上海中考数学试题(含解析)

合集下载

精品解析:上海市2021年中考数学真题(解析版)

精品解析:上海市2021年中考数学真题(解析版)

上海市2021年中考数学试题一、选择题1.下列实数中,有理数是()A. B. C. D.【答案】C【解析】【分析】先化简二次根式,再根据有理数的定义选择即可【详解】解:A 2是无理数B 3是无理数C 12为有理数D 55是无理数故选:C【点睛】本题考查二次根式的化简、无理数的定义、有理数的定义、熟练掌握有理数的定义是关键2.下列单项式中,23a b 的同类项是()A.32a b B.232a b C.2a b D.3ab 【答案】B【解析】【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∴3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.3.将抛物线2(0)y ax bx c a =++≠向下平移两个单位,以下说法错误的是()A.开口方向不变B.对称轴不变C.y 随x 的变化情况不变D.与y 轴的交点不变【答案】D【解析】【分析】根据二次函数的平移特点即可求解.【详解】将抛物线2(0)y ax bx c a =++≠向下平移两个单位,开口方向不变、对称轴不变、故y 随x 的变化情况不变;与y 轴的交点改变故选D .【点睛】此题主要考查二次函数的函数与图象,解题的关键是熟知二次函数图象平移的特点.4.商店准备一种包装袋来包装大米,经市场调查以后,做出如下统计图,请问选择什么样的包装最合适()A.2kg /包B.3kg /包C.4kg /包D.5kg /包【答案】A【解析】【分析】选择人数最多的包装是最合适的.【详解】由图可知,选择1.5kg/包-2.5kg/包的范围内的人数最多,∴选择在1.5kg/包-2.5kg/包的范围内的包装最合适.故选:A .【点睛】本题较简单,从图中找到选择人数最多的包装的范围,再逐项分析即可.5.如图,已知平行四边形ABCD 中,,AB a AD b == ,E 为AB 中点,求12a b += ()A.ECB.CEC.EDD.DE【答案】A【解析】【分析】根据向量的特点及加减法则即可求解.【详解】∵四边形ABCD 是平行四边形,E 为AB 中点,∴1122a b AB BC EB BC EC +=+=+= 故选A .【点睛】此题主要考查向量的表示,解题的关键是熟知平行四边形的特点及向量的加减法则.6.如图,已知长方形ABCD 中,4,3AB AD ==,圆B 的半径为1,圆A 与圆B 内切,则点,C D 与圆A 的位置关系是()A.点C 在圆A 外,点D 在圆A 内B.点C 在圆A 外,点D 在圆A 外C.点C 在圆A 上,点D 在圆A 内D.点C 在圆A 内,点D 在圆A 外【答案】C【解析】【分析】根据内切得出圆A 的半径,再判断点D 、点E 到圆心的距离即可【详解】∵圆A 与圆B 内切,4AB =,圆B 的半径为1∴圆A 的半径为5∵3AD =<5∴点D 在圆A 内在Rt △ABC 中,5AC ===∴点C 在圆A 上故选:C【点睛】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键二、填空题7.计算:72=x x ÷_____________.【答案】5x 【解析】【分析】根据同底数幂的除法法则计算即可【详解】∵72=x x ÷5x ,故答案为:5x .【点睛】本题考查了同底数幂的除法,熟练掌握运算的法则是解题的关键.8.已知6()f x x=,那么f =__________.【答案】【解析】【分析】直接利用已知的公式将x的值代入求出答案.【详解】解:∵6 ()f xx=,∴f=,故答案为:【点睛】本题主要考查了函数值,正确把已知代入是解题关键.9.3=,则x=___________.【答案】5【解析】【分析】方程两边同平方,化为一元一次方程,进而即可求解.3=,两边同平方,得49x+=,解得:x=5,经检验,x=5是方程的解,∴x=5,故答案是:5.【点睛】本题主要考查解根式方程,把根式方程化为整式方程,是解题的关键.10.不等式2120x-<的解集是_______.【答案】6x<【解析】【分析】根据不等式的性质即可求解.【详解】2120x-<212x<6x<故答案为:6x<.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.11.70︒的余角是__________.【答案】20︒【解析】【分析】根据余角的定义即可求解.【详解】70︒的余角是90°-70︒=20︒故答案为:20︒.【点睛】此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.12.若一元二次方程2230x x c -+=无解,则c 的取值范围为_________.【答案】98c >【解析】【分析】根据一元二次方程根的判别式的意义得到()2342c =--⨯ <0,然后求出c 的取值范围.【详解】解:关于x 的一元二次方程2230x x c -+=无解,∵2a =,3b =-,c c =,∴()2243420b ac c =-=--⨯< ,解得98c >,∴c 的取值范围是98c >.故答案为:98c >.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.有数据1,2,3,5,8,13,21,34,从这些数据中取一个数据,得到偶数的概率为__________.【答案】38【解析】【分析】根据概率公式计算即可【详解】根据概率公式,得偶数的概率为38,故答案为:38.【点睛】本题考查了概率计算,熟练掌握概率计算公式是解题的关键.14.已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.【答案】2y x =-(0k <且1k ≠-即可)【解析】【分析】正比例函数经过二、四象限,得到k<0,又不经过(-1,1),得到k≠-1,由此即可求解.【详解】解:∵正比例函数y kx =经过二、四象限,∴k <0,当y kx =经过(1,1)-时,k =-1,由题意函数不经过(1,1)-,说明k ≠-1,故可以写的函数解析式为:2y x =-(本题答案不唯一,只要0k <且1k ≠-即可).【点睛】本题考查了正比例函数的图像和性质,属于基础题,y kx =(k ≠0)当0k <时经过第二、四象限;当0k >时经过第一、三象限.15.某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.【答案】335k 【解析】【分析】利用待定系数法求出函数关系式,求出当售价为8元/千克时的卖出的苹果数量.再利用利润=(售价-进价)×销售量,求出利润.【详解】设卖出的苹果数量与售价之间的关系式为()510y mx n x =+≤≤,将(5,4k ),(10,k )代入关系式:5410m n k m n k +=⎧⎨+=⎩,解得357m k n k⎧=-⎪⎨⎪=⎩∴()375105y kx k x =-+≤≤令8x =,则115y k =∴利润=()11338555k k -⨯=【点睛】本题考查待定系数法求函数解析式和利润求解问题.利润=(售价-进价)×销售量.16.如图,已知12ABD BCD S S = ,则BOC BCDS S =_________.【答案】23【解析】【分析】先根据等高的两个三角形的面积比等于边长比,得出12AD BC =,再根据△AOD ∽△COB 得出12OD AD OB BC ==,再根据等高的两个三角形的面积比等于边长比计算即可【详解】解:作AE ⊥BC ,CF ⊥BD ∵12ABD BCD S S = ∴△ABD 和△BCD 等高,高均为AE ∴112122ABD BCD AD AE S AD S BC BC AE === ∵AD ∥BC∴△AOD ∽△COB ∴12OD AD OB BC ==∵△BOC 和△DOC 等高,高均为CF ∴1·2211·2BOC DOCOB CF S OB S OD OD CF === ∴BOC BCD S S = 23故答案为:23【点睛】本题考查相似三角形的判定和性质、等高的两个三角形的面积比等于边长比,熟练掌握三角形的面积的特点是解题的关键17.六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.【答案】2.【解析】【分析】由六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.【详解】解:如图所示,连接AC 、AE 、CE ,作BG ⊥AC 、DI ⊥CE 、FH ⊥AE ,AI ⊥CE ,在正六边形ABCDEF中,∵直角三角板的最短边为1,∴正六边形ABCDEF为1,∴△ABC、△CDE、△AEF为以1为边长的等腰三角形,△ACE为等边三角形,∵∠ABC=∠CDE=∠EFA=120︒,AB=BC=CD=DE=EF=FA=1,∴∠BAG=∠BCG=∠DCE=∠DEC=∠FAE=∠FEA=30︒,∴BG=DI=FH=1 2,∴由勾股定理得:AG=CG=CI=EI=EH=AH=3 2,∴AC=AE=CE3,∴由勾股定理得:AI=3 2,∴S=111333 33322222⨯+=,故答案为:33 2.【点睛】本题主要考查了含30度角的直角三角形的性质、正多边形形与圆以及等边三角形的性质,关键在于知识点:在直角三角形中,30度角所对的直角边等于斜边的一半的应用.18.定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点,2P OP=,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为__________.【答案】221d ≤≤【解析】【分析】先确定正方形的中心O 与各边的所有点的连线中的最大值与最小值,然后结合旋转的条件即可求解.【详解】解:如图1,设AD 的中点为E ,连接OA ,OE ,则AE =OE =1,∠AEO =90°,2OA =.∴点O 与正方形ABCD 边上的所有点的连线中,OE 最小,等于1,OA 2.∵2OP =,∴点P 与正方形ABCD 边上的所有点的连线中,如图2所示,当点E 落在OP 上时,最大值PE =PO -EO =2-1=1;如图3所示,当点A 落在OP 上时,最小值22PA PO AO =-=-.∴当正方形ABCD 绕中心O 旋转时,点P 到正方形的距离d 的取值范围是221d ≤≤.故答案为:221d ≤≤【点睛】本题考查了新定义、正方形的性质、勾股定理等知识点,准确理解新定义的含义和熟知正方形的性质是解题的关键.三、解答题19.计算:1129|12-+-【答案】2【解析】【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】解:1129|1|2-+--,(112--⨯=31,=2.【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.20.解方程组:22340x y x y +=⎧⎨-=⎩【答案】21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩【解析】【分析】由第一个方程得到3x y =-,再代入第二个方程中,解一元二次方程方程即可求出y ,再回代第一个方程中即可求出x .【详解】解:由题意:223(1)40(2)x y x y +=⎧⎨-=⎩,由方程(1)得到:3x y =-,再代入方程(2)中:得到:22(3)40y y --=,进一步整理为:32y y -=或32y y -=-,解得11y =,23y =-,再回代方程(1)中,解得对应的12x =,26x =,故方程组的解为:21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩.【点睛】本题考查了代入消元法解方程及一元二次方程的解法,熟练掌握代入消元法,运算过程中细心即可.21.已知在ABD △中,,8,4AC BD BC CD ⊥==,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.【答案】(1)6AC =;(2)310【解析】【分析】(1)在Rt △ABC 中,利用三角函数即可求出AB ,故可得到AC 的长;(2)过点F 作FG ⊥BD ,利用中位线的性质得到FG ,CG ,再根据正切的定义即可求解.【详解】(1)∵AC BD ⊥,4cos 5ABC ∠=∴cos 45ABC BC AB ∠==∴AB =10∴AC 6=;(2)过点F 作FG ⊥BD ,∵BF 为AD 边上的中线.∴F 是AD 中点∵FG ⊥BD ,AC BD⊥∴//FG AC∴FG 是△ACD 的中位线∴FG =1=2AC 3CG=1=22CD ∴在Rt △BFG 中,tan FBD ∠=338210FG BG ==+.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.22.现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如下图.(1)求三月份共生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.【答案】(1)36万部;(2)100MB /秒【解析】【分析】(1)根据扇形统计图求出3月份的百分比,再利用80万×3月份的百分比求出三月份共生产的手机数;(2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒,根据下载一部1000MB 的电影,5G 比4G 要快190秒列方程求解.【详解】(1)3月份的百分比=130%25%45%--=三月份共生产的手机数=8045%=36⨯(万部)答:三月份共生产了36万部手机.(2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒,由题意可知:1000100019095x x-=-解得:100x =检验:当100x =时,()950x x ⋅-≠∴100x =是原分式方程的解.答:5G 手机的下载速度为100MB /秒.【点睛】本题考查实际问题与分式方程.求解分式方程时,需要检验最简公分母是否为0.23.已知:在圆O 内,弦AD 与弦BC 交于点,,,G AD CB M N =分别是CB 和AD 的中点,联结,MN OG .(1)求证:OG MN ⊥;(2)联结,,AC AM CN ,当//CN OG 时,求证:四边形ACNM 为矩形.【答案】(1)见解析;(2)见解析【解析】【分析】(1)连结,OM ON ,由M 、N 分别是CB 和AD 的中点,可得OM ⊥BC ,ON ⊥AD ,由AB CD =,可得OM ON =,可证()Rt EOP Rt FOP HL ∆∆≌,MG NG MGO NGO =∠=∠,,根据等腰三角形三线合一性质OG MN ⊥;(2)设OG 交MN 于E ,由Rt EOP Rt FOP ∆∆≌,可得MG NG =,可得CMN ANM ∠=∠,1122CM CB AD AN ===,可证CMN ANM ≌可得AM CN =,由CN ∥OG ,可得90AMN CNM ∠=∠=︒,由+=180AMN CNM ∠∠︒可得AM ∥CN ,可证ACNM 是平行四边形,再由90AM N ∠=︒可证四边形ACNM 是矩形.【详解】证明:(1)连结,OM ON ,∵M 、N 分别是CB 和AD 的中点,∴OM ,ON 为弦心距,∴OM ⊥BC ,ON ⊥AD ,90GMO GNO ∴∠=∠=︒,在O 中,AB CD =,OM ON ∴=,在Rt △OMG 和Rt △ONG 中,OM ON OG OG =⎧⎨=⎩,()Rt GOM Rt GON HL ∴∆∆≌,∴MG NG MGO NGO =∠=∠,,OG MN ∴⊥;(2)设OG 交MN 于E ,()Rt GOM Rt GON HL ∆∆ ≌,∴MG NG =,∴GMN GNM ∠=∠,即CMN ANM ∠=∠,1122CM CB AD AN === ,在△CMN 和△ANM 中CM AN CMN ANM MN NM =⎧⎪∠=∠⎨⎪=⎩,CMN ANM ∴ ≌,,AM CN AMN CNM ∴=∠=∠,∵CN ∥OG ,90CNM GEM ∴∠=∠=︒,90AMN CNM ∴∠=∠=︒,+90+90=180AMN CNM ∴∠∠=︒︒︒,∴AM ∥CN ,ACNM ∴是平行四边形,90AMN ∠=︒ ,∴四边形ACNM 是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.24.已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q .(1)求抛物线的解析式;(2)点A 在直线PQ 上且在第一象限内,过A 作AB x ⊥轴于B ,以AB 为斜边在其左侧作等腰直角ABC .①若A 与Q 重合,求C 到抛物线对称轴的距离;②若C 落在抛物线上,求C 的坐标.【答案】(1)21922y x =-+;(2)①1;②点C 的坐标是52,2⎛⎫- ⎪⎝⎭【解析】【分析】(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩,解方程组即可;(2)①根据AB =4,斜边上的高为2,Q 的横坐标为1,计算点C 的横坐标为-1,即到y 轴的距离为1;②根据直线PQ 的解析式,设点A (m ,-2m +6),三角形ABC 是等腰直角三角形,用含有m 的代数式表示点C 的坐标,代入抛物线解析式求解即可.【详解】(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩解得19,22a c =-=.所以抛物线的解析式是21922y x =-+.(2)①如图2,抛物线的对称轴是y 轴,当点A 与点(1,4)Q 重合时,4AB =,作CH AB ⊥于H .∵ABC 是等腰直角三角形,∴CBH 和CAH 也是等腰直角三角形,∴2CH AH BH ===,∴点C 到抛物线的对称轴的距离等于1.②如图3,设直线PQ 的解析式为y =kx +b ,由(3,0)(1,4)P Q 、,得30,4,k b k b +=⎧⎨+=⎩解得2,6,k b =-⎧⎨=⎩∴直线PQ 的解析式为26y x =-+,设(,26)A m m -+,∴26AB m =-+,所以3CH BH AH m ===-+.所以3,(3)23C C y m x m m m =-+=--+-=-.将点(23,3)C m m --+代入21922y x =-+,得2193(23)22m m -+=--+.整理,得22730m m -+=.因式分解,得(21)(3)0m m --=.解得12m =,或3m =(与点B 重合,舍去).当12m =时,1523132,3322m m -=-=--+=-+=.所以点C 的坐标是52,2⎛⎫- ⎪⎝⎭.【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键.25.如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;②若BE CD ⊥,求AD BC的值;(2)若2,3DE OE ==,求CD 的长.【答案】(1)①见解析;②23;(2)1或3+【解析】【分析】(1)①根据已知条件、平行线性质以及直角三角形斜边上的中线等于斜边的一半可推导,DAC DCA OBC OCB ∠=∠=∠=∠,由此可得DAC OBC ∽;②若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒,作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.根据30°所对直角边是斜边的一半可知CH m =,由此可得AD BC 的值.(2)①当点E 在AD 上时,可得四边形ABCE 是矩形,设AD CD x ==,在Rt ACE 和Rt DCE V 中,根据22CE CE =,列方程22226(2)2x x --=-求解即可.②当点E 在CD 上时,设AD CD x ==,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m =;由EOC ECB ∽得EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+,解出x 的值即可.【详解】(1)①由AD CD =,得12∠=∠.由//AD BC ,得13∠=∠.因为BO 是Rt ABC △斜边上的中线,所以OB OC =.所以34∠=∠.所以1234∠=∠=∠=∠.所以DAC OBC ∽.②若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒.作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.在Rt DCH △中,60,2DCH DC m ∠=︒=,所以CH m =.所以3BC BH CH m =+=.所以2233AD m BC m ==.(2)①如图5,当点E 在AD 上时,由//,AD BC O 是AC 的中点,可得OB OE =,所以四边形ABCE 是平行四边形.又因为90ABC ∠=︒,所以四边形ABCE 是矩形,设AD CD x ==,已知2DE =,所以2AE x =-.已知3OE =,所以6AC =.在Rt ACE 和Rt DCE V 中,根据22CE CE =,列方程22226(2)2x x --=-.解得1x =+,或1x =(舍去负值).②如图6,当点E 在CD 上时,设AD CD x ==,已知2DE =,所以2CE x =-.设OB OC m ==,已知3OE =,那么3EB m =+.一方面,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m=,另一方面,由24BEC ∠=∠∠,是公共角,得EOC ECB ∽.所以EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+.等量代换,得32232x x x m m -==-+.由322x x m =-,得226x x m -=.将226x x m -=代入3223x x m -=-+,整理,得26100x x --=.解得3x =+,或3x =.【点睛】本题主要考查相似三角形的判定与性质,斜边上的中线,勾股定理等,能够运用相似三角形边的关系列方程是解题的关键.。

