七年级数学上学期期中试题扫描版北师大版

合集下载

北师大版七年级上册数学期中测试题含答案解析

北师大版七年级上册数学期中测试题含答案解析

北师大版七年级上学期期中考试数学试题一、选择题1.若规定向东走为正,即向东走8m记为+8m,那么﹣6米表示()A. 向东走6米B. 向南走6米C. 向西走6米D. 向北走6米2.某年,一些国家的服务出口额比上年的增长率如下:美国德国英国中国-0.9%3.4%- 2.8%- 5.3%上述四国中哪国增长率最低?()A. 美国B. 德国C. 英国D. 中国3.下列四个几何体中,是三棱柱的为( ).A. B.C. D.4.某图书馆有图书约985000册,数据985000用科学记数法可表示为()A. 3⨯ D. 6⨯0.985109.8510⨯ C. 5⨯ B. 49851098.5105.下列平面图形经过折叠后,不能围成正方体的是()A. B. C. D.6.按要求对0.05019分别取近似值,下面结果错误是()A. 0.1(精确到0.1)B. 0.05(精确到千分位)C. 0.050(精确到0.001)D. 0.0502(精确到万分位)7.下列四个几何体,从正面和上面看,看到的相同,这样的几何体共有( )正方体 圆锥球 圆柱 A 4个 B. 3个C. 2个D. 1个 8.如图,一正方体截去一角后,剩下的几何体的面数和棱数分别为( )A. 6,14B. 7,15C. 7,14D. 6,15 9.数轴上表示数4-和2的点分别是点A 和点B ,则点A 和点B 的距离是( )A. 6-B. 2-C. 2D. 6 10.下列各组数中,数值相等的是( )A. 23和32B. 3(2)-和32-C. 23-和2(3)-D. (2)--和|2|--二、填空11.-5的相反数是 _______12.计算35-=_________.13.登山队员攀登珠穆朗玛峰,在海拔3000m 时,气温为﹣20℃,已知每登高1000m ,气温降低6℃,当海拔为5000m 时,气温是_____℃.14.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.15.有2020个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是________.三、解答题16.请把下列各数分别填在相应的集合中: 132-,0.3,0, 3.4-,12,9-,142,2- 正数集合{ }负分数集合{ }非负数集合{ }整数集合{ }17.计算.(1)()()()()341119-+--+-- (2)110.5 2.7542⎛⎫⎛⎫+--+- ⎪ ⎪⎝⎭⎝⎭18.把下列各数:﹣2.5,2(1)-,0,2--,(3)--在数轴上表示出来,并用“<”把它们连接起来.19.计算:(1)512.584⎛⎫-+⨯- ⎪⎝⎭(2)()()22264⎡⎤-----⎣⎦ 20.一个六棱柱模型如图所示,它的底面边长都是6m ,侧棱长4m ,观察这个模型,回答下列问题:(1)这个六棱柱的几个面分别是什么形状?哪些面的形状、大小完全相同?(2)这个六棱柱的所有侧面的面积之和是多少?21.“又甜又脆”水果店现从批发市场买进6箱苹果,买进价每箱40元,以每箱10kg 为准,称重记示如下(超过为正,不足为负,单位:kg ): 1.5-, 1.3-,0,0.3, 1.5-,2.(1)问这6箱苹果的总重量是多少?(2)在出售这批苹果时,有10%的苹果烂掉(不能出售),若出售价为8元/kg ,卖完这批苹果该水果店可可赢利多少元?22.数学老师布置了一道思考题“计算:1151236⎛⎫-÷- ⎪⎝⎭,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为()15115124106361236⎛⎫⎛⎫⎛⎫-÷-=-⨯-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以115112366⎛⎫-÷-= ⎪⎝⎭. (1)请你判断小明的解答是否正确?答_________________;(2)请你运用小明的解法解答问题.计算:111348368⎛⎫-÷-- ⎪⎝⎭23.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?24.有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣;(2)若请推算12696÷⨯=﹣,□内的符号;(3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.一、选择题1.若规定向东走为正,即向东走8m记为+8m,那么﹣6米表示()A. 向东走6米B. 向南走6米C. 向西走6米D. 向北走6米【答案】C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】如果规定向东为正,那么﹣6米表示:向西走6米.故选C.【点睛】本题主要考查了正数和负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,比较简单.2.某年,一些国家的服务出口额比上年的增长率如下:上述四国中哪国增长率最低?