等三角形对应边相等21.此时轮船没有偏离航线.画图及说理略22.略23.略24.略25.略26.(1)略;(2)成立27.(1)略(2)△AEC,△CDA,△CDE 28.略。

相关文档
最新文档