2024届上海市浦东区中考联考数学试题含解析

2024届上海市浦东区中考联考数学试题含解析

2024届上海市浦东区中考联考数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是()A.B.C.D.2.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A.430(4)(4)2x yx y+-=⎧⎨---=⎩B.26(4)(4)2x yx y+=⎧⎨---=⎩C.430(4)(4)2x yy x+-=⎧⎨---=⎩D.4302x yx y-+=⎧⎨-=⎩3.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a74.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①AB CD=;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.45.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF 的长度是()A.3cm B.6cm C.2.5cm D.5cm6.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.7.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣2x(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=kx(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.53B.34C.43D.238.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C 的坐标为()A .(2,1)B .(1,2)C .(1,3)D .(3,1)9.下列说法中,正确的个数共有( )(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A .1个B .2个C .3个D .4个10.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .125二、填空题(共7小题,每小题3分,满分21分)11.一次函数y=(k ﹣3)x ﹣k+2的图象经过第一、三、四象限.则k 的取值范围是_____.12.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.13.某排水管的截面如图,已知截面圆半径OB=10cm ,水面宽AB 是16cm ,则截面水深CD 为_____.14.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.15.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).16.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).17.如图,点M是反比例函数2yx(x>0)图像上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为A.1 B.2 C.4 D.不能确定三、解答题(共7小题,满分69分)18.(10分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。

上海市存志中学2024届中考联考数学试题含解析

上海市存志中学2024届中考联考数学试题含解析

上海市存志中学2024届中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.一组数据8,3,8,6,7,8,7的众数和中位数分别是( ) A .8,6 B .7,6 C .7,8 D .8,72.在12,0,-1,12-这四个数中,最小的数是( ) A .12 B .0 C .12-D .-13.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .8815 2.5x x+= B .8184 2.5x x+= C .88152.5x x=+ D .8812.54x x =+ 4.计算232332x y x y xy ⋅÷的结果是( ). A .55xB .46xC .56xD .46x y5.用配方法解方程x 2﹣4x+1=0,配方后所得的方程是( ) A .(x ﹣2)2=3B .(x+2)2=3C .(x ﹣2)2=﹣3D .(x+2)2=﹣36.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一枚质地均匀的正六面体骰子,向上一面的点数是4C .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D .抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上7.已知二次函数y=ax 2+bx+c (a≠1)的图象如图所示,则下列结论: ①a 、b 同号;②当x=1和x=3时,函数值相等; ③4a+b=1;④当y=﹣2时,x 的值只能取1; ⑤当﹣1<x <5时,y <1. 其中,正确的有( )A .2个B .3个C .4个D .5个8.计算:()()223311aa a ---的结果是( )A .()21ax -B .31a -. C .11a - D .31a + 9.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3510.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)二、填空题(共7小题,每小题3分,满分21分)11.如图,∠1,∠2是四边形ABCD 的两个外角,且∠1+∠2=210°,则∠A +∠D =____度.12.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为________.13.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.14.已知一组数据3-,x,﹣2,3,1,6的中位数为1,则其方差为____.15.方程1223x x=+的解为__________.16.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.17.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.19.(5分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).20.(8分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.21.(10分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.22.(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.23.(12分)解方程式:1x2-- 3 =x12x--24.(14分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数.2、D【解题分析】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在12,0,-1,12-这四个数中,最小的数是-1,故选D .考点:正负数的大小比较. 3、D 【解题分析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x 千米,根据题意可列方程为:8812.54x x =+. 故选D .点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可. 4、D 【解题分析】根据同底数幂的乘除法运算进行计算. 【题目详解】3x 2y 2⋅x 3y 2÷xy 3=6x 5y 4÷xy 3=6x 4y.故答案选D. 【题目点拨】本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加. 5、A 【解题分析】方程变形后,配方得到结果,即可做出判断. 【题目详解】 方程2410x x +=﹣, 变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣), 故选A . 【题目点拨】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.6、B【解题分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【题目详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是13,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是16≈0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是14,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是18,故D选项错误,故选B.【题目点拨】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.7、A【解题分析】根据二次函数的性质和图象可以判断题目中各个小题是否成立.【题目详解】由函数图象可得,a>1,b<1,即a、b异号,故①错误,x=-1和x=5时,函数值相等,故②错误,∵-1522ba-+==2,得4a+b=1,故③正确,由图象可得,当y=-2时,x=1或x=4,故④错误,由图象可得,当-1<x<5时,y<1,故⑤正确,故选A.【题目点拨】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.8、B【解题分析】根据分式的运算法则即可求出答案.【题目详解】解:原式=()23-31a a -=()23-11a a -()=31a - 故选;B 【题目点拨】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型. 9、A 【解题分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率: 【题目详解】 列表如下:∵所有等可能的情况数为20种,其中两次都为红球的情况有6种, ∴63P 2010==两次红, 故选A.10、A【解题分析】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.二、填空题(共7小题,每小题3分,满分21分)11、210.【解题分析】利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.【题目详解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案为:210.【题目点拨】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.12、1【解题分析】如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.【题目详解】在Rt△ABC中,由勾股定理.得,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴DE AD BC AB=,∴3=610AD,∴AD=1.故答案为1【题目点拨】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.13、x≥1【解题分析】把y=2代入y=x+1,得x=1,∴点P的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1≥mx+n的解集是:x≥1,故答案为x≥1.【题目点拨】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.14、3【解题分析】试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴112x+=,解得x=3,∴数据的平均数=16(﹣3﹣3+3+3+3+6)=3,∴方差=16[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.考点:3.方差;3.中位数.15、1x=【解题分析】两边同时乘2(3)x x+,得到整式方程,解整式方程后进行检验即可.【题目详解】解:两边同时乘2(3)x x +,得34x x +=,解得1x =,检验:当1x =时,2(3)x x +≠0,所以x=1是原分式方程的根,故答案为:x=1.【题目点拨】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.16、1【解题分析】由n 行有n 个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论.【题目详解】解:第1行1个数,第2行2个数,第3行3个数,…,∴第9行9个数,∴第10行第8个数为第1+2+3+…+9+8=1个数.又∵第2n ﹣1个数为2n ﹣1,第2n 个数为﹣2n ,∴第10行第8个数应该是1.故答案为:1.【题目点拨】本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键.17、m >1.【解题分析】分析:根据反比例函数y =2m x -,当x >0时,y 随x 增大而减小,可得出m ﹣1>0,解之即可得出m 的取值范围. 详解:∵反比例函数y =2m x -,当x >0时,y 随x 增大而减小,∴m ﹣1>0,解得:m >1. 故答案为m >1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m ﹣1>0是解题的关键.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)BC=;.【解题分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.19、C点到地面AD的距离为:(22+2)m.【解题分析】直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.【题目详解】过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由题意可得:BF∥AD,则∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°•BC=2m,222m.∴C点到地面AD的距离为:()【题目点拨】考查解直角三角形,熟练掌握锐角三角函数是解题的关键.20、(1)①150;②作图见解析;③13.3%;(2)59. 【解题分析】(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比; (2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.【题目详解】①小明统计的评价一共有:(40+20)÷(1-60%=150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:20150×100%=13.3%; (2)列表如下:好 中 差 好好,好 好,中 好,差 中中,好 中,中 中,差 差 差,好 差,中 差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是59. 考点:扇形统计图;条形统计图;列表法与树状图法.21、1x >【解题分析】试题分析:按照解一元一次不等式的步骤解不等式即可.试题解析:3122x x -->,3221x x >--+,1x ->.解集在数轴上表示如下点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.22、(1)y=﹣x 2﹣2x+1;(2)(﹣32 ,154) 【解题分析】(1)将A (-1,0),B (0,1),C (1,0)三点的坐标代入y=ax 2+bx+c ,运用待定系数法即可求出此抛物线的解析式;(2)先证明△AOB 是等腰直角三角形,得出∠BAO=45°,再证明△PDE 是等腰直角三角形,则PE 越大,△PDE 的周长越大,再运用待定系数法求出直线AB 的解析式为y=x+1,则可设P 点的坐标为(x ,-x 2-2x+1),E 点的坐标为(x ,x+1),那么PE=(-x 2-2x+1)-(x+1)=-(x+32)2+94,根据二次函数的性质可知当x=-32时,PE 最大,△PDE 的周长也最大.将x=-32代入-x 2-2x+1,进而得到P 点的坐标. 【题目详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (﹣1,0),B (0,1),C (1,0), ∴9a-3b+c=0{c=3a+b+c=0,解得a=-1{b=-2c=3,∴抛物线的解析式为y=﹣x 2﹣2x+1;(2)∵A (﹣1,0),B (0,1),∴OA=OB=1,∴△AOB 是等腰直角三角形,∴∠BAO=45°.∵PF ⊥x 轴,∴∠AEF=90°﹣45°=45°,又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则-3k+b=0 {b=3,解得k=1{b=3,即直线AB的解析式为y=x+1.设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+32)2+94,所以当x=﹣32时,PE最大,△PDE的周长也最大.当x=﹣32时,﹣x2﹣2x+1=﹣(﹣32)2﹣2×(﹣32)+1=154,即点P坐标为(﹣32,154)时,△PDE的周长最大.【题目点拨】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.23、x=3【解题分析】先去分母,再解方程,然后验根.【题目详解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.【题目点拨】此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.24、(1)2yx=;1522y x=-+;(2)点P坐标为(114,98).【解题分析】(1)将F(4,12)代入0ny xx=(>),即可求出反比例函数的解析式2yx=;再根据2yx=求出E点坐标,将E、F两点坐标代入y kx b =+,即可求出一次函数解析式; (2)先求出△EBF 的面积,点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣),根据面积公式即可求出P 点坐标.【题目详解】 解:(1)∵反比例函数0n y x x =(>)经过点142F (,),∴n=2, 反比例函数解析式为2y x =. ∵2y x=的图象经过点E (1,m ), ∴m=2,点E 坐标为(1,2). ∵直线y kx b =+ 过点12E (,),点142F (,), ∴2142k b k b +=⎧⎪⎨+=⎪⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为1522y x =+﹣; (2)∵点E 坐标为(1,2),点F 坐标为142(,),∴点B 坐标为(4,2),∴BE=3,BF=32, ∴1139•32224EBF S BE BF ∆==⨯⨯=, ∴94POA EBF S S ∆∆== . 点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣), ∴115942224x ⨯-+=(), 解得114x =, ∴点P 坐标为11948(,). 【题目点拨】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.。

2024年上海市中考真题数学试卷含答案解析

2024年上海市中考真题数学试卷含答案解析

2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。

2023年上海市-数学中考试题及答案

2023年上海市-数学中考试题及答案

2023年上海市-数学中考试题及答案1. 选择题1.1. 题目:某公司的年利润为100万元,今年增长了20%,那么今年的年利润是多少万元?答案:今年的年利润为120万元。

1.2. 题目:若一个等边三角形的周长为18cm,那么它的边长是多少cm?答案:该等边三角形的边长为6cm。

1.3. 题目:已知函数y = ax + b,若当x = -1时,y = 4;当x = 2时,y = 13,求a和b的值。

答案:a = 3,b = 7。

2. 填空题2.1. 题目:已知a + b = 5,a - b = 1,求a的值。

答案:a的值为3。

2.2. 题目:设直线y = mx + n与直线y = 2x + 1平行,求m和n 的值。

答案:m的值为2,n的值为1。

2.3. 题目:若x的值满足|x + 3| = 5,求x的值。

答案:x的值为-8或2。

3. 解答题3.1. 题目:求下列各组数的最小公倍数和最大公约数(使用Euclidean Algorithm):3和6,10和15,12和18答案:最小公倍数:- 3和6的最小公倍数为6。

- 10和15的最小公倍数为30。

- 12和18的最小公倍数为36。

最大公约数:- 3和6的最大公约数为3。

- 10和15的最大公约数为5。

- 12和18的最大公约数为6。

3.2. 题目:已知两条平行线的斜率分别为m1 = 2和m2 = 2/3,求它们之间的夹角。

答案:两条平行线之间的夹角为0°。

3.3. 题目:一个三角形的三个内角分别为60°,70°,和50°,求其面积。

答案:该三角形的面积无法确定,因为只给出了三个角度,并未给出具体的边长信息。

以上为2023年上海市数学中考试题及答案,仅供参考。

2020年上海市中考数学试卷(解析版)

2020年上海市中考数学试卷(解析版)

2020年上海市中考数学试卷参考答案与试题解析一.选择题(共6小题)1.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A.与的被开方数不相同,故不是同类二次根式;B.,与不是同类二次根式;C.,与被开方数相同,故是同类二次根式;D.,与被开方数不同,故不是同类二次根式.故选:C.2.用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y﹣2=0【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2﹣2y+1=0即可求解.【解答】解:把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.3.我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图【分析】根据统计图的特点判定即可.【解答】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图,故选:B.4.已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣【分析】已知函数图象上一点的坐标求反比例函数解析式,可先设出解析式y=,再将点的坐标代入求出待定系数k的值,从而得出答案.【解答】解:设反比例函数解析式为y=,将(2,﹣4)代入,得:﹣4=,解得k=﹣8,所以这个反比例函数解析式为y=﹣,故选:D.5.下列命题中,真命题是()A.对角线互相垂直的梯形是等腰梯形B.对角线互相垂直的平行四边形是正方形C.对角线平分一组对角的平行四边形是菱形D.对角线平分一组对角的梯形是直角梯形【分析】利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.【解答】解:A、对角线互相垂直且相等的梯形是等腰梯形,故错误;B、对角线相等且互相垂直的平行四边形是正方形,故错误;C、正确;D、对角线平分一组对角的梯形是菱形,故错误;故选:C.6.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【分析】证明平行四边形是平移重合图形即可.【解答】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFCD重合,∵平行四边形ABCD是平移重合图形,故选:A.二.填空题(共12小题)7.计算:2a•3ab=6a2b.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a•3ab=6a2b.故答案为:6a2b.8.已知f(x)=,那么f(3)的值是1.【分析】根据f(x)=,可以求得f(3)的值,本题得以解决.【解答】解:∵f(x)=,∵f(3)==1,故答案为:1.9.已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而减小.(填“增大”或“减小”)【分析】根据正比例函数的性质进行解答即可.【解答】解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.10.如果关于x的方程x2﹣4x+m=0有两个相等的实数根,那么m的值是4.【分析】一元二次方程有两个相等的实根,即根的判别式∵=b2﹣4ac=0,即可求m值.【解答】解:依题意,∵方程x2﹣4x+m=0有两个相等的实数根,∵∵=b2﹣4ac=(﹣4)2﹣4m=0,解得m=4,故答案为:4.11.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是.【分析】根据从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,得出是5的倍数的数据,再根据概率公式即可得出答案.【解答】解:∵从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是5的倍数的有:5,10,∵取到的数恰好是5的倍数的概率是=.故答案为:.12.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是y=x2+3.【分析】直接根据抛物线向上平移的规律求解.【解答】解:抛物线y=x2向上平移3个单位得到y=x2+3.故答案为:y=x2+3.13.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为3150名.【分析】用样本中会游泳的学生人数所占的比例乘总人数即可得出答案.【解答】解:8400×=3150(名).答:估计该区会游泳的六年级学生人数约为3150名.故答案为:3150名.14.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE =0.2米,那么井深AC为7米.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:∵BD∵AB,AC∵AB,∵BD∵AC,∵∵ACE∵∵DBE,∵,∵=,∵AC=7(米),答:井深AC为7米.15.如图,AC、BD是平行四边形ABCD的对角线,设=,=,那么向量用向量、表示为2 +.【分析】利用平行四边形的性质,三角形法则求解即可.【解答】解:∵四边形ABCD是平行四边形,∵AD=BC,AD∵BC,AB=CD,AB∵CD,∵==,∵=+=+,∵==+,∵=+,∵=++=2+,故答案为:2+.16.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s (米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行350米.【分析】当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入求得s=70t+400,求出t=15时s的值,从而得出答案.【解答】解:当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∵s=70t+400;当t=15时,s=1450,1800﹣1450=350,∵当小明从家出发去学校步行15分钟时,到学校还需步行350米,故答案为:350.17.如图,在∵ABC中,AB=4,BC=7,∵B=60°,点D在边BC上,CD=3,联结AD.如果将∵ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.【分析】如图,过点E作EH∵BC于H.首先证明∵ABD是等边三角形,解直角三角形求出EH即可.【解答】解:如图,过点E作EH∵BC于H.∵BC=7,CD=3,∵BD=BC﹣CD=4,∵AB=4=BD,∵B=60°,∵∵ABD是等边三角形,∵ADB=60°,∵∵ADC=∵ADE=120°,∵∵EDH=60°,∵EH∵BC,∵∵EHD=90°,∵DE=DC=3,∵EH=DE•sin60°=,∵E到直线BD的距离为,故答案为.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD 的各边都没有公共点,那么线段AO长的取值范围是<AO<.【分析】根据勾股定理得到AC=10,如图1,设∵O与AD边相切于E,连接OE,如图2,设∵O与BC边相切于F,连接OF,根据相似三角形的性质即可得到结论.【解答】解:在矩形ABCD中,∵∵D=90°,AB=6,BC=8,∵AC=10,如图1,设∵O与AD边相切于E,连接OE,则OE∵AD,∵OE∵CD,∵∵AOE∵∵ACD,∵,∵=,如图2,设∵O与BC边相切于F,连接OF,则OF∵BC,∵OF∵AB,∵∵COF∵∵CAB,∵=,∵=,∵OC=,∵AO=,∵如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是<AO<,故答案为:<AO<.三.解答题(共7小题)19.计算:27+﹣()﹣2+|3﹣|.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【解答】解:原式=(33)+﹣4+3﹣=3+﹣﹣4+3﹣20.解不等式组:【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解不等式∵得x>2,解不等式∵得x<5.故原不等式组的解集是2<x<5.21.如图,在直角梯形ABCD中,AB∵DC,∵DAB=90°,AB=8,CD=5,BC=3.(1)求梯形ABCD的面积;(2)联结BD,求∵DBC的正切值.【分析】(1)过C作CE∵AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到CE==6,于是得到梯形ABCD的面积=×(5+8)×6=39;(2)过C作CH∵BD于H,根据相似三角形的性质得到,根据勾股定理得到BD===10,BH===6,于是得到结论.【解答】解:(1)过C作CE∵AB于E,∵AB∵DC,∵DAB=90°,∵∵D=90°,∵∵A=∵D=∵AEC=90°,∵四边形ADCE是矩形,∵AD=CE,AE=CD=5,∵BE=AB﹣AE=3,∵BC=3,∵CE==6,∵梯形ABCD的面积=×(5+8)×6=39;(2)过C作CH∵BD于H,∵CD∵AB,∵∵CDB=∵ABD,∵∵CHD=∵A=90°,∵∵CDH∵∵DBA,∵,∵BD===10,∵=,∵CH=3,∵BH===6,∵∵DBC的正切值===.22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【分析】(1)根据该商店去年“十一黄金周”这七天的总营业额=前六天的总营业额+第七天的营业额,即可求出结论;(2)设该商店去年8、9月份营业额的月增长率为x,根据该商店去年7月份及9月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.23.已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:∵BEC∵∵BCH;(2)如果BE2=AB•AE,求证:AG=DF.【分析】(1)想办法证明∵BCE=∵H即可解决问题.(2)利用平行线分线段成比例定理结合已知条件解决问题即可.【解答】(1)证明:∵四边形ABCD是菱形,∵CD=CB,∵D=∵B,CD∵AB,∵DF=BE,∵∵CDF∵CBE(SAS),∵∵DCF=∵BCE,∵CD∵BH,∵∵H=∵DCF,∵∵BCE=∵H,∵∵B=∵B,∵∵BEC∵∵BCH.(2)证明:∵BE2=AB•AE,∵=,∵AG∵BC,∵=,∵=,∵DF=BE,BC=AB,∵BE=AG=DF,即AG=DF.24.在平面直角坐标系xOy中,直线y=﹣x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于∵AOB内,求a的取值范围.【分析】(1)先求出A,B坐标,即可得出结论;(2)设点C(m,﹣m+5),则BC=|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;(3)将点A坐标代入抛物线解析式中得出b=﹣10a,代入抛物线解析式中得出顶点D坐标为(5,﹣25a),即可得出结论.【解答】解:(1)针对于直线y=﹣x+5,令x=0,y=5,∵B(0,5),令y=0,则﹣x+5=0,∵x=10,∵A(10,0),∵AB==5;(2)设点C(m,﹣m+5),∵B(0,5),∵BC==|m|,∵BC=,∵|m|=,∵m=±2,∵点C在线段AB上,∵m=2,∵C(2,4),将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得,∵,∵抛物线y=﹣x2+x;(3)∵点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,∵b=﹣10a,∵抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,∵抛物线的顶点D坐标为(5,﹣25a),将x=5代入y=﹣x+5中,得y=﹣×5+5=,∵顶点D位于∵AOB内,∵0<﹣25a<,∵﹣<a<0;25.如图,∵ABC中,AB=AC,∵O是∵ABC的外接圆,BO的延长交边AC于点D.(1)求证:∵BAC=2∵ABD;(2)当∵BCD是等腰三角形时,求∵BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:∵若BD=CB,则∵C=∵BDC=∵ABD+∵BAC=3∵ABD.∵若CD=CB,则∵CBD=∵CDB =3∵ABD.∵若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∵BC交BD的延长线于E.则==,推出==,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解答】(1)证明:连接OA.∵AB=AC,∵=,∵OA∵BC,∵∵BAO=∵CAO,∵OA=OB,∵∵ABD=∵BAO,∵∵BAC=2∵BAD.(2)解:如图2中,延长AO交BC于H.∵若BD=CB,则∵C=∵BDC=∵ABD+∵BAC=3∵ABD,∵AB=AC,∵∵ABC=∵C,∵∵DBC=2∵ABD,∵∵DBC+∵C+∵BDC=180°,∵8∵ABD=180°,∵∵C=3∵ABD=67.5°.∵若CD=CB,则∵CBD=∵CDB=3∵ABD,∵∵C=4∵ABD,∵∵DBC+∵C+∵CDB=180°,∵10∵ABD=180°,∵∵BCD=4∵ABD=72°.∵若DB=DC,则D与A重合,这种情形不存在.综上所述,∵C的值为67.5°或72°.(3)如图3中,作AE∵BC交BD的延长线于E.则==,∵==,设OB=OA=4a,OH=3a,∵BH2=AB2﹣AH2=OB2﹣OH2,∵25﹣49a2=16a2﹣9a2,∵a2=,∵BH=,∵BC=2BH=.。