()A. 美国B. 德国C. 英国D. 中国【答案】C【解析】【分析】比较各国出口额比上年增长率得结论.【详解】解:因为-5.3%<-3.4%<-0.9%<2.8%,所以增长率最低的国家是英国.故选C.【点睛】本题考查了有理数大小的比较.会比较有理数的大小是解决本题的关键.3.下列四个几何体中,是三棱柱的为( ).A. B. C. D.【答案】C【解析】【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【详解】解:A 、该几何体为四棱柱,不符合题意;B 、该几何体为四棱锥,不符合题意;C 、该几何体为三棱柱,符合题意;D 、该几何体为圆柱,不符合题意.故选C .【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.4.某图书馆有图书约985000册,数据985000用科学记数法可表示为( )A. 398510⨯B. 498.510⨯C. 59.8510⨯D. 60.98510⨯【答案】C【解析】【分析】 科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤<,为整数.确定的值是易错点,由于985000有6位,所以可以确定615n =﹣= .【详解】解:985000=59.8510⨯故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.5.下列平面图形经过折叠后,不能围成正方体的是()A. B. C. D.【答案】D【解析】【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可【详解】解:常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有D选项不能围成正方体.故选D.【点睛】本题考查了正方体展开图,解题关键是熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”.6.按要求对0.05019分别取近似值,下面结果错误的是()A. 0.1(精确到0.1)B. 0.05(精确到千分位)C. 0.050(精确到0.001)D. 0.0502(精确到万分位)【答案】B【解析】【分析】根据近似数的的定义解答即可.【详解】A.把0.05019精确到0.1,后一数位上数字为5,要向前进一,约为0.1,本选项正确;B.把0.05019精确到千分位,后一数位上数字为1,要舍去,约为0.050,故本选项错误;C.把0.05019精确到0.001约为0.050,本选项正确;D.把0.05019精确到万分位约为0.0502,后一数位上数字为9,要向前进一,,本选项正确.故选B.【点睛】本题考查了近似数,精确到哪一数位,该数位后面的数字通常四舍五入.7.下列四个几何体,从正面和上面看,看到的相同,这样的几何体共有( )正方体圆锥球圆柱A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】分别找到从正面看和上面看所得到的图形即可.【详解】正方体的主视图是正方形,俯视图是正方形,故图符合题意;圆锥的主视图是等腰三角形,俯视图是圆,故此图不符合题意;球的主视图是圆形,俯视图是圆,故此图符合题意;圆柱的主视图是矩形,俯视图是圆,故此图不符合题意;故选C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.8.如图,一正方体截去一角后,剩下的几何体的面数和棱数分别为()A. 6,14B. 7,15C. 7,14D. 6,15【答案】B【解析】【分析】将一个正方体截去一个角,则其面数增加一个;直接数棱数即可.【详解】将一个正方体截去一个角,则其面数增加一个,故面数为:6+1=7;直接数棱数可得15条棱.故答案选:B【点睛】此题考查了将一个正方体截去一个角后的面数及棱数,掌握数几何体的面数及棱数是解题的关键.9.数轴上表示数4-和2的点分别是点A和点B,则点A和点B的距离是()A. 6-B. 2-C. 2D. 6【答案】D【解析】【分析】根据数轴上两点之间的距离来求解即可.【详解】AB =|﹣4﹣2|=6.故选D . 【点睛】本题考查了数轴上两点之间的距离的计算方法,掌握“数轴上两点之间的距离等于这两个点所表示的数的差的绝对值”是正确解答本题的关键.10.下列各组数中,数值相等的是( )A. 23和32B. 3(2)-和32-C. 23-和2(3)-D. (2)--和|2|--【答案】B【解析】【分析】 求出各选项中两式的结果,即可做出判断.【详解】23=9≠32=8;3(2)-=-8=32-=-8;23-=-9≠2(3)-=-9;(2)--=2≠|2|--=-2故选B【点睛】考核知识点:有理数计算. 此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.二、填空11.-5的相反数是 _______【答案】5【解析】【分析】根据相反数的定义直接求得结果.【详解】解:-5的相反数是5.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.12.