2023年上海市中考数学试卷(含答案)

2023年上海市中考数学试卷(含答案)

2023年上海市中考数学试卷(含答案)一、选择题1. 在直角三角形ABC中,∠C=90°,边AC=6cm,边BC=8cm,则边AB的长为多少?A) 10cmB) 12cmC) 14cmD) 16cm答案: A2. 若a:b=3:4,且a=12,则b的值为多少?A) 8B) 10C) 16D) 24答案: C3. 已知a=4,b=-2,c=5,若方程ax^2 + bx + c=0有一个实数根,求此根的值。

A) -1B) 1C) -2D) 2答案: D二、填空题1. 16 ÷ 4 × 5 = __答案: 202. 黄牛加恩班从甲到乙的汽车速度分别为80km/h和100km/h,乙到甲的汽车速度是甲到乙的多少倍?答案: 1.253. 若9年前小明的年龄是小红年龄的2倍,而12年后小明的年龄将是小红年龄的3倍,那么现在小明的年龄是小红的__倍。

答案: 1.8三、解答题1. 某商店购进某种商品,每件进价为500元,商店出售时要加价50%。

求商店出售一件此商品能获利多少元?解答:进价为500元,加价50%意味着商店能卖出的价格为700元(500元 + 0.5*500元)。

利润为700元减去进价500元,即200元。

答案: 200元2. 学校义卖活动中,小明和小红分别负责售卖食品和饮料。

小明共售卖了30份食品,小红共售卖了20份饮料。

食品每份售价10元,饮料每份售价5元。

求小明和小红共售卖的食品和饮料总收入。

解答:小明卖食品的总收入为 30份 * 10元/份 = 300元。

小红卖饮料的总收入为 20份 * 5元/份 = 100元。

小明和小红共售卖的食品和饮料总收入为 300元 + 100元 =400元。

答案: 400元四、应用题某公司今年一季度的销售额是150万元,二季度的销售额是170万元,三季度的销售额是190万元。

若四季度的销售额比三季度增长了15%,求四季度的销售额。

解答:三季度的销售额是190万元。

上海市中考数学试卷(含答案解析)

上海市中考数学试卷(含答案解析)

2021年上海市中考数学试卷一、选择题:本大题共6小题,每题4分,共24分1.〔4分〕如果a与3互为倒数,那么a是〔〕A.﹣3 B.3 C.﹣ D.2.〔4分〕以下单项式中,与a2b是同类项的是〔〕A.2a2b B.a2b2 C.ab2D.3ab3.〔4分〕如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是〔〕A.y=〔x﹣1〕2+2 B.y=〔x+1〕2+2 C.y=x2+1 D.y=x2+34.〔4分〕某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是〔〕次数2345人数22106A.3次C.4次5.〔4分〕在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为〔〕A.+B.﹣C.﹣+ D.﹣﹣6.〔4分〕如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是〔〕A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每题4分,共48分7.〔4分〕计算:a3÷a=.8.〔4分〕函数y=的定义域是.9.〔4分〕方程=2的解是.10.〔4分〕如果a=,b=﹣3,那么代数式2a+b的值为.11.〔4分〕不等式组的解集是.12.〔4分〕如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.〔4分〕反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.〔4分〕有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.〔4分〕在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.〔4分〕今年5月份有关部门对方案去上海迪士尼乐园的局部市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.〔4分〕如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.〔精确到1米,参考数据:≈1.73〕18.〔4分〕如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.〔10分〕计算:|﹣1|﹣﹣+.20.〔10分〕解方程:﹣=1.21.〔10分〕如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:〔1〕线段BE的长;〔2〕∠ECB的余切值.22.〔10分〕某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A〔千克〕与时间x〔时〕的函数图象,线段EF表示B种机器人的搬运量y B〔千克〕与时间x 〔时〕的函数图象.根据图象提供的信息,解答以下问题:〔1〕求y B关于x的函数解析式;〔2〕如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.〔12分〕:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.〔1〕求证:AD=CE;〔2〕如果点G在线段DC上〔不与点D重合〕,且AG=AD,求证:四边形AGCE 是平行四边形.24.〔12分〕如图,抛物线y=ax2+bx﹣5〔a≠0〕经过点A〔4,﹣5〕,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.〔1〕求这条抛物线的表达式;〔2〕连结AB、BC、CD、DA,求四边形ABCD的面积;〔3〕如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.〔14分〕如下列图,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.〔1〕求线段CD的长;〔2〕如果△AEG是以EG为腰的等腰三角形,求线段AE的长;〔3〕如果点F在边CD上〔不与点C、D重合〕,设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.2021年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每题4分,共24分1.〔4分〕如果a与3互为倒数,那么a是〔〕A.﹣3 B.3 C.﹣ D.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,应选:D.【点评】此题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.〔4分〕以下单项式中,与a2b是同类项的是〔〕A.2a2b B.a2b2 C.ab2D.3ab【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.应选A.【点评】此题考查了同类项的知识,解答此题的关键是掌握同类项中相同字母的指数相同的概念.3.〔4分〕如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是〔〕A.y=〔x﹣1〕2+2 B.y=〔x+1〕2+2 C.y=x2+1 D.y=x2+3【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.应选C.【点评】此题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.〔4分〕某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是〔〕次数2345人数22106A.3次C.4次【分析】加权平均数:假设n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,那么〔x1w1+x2w2+…+x n w n〕÷〔w1+w2+…+w n〕叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:〔2×2+3×2+4×10+5×6〕÷20=〔4+6+40+30〕÷20=80÷20=4〔次〕.答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】此题考查的是加权平均数的求法.此题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.〔4分〕在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为〔〕A.+B.﹣C.﹣+ D.﹣﹣【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法那么,求得答案.【解答】解:如下列图:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.应选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法那么的应用是解题关键.6.〔4分〕如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是〔〕A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,应选B.【点评】此题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,那么当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每题4分,共48分7.〔4分〕计算:a3÷a=a2.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】此题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.〔4分〕函数y=的定义域是x≠2.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.〔4分〕方程=2的解是x=5.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,那么x=5是原方程的解,故答案为:x=5.【点评】此题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.〔4分〕如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法那么是解此题的关键.11.〔4分〕不等式组的解集是x<1.【分析】首先解每个不等式,两个不等式的解集的公共局部就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,那么不等式组的解集是x<1.故答案是:x<1.【点评】此题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共局部,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.〔4分〕如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=〔﹣3〕2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】此题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.此题属于根底题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程〔不等式或不等式组〕是关键.13.〔4分〕反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.〔4分〕有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】此题考查了概率公式:随机事件A的概率P〔A〕=事件A可能出现的结果数除以所有可能出现的结果数.15.〔4分〕在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=〔〕2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=〔〕2=,故答案为.【点评】此题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.〔4分〕今年5月份有关部门对方案去上海迪士尼乐园的局部市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】此题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据.17.〔4分〕如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.〔精确到1米,参考数据:≈1.73〕【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208〔m〕,故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.〔4分〕如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,那么CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1〔舍去〕,∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】此题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.〔10分〕计算:|﹣1|﹣﹣+.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】此题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法那么,难度不大.20.〔10分〕解方程:﹣=1.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】此题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.〔10分〕如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:〔1〕线段BE的长;〔2〕∠ECB的余切值.【分析】〔1〕由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;〔2〕过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:〔1〕∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;〔2〕过点E作EH⊥BC,垂足为点H,如下列图:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】此题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题〔2〕的关键.22.〔10分〕某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A〔千克〕与时间x〔时〕的函数图象,线段EF表示B种机器人的搬运量y B〔千克〕与时间x 〔时〕的函数图象.根据图象提供的信息,解答以下问题:〔1〕求y B关于x的函数解析式;〔2〕如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【分析】〔1〕设y B关于x的函数解析式为y B=kx+b〔k≠0〕,将点〔1,0〕、〔3,180〕代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;〔2〕设y A关于x的解析式为y A=k1x.将〔3,180〕代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:〔1〕设y B关于x的函数解析式为y B=kx+b〔k≠0〕.将点〔1,0〕、〔3,180〕代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90〔1≤x≤6〕.〔2〕设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300〔千克〕;x=6时,y B=90×6﹣90=450〔千克〕.450﹣300=150〔千克〕.答:如果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】此题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.〔12分〕:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.〔1〕求证:AD=CE;〔2〕如果点G在线段DC上〔不与点D重合〕,且AG=AD,求证:四边形AGCE 是平行四边形.【分析】〔1〕根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;〔2〕连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:〔1〕在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE〔SAS〕,∴AD=CE;〔2〕连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】此题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.〔12分〕如图,抛物线y=ax2+bx﹣5〔a≠0〕经过点A〔4,﹣5〕,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.〔1〕求这条抛物线的表达式;〔2〕连结AB、BC、CD、DA,求四边形ABCD的面积;〔3〕如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【分析】〔1〕先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;〔2〕分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;〔3〕由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是的,从而利用tan∠BEO=tan ∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:〔1〕∵抛物线y=ax 2+bx ﹣5与y 轴交于点C ,∴C 〔0,﹣5〕,∴OC=5.∵OC=5OB ,∴OB=1,又点B 在x 轴的负半轴上,∴B 〔﹣1,0〕.∵抛物线经过点A 〔4,﹣5〕和点B 〔﹣1,0〕, ∴,解得,∴这条抛物线的表达式为y=x 2﹣4x ﹣5.〔2〕由y=x 2﹣4x ﹣5,得顶点D 的坐标为〔2,﹣9〕.连接AC ,∵点A 的坐标是〔4,﹣5〕,点C 的坐标是〔0,﹣5〕,又S △ABC =×4×5=10,S △ACD =×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18.〔3〕过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =×AB ×CH=10,AB==5, ∴CH=2,在RT △BCH 中,∠BHC=90°,BC=,BH==3, ∴tan ∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为〔0,〕.【点评】此题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第〔3〕问,将角度相等转化为对应的正切函数值相等是解答关键.25.〔14分〕如下列图,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.〔1〕求线段CD的长;〔2〕如果△AEG是以EG为腰的等腰三角形,求线段AE的长;〔3〕如果点F在边CD上〔不与点C、D重合〕,设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【分析】〔1〕作DH⊥AB于H,如图1,易得四边形BCDH为矩形,那么DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;〔2〕分类讨论:当EA=EG时,那么∠AGE=∠GAE,那么判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,那么AM=AD=,通过证明Rt△AME ∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,那么∠AGE=∠AEG,可证明AE=AD=15,〔3〕作DH⊥AB于H,如图2,那么AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,那么利用相似比可表示出EG=,那么可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:〔1〕作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;〔2〕①EA=EG时,那么∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,那么AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;②GA=GE时,那么∠GAE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15.综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;〔3〕作DH⊥AB于H,如图2,那么AH=9,HE=|x﹣9|,在Rt△HDE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=〔﹣〕:,∴y=〔0<x<〕.【点评】此题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.。

上海市2019年中考数学试卷(解析版)

上海市2019年中考数学试卷(解析版)
, 故选 C. 2. 下列对一元二次方程 x2+x﹣3=0 根的情况的判断,正确的是( ) A. 有两个不相等实数根 B. 有两个相等实数根 C. 有且只有一个实数根 D. 没有实数根 【答案】A 【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程 x2+x﹣3=0 有两 个不相等的实数根. 【详解】∵a=1,b=1,c=﹣3, ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0, ∴方程 x2+x﹣3=0 有两个不相等的实数根, 故选 A. 【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有 两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 3. 下列对二次函数 y=x2﹣x 的图象的描述,正确的是( ) A. 开口向下 B. 对称轴是 y 轴 C. 经过原点 D. 在对称轴右侧部分是下降的 【答案】C 【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案. 【详解】A、∵a=1>0,∴抛物线开口向上,选项 A 不正确;
B、∵﹣ ,∴抛物线的对称轴为直线 x= ,选项 B 不正确;
1
上海市 2019 年中考数学试卷(解析版)
C、当 x=0 时,y=x2﹣x=0,∴抛物线经过原点,选项 C 正确; D、∵a>0,抛物线的对称轴为直线 x= ,
∴当 x> 时,y 随 x 值的增大而增大,选项 D 不正确, 故选 C. 【点睛】本题考查了二次函数的性质:二次函数 y=ax2+bx+c(a≠0),对称轴直线 x=- ,当 a>0 时,抛物线 y=ax2+bx+c(a≠0)的开口向上,当 a<0 时,抛物线 y=ax2+bx+c(a≠0)的开口向下, c=0 时抛物线经过原点,熟练掌握相关知识是解题的关键. 4. 据统计,某住宅楼 30 户居民五月份最后一周每天实行垃圾分类的户数依次是: 27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( ) A. 25 和 30 B. 25 和 29 C. 28 和 30 D. 28 和 29 【答案】D 【解析】【分析】根据中位数和众数的定义进行求解即可得答案. 【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30, 处于最中间是数是 28, ∴这组数据的中位数是 28, 在这组数据中,29 出现的次数最多, ∴这组数据的众数是 29, 故选 D. 【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据 中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数 (或中间两数的平均数)是这组数据的中位数. 5. 已知平行四边形 ABCD,下列条件中,不能判定这个平行四边形为矩形的是( ) A. ∠A=∠B B. ∠A=∠C C. AC=BD D. AB⊥BC 【答案】B 【解析】【分析】由矩形的判定方法即可得出答案. 【详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形, 正确; B、∠A=∠C 不能判定这个平行四边形为矩形,错误;

上海市普陀区重点中学2024届中考联考数学试卷含解析

上海市普陀区重点中学2024届中考联考数学试卷含解析

上海市普陀区重点中学2024届中考联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.sin60°的值为()A.3B.32C.22D.122.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm3.浙江省陆域面积为101800平方千米。

数据101800用科学记数法表示为()A.1.018×104B.1.018×105C.10.18×105D.0.1018×1064.下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形5.下列实数中,在2和3之间的是()A.πB.2π-C325D3286.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°7.下列立体图形中,主视图是三角形的是()A.B.C.D.8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)10.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C.23D.32二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______12.若式子x2-在实数范围内有意义,则x的取值范围是.13.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.14.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.15.(2017四川省攀枝花市)若关于x的分式方程7311mxx x+=--无解,则实数m=_______.16.如图,△ABC中,AB=AC,D是AB上的一点,且AD=23AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.三、解答题(共8题,共72分)17.(8分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.18.(8分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.19.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.20.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.21.(8分)如图,曲线BC 是反比例函数y =k x(4≤x ≤6)的一部分,其中B (4,1﹣m ),C (6,﹣m ),抛物线y =﹣x 2+2bx 的顶点记作A .(1)求k 的值. (2)判断点A 是否可与点B 重合; (3)若抛物线与BC 有交点,求b 的取值范围.22.(10分)如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .求证:EF 是⊙O 的切线;若,且,求⊙O 的半径与线段的长.23.(12分)已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .24.解不等式组3(2)41213x x x x --≤⎧⎪+⎨-⎪⎩,并写出其所有的整数解.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】解:sin60°B . 2、B【解题分析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【题目详解】∵原正方形的周长为acm , ∴原正方形的边长为4a cm , ∵将它按图的方式向外等距扩1cm , ∴新正方形的边长为(4a +2)cm , 则新正方形的周长为4(4a +2)=a+8(cm ), 因此需要增加的长度为a+8﹣a=8cm ,故选B .【题目点拨】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.3、B【解题分析】5101800 1.01810=⨯.故选B.点睛:在把一个绝对值较大的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 比原来的数的整数位数少1(也可以通过小数点移位来确定n ).4、C【解题分析】根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【题目详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选:C.【题目点拨】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.5、C【解题分析】分析:先求出每个数的范围,逐一分析得出选项.详解:A、3<π<4,故本选项不符合题意;B、1<π−2<2,故本选项不符合题意;C、<3,故本选项符合题意;D、<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.6、C【解题分析】首先求得AB与正东方向的夹角的度数,即可求解.【题目详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【题目点拨】本题考查了方向角,正确理解方向角的定义是关键.7、A【解题分析】考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图【题目详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选A.【题目点拨】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看8、D【解题分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【题目详解】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选D.【题目点拨】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.9、A【解题分析】直接利用平移的性质结合轴对称变换得出对应点位置.【题目详解】如图所示:顶点A2的坐标是(4,-3).故选A.【题目点拨】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.10、A【解题分析】分析:由S △ABC =9、S △A′EF =1且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DEABD S A D AD S ''=(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =1,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DE ABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.≥.12、x2【解题分析】根据二次根式被开方数必须是非负数的条件,-≥⇒≥.-x20x2x2≥故答案为x213、8如图,连接OC,在在Rt△ACO中,由tan∠OAB=OCAC,求出AC即可解决问题.【题目详解】解:如图,连接OC.∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=OC AC,∴122AC ,∴AC=4,∴AB=2AC=8,故答案为8【题目点拨】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.14、50°【解题分析】根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.【题目详解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案为50°.【题目点拨】本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.15、3或1.解:方程去分母得:1+3(x ﹣1)=mx ,整理得:(m ﹣3)x =2.①当整式方程无解时,m ﹣3=0,m =3; ②当整式方程的解为分式方程的增根时,x =1,∴m ﹣3=2,m =1. 综上所述:∴m 的值为3或1. 故答案为3或1. 16、2 【解题分析】解:如图,过D 点作DG ⊥AC ,垂足为G ,过A 点作AH ⊥BC ,垂足为H ,∵AB=AC ,点E 为BD 的中点,且AD=23AB , ∴设BE=DE=x ,则AD=AF=1x . ∵DG ⊥AC ,EF ⊥AC ,∴DG ∥EF ,∴AE DE =AF GF ,即5x x =4x GF ,解得4GF=x 5. ∵DF ∥BC ,∴△ADF ∽△ABC ,∴DF AD =BC AB ,即DF 4x=66x,解得DF=1. 又∵DF ∥BC ,∴∠DFG=∠C ,∴Rt △DFG ∽Rt △ACH ,∴DF GF =AC HC ,即4x 45=6x 3,解得25x =2. 在Rt △ABH 中,由勾股定理,得2222536336992AH AB BH x =-=-=⨯-=.∴ABC 11S BC AH 692722∆=⋅⋅=⨯⨯=. 又∵△ADF ∽△ABC ,∴22ADF ABC S DF 44S BC 69∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴ADF 4S 27=129∆=⨯ ∴ABC ADF DBCF S S S 271215∆∆=-=-=四边形. 故答案为:2.三、解答题(共8题,共72分)17、吉普车的速度为30千米/时.【解题分析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案.【题目详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:1515151.560 x x-=.解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.18、(1)50;(2)115.2°;(3).【解题分析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:(人)(2)B等级的学生共有:(人).∴所占的百分比为:∴B等级所对应扇形的圆心角度数为:.(3)列表如下:男女1 女2 女3男﹣﹣﹣(女,男)(女,男)(女,男)女1 (男,女)﹣﹣﹣(女,女)(女,女)女2 (男,女)(女,女)﹣﹣﹣(女,女)女3 (男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P (选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键. 19、证明见解析. 【解题分析】由已知条件BE ∥DF ,可得出∠ABE=∠D ,再利用ASA 证明△ABE ≌△FDC 即可. 证明:∵BE ∥DF ,∴∠ABE=∠D , 在△ABE 和△FDC 中, ∠ABE=∠D ,AB=FD ,∠A=∠F ∴△ABE ≌△FDC (ASA ), ∴AE=FC .“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC 和△FDC 全等. 20、(1)4y x=;(2)点P 的坐标是(0,4)或(0,-4). 【解题分析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标. 【题目详解】(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2. 将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入ky x=得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形. ∵△OPM 的面积与四边形BMON 的面积相等,∴1OP AM4 2⋅⋅=.∵AM=2,∴OP=4.∴点P的坐标是(0,4)或(0,-4).21、(1)12;(2)点A不与点B重合;(3)1919 86b≤≤【解题分析】(1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;(3)当抛物线经过点B(4,3)时,解得,b=198,抛物线右半支经过点B;当抛物线经过点C,解得,b=196,抛物线右半支经过点C;从而求得b的取值范围为198≤b≤196.【题目详解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数kyx=的图象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若点A与点B重合,则有b=4,且b2=3,显然不成立,∴点A不与点B重合;(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,解得,b=198,显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有2=﹣62+2b×6,解得,b=196,这时仍然是抛物线右半支经过点C , ∴b 的取值范围为198≤b ≤196.【题目点拨】本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题. 22、(1)证明参见解析;(2)半径长为154,AE =6. 【解题分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长. 【题目详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.【题目点拨】1.圆的切线的判定;2.锐角三角函数的应用. 23、证明见解析【解题分析】试题分析:首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC ≌△DEF . 试题解析:∵AF=DC ,∴AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中∴△ABC ≌△DEF (SSS )24、不等式组的解集为1≤x <2,该不等式组的整数解为1,2,1. 【解题分析】先求出不等式组的解集,即可求得该不等式组的整数解. 【题目详解】()3241213x x xx ⎧--≤⎪⎨+>-⎪⎩①②, 由①得,x≥1, 由②得,x <2.所以不等式组的解集为1≤x <2, 该不等式组的整数解为1,2,1. 【题目点拨】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。

2023年上海市中考数学试卷含答案解析

2023年上海市中考数学试卷含答案解析

绝密★启用前2023年上海市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共6小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列运算正确的是( ) A. a 5÷a 2=a 3B. a 3+a 3=a 6C. (a 3)2=a 5D. √ a 2=a2. 在分式方程2x−1x2+x 22x−1=5中,设2x−1x 2=y ,可得到关于y 的整式方程为( )A. y 2+5y +5=0B. y 2−5y +5=0C. y 2+5y +1=0D. y 2−5y +1=03. 下列函数中,函数值y 随x 的增大而减小的是( ) A. y =6xB. y =−6xC. y =6xD. y =−6x4. 如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是( )A. 小车的车流量与公车的车流量稳定B. 小车的车流量的平均数较大C. 小车与公车车流量在同一时间段达到最小值D. 小车与公车车流量的变化趋势相同5. 在四边形ABCD 中,AD//BC ,AB =CD.下列说法能使四边形ABCD 为矩形的是( )A. AB//CDB. AD =BCC. ∠A =∠BD. ∠A =∠D6. 已知在梯形ABCD 中,联结AC ,BD ,且AC ⊥BD ,设AB =a ,CD =b.下列两个说法:①AC =√ 22(a +b);②AD =√ 22√ a 2+b 2,则下列说法正确的是( )A. ①正确②错误B. ①错误②正确C. ①②均正确D. ①②均错误二、填空题(本大题共12小题,共48.0分)7. 分解因式:n 2−9= ______ . 8. 化简:21−x −2x1−x 的结果为______ .9. 已知关于x 的方程√ x −14=2,则x = ______ . 10. 函数f(x)=1x−23的定义域为______ .11. 已知关于x 的一元二次方程ax 2+6x +1=0没有实数根,那么a 的取值范围是______ .12. 在不透明的盒子中装有一个黑球,两个白成,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为______ .13. 如果一个正多边形的中心角是20°,那么这个正多边形的边数为______ . 14. 一个二次函数y =ax 2+bx +c 的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是______ .15. 如图,在△ABC 中,点D ,E 在边AB ,AC 上,2AD =BD ,DE//BC ,联结DE ,设向量AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,那么用a ⃗ ,b ⃗ 表示DE ⃗⃗⃗⃗⃗⃗ = ______ .16. 垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为______ .17. 如图,在△ABC 中,∠C =35°,将△ABC 绕着点A 旋转α(0°<α<180°),旋转后的点B 落在BC 上,点B 的对应点为D ,联结AD ,AD 是∠BAC 的角平分线,则α= ______ .18. 在△ABC 中,AB =7,BC =3,∠C =90°,点D 在边AC 上,点E 在CA 延长线上,且CD =DE ,如果⊙B 过点A ,⊙E 过点D ,若⊙B 与⊙E 有公共点,那么⊙E 半径r 的取值范围是______ .三、解答题(本大题共7小题,共78.0分。

2023年上海中考数学试卷22题

2023年上海中考数学试卷22题

2023年上海中考数学试卷22题
2023年上海中考数学试卷22题是一道关于概率的题目。

本题考察学生对概率的理解和计算能力。

下面将详细解答该题。

题目描述:某班级有30个学生,其中15个是女生,15个是男生。

班级中有5个学生喜欢阅读科幻小说,其中3个是男生。

如果从班级中随机选取一名学生,那么这个学生既是女生又喜欢阅读科幻小说的概率是多少?
解答:
首先,我们需要计算班级中既是女生又喜欢阅读科幻小说的学生人数。

根据题目描述,班级中有15个女生,其中5个学生喜欢阅读科幻小说。

所以,既是女生又喜欢阅读科幻小说的学生人数是5个。

接下来,我们需要计算从班级中随机选取一名学生的概率。

班级总共有30个学生,因此,从班级中随机选取一名学生的概率是1/30。

最后,我们需要计算既是女生又喜欢阅读科幻小说的学生被选中的概率。

根据概率的定义,既是女生又喜欢阅读科幻小说的学生被选中的概率等于既是女生又喜欢阅读科幻小说的学生人数除以总体样本空间的大小。

所以,既是女生又喜欢阅读科幻小说的学生被选中的概率是5/30。

综上所述,这个学生既是女生又喜欢阅读科幻小说的概率是5/30,即1/6。

【真题】上海市中考数学试题及答案解析

【真题】上海市中考数学试题及答案解析

上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分。

下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是()A.4 B.3 C.2 D.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和295.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB 的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是.8.(4.00分)计算:(a+1)2﹣a2=.9.(4.00分)方程组的解是.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是元.(用含字母a的代数式表示).11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.20.(10.00分)先化简,再求值:(﹣)÷,其中a=.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c 经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。

2019年上海市中考数学试题及参考答案(word解析版)

2019年上海市中考数学试题及参考答案(word解析版)

2019年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x2﹣1,那么f(﹣1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣820.(10分)解方程:﹣=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.参考答案与解析一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=【知识考点】整式的混合运算.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=,故D错误;故选:B.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n【知识考点】不等式的性质.【思路分析】根据不等式的性质即可求出答案.【解题过程】解:∵m>n,∴﹣2m<﹣2n,故选:D.【总结归纳】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】正比例函数的性质;反比例函数的性质.【思路分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解题过程】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【总结归纳】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【知识考点】算术平均数;中位数;方差.【思路分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解题过程】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【总结归纳】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等【知识考点】命题与定理.【思路分析】利用矩形的性质分别判断后即可确定正确的选项.【解题过程】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解矩形的性质,难度不大.6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8【知识考点】圆与圆的位置关系.【思路分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解题过程】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【总结归纳】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解题过程】解:(2a2)2=22a4=4a4.【总结归纳】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.8.已知f(x)=x2﹣1,那么f(﹣1)=.【知识考点】函数值.【思路分析】根据自变量与函数值的对应关系,可得答案.【解题过程】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.【总结归纳】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.如果一个正方形的面积是3,那么它的边长是.【知识考点】算术平方根.【思路分析】根据算术平方根的定义解答.【解题过程】解:∵正方形的面积是3,∴它的边长是.故答案为:【总结归纳】本题考查了二次根式的应用,主要利用了正方形的性质和算术平方根的定义.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【知识考点】根的判别式.【思路分析】由于方程没有实数根,则其判别式△<0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围.【解题过程】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.【总结归纳】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【知识考点】列表法与树状图法.【思路分析】先求出点数大于4的数,再根据概率公式求解即可.【解题过程】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.【总结归纳】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)【知识考点】二元一次方程组的应用.【思路分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解题过程】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y=.答:1大桶加1小桶共盛斛米.故答案为:.【总结归纳】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.【知识考点】函数关系式.【思路分析】根据登山队大本营所在地的气温为2℃,海拔每升高1km气温下降6℃,可求出y 与x的关系式.【解题过程】解:由题意得y与x之间的函数关系式为:y=﹣6x+2.故答案为:y=﹣6x+2.【总结归纳】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【知识考点】用样本估计总体;扇形统计图.【思路分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解题过程】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.【总结归纳】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.【知识考点】平行线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形斜边上的中线性质得到DA=DC,则∠DCA=∠DAC=30°,再利用三角形外角性质得到∠2=60°,然后根据平行线的性质求∠1的度数.【解题过程】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【总结归纳】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.【知识考点】*平面向量.【思路分析】连接CF.利用三角形法则:=+,求出即可.【解题过程】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.【总结归纳】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【知识考点】正方形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解题过程】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【总结归纳】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【知识考点】全等三角形的性质.【思路分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.【解题过程】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.【总结归纳】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣8【知识考点】实数的运算;分数指数幂.【思路分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(10分)解方程:﹣=1【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(﹣4,0),根据两点间的距离公式即可得到结论.【解题过程】解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).【总结归纳】本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【知识考点】矩形的性质;解直角三角形的应用.【思路分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解题过程】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【总结归纳】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【知识考点】菱形的判定;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.【思路分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.【解题过程】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【总结归纳】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【知识考点】二次函数综合题.【思路分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解题过程】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.【总结归纳】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【知识考点】相似形综合题.【思路分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC 是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解题过程】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.21。

2019-2021年上海市数学中考题分类汇编——解答题(含答案)

2019-2021年上海市数学中考题分类汇编——解答题(含答案)