计算35-=_________.【答案】2【解析】【分析】先算减法,再计算绝对值即可求解.【详解】|3﹣5|=|﹣2|=2.故答案为2.【点睛】本题考查了有理数的减法,绝对值,熟练掌握计算法则是解题的关键.13.登山队员攀登珠穆朗玛峰,在海拔3000m时,气温为﹣20℃,已知每登高1000m,气温降低6℃,当海拔为5000m时,气温是_____℃.【答案】-32【解析】【分析】根据题意列出算式,计算即可求出值.【详解】根据题意得:﹣20﹣(5000﹣3000)÷1000×6=﹣20﹣12=﹣32,∴当海拔为5000m时,气温是﹣32℃,故答案为﹣32.【点睛】本题考查了有理数的混合运算的应用,根据题意正确列出算式是解决问题的关键.14.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.【答案】18【解析】【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键. 15.有2020个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是________.【答案】2【解析】【分析】根据题意可以写出这组数据的前几个数,从而可以得到数字的变化规律,即可解答本题.【详解】由题意可得:这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0.∵2020÷6=336…4,∴这2020个数的和是:0×336+(0+1+1+0)=2.故答案为2.【点睛】本题考查了数字的变化类问题,解答本题的关键是明确题意,发现题目中数字的变化规律,每六个数循环出现.三、解答题16.请把下列各数分别填在相应的集合中:132-,0.3,0, 3.4-,12,9-,142,2- 正数集合{ }负分数集合{ }非负数集合{ }整数集合{ }【答案】{0.3,12,142};{132-, 3.4-};{0.3,0,12,142};{0,12,9-,2-} 【解析】【分析】根据有理数的分类即可得到结论.【详解】正数集合{0.3,12,142}; 负分数集合{132-,﹣3.4};非负数集合{0.3,0,12,142};整数集合{0,12,﹣9,﹣2 }.【点睛】本题考查了有理数,熟练掌握有理数的分类是解答本题的关键.17.计算.(1)()()()()341119-+--+-- (2)110.5 2.7542⎛⎫⎛⎫+--+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)1 (2)3-【解析】【分析】(1)根据有理数的加减混合运算法则计算即可求解;(2)根据运算律简化运算即可求解.【详解】(1)原式=﹣3﹣4﹣11+19=﹣18+19=1;(2)原式=0.5+(﹣12)+(﹣14)﹣2.75=0﹣3=﹣3. 【点睛】本题考查了有理数的加减混合运算,解答本题的关键是利用运算律简化运算.18.把下列各数:﹣2.5,2(1)-,0,2--,(3)--在数轴上表示出来,并用“<”把它们连接起来.【答案】22.520(1)(3)-<--<<-<--【解析】试题分析:根据数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是左边的数总是小于右边的数,即可得出答案.试题解析:如图所示, ,故()()22.52013.-<--<<-<--点睛:数轴上右边的数总比左边的数大.19.计算:(1)512.584⎛⎫-+⨯- ⎪⎝⎭(2)()()22264⎡⎤-----⎣⎦【答案】(1)﹣8532;(2)-36 【解析】【分析】 (1)根据有理数的乘法和加法可以解答本题;(2)根据有理数的乘方、有理数的减法可以解答本题.【详解】(1)原式=﹣2.5+(﹣532)=﹣8032+(﹣532)=﹣8532; (2)原式=﹣4﹣(36﹣4)=﹣4﹣32=﹣36.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.一个六棱柱模型如图所示,它的底面边长都是6m ,侧棱长4m ,观察这个模型,回答下列问题:(1)这个六棱柱的几个面分别是什么形状?哪些面的形状、大小完全相同?(2)这个六棱柱的所有侧面的面积之和是多少?【答案】(1)见解析 (2)1442m【解析】【分析】(1)上下两个底面是正六边形,侧面是长为6宽为4的六个长方形;(2)计算六个侧面面积和即可.【详解】(1)这个六棱柱有8个面,其中2个底面是大小和形状相同的正六边形,6个侧面是长为6m ,宽为4m 的长方形;(2)其侧面积为:6×4×6=144(m 2).答:这个六棱柱的所有侧面的面积之和为144m 2.【点睛】本题考查了棱柱的特征,底面是大小形状相同的正六边形,侧面是长为6,宽为4的六个长方形. 21.“又甜又脆”水果店现从批发市场买进6箱苹果,买进价每箱40元,以每箱10kg 为准,称重记示如下(超过为正,不足为负,单位:kg ): 1.5-, 1.3-,0,0.3, 1.5-,2.(1)问这6箱苹果的总重量是多少?(2)在出售这批苹果时,有10%的苹果烂掉(不能出售),若出售价为8元/kg ,卖完这批苹果该水果店可可赢利多少元?