2019-2021年上海市数学中考题分类汇编——解答题一、解答题1.(上海市2021年中考数学真题)计算:&#ξΦ020;1129|12-+-2.(上海市2021年中考数学真题)解方程组:22340x y x y +=⎧⎨-=⎩3.(上海市2021年中考数学真题)已知在ABD △中,,8,4AC BD BC CD ⊥==,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.4.(上海市2021年中考数学真题)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如下图.(1)求三月份共生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.5.(上海市2021年中考数学真题)已知:在圆O 内,弦AD 与弦BC 交于点,,,G AD CB M N =分别是CB 和AD 的中点,联结,MN OG .(1)求证:OG MN ⊥;(2)联结,,AC AM CN ,当//CN OG 时,求证:四边形ACNM 为矩形.6.(上海市2021年中考数学真题)已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q .(1)求抛物线的解析式; (2)点A 在直线PQ 上且在第一象限内,过A 作AB x ⊥轴于B ,以AB 为斜边在其左侧作等腰直角ABC . ①若A 与Q 重合,求C 到抛物线对称轴的距离;①若C 落在抛物线上,求C 的坐标.7.(上海市2021年中考数学真题)如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;①若BE CD ⊥,求AD BC的值; (2)若2,3DE OE ==,求CD 的长.8.(上海市2020年中考数学试题)计算:1327(12)﹣2+|3. 9.(上海市2020年中考数学试题)解不等式组:1076713x x x x >+⎧⎪+⎨-<⎪⎩10.(上海市2020年中考数学试题)如图,在直角梯形ABCD 中,//AB DC ,①DAB =90°,AB =8,CD =5,BC(1)求梯形ABCD 的面积;(2)联结BD ,求①DBC 的正切值.11.(上海市2020年中考数学试题)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.12.(上海市2020年中考数学试题)已知:如图,在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:①BEC ①①BCH ;(2)如果BE 2=AB •AE ,求证:AG =DF .13.(上海市2020年中考数学试题)在平面直角坐标系xOy 中,直线y =﹣12x +5与x 轴、y 轴分别交于点A 、B (如图).抛物线y =ax 2+bx (a ≠0)经过点A .(1)求线段AB 的长;(2)如果抛物线y =ax 2+bx 经过线段AB 上的另一点C ,且BC (3)如果抛物线y =ax 2+bx 的顶点D 位于①AOB 内,求a 的取值范围.14.(上海市2020年中考数学试题)如图,①ABC 中,AB =AC ,①O 是①ABC 的外接圆,BO 的延长交边AC 于点D .(1)求证:①BAC =2①ABD ;(2)当①BCD 是等腰三角形时,求①BCD 的大小;(3)当AD =2,CD =3时,求边BC 的长.15.(上海市20192318- 16.(上海市2019年中考数学试题)解分式方程:228122-=--x x x x. 17.(上海市2019年中考数学试题)在平面直角坐标系xoy 中(如图),已知一次函数的图像平行于直线12y x =,且经过点A (2,3),与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.18.(上海市2019年中考数学试题)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.19.(上海市2019年中考数学试题)已知:如图,AB 、AC 是①O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交①O 于点E ,联结CD 并延长交①O 于点F.(1)求证:BD =CD :(2)如果AB 2=AO·AD ,求证:四边形ABDC 是菱形.20.(上海市2019年中考数学试题)在平面直角坐标系xOy 中(如图),已知抛物线y =x 2-2x ,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”①试求抛物线y =x 2-2x 的“不动点”的坐标;①平移抛物线y =x 2-2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.21.(上海市2019年中考数学试题)如图1,AD 、BD 分别是ABC 的内角①BAC 、①ABC 的平分线,过点A 作AE①AD ,交BD 的延长线于点E .(1)求证:12E C ∠=∠; (2)如图2,如果AE=AB ,且BD :DE=2:3,求BC :AB 的值;(3)如果①ABC 是锐角,且ABC 与ADE 相似,求①ABC 的度数,并直接写出ADE ABC SS 的值.参考答案:1.2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+-(112-⨯=31=2.【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.2.21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩ 【分析】由第一个方程得到3x y =-,再代入第二个方程中,解一元二次方程方程即可求出y ,再回代第一个方程中即可求出x .【详解】解:由题意:223(1)40(2)x y x y +=⎧⎨-=⎩, 由方程(1)得到:3x y =-,再代入方程(2)中:得到:22(3)40y y ,进一步整理为:32y y 或32y y , 解得11y =,23y =-,再回代方程(1)中,解得对应的12x =,26x =,故方程组的解为:21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩.【点睛】本题考查了代入消元法解方程及一元二次方程的解法,熟练掌握代入消元法,运算过程中细心即可. 3.(1)6AC =;(2)310 【分析】(1)在Rt ①ABC 中,利用三角函数即可求出AB ,故可得到AC 的长;(2)过点F 作FG ①BD ,利用中位线的性质得到FG ,CG ,再根据正切的定义即可求解.【详解】(1)①AC BD ⊥,4cos 5ABC ∠=①cos 45ABC BC AB ∠== ①AB =10①AC 6;(2)过点F 作FG ①BD ,①BF 为AD 边上的中线.①F 是AD 中点①FG ①BD ,AC BD ⊥①//FG AC①FG 是①ACD 的中位线①FG =1=2AC 3 CG=1=22CD ①在Rt ①BFG 中,tan FBD ∠=338210FG BG ==+.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.4.(1)36万部;(2)100MB /秒【分析】(1)根据扇形统计图求出3月份的百分比,再利用80万×3月份的百分比求出三月份共生产的手机数; (2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒,根据下载一部1000MB 的电影,5G 比4G 要快190秒列方程求解.【详解】(1)3月份的百分比=130%25%45%--=三月份共生产的手机数=8045%=36⨯(万部)答:三月份共生产了36万部手机.(2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒, 由题意可知:1000100019095x x-=- 解得:100x =检验:当100x =时,()950x x ⋅-≠①100x =是原分式方程的解.答:5G 手机的下载速度为100MB /秒.【点睛】本题考查实际问题与分式方程.求解分式方程时,需要检验最简公分母是否为0.5.(1)见解析;(2)见解析【分析】(1)连结,OM ON ,由M 、N 分别是CB 和AD 的中点,可得OM ①BC ,ON ①AD ,由AB CD =,可得OM ON =,可证()Rt EOP Rt FOP HL ∆∆≌,MG NG MGO NGO =∠=∠,,根据等腰三角形三线合一性质OG MN ⊥; (2)设OG 交MN 于E ,由Rt EOP Rt FOP ∆∆≌,可得MG NG =,可得CMN ANM ∠=∠,1122CM CB AD AN ===,可证CMN ANM ≌可得AM CN =,由CN∥OG ,可得90AMN CNM ∠=∠=︒,由+=180AMN CNM ∠∠︒可得AM∥CN ,可证ACNM 是平行四边形,再由90AMN∠=︒可证四边形ACNM是矩形.【详解】证明:(1)连结,OM ON ,①M 、N 分别是CB 和AD 的中点,①OM ,ON 为弦心距,①OM ①BC ,ON ①AD , 90GMO GNO ∴∠=∠=︒, 在O 中,AB CD =, OM ON ∴=,在Rt △OMG 和Rt △ONG 中, OM ONOG OG =⎧⎨=⎩, ()Rt GOM Rt GON HL ∴∆∆≌, ①MG NG MGO NGO =∠=∠,, OG MN ∴⊥;(2)设OG 交MN 于E , ()Rt GOM Rt GON HL ∆∆≌, ①MG NG =,①GMN GNM ∠=∠,即CMN ANM ∠=∠, 1122CM CB AD AN ===,在①CMN 和①ANM 中 CM ANCMN ANM MN NM=⎧⎪∠=∠⎨⎪=⎩, CMN ANM ∴≌,,AM CN AMN CNM ∴=∠=∠, ①CN∥OG,90CNM GEM ∴∠=∠=︒,90AMN CNM ∴∠=∠=︒,+90+90=180AMN CNM ∴∠∠=︒︒︒,①AM∥CN ,ACNM ∴是平行四边形,90AMN ∠=︒,①四边形ACNM 是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.6.(1)21922y x =-+;(2)①1;①点C 的坐标是52,2⎛⎫- ⎪⎝⎭ 【分析】(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩,解方程组即可; (2)①根据AB =4,斜边上的高为2,Q 的横坐标为1,计算点C 的横坐标为-1,即到y 轴的距离为1;①根据直线PQ 的解析式,设点A (m ,-2m +6),三角形ABC 是等腰直角三角形,用含有m 的代数式表示点C 的坐标,代入抛物线解析式求解即可.【详解】解:(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩ 解得19,22a c =-=. 所以抛物线的解析式是21922y x =-+. (2)①如图2,抛物线的对称轴是y 轴,当点A 与点(1,4)Q 重合时,4AB =,作CH AB ⊥于H .①ABC 是等腰直角三角形,①CBH 和CAH 也是等腰直角三角形,①2CH AH BH ===,①点C 到抛物线的对称轴的距离等于1.①如图3,设直线PQ 的解析式为y =kx +b ,由(3,0)(1,4)P Q 、,得30,4,k b k b +=⎧⎨+=⎩解得2,6,k b =-⎧⎨=⎩ ①直线PQ 的解析式为26y x =-+,设(,26)A m m -+,①26AB m =-+,所以3CH BH AH m ===-+.所以3,(3)23C C y m x m m m =-+=--+-=-.将点(23,3)C m m --+代入21922y x =-+, 得2193(23)22m m -+=--+. 整理,得22730m m -+=.因式分解,得(21)(3)0m m --=. 解得12m =,或3m =(与点P 重合,舍去). 当12m =时,1523132,3322m m -=-=--+=-+=. 所以点C 的坐标是52,2⎛⎫- ⎪⎝⎭. 【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键.7.(1)①见解析;①23;(2)13【分析】(1)①根据已知条件、平行线性质以及直角三角形斜边上的中线等于斜边的一半可推导,DAC DCA OBC OCB ∠=∠=∠=∠,由此可得DAC OBC ∽;①若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒,作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.根据30所对直角边是斜边的一半可知CH m =,由此可得AD BC 的值. (2)①当点E 在AD 上时,可得四边形ABCE 是矩形,设AD CD x ==,在Rt ACE 和Rt DCE 中,根据22CE CE =,列方程22226(2)2x x --=-求解即可.①当点E 在CD 上时,设AD CD x ==,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m =;由EOC ECB ∽得EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+,解出x 的值即可. 【详解】(1)①由AD CD =,得12∠=∠.由//AD BC ,得13∠=∠. 因为BO 是Rt ABC △斜边上的中线,所以OB OC =.所以34∠=∠.所以1234∠=∠=∠=∠.所以DAC OBC ∽.①若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒.作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.在Rt DCH △中,60,2DCH DC m ∠=︒=,所以CH m =.所以3BC BH CH m =+=. 所以2233AD m BC m ==. (2)①如图5,当点E 在AD 上时,由//,AD BC O 是AC 的中点,可得OB OE =,所以四边形ABCE 是平行四边形.又因为90ABC ∠=︒,所以四边形ABCE 是矩形,设AD CD x ==,已知2DE =,所以2AE x .已知3OE =,所以6AC =.在Rt ACE 和Rt DCE 中,根据22CE CE =,列方程22226(2)2x x --=-.解得1x =+1x = 舍去负值).①如图6,当点E 在CD 上时,设AD CD x ==,已知2DE =,所以2CE x =-.设OB OC m ==,已知3OE =,那么3EB m =+.一方面,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m=, 另一方面,由24BEC ∠=∠∠,是公共角,得EOC ECB ∽. 所以EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+. 等量代换,得32232x x x m m -==-+.由322x x m =-,得226x x m -=. 将226x x m -=代入3223x x m -=-+,整理,得26100x x --=.解得3x =3x =.【点睛】本题主要考查相似三角形的判定与性质,斜边上的中线,勾股定理等,能够运用相似三角形边的关系列方程是解题的关键.8.0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+2﹣4+32﹣4+3=0.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.9.2<x<5.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【详解】解:由题意知:1076713①②>+⎧⎪⎨+-<⎪⎩x xxx,解不等式①,移项得:3x>6,系数化为1得:x>2,解不等式①,去分母得:3x-3<x+7.移项得:2x<10,系数化为1得:x<5,①原不等式组的解集是2<x<5.故答案为:2<x<5.【点睛】本题考查解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10.(1)39;(2)12.【分析】(1)过C作CE①AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到6CE,即可求出梯形的面积;(2) 过C作CH①BD于H,根据相似三角形的性质得到CH CDAD BD=,根据勾股定理得到10,6即可求解.【详解】解:(1)过C作CE①AB于E,如下图所示:①AB//DC,①DAB=90°,①①D=90°,①①A=①D=①AEC=90°,①四边形ADCE是矩形,①AD=CE,AE=CD=5,①BE=AB﹣AE=3.①BC①CE,①梯形ABCD的面积=12×(5+8)×6=39,故答案为:39.(2)过C作CH①BD于H,如下图所示:①CD//AB,①①CDB=①ABD.①①CHD=①A=90°,①①CDH①①DBA,①CH CD AD BD=,①BD,①5610CH=,①CH=3,①BH,①①DBC的正切值=CHBH=36=12.故答案为:12.【点睛】本题考查了直角梯形,解直角三角形,相似三角形的判定和性质,矩形的判定和性质,正确的作出辅助线是解题的关键.11.(1)504万元;(2)20%.【分析】(1)根据“前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%”即可求解;(2)设去年8、9月份营业额的月增长率为x,则十一黄金周的月营业额为350(1+x)2,根据“十一黄金周这七天的总营业额与9月份的营业额相等”即可列方程求解.【详解】解:(1)第七天的营业额是450×12%=54(万元),故这七天的总营业额是450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【点睛】本题考查了一元二次方程的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键.12.(1)证明见解析;(2)证明见解析.【分析】(1)先证明①CDF①①CBE,进而得到①DCF=①BCE,再由菱形对边CD//BH,得到①H=①DCF,进而①BCE=①H 即可求解.(2)由BE2=AB•AE,得到BEAB=AEEB,再利用AG//BC,平行线分线段成比例定理得到BEAB=AGBC,再结合已知条件即可求解.【详解】解:(1)①四边形ABCD是菱形,①CD=CB,①D=①B,CD//AB.①DF=BE,①①CDF①△CBE(SAS),①①DCF=①BCE.①CD//BH,①①H=①DCF,①①BCE=①H.且①B=①B,①①BEC①①BCH.(2)①BE2=AB•AE,①BEAB=AEEB,①AG//BC,①AEBE=AGBC,①BEAB=AGBC,①DF=BE,BC=AB,①BE=AG=DF,即AG=DF.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(1)(2)y=﹣14x2+52x;(3)﹣110<a<0.【分析】(1)先求出A,B坐标,即可得出结论;(2)设点C(m,-12m+5),则|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;(3)将点A坐标代入抛物线解析式中得出b=-10a,代入抛物线解析式中得出顶点D坐标为(5,-25a),即可得出结论.【详解】(1)针对于直线y=﹣12x+5,令x=0,y=5,①B(0,5),令y=0,则﹣12x+5=0,①x=10,①A(10,0),①AB(2)设点C(m,﹣12m+5).①B(0,5),①BC|m|.①BC|m①m=±2.①点C在线段AB上,①m=2,①C(2,4),将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得100100 424a ba b+=⎧⎨+=⎩,①1452ab⎧=-⎪⎪⎨⎪=⎪⎩,①抛物线y=﹣14x2+52x;(3)①点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,①b=﹣10a,①抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,①抛物线的顶点D坐标为(5,﹣25a),将x=5代入y=﹣12x+5中,得y=﹣12×5+5=52,①顶点D位于①AOB内,①0<﹣25a<52,①﹣110<a<0.【点睛】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,抛物线的顶点坐标的求法,求出点D的坐标是解本题的关键.14.(1)证明见解析;(2)①BCD的值为67.5°或72°;(3【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则①C=①BDC=①ABD+①BAC=3①ABD.①若CD=CB,则①CBD=①CDB=3①ABD.①若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3) 如图3中,作AE//BC交BD的延长线于E.则23==AE ADBC DC,进而得到34==AO AEOH BH,设OB=OA=4a,OH=3a,根据BH2=AB2-AH2=OB2-OH2,构建方程求出a即可解决问题.【详解】解:(1)连接OA,如下图1所示:①AB=AC,①AB=AC,①OA①BC,①①BAO=①CAO.①OA=OB,①①ABD=①BAO,①①BAC=2①ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则①C=①BDC=①ABD+①BAC=3①ABD.①AB=AC,①①ABC=①C,①①DBC=2①ABD.①①DBC+①C+①BDC=180°,①8①ABD=180°,①①C=3①ABD=67.5°.①若CD=CB,则①CBD=①CDB=3①ABD,①①C=4①ABD.①①DBC+①C+①CDB=180°,①10①ABD=180°,①①BCD=4①ABD=72°.①若DB=DC,则D与A重合,这种情形不存在.综上所述:①C的值为67.5°或72°.(3)如图3中,过A点作AE//BC交BD的延长线于E.则AEBC=ADDC=23,且BC=2BH,①AOOH=AEBH=43,设OB=OA=4a,OH=3a.则在Rt①ABH和Rt①OBH中,①BH2=AB2﹣AH2=OB2﹣OH2,①25 - 49a2=16a2﹣9a2,①a2=25 56,①BH①BC=2BH.【点睛】本题属于圆的综合题,考查了垂径定理,等腰三角形的性质,勾股定理解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数构建方程解决问题,属于中考常考题型.15.-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.【详解】2318124-=-3.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.16.x=-4.【分析】首先去分母,化为整式方程,然后合并同类项,把未知数的系数化为1,最后检验求得的结果是否使原分式有意义,即可得到答案.【详解】去分母得2x2-8=x2-2x,移项、整理得x2+2x-8=0,解得:x1=2,x2=-4.经检验:x=2是增根,舍去;x=-4是原方程的根.①原方程的根是x=-4.【点睛】此题考查解分式方程,解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法;注意解分式方程要检验,避免产生增根.17.(1)122y x=+;(2)点C的坐标是(0,12-)【分析】(1)设一次函数解析式为y=kx+b(k=0),把A坐标代入即可解答(2)先求出点B坐标,设点C的坐标为(0,y),由AC=BC利用勾股定理求出y即可解答【详解】(1)设一次函数解析式为y=kx+b(k=0).一次函数的图像平行于直线12y x=,①12k=又①一次函数的图像经过点A(2,3),①1322b=⨯+,解得b=2.所以,所求一次函数的解析式是122y x=+(2)由y=122x+,令y=0,得号122x+=0,解得x=-4.①一次函数的图像与x轴的交点为B(-4,0).①点C在y轴上,.设点C的坐标为(0,y).由AC=BC y=1 2 -经检验:y=12-是原方程的根.①点C的坐标是(0,12 -)【点睛】此题考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题关键在于利用勾股定理进行计算18.(1)点D′到BC的距离为()厘米;(2)E、E′两点的距离是【分析】(1)过点D′作D′H①BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,①DAD′=60°,利用矩形的性质可得出①AFD′=①BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,①EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE 可得出E、E′两点的距离.【详解】解:(1)过点D′作D′H①BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,①DAD′=60°.①四边形ABCD是矩形,①AD①BC,①①AFD′=①BHD′=90°.在Rt△AD′F中,又①CE=40厘米,DE=30厘米,①FH=DC=DE+CE=70厘米,①D′H=D′F+FH=()厘米.答:点D′到BC的距离为()厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,①EAE′=60°,①①AEE′是等边三角形,①EE′=AE.①四边形ABCD是矩形,①①ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,①AE=厘米.答:E、E′两点的距离是【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.19.(1)见解析;(2)见解析.【分析】(1)连接BC,根据垂直平分线的性质即可解答(2)连接OB,先求出①ABO①①ADB,再利用相似的性质,求出四边形ABDC的四边相等,即可解答【详解】(1)连接BC,在①O中,①AB=AC,①①ABC为等腰三角形又①AD经过圆心O,①AD垂直平分BC①BD=CD.(2)连接OB.①AB2=AO·AD,AB AD AO AB又①①BAO=①DAB,①①ABO①①ADB①①OBA =①BDA ①OA =OB , ①①OBA =①OAB. ①①OAB =①BDA ①AB =BD.又①AB =AC ,BD =CD , ①AB =AC =BD =CD. ①四边形ABDC 是菱形. 【点睛】此题考查垂直平分线的性质,三角形相似的判定与性质,菱形的判定,解题关键在于作辅助线20.(l)抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的;(2)①(0,0)、(3,3); ①新抛物线的表达式是y =(x +1)2-1. 【分析】 (1)10a =>,故该抛物线开口向上,顶点A 的坐标为()1,1-;(2)①设抛物线“不动点”坐标为(),t t ,则22t t t =-,即可求解;①新抛物线顶点B 为“不动点”,则设点(),B m m ,则新抛物线的对称轴为:x m =,与x 轴的交点(),0C m ,四边形OABC 是梯形,则直线x m =在y轴左侧,而点()1,1A -,点(),B m m ,则1m =-,即可求解. 【详解】 (l)10a =>,抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的. (2)①设抛物线y =x 2-2x 的“不动点”坐标为(t ,t). 则t =t 2-2t ,解得t 1=0,t 2=3.所以,抛物线y =x 2-2x 的“不动点”的坐标是(0,0)、(3,3). ①①新抛物线的顶点B 是其“不动点”,①设点B 的坐标为(m ,m) ①新抛物线的对称轴为直线x =m ,与x 轴的交点为C(m ,0) ①四边形OABC 是梯形, ①直线x =m 在y 轴左侧. ①BC 与OA 不平行①OC①AB.又①点A 的坐标为(1,一1),点B 的坐标为(m ,m),∴m =-1.①新抛物线是由抛物线y =x 2-2x 向左平移2个单位得到的, ①新抛物线的表达式是y =(x +1)2-1. 【点睛】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可. 21.(1)详见解析;(2)43;(3)①ABC=30°或者①ABC=45°,2ADE ABCS S =2ADE ABCSS=【分析】(1)先根据题意证明12BAD BAC ∠=∠以及12ABD ABC ∠=∠,再适当变形即可得到答案;(2)先根据角平分线的性质和直线平行的性质证明①BAF①①CAF ,再根据全等三角形的性质得到BF=CF ,再根据BD :DE=2:3,计算即可得到答案;(3)根据①ABC 与①ADE 相似,①DAE=90°,因此①ABC 中必有一个内角为90°,再根据①ABC 是锐角,得到①ABC≠90°,再分情况讨论即可得到答案; 【详解】(1)证明:如图1中,①AE①AD ,①①DAE=90°,①E=90°-①ADE , ①AD 平分①BAC , ①12BAD BAC ∠=∠ ,同理可得:12ABD ABC ∠=∠ ,①180ADE BAD DBA BAC ABC C ∠=∠+∠∠+∠=︒-∠,, 11()9022ADE ABC BAC C ∠=∠+∠=︒-∠ ,11909022E C C ∠=︒-︒-∠=∠().(2)解:延长AD 交BC 于点F .①AD 是①BAC 的平分线, ①①BAD=①CAD , ①AB=AE , ①①ABE=①E , BE 平分①ABC , ①①ABE=①EBC , ①①E=①CBE , ①AE①BC ,①①AFB=①EAD=90°,BF BDAE DE= ①①AFB=①AFC=90°, 在①BAF 和①CAF 中,BAD CAD AD ADAFB AFC ∠=∠⎧⎪=⎨⎪∠=∠⎩①①BAF①①CAF(ASA),①BF=CF (全等三角形对应边相等), ①BD :DE=2:3 ①23BF BD AE DE ==, ①43BC BF CF AE AE +==; (3) ①①ABC 与①ADE 相似,①DAE=90°, ①①ABC 中必有一个内角为90° ①①ABC 是锐角,①①ABC≠90°.①当①BAC=①DAE=90°时, ①12E C ∠=∠(由(1)知), ①①ABC+①C=90°, ①①ABC=30°, ①此时2ADE ABCS S=-①当①C=①DAE=90°时,1452E C ==︒∠∠,①①EDA=45°,①①ABC 与①ADE 相似, ①①ABC=45°,此时2ADE ABCS S=综上,①ABC=30°或者①ABC=45°,2ADE ABCS S=-2ADE ABCS S=【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质、全等三角形的判定与性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

2021年上海市初中毕业生统一考试(中考)数学试卷及解析

2021年上海市初中毕业生统一考试(中考)数学试卷及解析

2021年上海市初中毕业生统一考试(中考)数学试卷一.选择题1.(2021•上海)下列实数中,有理数是( )A .12B .13C .14D .152.(2021•上海)下列单项式中,23a b 的同类项是( )A .32a bB .233a bC .2a bD .3ab3.(2021•上海)将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,以下错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变4.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A .2/kg 包B .3/kg 包C .4/kg 包D .5/kg 包5.(2021•上海)如图,在平行四边形ABCD 中,已知AB a =,AD b =,E 为AB 中点,则1(2a b += )A .ECB .CEC .ED D .DE6.(2021•上海)如图,长方形ABCD 中,4AB =,3AD =,圆B 半径为1,圆A 与圆B 内切,则点C 、D 与圆A 的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外二.填空题7.(2021•上海)计算:72x x÷=.8.(2021•上海)已知6()f xx=,那么(3)f=.9.(2021•上海)已知43x+=,则x=.10.(2021•上海)不等式2120x-<的解集是.11.(2021•上海)70︒的余角是.12.(2021•上海)若一元二次方程2230x x c-+=无解,则c的取值范围为.13.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为.14.(2021•上海)已知函数y kx=经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式.15.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得元.16.(2021•上海)如图所示,已知在梯形ABCD中,//AD BC,12ABDBCDSS∆∆=,则BOCBCDSS∆∆=.17.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 .18.(2021•上海)定义:平面上一点到图形最短距离为d ,如图,2OP =,正方形ABCD 边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,则d 的取值范围为 .三.解答题19.(2021•上海)计算:1129|12|28-+--⨯.20.(2021•上海)解方程组:22340x y x y +=⎧⎨-=⎩. 21.(2021•上海)如图,已知ABD ∆中,AC BD ⊥,8BC =,4CD =,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.22.(2021•上海)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.24.(2021•上海)已知抛物线2(0)y ax c a =+≠经过点(3,0)P 、(1,4)Q .(1)求抛物线的解析式;(2)若点A 在直线PQ 上,过点A 作AB x ⊥轴于点B ,以AB 为斜边在其左侧作等腰直角三角形ABC . ①当Q 与A 重合时,求C 到抛物线对称轴的距离;②若C 在抛物线上,求C 的坐标.25.(2021•上海)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,AD CD =,O 是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于点E .(1)当点E 在CD 上,①求证:DAC OBC ∆∆∽;②若BE CD ⊥,求AD BC的值; (2)若2DE =,3OE =,求CD 的长.2021年上海市初中毕业生统一考试(中考)数学试卷参考答案与试题解析一.选择题1.(2021•上海)下列实数中,有理数是( )A B C D 【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:=,不是有理数,不合题意;B =12C =,是有理数,符合题意;D = 故选:C .【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.(2021•上海)下列单项式中,23a b 的同类项是( )A .32a bB .233a bC .2a bD .3ab【分析】依据同类项的定义:所含字母相同,相同字母的次数相同,据此判断即可.【解答】解:A 、字母a 、b 的次数不相同,不是同类项,故本选项不符合题意;B 、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C 、字母b 的次数不相同,不是同类项,故本选项不符合题意;D 、相同字母a 的次数不相同,不是同类项,故本选项不符合题意;故选:B .【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.3.(2021•上海)将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,以下错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变【分析】由于抛物线平移后的形状不变,对称轴不变,a 不变,抛物线的增减性不变.【解答】解:A 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,a 不变,开口方向不变,故不符合题意.B 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,顶点的横坐标不变,对称轴不变,故不符合题意.C 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,抛物线的性质不变,自变量x 不变,则y 随x 的变化情况不变,故不符合题意.D 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,与y 轴的交点也向下平移两个单位,故符合题意.故选:D .【点评】本题主要考查了二次函数图象与几何变换,二次函数的性质,注意:抛物线平移后的形状不变,开口方向不变,顶点坐标改变.4.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A .2/kg 包B .3/kg 包C .4/kg 包D .5/kg 包【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【解答】解:由图知这组数据的众数为1.5~2.5kg kg ,取其组中值2kg ,故选:A .【点评】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.5.(2021•上海)如图,在平行四边形ABCD 中,已知AB a =,AD b =,E 为AB 中点,则1(2a b += )A.EC B.CE C.ED D.DE 【分析】根据相等向量的几何意义和三角形法则解答.【解答】解:AB a=,∴12a EB=,四边形ABCD是平行四边形,∴BC AD b==,∴12a b EB BC EC+=+=,故选:A.【点评】本题考查平面向量,三角形法则,平行四边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.6.(2021•上海)如图,长方形ABCD中,4AB=,3AD=,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是()A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外【分析】两圆内切,圆心距等于半径之差的绝对值,得圆A的半径等于5,由勾股定理得5AC=,由点与圆的位置关系,可得结论.【解答】解:两圆内切,圆心距等于半径之差的绝对值,设圆A的半径为R,则:1AB R=-,4AB =,圆B 半径为1,5R ∴=,即圆A 的半径等于5,4AB =,3BC AD ==,由勾股定理可知5AC =,5AC R ∴==,3AD R =<,∴点C 在圆上,点D 在圆内,故选:C .【点评】本题考查了点与圆的位置关系、圆与圆的位置关系勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.二.填空题7.(2021•上海)计算:72x x ÷= 5x .【分析】根据同底数幂的除法法则进行解答即可.【解答】解:72725x x x x -÷==,故答案为:5x .【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键.8.(2021•上海)已知6()f x x=,那么f =【分析】将x ==【解答】解:由题意将x ==则有:f ==故答案为:【点评】本题考查函数求值问题,只需将自变量的取值代入函数表达式.9.(20213=,则x = 5 .【分析】根据算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 进行解答即可.【解答】解:3=,49x ∴+= 5x ∴=.故答案为:5.【点评】此题考查的是算术平方根的概念,掌握其概念是解决此题关键.10.(2021•上海)不等式2120x -<的解集是 6x < .【分析】不等式移项,把x 系数化为1,即可求出解集.【解答】解:移项,得:212x <,系数化为1,得:6x <,故答案为6x <.【点评】此题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.11.(2021•上海)70︒的余角是 20︒ .【分析】根据余角的定义即可求解.【解答】解:根据定义一个角是70︒,则它的余角度数是907020︒-︒=︒,故答案为,20︒.【点评】本题主要考查了余角的概念,掌握互为余角的两个角的和为90度是解决此题关键,12.(2021•上海)若一元二次方程2230x x c -+=无解,则c 的取值范围为 98c > . 【分析】根据根的判别式的意义得到△224(1)0a =-⨯⨯-<,然后求出a 的取值范围. 【解答】解:一元二次方程2230x x c -+=无解,△2(3)420c =--⨯⨯<, 解得98c >, c ∴的取值范围是98c >. 故答案为:98c >. 【点评】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式△24b ac =-:当△0>,方程有两个不相等的实数根;当△0=,方程有两个相等的实数根;当△0<,方程没有实数根.13.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 13. 【分析】用偶数的个数除以数的总数即可求得答案. 【解答】解:共有9个数据,其中偶数有3个,∴从这些数据中选取一个数据,得到偶数的概率为3193=,故答案为:13. 【点评】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.14.(2021•上海)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式 2y x =- .【分析】根据正比例函数的性质以及正比例函数图象是点的坐标特征限即可求解.【解答】解:函数y kx =经过二、四象限,0k ∴<.若函数y kx =经过(1,1)-,则1k =-,即1k =-,故函数y kx =经过二、四象限,且函数不经过(1,1)-时,0k <且1k ≠-, ∴函数解析式为2y x =-,故答案为2y x =-.【点评】考查了正比例函数图象上点的坐标特征,熟练掌握正比例函数的性质是解题的关键.15.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得 335k 元.【分析】根据图像求出函数关系式,计算售价为8元时卖出的苹果数量,即可求解.【解答】解:设卖出的苹果数量y 与售价x 之间的函数关系式为y mx n =+,5410m n k m n k +=⎧⎨+=⎩, 解得:357m k n k⎧=-⎪⎨⎪=⎩,375y kx k ∴=-+, 8x =时,3118755y k k k ==-⨯+=, ∴现以8元卖出,挣得1133(85)55k k -⨯=,故答案为:335k.【点评】此题主要考查了函数图象,能够得出卖出的苹果数量y与售价x之间的函数关系式是解题关键.16.(2021•上海)如图所示,已知在梯形ABCD中,//AD BC,12ABDBCDSS∆∆=,则BOCBCDSS∆∆=23.【分析】过D作DM BC⊥于M,过B作BN AD⊥于N,由四边形BMDN是矩形,可得DM BN=,12ADBC=,根据//AD BC,可得12OD ADOB BC==,23OBBD=,即可得到23BOCBCDSS∆∆=.【解答】解:过D作DM BC⊥于M,过B作BN AD⊥于N,如图://AD BC,DM BC⊥,BN AD⊥,∴四边形BMDN是矩形,DM BN=,12ABDBCDSS∆∆=,∴112122AD BNBC DM⋅=⋅,∴12ADBC=,//AD BC,∴12OD ADOB BC==,∴23OBBD=,∴23BOCBCDSS∆∆=,故答案为:23.【点评】本题考查三角形的面积,涉及基本的相似三角形判定与性质,掌握同(等)底三角形面积比等于高之比,同(等)高的三角形面积比等于底之比是解题的关键.17.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 332.【分析】利用ABG BCH ∆≅∆得到AG BH =,再根据含30度的直角三角形三边的关系得到2BG AG =,接着证明HG AG =可得结论.【解答】解:如图,ABG BCH ∆≅∆,AG BH ∴=,30ABG ∠=︒,2BG AG ∴=,即2BH HG AG +=,1HG AG ∴==,∴小两个正六边形的面积23336142=⨯⨯=, 故答案为:332.【点评】本题考查了含30度角的直角三角形:在直角三角形中,30︒角所对的直角边等于斜边的一半.也考查了正多边形与圆,解题的关键是求出HG .18.(2021•上海)定义:平面上一点到图形最短距离为d ,如图,2OP =,正方形ABCD 边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,则d 的取值范围为 221d .【分析】由题意以及正方形的性质得OP 过正方形ABCD 各边的中点时,d 最大,OP 过正方形ABCD 的顶点时,d 最小,分别求出d 的值即可得出答案.【解答】解:如图:设AB 的中点是E ,OP 过点E 时,点O 与边AB 上所有点的连线中,OE 最小,此时d PE =最大,OP 过顶点A 时,点O 与边AB 上所有点的连线中,OA 最大,此时d PA =最小,如图①:正方形ABCD 边长为2,O 为正方形中心,1AE ∴=,45OAE ∠=︒,OE AB ⊥,1OE ∴=,2OP =,1d PE ∴==;如图②:正方形ABCD 边长为2,O 为正方形中心,1AE ∴=,45OAE ∠=︒,OE AB ⊥,2OA ∴=2OP =,22d PA ∴==;d ∴的取值范围为221d . 故答案为:221d .【点评】本题考查正方形的性质,旋转的性质,根据题意得出d 最大、最小时点P 的位置是解题的关键.三.解答题19.(2021•上海)计算:1129|12-+--【分析】直接利用算术平方根、负整数指数幂、绝对值的性质分别化简得出答案.【解答】解:119122-⨯1912=+182=. 【点评】此题主要考查了实数的混合运算,正确掌握相关运算法则是解题关键.20.(2021•上海)解方程组:22340x y x y +=⎧⎨-=⎩. 【分析】解方程组的中心思想是消元,在本题中,只能用代入消元法解题.【解答】解:22340x y x y +=⎧⎨-=⎩①②, 由①得:3y x =-,把3y x =-代入②,得:224(3)0x x --=,化简得:(2)(6)0x x --=,解得:12x =,26x =.把12x =,26x =依次代入3y x =-得:11y =,23y =-,∴原方程组的解为121226,13x x y y ==⎧⎧⎨⎨==-⎩⎩. 【点评】本题以解高次方程组为背景,旨在考查学生对消元法的灵活应用能力.21.(2021•上海)如图,已知ABD ∆中,AC BD ⊥,8BC =,4CD =,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.【分析】(1)解锐角三角函数可得解;(2)连接CF ,过F 作BD 的垂线,垂足为E ,根据直角三角形斜边中线等于斜边一半,可得CF FD =,由勾股定理可得213AD =,2EF =,即可求tan FBD ∠.【解答】解:(1)4cos 5BC ABC AB ∠==, 8BC =,10AB ∴=,AC BD ⊥, 在Rt ACB ∆中,由勾股定理得,22221086AC AB BC =-=-=,即AC 的长为6; (2)如图,连接CF ,过F 点作BD 的垂线,垂足E ,BF 为AD 边上的中线,即F 为AD 的中点,12CF AD FD ∴==, 在Rt ACD ∆中,由勾股定理得,222264213AD AC CD =+=+=三角形CFD 为等腰三角形,FE CD ⊥,122CE CD ∴==, 在Rt EFC ∆中,221343EF CF CE =-=-=,33tan 10FE FBD BE BC CE ∴∠===+. 【点评】本题考查解直角三角形,解本题关键根据题意作辅助线,熟练掌握解直角三角函数和勾股定理等基本知识点.22.(2021•上海)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.【分析】(1)先根据扇形统计图求出三月份所占百分比,即可利用总数乘以三月份所占百分比求解;(2)设5G 手机的下载速度是每秒x MB .则4G 手机的下载速度是每秒(95)x MB -.根据“下载一部1000MB 的电影,5G 比4G 要快190秒”,列方程求解即可. 【解答】解:(1)80(130%25%)36⨯--=(万部),答:三月份生产了36万部手机;(2)设5G 手机的下载速度是每秒x MB .则4G 手机的下载速度是每秒(95)x MB -.1000100019095x x +=-, 解得:1100x =,25x =-(不合题意,舍去),经检验,1100x =是原方程的解,答:5G 手机的下载速度是每秒100MB .【点评】此题主要考查的是如何观察扇形统计图并且从统计图中获取信息,分式方程的应用,理解题意,找出正确的等量关系列出方程是解题的关键.24.(2021•上海)已知抛物线2(0)y ax c a =+≠经过点(3,0)P 、(1,4)Q .(1)求抛物线的解析式;(2)若点A 在直线PQ 上,过点A 作AB x ⊥轴于点B ,以AB 为斜边在其左侧作等腰直角三角形ABC . ①当Q 与A 重合时,求C 到抛物线对称轴的距离;②若C 在抛物线上,求C 的坐标.【分析】(1)(3,0)P 、(1,4)Q 代入2y ax c =+即可得抛物线的解析式为21922y x =-+; (2)①过C 作CH AB ⊥于H ,交y 轴于G ,A 与(1,4)Q 重合时,4AB =,1GH =,由ABC ∆是等腰直角三角形,得122CH AH BH AB ====,C 到抛物线对称轴的距离是1CG =; ②过C 作CH AB ⊥于H ,先求出直线PQ 为26y x =-+,设(,26)A m m -+,则26AB m =-+,3C y m =-+,(3)23C x m m m =--+-=-,将(23,3)C m m --+代入21922y x =-+解得12m =或3m = (与P 重合,舍去),即可求出5(2,)2C -. 【解答】解:(1)(3,0)P 、(1,4)Q 代入2y ax c =+得:094a c a c =+⎧⎨=+⎩,解得1292a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:21922y x =-+; (2)①过C 作CH AB ⊥于H ,交y 轴于G ,如图:当A 与(1,4)Q 重合时,4AB =,1GH =,ABC ∆是等腰直角三角形,ACH ∴∆和BCH ∆也是等腰直角三角形,122CH AH BH AB ∴====, 1CG CH GH ∴=-=,而抛物线21922y x =-+的对称轴是y 轴(0)x =, C ∴到抛物线对称轴的距离是1CG =;②过C 作CH AB ⊥于H ,如图:设直线PQ 解析式为y kx b =+,将(3,0)P 、(1,4)Q 代入得:034k b k b =+⎧⎨=+⎩,解得26k b =-⎧⎨=⎩, ∴直线PQ 为26y x =-+,设(,26)A m m -+,则26AB m =-+,132CH AH BH AB m ∴====-+, 3C y m ∴=-+,(3)23C x m m m =--+-=-,将(23,3)C m m --+代入21922y x =-+得: 2193(23)22m m -+=--+, 解得12m =或3m = (与P 重合,舍去), 12m ∴=,232m -=-,532m -+=, 5(2,)2C ∴-. 【点评】本题考查二次函数综合应用,涉及解析式、对称轴、等腰直角三角形、一次函数等知识,解题的关键是用含字母的代数式表示C 的坐标.25.(2021•上海)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,AD CD =,O 是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于点E .(1)当点E 在CD 上,①求证:DAC OBC ∆∆∽;②若BE CD ⊥,求AD BC 的值; (2)若2DE =,3OE =,求CD 的长.【分析】(1)①由等腰三角形的性质得出DAC DCA ∠=∠,由平行线的性质得出DAC ACB ∠=∠,由直角三角形的性质得出OBC OCB ∠=∠,根据相似三角形的判定定理可得出结论;②得出30OCE OCB EBC ∠=∠=∠=︒.过点D 作DH BC ⊥于点H ,设2AD CD m ==,则2BH AD m ==,则可得出答案;(2)①如图3,当点E 在AD 上时,证明四边形ABCE 是矩形.设AD CD x ==,由勾股定理得出方程,解方程即可得出答案;②如图4,当点E 在CD 上时,设AD CD x ==,则2CE x =-,设OB OC m ==,由相似三角形的性质得出2x OC m BC =,证明EOC ECB ∆∆∽,得出比例线段OE EC OC EC EB CB ==,可得出方程3223x OC x m CB -==-+,解方程可得出答案.【解答】(1)①证明:如图1,AD CD =,DAC DCA ∴∠=∠.//AD BC ,DAC ACB ∴∠=∠.BO 是Rt ABC ∆斜边AC 上的中线,OB OC ∴=,OBC OCB ∴∠=∠,DAC DCA ACB OBC ∴∠=∠=∠=∠,DAC OBC∴∆∆∽;②解:如图2,若BE CD⊥,在Rt BCE∆中,OCE OCB EBC∠=∠=∠,30OCE OCB EBC∴∠=∠=∠=︒.过点D作DH BC⊥于点H,设2AD CD m==,则2BH AD m==,在Rt DCH∆中,2DC m=,CH m∴=,3BC BH CH m∴=+=,∴2233 AD mBC m==;(2)①如图3,当点E在AD上时,//AD BC,EAO BCO∴∠=∠,AEO CBO∠=∠,O是AC的中点,OA OC∴=,()AOE COB AAS∴∆≅∆,OB OE∴=,∴四边形ABCE是平行四边形,又90ABC∠=︒,∴四边形ABCE是矩形.设AD CD x ==,2DE =,2AE x ∴=-,3OE =,6AC ∴=,在Rt ACE ∆和Rt DCE ∆中, 222CE AC AE =-,222CE CD DE =-,22226(2)2x x ∴--=-, 解得119x =+,或119x =- (舍去).119CD ∴=+.②如图4,当点E 在CD 上时,设AD CD x ==,则2CE x =-,设OB OC m ==,3OE =,3EB m ∴=+,DAC OBC ∆∆∽,∴DC AC OC BC =, ∴2x OC m BC =, ∴2OC x BC m=. 又EBC OCE ∠=∠,BEC OEC ∠=∠,EOC ECB ∴∆∆∽,∴OE EC OC EC EB CB ==, ∴3223x OC x m CB -==-+, ∴32232x x x m m-==-+, 226x x m -∴=,将226x xm-=代入3223xx m-=-+,整理得,26100x x--=,解得3x=+,或3x=(舍去).3CD∴=综合以上可得CD的长为13+【点评】本题是相似形综合题,考查了等腰三角形的性质,直角三角形的性质,相似三角形的判定与性质,矩形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.。

2022年上海中考数学真题(解析版)

2022年上海中考数学真题(解析版)
∴CD=AD-AC=5,
在Rt△OCD中,由勾股定理,得
OD= =12,
在Rt△OBD中,由勾股定理,得
OB= =20,
∴这个花坛的面积=202π=400π,
故答案为:400π.
【点睛】本题考查垂径定理,勾股定理,圆的面积,熟练掌握垂径定理与勾股定理相结合求线段长是解题的关键.
17.如图,在△ABC中,∠A=30°,∠B=90°,D AB中点,E在线段AC上, ,则 _____.
【答案】88
【解析】
【分析】由200乘以样本中不低于3小时的人数的百分比即可得到答案.
【详解】解:该学校六年级学生阅读时间不低于3小时的人数是
故答案为:
【点睛】本题考查的是利用样本估计总体,求解学生阅读时间不低于3小时的人数的百分比是解本题的关键.
14.已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:_____.
6.有一个正n边形旋转 后与自身重合,则n为()
A.6B.9C.12D.15
【答案】C
【解析】
【分析】根据选项求出每个选项对应的正多边形的中心角度数,与 一致或有倍数关系的则符合题意.
【详解】如图所示,计算出每个正多边形的中心角, 是 的3倍,则可以旋转得到.
A.
B.
C.
D.
观察四个正多边形 中心角,可以发现正12边形旋转90°后能与自身重合
故答案为:
【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.
12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.