【答案】(1)58kg (2)177.6元【解析】【分析】(1)直接利用正负数的意义计算得出答案;(2)根据(1)中所求,结合售价与进价得出答案.【详解】(1)10×6+(﹣1.5﹣1.3+0+0.3﹣1.5+2 )=60﹣2=58(kg )答:这6箱苹果的总重量是58kg .(2)58×(1﹣10%)×8﹣40×6=1776(元)答:卖完这批苹果该水果店可赢利177.6元.【点睛】本题考查了正数与负数,正确理解正负数的意义是解题的关键.22.数学老师布置了一道思考题“计算:1151236⎛⎫-÷- ⎪⎝⎭,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为()15115124106361236⎛⎫⎛⎫⎛⎫-÷-=-⨯-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以115112366⎛⎫-÷-= ⎪⎝⎭. (1)请你判断小明的解答是否正确?答_________________;(2)请你运用小明的解法解答问题.计算:111348368⎛⎫-÷-- ⎪⎝⎭【答案】(1)正确 (2)110【解析】【分析】 (1)小明的解答正确,因为已知一个数的倒数,可以求出这个数.(2)应用乘法分配律,求出113136848⎛⎫⎛⎫--÷-⎪ ⎪⎝⎭⎝⎭的值是多少,即可求出111348368⎛⎫⎛⎫-÷-- ⎪ ⎪⎝⎭⎝⎭的值是多少.【详解】(1)正确.理由:因为已知一个数的倒数,可以求出这个数.(2)1131 36848⎛⎫⎛⎫--÷-⎪ ⎪⎝⎭⎝⎭=113(48) 368⎛⎫--⨯-⎪⎝⎭=113(48)(48)(48) 368⨯--⨯--⨯-=﹣16+8+18 =10∴111348368⎛⎫⎛⎫-÷--⎪ ⎪⎝⎭⎝⎭=110.【点睛】本题考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律的应用.23.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?【答案】(1)画图见解析;(2)小彬家与学校之间的距离是3km;(3)小明跑步共用了36分钟.【解析】试题分析:(1)根据题意画出即可;(2)计算2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速度即可求出答案.试题解析:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了36 分钟长时间.24.有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣;(2)若请推算12696÷⨯=﹣,□内的符号;(3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【答案】(1)-2;(2)-;(3)-20,理由详见解析.【解析】【分析】(1)根据有理数的加减法法则解答即可;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【详解】(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴112⨯⨯6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点睛】本题考查了有理数的混合运算,明确有理数混合运算的计算方法是解答本题的关键.。

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试题2022年一、单选题1.12-的相反数是( ) A .2- B .12 C .0 D .2 2.在227,3π,1.62,0四个数中,有理数的个数为( ) A .4 B .3 C .2 D .13.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于( ) A .点动成线 B .线动成面 C .面动成体 D .以上都不对 4.下列图形经过折叠不能围成棱柱的是( )A .B .C .D . 5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学记数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯ 6.下列说法错误的是( )A .15ab -的系数是15-B .235x y 的系数是15 C .224a b 的次数是4 D .42242a a b b -+的次数是47.用一个平面截六棱柱,截面的形状不可能是( )A .等腰三角形B .梯形C .五边形D .九边形 8.有理数a ,b 在数轴上的位置如图所示,那么下列式子成立的是( )A .0a b +>B .0ab <C .a b >D .0ab >9.若m 、n 满足21(2)0m n ++-=,则n m 的值等于( )A .-1B .1C .-2D .1410.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13310=+B .25916=+C .361521=+D .491831=+二、填空题11.