2021年上海市中考数学试题(解析版)

2021年上海市中考数学试题(解析版)

2021年上海中考数学试卷逐题解析版一、选择题(本大题共6题.每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列实数中,有理数是( )2.下列单项式中,23ab的同类项是( )32A.a b23B.3a b2C.a b3D.ab3. 将函数2y a bx c(a 0)x =++¹的图像向下平移两个单位,以下说法错误的是( )A. 开口方向不变B.对称轴不变 B. y 随x 的变化情况不变 D.与y 轴的交点不变4. 商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A.2kg/包B.3kg/包C.4kg/包D.5kg/包5. 如图,已知AB a =u u u r r ,AD b =u u u r r ,E 为AB 中点,则1a b 2+r r=( )A. EC u u u rB.CE u u u rC.ED u u u rD.DE u u u r6.如图长方形ABCD 中,AB=4,AD=3,圆B 半径为1,圆A 与圆B 内切,则点C 、D 与圆A 的位置关系是( )A.点C 在圆A 外,点D 在圆A 内B.点C 在圆A 外,点D 在圆A 外C.点C 在圆A 上,点D 在圆A 内D.点C 在圆A 内,点D 在圆A 外二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】 7.计算:72x x¸= .8.已知6f (x)x=,那么f = .9.3=,则x= .10.不等式2x-12<0的解集是 .11.70°的余角是 °.12. 若一元二次方程22-3x+c=0x 无解,则c 的取值范围为.13. 已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 .14. 已知函数y kx =的图像经过二、四象限,且不经过(-1,1),请写出一个符合条件的函数解析式 . 15. 某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,挣得 元.16如图所示,已知在梯形ABCD 中,AD ∥BC ,ABD BCD 1=2S S △△,则BOC BCD=S S △△.17.六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,则中间正六边形的面积为 .18.定义:平面上一点到图形的最短距离为d,如图,OP=2, 正方形ABCD 的边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,d 的取值范围是 .三、解答题(本大题共7题,满分78分) 19.计算:112+|192´-16. 解方程组:22x y 340y x ì+=ïíï=î-21.如图,已知在△ABD 中,AC ⊥BD ,BC=8,CD=4,4cos ABC 5Ð=,BF 为AD 边上的中线. (1)求AC 的长;(2)求tan ∠FBD 的值. 22. 现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月的生产情况如下图.(1) 求3月份生产了多少部手机?(2) 5G 手机速度很快,比4G 下载速度每秒多95MB, 下载一部1000MB 的电影,5G 比4G 要快190秒, 求5G 手机的下载速度.23.已知:在圆O 内,弦AD 与弦BC 相交于点G,AD=CB ,M 、N 分别是CB 和AD 的中点,联结MN 、OG.(1)证明:OG ⊥MN;(2)联结AB 、AM 、BN ,若BN ∥OG ,证明:四边形ABNM 为矩形。

2023年上海市中考数学试卷及答案解析

2023年上海市中考数学试卷及答案解析

2023年上海市中考数学试卷一、选择题:(本大题共6题,每题4分,共24分)1.(4分)下列运算正确的是()A.a5÷a2=a3B.a3+a3=a6C.(a3)2=a5D.=a2.(4分)在分式方程+=5中,设=y,可得到关于y的整式方程为()A.y2+5y+5=0B.y2﹣5y+5=0C.y2+5y+1=0D.y2﹣5y+1=0 3.(4分)下列函数中,函数值y随x的增大而减小的是()A.y=6x B.y=﹣6x C.y=D.y=﹣4.(4分)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同5.(4分)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD为矩形的是()A.AB∥CD B.AD=BC C.∠A=∠B D.∠A=∠D 6.(4分)已知在梯形ABCD中,联结AC,BD,且AC⊥BD,设AB=a,CD=b.下列两个说法:①AC=(a+b);②AD=,则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误二、填空题:(本大题共12题,每题4分,共48分)7.(4分)分解因式:n2﹣9=.8.(4分)化简:﹣的结果为.9.(4分)已知关于x的方程=2,则x=.10.(4分)函数f(x)=的定义域为.11.(4分)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.12.(4分)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.13.(4分)如果一个正多边形的中心角是20°,那么这个正多边形的边数为.14.(4分)一个二次函数y=ax2+bx+c的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是.15.(4分)如图,在△ABC中,点D,E在边AB,AC上,2AD=BD,DE∥BC,联结DE,设向量=,=,那么用,表示=.16.(4分)垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为.17.(4分)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α<180°),旋转后的点B落在BC上,点B的对应点为D,联结AD,AD是∠BAC的角平分线,则α=.18.(4分)在△ABC中,AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E半径r的取值范围是.三、解答题:(本大题共7题,共78分)19.(10分)计算:+﹣()﹣2+|﹣3|.20.(10分)解不等式组:.21.(10分)如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC=,OC=OB.(1)求⊙O的半径;(2)求∠BAC的正切值.22.(10分)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域).(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?23.(12分)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC =∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.24.(12分)在平面直角坐标系xOy中,已知直线y=x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.25.(14分)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F边OB中点,为以O为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.2023年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,共24分)1.【分析】根据合并同类项,同底数幂的除法,幂的乘方法则,二次根式的性质进行计算,逐一判断即可解答.【解答】解:A、a5÷a2=a3,故A符合题意;B、a3+a3=2a3,故B不符合题意;C、(a3)2=a6,故C不符合题意;D、=|a|,故D不符合题意;故选:A.【点评】本题考查了合并同类项,同底数幂的除法,幂的乘方与积的乘方,二次根式的性质与化简,准确熟练地进行计算是解题的关键.2.【分析】设=y,则=,原方程可变为:y+=5,再去分母得y2+1=5y,即可得出结论.【解答】解:设=y,则=,分式方程+=5可变为:y+=5,去分母得:y2+1=5y,整理得:y2﹣5y+1=0,故选:D.【点评】本题考查换元法解分式方程,熟练掌握换元法是解题的关键.3.【分析】根据反比例函数的性质和正比例函数的性质分别判断即可.【解答】解:A选项,y=6x的函数值随着x增大而增大,故A不符合题意;B选项,y=﹣6x的函数值随着x增大而减小,故B符合题意;C选项,在每一个象限内,y=的函数值随着x增大而减小,故C不符合题意;D选项,在每一个象限内,y=﹣的函数值随着x增大而增大,故D不符合题意,故选:B.【点评】本题考查了反比例函数的性质,正比例函数的性质,熟练掌握这些性质是解题的关键.4.【分析】观察图象,再逐项判断各选项即可.【解答】解:观察小车与公车的车流量图可知,小车的车流量在每个时段都大于公车的车流量,∴小车的车流量的平均数较大,选项B正确;而选项A,C,D都与图象不相符合,故选:B.【点评】本题考查折线统计图,解题的关键是能从图象中获取有用的信息.5.【分析】由矩形的判定分别对各个选项进行判断即可.【解答】解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项A不符合题意;B、∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,由AB=CD,不能判定四边形ABCD为矩形,故选项B不符合题意;C、∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴AB⊥AD,AB⊥BC,∴AB的长为AD与BC间的距离,∵AB=CD,∴CD⊥AD,CD⊥BC,∴∠C=∠D=90°,∴四边形ABCD是矩形,故选项C符合题意;D、∵AD∥BC,∴∠A+∠B=180°,∠D+∠C=180°,∵∠A=∠D,∴∠B=∠C,∵AB=CD,∴四边形ABCD是等腰梯形,故选项D不符合题意;故选:C.【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定是解题的关键.6.【分析】根据题意,作出图形,若梯形ABCD为等腰梯形,可得①;②,其余情况得不出这样的结论,从而得到答案.【解答】解:过B作BE∥CA,交BC延长线于E,如图所示:若AD=BC,AB∥CD,则四边形ACEB是平行四边形,∴CE=AB,AC=BE,∴AB∥DC,∴∠DAB=∠CBA,∵AB=AB,∴△DAB≌△CBA(SAS),∴AC=BD,即BD=BE,∵AC⊥BD,∴BE⊥BD,在Rt△BDE中,BD=BE,AB=a,CD=b,∴DE=DC+CE=b+a,∴,此时①正确;过B作BF⊥DE于F,如图所示:在Rt△BFC中,BD=BE,AB=a,CD=b,DE=b+a,∴,,∴BC==,此时②正确;但已知中,梯形ABCD是否为等腰梯形,并未确定;梯形ABCD是AB∥CD还是AD∥BC,并未确定,∴无法保证①②正确,故选:D.【点评】本题考查梯形中求线段长,涉及梯形性质、平行四边形的判定与性质、全等三角形的判定性质、勾股定理、等腰直角三角形的判定与性质等知识,孰练掌握相关几何判定与性质是解决问题的关键.二、填空题:(本大题共12题,每题4分,共48分)7.【分析】利用平方差公式分解因式即可得到答案.【解答】解:n2﹣9=(n+3)(n﹣3),故答案为:(n+3)(n﹣3).【点评】本题考查了因式分解,平方差公式,熟练掌握公式法分解因式是解题关键.8.【分析】根据分式的运算法则进行计算即可.【解答】解:原式===2,故答案为:2.【点评】本题考查分式的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.9.【分析】方程两边平方得出x﹣14=4,求出方程的解,再进行检验即可.【解答】解:=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键,注意:解无理方程一定要进行检验.10.【分析】根据函数有意义的条件求解即可.【解答】解:函数f(x)=有意义,则x﹣23≠0,解得x≠23,故答案为:x≠23.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数有意义的条件是解题的关键.11.【分析】由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.【点评】本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.12.【分析】从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,再根据概率公式求解即可.【解答】解:由题意知,从中随机摸出一个球共有10种等可能结果,其中是绿球的有4种结果,所以从中随机摸出一个球是绿球的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.13.【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案.【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.【点评】本题考查的是正多边形内角、外角和中心角的知识,掌握中心角的计算公式是解题的关键.14.【分析】根据二次函数的图象与系数的关系求解(答案不唯一).【解答】解:由题意得:b=0,a<0,c>0,∴这个二次函数的解析式可以是:y=﹣x2+1,故答案为:y=﹣x2+1(答案不唯一).【点评】本题考查了二次函数的图象与系数的关系,掌握数形结合思想是解题的关键.15.【分析】由三角形法则求得的值;然后结合平行线截线段成比例求得线段DE的长度,继而求得向量的值.【解答】解:在△ABC中,=,=,则=﹣=﹣.∵2AD=BD,DE∥BC,∴===.∴DE=BC.∴=,即=﹣.故答案为:﹣.【点评】本题主要考查了平面向量和平行线截线段成比例.注意:平面向量既有大小又有方向.16.【分析】先用60除以可回收垃圾所占百分比,得到该市试点区域的垃圾总量,乘以10得到全市垃圾总量,然后乘以干垃圾所占的百分比即可.【解答】解:该市试点区域的垃圾总量为60÷(1﹣50%﹣29%﹣1%)=300(吨),估计全市可收集的干垃圾总量为300×10×50%=1500(吨).故答案为:1500吨.【点评】本题考查的是扇形统计图,利用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.17.【分析】由AB=AD,∠BAD=α及角平分线的定义得∠CAD=∠BAD=α,根据三角形外角性质得∠ADB=35°+α,即有∠B=∠ADB=35°+α,由三角形的内角和定理求解即可.【解答】解:如图,∵AB=AD,∠BAD=α,AD是∠BAC的角平分线,∴∠CAD=∠BAD=α,∵∠ADB=∠C+∠CAD=35°+α,AB=AD,∴∠B=∠ADB=35°+α,在△ABC中,∠C+∠CAB+∠B=180°,∴35°+2α+35°+α=180°,解得:;故答案为:.【点评】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质及三角形的内角和等知识,孰练掌握相关图形的性质是解题的关键.18.【分析】先画出图形,连接BE,利用勾股定理可得,,从而可得<r≤2,再根据⊙B与⊙E有公共点列不等式,用二次函数与一元二次方程,一元二次不等式的关系解答.【解答】解:连接BE,如图:∵⊙B过点A,且AB=7,∴⊙B的半径为7,∵⊙E过点D,它的半径为r,且CD=DE,∴CE=CD+DE=2r,∵BC=3,∠C=90°,∴BE==,,∵D在边AC上,点E在CA延长线上,∴,∴<r≤2,∵⊙B与⊙E有公共点,∴AB﹣DE≤BE≤AB+DE,∴,由①得:3r2﹣14r﹣40≤0,解方程3r2﹣14r﹣40=0得:r=﹣2或,画出函数y=3r2﹣14r﹣40的大致图象如下:同理可得:不等式②的解集为r≥2或,∴不等式组的解集为,又∵,∴⊙E半径r的取值范围是.故答案为:.【点评】本题考查了勾股定理、圆与圆的位置关系、二次函数与不等式,根据圆与圆的位置关系正确建立不等式组是解题关键.三、解答题:(本大题共7题,共78分)19.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解答】解:原式=2+﹣9+3﹣=﹣6.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.20.【分析】先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集即可.【解答】解:,解不等式①,得x>3,解不等式②,得x<,所以不等式组的解集是3<x<.【点评】本题考查了解一元一次不等式组,能根据求不等式组解集的规律求出不等式组的解集是解此题的关键,同大取大,同小取小,大大小小取不了,小大大小取中间.21.【分析】(1)过点O作OD⊥AB,垂足为D,根据垂径定理可得AD=BD=4,然后在Rt△OBD中,利用锐角三角函数的定义求出OB的长,即可解答;(2)过点C作CE⊥AB,垂足为E,根据已知可得BC=OB=7.5,再利用平行线分线段成比例可得=,从而求出BE的长,进而求出AE的长,然后在Rt△BCE中,利用勾股定理求出CE的长,再在Rt△ACE中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点O作OD⊥AB,垂足为D,∵AB=8,∴AD=BD=AB=4,在Rt△OBD中,cos∠ABC=,∴OB===5,∴⊙O的半径为5;(2)过点C作CE⊥AB,垂足为E,∵OC=OB,OB=5,∴BC=OB=7.5,∵OD⊥AB,∴OD∥CE,∴=,∴=,∴BE=6,∴AE=AB﹣BE=8﹣6=2,在Rt△BCE中,CE===4.5,在Rt△ACE中,tan∠BAC===,∴∠BAC的正切值为.【点评】本题考查了垂径定理,勾股定理,解直角三角形,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【分析】(1)根据打九折列出算式,计算即可;(2)根据每一升油,油的单价降低0.30元知:y=0.9(x﹣0.30);(3)当x=7.30,可得y=6.30,根据优惠后油的单价比原价便宜(x﹣y)元,计算求解即可.【解答】解:(1)由题意知,1000×0.9=900(元),答:实际花了900元购买会员卡;(2)由题意知,y=0.9(x﹣0.30),整理得y=0.9x﹣0.27,∴y关于x的函数解析式为y=0.9x﹣0.27;(3)当x=7.30时,y=0.9×7.30﹣0.27=6.30,∵7.30﹣6.30=1.00,∴优惠后油的单价比原价便宜1.00元.【点评】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用,解题的关键在于理解题意,正确的列出算式和一次函数解析式.23.【分析】(1)证明△ACF≌△ADE(ASA),即可解决问题;(2)证明△ABF∽△CDE,得AF•DE=BF•CE,结合(1)AF=DE,即可解决问题.【解答】证明:(1)∵AD∥BC,∴∠ACF=∠DAC∵∠FAC=∠ADE,AC=AD,∴△ACF≌△ADE(ASA),∴AF=DE;(2)∵△ACF≌△ADE,∴∠AFC=∠DEA,∴∠AFB=∠DEC,∵∠ABC=∠CDE,∴△ABF∽△CDE,∴=,∴AF•DE=BF•CE,∵AF=DE,∴AF2=BF•CE.【点评】本题考查了相似三角形的性质和判定,梯形,勾股定理,熟练运用相似三角形的性质和判定是本题的关键.24.【分析】(1)根据题意,分别将x=0,y=0代入直线即可求得;(2)设,得到抛物线的顶点式为,将B(0,6)代入可求得,进而可得到抛物线解析式为,即可求得b,c;(3)根据题意,设P(p,0),,根据平移的性质可得点B,点C向下平移的距离相同,列式求得m=﹣4,,然后得到抛物线N解析式为:,将B(0,6)代入可得,即可得到答案.【解答】解:(1)在中,令x=0得:y=6,∴B(0,6),令y=0得:x=﹣8,∴A(﹣8,0);(2)设,设抛物线的解析式为:,∵抛物线M经过点B,∴将B(0,6)代入得:,∵m≠0,∴,即,将代入y=a(x﹣m)2+3m+6,整理得:,∴,c=6;(3)如图:∵CD∥x轴,点P在x轴上,∴设P(p,0),,∵点C,B分别平移至点P,D,∴点B,点C向下平移的距离相同,∴,解得:m=﹣4,由(2)知,∴,∴抛物线N的函数解析式为:,将B(0,6)代入可得:,∴抛物线N的函数解析式为:或.【点评】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,涉及平移的性质,二次函数的图性质等,解题的关键是根据的平移性质求出m和a的值.25.【分析】(1)由∠ABC=∠C,∠ODB=∠ABC,即得∠C=∠ODB,OD∥AC,根据F 是OB的中点,OG=DG,知FG是△OBD的中位线,故FG∥BC,即可得证;(2)设∠OFE=∠DOE=α,OF=FB=a,有OE=OB=2a,由(1)可得OD∥AC,故∠AEO=∠DOE=α,得出∠OFE=∠AEO=α,进而证明△AEO∽△AFE,AE2=AO﹣AF,由AE2=EO2﹣AO2,有EO2﹣AO2=AO×AF,解方程即可答案;(3)△OBG是以OB为腰的等腰三角形,①当OG=OB时,②当BG=OB时,证明△BGOCD△BPA,得出,设OG=2k,AP=3k,根据OG∥AE,得出△FOG∽△FEE,即得AE=2OG=4k,PE=AE﹣AP=k,连接OE交PG于点Q,证明△QPE∽△QGO,在△PQE与△BQO中,,,得出==,可得△POE∽△OQB,根据相似三角形的性质得出a=2k,进而即可求得答案.【解答】(1)证明:如图:∵AC=AB,∴∠ABC=∠C,∵OD=OB,∴∠ODB=∠ABC,∴∠C=∠ODB,∴OD∥AC,∵F是OB的中点,OG=DG,∴FG是△OBD的中位线,∴FG∥BC,即GE∥CD,∴四边形CEDG是平行四边形;(2)解:如图:由∠OFE=∠DOE,AO=4,点F边OB中点,设∠OFE=∠DOE=α,OF=FB=a,则OE=OB=2a,由(1)可得OD∥AC,∴∠AEO=∠DOE=α,∴∠OFE=∠AEO=α,∵∠A=∠A,∴△AEO∽△AFE,∴,即AE2=AO•AF,在Rt△AEO中,AE2=EO2﹣AO2,∴EO2﹣AO2=AO×AF,∴(2a)2﹣42=4×(4+a),解得:或(舍去),∴OB=2a=1+;(3)解:①当OG=OB时,点G与点D重合,不符合题意,舍去;②当BG=OB时,延长BG交AC于点P,如图所示,∵点F是OB的中点,AO=OF,∴AO=OF=FB,设AO=OF=FB=a,∵OG∥AC,∴△BGO∽△BPA,∴,设OG=2k,AP=3k,∵OG∥AE,∴△FOG∽△FAE,∴,∴AE=2OG=4k,∴PE=AE﹣AP=k,设OE交PG于点Q,∵OG∥PE,∴△QPE∽△QGO,∴,∴PQ=a,QG=a,,在△PQE与△BQO中,,,∴,又∠PQE=∠BQO,∴△PQE∽△OQB,∴,∴,∴a=2k,∵OD=OB=2a,OG=2k,∴,∴的值为.【点评】本题考查了平行四边形的性质,三角形中位线的性质,相似三角形的性质与判定,勾股定理,等腰三角形的定义,圆的性质,熟练掌握相似三角形的性质与判定是解题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年上海中考数学试题第一部分:选择题一、选择题 (本大题共6小题,每小题4分,满分24分).1.(2012上海市,1,4分)在下列代数式中,次数为3的单项式是( )A. xy2B. x3-y3C.x3yD.3xy【答案】A考点剖析:本题考察了单项式的概念,需要学生掌握单项式的次数概念才能够获得正确答案.解题思路:根据单项式次数的概念求解.解答过程:由单项式次数的概念:∴次数为3的单项式是xy2.所以本题选项为A.规律总结:⑴单项式的定义:由数字与字母或字母与字母的相乘组成的代数式叫做单项式⑵单项式的次数:一个单项式中的所有字母的指数的和叫做这个单项式的次数关键词:单项式、单项式次数2.(2012上海市,2,4分)数据5,7,5,8,6,13,5的中位数是( )A.5B.6C.7D.8【答案】B考点剖析:本题考察了中位数的求解方法,需要学生掌握中位数的求解方法才能够获得正确答案.解题思路:根据中位数的求解方法.解答过程:由中位数的求解方法①将一组数据从小到大或者从大到小整齐排列;②进行中位数求解;数据排列:5,5,5,6,7,8,13 数据个数:7个∴中位数是:6 所以本题选择B规律总结:中位数求解的前提是有顺序地将数据排列清楚,然后按照数据的个数进行求解当数据个数为奇数时,中位数就是最中间的那个数当数据个数为偶数时,中位数就是最中间的两个数的平均数关键词:中位数3.(2012上海市,3,4分)不等式组2620xx-⎧⎨-⎩<>的解集是( )A.x>-3B. x<-3C.x>2D. x<2【答案】C考点剖析:本题考察了一元一次不等式组求解方法,需要学生掌握不等式组的求解方法才能获得正确答案. 解题思路:根据不等式组的求解方法解答过程:先将两个一元一次不等式单独求解出来,然后结合数轴把答案表示出来∵2620xx-⎧⎨-⎩<①>②由①,得-3x>由②,得>2x∴>2x所以本题选择C规律总结:⑴不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

⑵最后的结果要取两个不等式公共有的部分关键词:一元一次不等式4.(2012上海市,4,4分)在下列各式中,二次根式a b-的有理化因式是( )A.a b+B.a b+C.a b-D.a b-【答案】C考点剖析:本题考察了有理化因式的定义,需要学生掌握有理化因式的定义才能获得正确答案.解题思路:根据有理化因式的概念解答过程:由有理化因式的定义,∵()()a b a b a b-∙-=-所以本题选择C规律总结:判断是否是某个二次根式的有理化因式,最好的方法就是将选项分别和这个二次根式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

此题的误导答案是a b+,关键词:有理化因式5.(2012上海市,5,4分)在下列图形中,为中心对称图形的是( )A.等腰梯形B.平行四边形C.正五边形D.等腰三角形【答案】B考点剖析:本题考察了中心对称图形的定义,需要学生掌握中心对称图形的概念才能获得正确答案.解题思路:根据中心对称图形的定义判定解答过程:根据中心对称的定义观察图形,可以发现选项中B为中心对称图形,.所以本题选项为B.规律总结:把一个图形绕其几何中心旋转180°后能够和原来的图形互相重合的图形叫中心对称图形.关键词:中心对称图形6.(2012上海市,6,4分)如果两圆的半径长分别为6和2,圆心距为3,那么这两圆的关系是( )A.外离B.相切C.相交D.内含【答案】D考点剖析:本题考察了两圆位置关系的判定,需要学生掌握两圆位置关系的判定才能获得正确答案.解题思路:根据两圆位置关系的判定解答过程:根据两圆位置关系的判定,∵03624d<=<-=.所以本题选项为D.规律总结:两圆位置关系的判定:已知大圆半径为R,小圆半径为r,圆心距为d⑴两圆外离:d R r>+⑵两圆外切:d R r=+⑶两圆相交:R r d R r-<<+⑷两圆内切:d R r=-⑸两圆内含:0d R r<<-关键词:两圆位置关系二、填空题 (本大题共12小题,每小题4分,满分48分).7.(2012上海市,7,4分)计算:|12-1|= .【答案】1 2考点剖析:本题考察了绝对值的定义,需要学生掌握绝对值的定义才能获得正确答案. 解题思路:根据绝对值的定义解答过程:根据绝对值的定义,∵1111222-==.所以本题答案为12.规律总结:绝对值的定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

关键词:绝对值8.(2012上海市,8,4分)因式分解xy -x = . 【答案】x (y -1)考点剖析: 本题考察了因式分解中提取公因式方法,需要学生掌握因式分解的提取公因式方法才能获得正确答案.解题思路: 熟练运用因式分解中提取公因式方法解答过程: 提取公因式,得()1x y - .所以本题答案为()1x y -.规律总结: 找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶 关键词: 因式分解 提取公因式9.(2012上海市,9,4分)已知正比例函数y =kx (k ≠0),点(2,-3)在函数上,则y 随x 的增大而 . (增大或减小) 【答案】减小考点剖析: 本题考察了正比例函数的k 和图像性质的关系,需要学生掌握正比例函数的k 和图像性质的关系才能获得正确答案.解题思路: 熟练掌握正比例函数的k 和图像性质的关系解答过程: 将点(2,-3)代入y =kx (k ≠0),得到32k =-,∵0k <,所以y 随x 的增大而减小.规律总结:正比例函数y =kx (k ≠0):①0k >,y 随x 的增大而增大;②0k <,y 随x 的增大而减小;反比例函数()0ky k x=≠:①0k >,y 随x 的增大而减小;②0k <,y 随x 的增大而增大;关键词: 正比例函数10.(2012上海市,10,4分)方程1x +=2的根是 .【答案】x =3考点剖析: 本题考察了无理方程的求解,需要学生掌握无理方程的求解才能获得正确答案. 解题思路: 熟练掌握无理方程的求解解答过程: 等号两边平方,得14x +=,所以3x =规律总结: 无理方程的基本解法是:两边平方;注意点:代入检验 关键词: 无理方程11.(2012上海市,11,4分)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,那么c 的取值范围是 . 【答案】c >9考点剖析: 本题考察了一元二次方程的根的判定,需要学生掌握一元二次方程的根的判定才能获得正确答案.解题思路: 熟练掌握一元二次方程的根的判定的求解解答过程: 由于一元二次方程没有实数根,得36-40c =<△,所以9c > 规律总结: 一元二次方程()200ax bx c a ++=≠: 当没有实数根时,240b ac =-<△;当有两个实数实数根时,240b ac =->△; 当有两个相等的实数根时,240b ac =-=△关键词: 一元二次方程的根的判定12.(2012上海市,12,4分)将抛物线y=x2+x向下平移2个单位,所得新抛物线的表达式是 . 【答案】y=x2+x-2考点剖析:本题考察了二次函数图像的平移,需要学生掌握二次函数图像的平移才能获得正确答案.解题思路:熟练掌握二次函数图像的平移的规律解答过程:由上“+”下“-”得,y=x2+x-2规律总结:上“+”下“-”;左“+”右“-”关键词:二次函数图像的平移13.(2012上海市,13,4分)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好是红球的概率是 .【答案】1 3考点剖析:本题考察了概率的求解,需要学生掌握概率的求解的方法才能获得正确答案. 解题思路:熟练掌握概率的求解解答过程:3193P==.规律总结:看清所求的具体情况关键词:概率14.(2012上海市,14,4分)某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如图1所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可得测试分数在80-90分数段的学生有名.分数段60-7070-8080-9090-100频率0.20.250.25【答案】150考点剖析:本题考察了学生处理统计图表的能力,涉及到的有频率和频数.解题思路:由于四项的频率和为1,那么可以求出空出的频率解答过程:80-90的频率是10.20.250.250.3---=;80-90的频数=频率·数据总数=0.3500150⨯=规律总结:⑴频率的总和为1 ⑵频数=频率·数据总数关键词:频率频数15.(2012上海市,15,4分)如图1,已知梯形ABCD,AD∥BC,BC=2AD,如果AD a=,AB b=,那么AC= .(用a,b表示)图1CBDAE CBDA【答案】2a+b考点剖析:本题考察了向量的加减法及涉及到梯形的特殊辅助线解题思路:过A点作DC的平行线,建立一个三角形进行向量的加减解答过程:过A点作DC的平行线AE,交BC于E点,那么BE EC a==,而AB b=∴AE a b=+所以2AC a b a a b=++=+规律总结:梯形的辅助线,将所求线段放在一个三角形中关键词:向量加减法梯形辅助线16.(2012上海市,16,4分)在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCDE的面积为5,那么边AB的长为.【答案】3考点剖析:本题考察了相似三角形及相似三角形的相似比解题思路:易得两个三角形相似,将已知的面积转变成两个相似三角形的面积比,使用相似比求解解答过程:∵ADE ACB△∽△且49ADEACBSS=△△∴23AEAB=所以3AB=规律总结:两个三角形相似,则其它们的面积比等于相似比的平方关键词:相似三角形相似比17.(2012上海市,17,4分)我们把两个三角形的中心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一对角成顶角时重心距为 .【答案】4考点剖析:本题考察了一个新的定义“重心距”解题思路:通过对于解答过程:∵ADE ACB△∽△且49ADEACBSS=△△∴23AEAB=所以3AB=规律总结:两个三角形相似,则其它们的面积比等于相似比的平方关键词:相似三角形相似比18.(2012上海市,18,4分)如图3,在Rt △ABC ,∠C =90°,∠A =30°,BC =1,点D 在AC 上,将△ADB沿直线BD 翻折后,将点A 落在点E 处,如果AD ⊥ED ,那么线段DE 的长为.F30°DEBCA【答案】3-1考点剖析: 本题考察了“翻折”题的作图,以及引申的等角、等边 解题思路: “翻折”的折痕并延长,出现等腰直角三角形解答过程: ∵AD DE =且AD DE ⊥且DF AE ⊥ ∴45ADF ∠=∴BDC △是等腰直角三角形,则1CD =,所以31ED AD ==-规律总结: 涉及到翻折题,折痕一定要连接,构成我们想要的等腰三角形 关键词: 翻折 折痕 等腰直角三角形三、解答题 (本大题共7题,满分78分). 19.(2012上海市,19,10分)12×(3-1)2+121-+123-(22)-1【答案】3考点剖析: 混合计算解题思路: 逐一化简,认真计算解答过程:原式=4232-+2+1+3-2=3规律总结: 仔细、认真 关键词: 计算20.(2012上海市,20,10分)解方程:3x x ++269x -=13x - 【答案】x =1考点剖析: 分式方程解题思路: 认真计算、检验标准解答过程: x (x -3)+6=x +3 所以x =3是方程的增根,x =1是原方程的根. 规律总结: 仔细、认真 关键词: 计算21.(2012上海市,21,本小题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图4,在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,BE ⊥CD ,垂足为点E .已知AC =15,cos A =35.(1)求线段CD 的长;(2)求sin ∠DBE 的值.【答案】⑴252 ⑵725考点剖析: 直角三角形斜边上的中线等于斜边的一半、锐角三角形比灵活转化解题思路: ⑴ 根据斜边上的中线等于斜边的一半; ⑵根据等角的锐角三角比的转化解答过程: ⑴ 12522CD AB ==⑵ ∵DCB DBC ∠=∠ ∴16CE =,则72DE =而252DB = 所以sin ∠DBE =DE DB =72225⨯=725规律总结:要积极灵活地从相等的角为突破口,利用锐角三角比 关键词: 锐角三角比22. (2012上海市,22,12分)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图5所示: (1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【答案】 ⑴ y =110x -+11(10≤x ≤50) ⑵ 40吨.考点剖析: 一次函数及其应用解题思路: ⑴ 根据两点求一次函数的解析式;⑵根据题目要求求解变量解答过程: ⑴ 直接将(10,10)、(50,6)代入y =kx +b得y =110x -+11(10≤x ≤50)⑵ (110x -+11)x =280 解得x 1=40或x 2=70,由于10≤x ≤50所以x =40规律总结:观察函数图像,运用合理的方法,求解函数解析式关键词: 一次函数及其应用23.(2012上海市,23,第(1)小题满分5分,第(2)小题满分7分)已知:如图6,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G.(1)求证:BE=DF;(2)当DF ADFC DF=时,求证:四边形BEFG是平行四边形.【答案】证明略考点剖析:⑴全等三角形⑵比例线段解题思路:⑴根据菱形的独特性质,对角相等,四条边相等和对角平分各对角;⑵充分利用第⑴小题的结论,灵活地线段转换解答过程:⑴利用△ABE≌△ADF(ASA)⑵∵AD∥BC,∴AD AD DG DFDF BE GB FC===∴GF∥BE,易证:GB=BE∴四边形BEFG是平行四边形规律总结:⑴掌握特殊四边形的性质及其判定⑵比例线段的转换关键词:菱形比例线段24.(2012上海市,24,本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分) 如图7,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图象经过点A (4,0)、B (-1,0),与y 轴交于点C ,点D 在线段OC 上,OD =t ,点E 在第二象限,∠ADE =90°,tan ∠DAE =12,EF ⊥OD ,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值.【答案】 ⑴ y =-2x 2+6x +8 ⑵EF =12t 、OF = t -2 ⑶t =6 考点剖析: ⑴二次函数解析式 ⑵ 相似三角形 ⑶勾股定理解题思路: ⑴ 根据菱形的独特性质,对角相等,四条边相等和对角平分各对角;⑵ 充分利用第⑴小题的结论,灵活地线段转换⑶ 充分利用第⑵小题的结论,证明全等三角形结合勾股定理求解 解答过程: ⑴ 把x =4,y =0;x =-1,y =0代入y =ax 2+6x +c 28a c =-⎧⎨=⎩ ∴y =-2x 2+6x +8⑵ ∵∠EFD =∠EDA =90° ∴∠DEF +∠EDF =90°、∠EDF +∠ODA =90° ∴∠DEF =∠ODA ∴△EDF ∽△DAO ∴EF EDDO DA=∵12ED DA = ∴12EF t = ∴EF =12t 同理得DF EDOA DA=∴DF =2 ∴OF = t -2⑶ 连结EC 、AC ,过A 作EC 的垂线交CE 于G 点∵E (-12x ,2-x ) 易证:△CAG ≌△OCA ∴CG =4 AG =8∵AE =221(4)(2)2t t ++-=25204t +,∴EG =2252084t +-=25444t -∵EF 2+CF 2=CE 2 , (1t )2+(10-t )2=(25444t -+)2 解得110t =⎧⎨∵t 1=10不合题意,舍去 ∴t =6规律总结: ⑴ 二次函数解析式 ⑵相似三角形 ⑶全等三角形+勾股定理关键词: 二次函数 相似三角形 全等三角形 勾股定理25.(2012上海市,25,本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分) 如图8,在半径为2的扇形AOB 中,∠AOB =90°,点C 是弧AB 上的一个动点(不与A 、B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)当BC =1时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由;(3)设BD =x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.【答案】⑴152⑵ 存在,DE 是不变的DE=2 ⑶ y = 22444x x x -+-(0<x <2)考点剖析: ⑴垂径定理 ⑵ 中位线 ⑶巧妙添辅助线,构造45特殊角解题思路: ⑴ 垂径定理+勾股定理 ⑵垂径定理,得D 、E 是中点,所以存在中位线 ⑶ 联结OC ,重点在于∠2+∠3=45°,易得添垂线,构造等腰直角三角形 然后运用双次勾股,求解相应的边解答过程: ⑴ ∵OD ⊥BC ∴BD =12BC =12∴OD =22152BD OD +=⑵ 存在,DE 是不变的,连结AB 且AB =22 ∴DE =12AB =2⑶ 将x 移到要求的三角形中去,∴OD =24x - 由于∠1=∠2;∠3=∠4 ∴∠2+∠3=45° 过D 作DF ⊥OE∴DF =242x - 易得EF =22x y =12DF ·OE =22444x x x -+-(0<x <2)。

相关文档
最新文档