月球表面白天的温度是零上126℃,记作126+℃,夜间平均温度是零下150℃,则记作______.12.比较大小:7-_____3-(填“>”,“<”或“=”).13.新冠肺炎疫情期间,某单位买单价为20元的温度计a 个,单价为3元的口罩b 个,共花钱__元.14.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a b c ++的值为______.15.如图所示的是从不同方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留π)16.若20m =,按下列程序计算,最后得出的结果是________.17.在学习绝对值后,我们知道,在数轴上分别表示有理数a 、b 的A 、B 两点之间的距离等于||-a b .现请根据绝对值的意义并结合数轴解答以下问题:满足1|27|x x -++=的x 的值为___________.三、解答题18.计算.(1)()121821---;(2)42112(3)6⎡⎤--⨯--⎣⎦.19.用简便方法计算:(1)4571961236⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (2)356(6)36⨯-.20.在数轴上表示下列各数:2153,|3|,2,0,,222⎛⎫----+ ⎪⎝⎭,并用“<”将它们连接起来.21.已知a ,b 互为相反数,且0a ≠,c ,d 互为倒数,2m =,求()21m a b cdm --++-的值.22.如图,是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置上的小正方体的个数.请你画出从它的正面和左面看所得到的平面图形.23.已知a 、b 均为有理数,现定义一种新的运算,规定:25a b a ab ⊗=+-,例如2111115⊗=+⨯-,求:(1)()-36⊗的值;(2)()32---592⎡⎤⎛⎫⎡⎤⊗⊗ ⎪⎢⎥⎣⎦⎝⎭⎣⎦的值24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A 地出发,晚上到达B 地.约定向北为正,向南为负,当天记录如下:(单位:千米)-180,+200,-110,-60,+160,-68(1)若每千米耗油0.3升,问小明家的汽车这一天共耗油多少升?(2)B 地在A 地的哪个方向?它们相距多少千米?(3)汽车从A 出发后,在整个行驶过程中,有多少次再次经过出发地A ?请计算说明理由.25.先阅读并填空,再解答问题. 我们知道111122=-⨯,1112323=-⨯,1113434=-⨯, 那么145=⨯ ______,120182019=⨯ ______. 利用上述式子中的规律计算: (1)1111111126122030425672+++++++; (2)111124466820162018++++⨯⨯⨯⨯.26.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分②面积的一半,部分②是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++的值吗?参考答案1.B【解析】【分析】根据相反数的定义直接进行求解即可.【详解】由12-的相反数是12;故选:B.【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.2.B【解析】【分析】根据有理数的定义,即可解答.【详解】在227,3π,1.62,0四个数中,有理数为227,1.62,0,共3个,故选:B.【点睛】整数和分数统称为有理数,无限不循环小数由于不能化成分数,因而不属于有理数.3.B【解析】【分析】根据“线动成面”的意义得出答案.【详解】解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.【点睛】本题考查点、线、面、体之间的关系,理解“点动成线、线动成面,面动成体”是解决问题的关键.4.D【解析】【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可.【详解】解:A 可以围成四棱柱,B 可以围成三棱柱,C 可以围成五棱柱,D 选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:D .【点睛】本题考查立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】460 000 000=4.6×108.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B【解析】【分析】根据单项式与多项式的定义、次数与系数的概念解答即可.【详解】A 、15ab -的系数是15-,正确;B、235x y的系数是35,故B错误;C、224a b的次数是4,正确;D、42242a ab b-+的次数是4,正确,故答案为B.【点睛】本题考查了单项式和多项式的次数,系数的识别,掌握单项式与多项式的判断方法是解题的关键.7.D【解析】【分析】六棱柱有8个面,用平面去截六棱柱时最多与8个面相交得八边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形、七边形、八边形.【详解】解:用平面去截一个六棱柱,得的截面可能为三角形、四边形、五边形、六边形、七边形、八边形,不可能为九边形.故选:D.【点睛】本题考查六棱柱的截面.六棱柱的截面的几种情况应熟记.8.B【解析】【分析】根据数轴可以判断a、b的正负,从而可以解答本题.【详解】解:由数轴可得,a<0<b且|a|>|b|,则a+b<0,a<b,ab<0,只有选项B正确.故选:B.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:②正数都大于0;②负数都小于0;②正数大于一切负数;②两个负数,绝对值大的其值反而小.同时考查了数轴的特征,以及在数轴上表示数的方法,要熟练掌握,解答此题的关键是要明确:一般来说,当数轴方向朝右时,右边的数总比左边的数大.9.B【解析】【分析】先根据绝对值和偶次幂的非负性求得m 、n 的值,然后再代入解答即可.【详解】解:②()2120m n ++-=,1m +≥0,()22n -≥0, ② 1m +=0,()22n -=0,即m=-1,n=2,②()211 n m =-=.故答案为B .【点睛】本题主要考查了绝对值和偶次幂的非负性以及乘方运算,运用绝对值和偶次幂的非负性确定m 、n 的值是解答本题的关键.10.C【解析】【分析】根据给定的部分“三角形数”和“正方形数”找出“三角形数”可看成从1开始几个连续自然数的和以及“正方形数”可看成某个自然数的平方,依此规律逐一分析四个选项中的三个数是否符合该规律,由此即可得出结论.【详解】解:A 、13不是正方形数,不合题意;B 、9和16不是三角形数,不合题意;C 、36=62=(5+1)2,n=5;两个三角形的数分别是:1+2+3+4+5=15;1+2+3+4+5+6=21;故C 符合题意;D 、18和31不是三角形数,不合题意;故选:C .【点睛】本题考查了规律型中数字的变化类,根据给定的部分“三角形数”和“正方形数”找出“三角形数”和“正方形数”的特点是解题的关键.11.-150②【解析】【分析】此题主要用正负数来表示具有意义相反的两种量:零上温度记为正,则零下温度就记为负,直接得出结论即可.【详解】解:零下150②,记作-150②.故答案为:-150②.【点睛】本题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.<【解析】【分析】两个负数比较,绝对值大的反而小,依此即可求解.【详解】解:②|-7|=7,|-3|=3,7>3,②-7<-3.故答案为:<.【点睛】本题考查了负数大小比较,任意两个数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负数比较,绝对值大的反而小.13.(20a+3b)【解析】【分析】先表示出温度计的钱数,再表示出口罩的钱数,相加即可得出答案.【详解】解:单价为20元的温度计a 个,单价为3元的口罩b 个,∴温度计的钱数为20a 元,口罩的钱数为3b 元∴共花钱()203a b +元.故答案为:()203a b +.【点睛】本题主要考查列代数式的知识点,解决问题的关键是读懂题意,找到所求的量的等量关系,注意:书写代数式的时候,数字应写在字母的前面.此题基础题,比较简单.14.12【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之和相等,列出方程求出a 、b 、c 的值,从而得到a+b+c 的值.【详解】解:这是一个正方体的平面展开图,共有六个面,可知a 与b 相对,c 与一2相对,3与2相对,②相对面上两个数之和相等,②a+b=c -2=3+2,②a+b=5,c=7,②a+b+c=12.故答案为:12.【点睛】本题考查了正方体相对两个面.注意正方体的空间图形,从相对面入手,分析及解答问题.15.6π【解析】【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:②圆柱的底面直径为2,高为3,②侧面积= 2•π×3=6π..故答案为:6π.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.16.21【解析】【分析】根据程序写出代数式,再将20m =代入代数式计算即可.【详解】由题意知:代数式为()2-2m m m ÷+=1m +,当20m =时,原式=21,故填:21 .【点睛】本题考查程序运算题,根据程序写出代数式并化简是关键.17.3或4-【解析】【分析】根据两点间的距离公式,对x 的值进行分类讨论,然后求出x ,即可解答;【详解】 解:根据题意,2|1|x x -++表示数轴上x 与1的距离与x 与2-的距离之和,当2x <-时,|(1)(2)2=1|7x x x x =---+-++,解得:4x =-;当21x -≤≤时,|(1)(2)2=1|7x x x x =--++-++,此方程无解,舍去;当1x >时,|(1)(2)2=1|7x x x x =-++-++,解得:3x =;②满足1|27|x x -++=的x 的值为:3或4-.故答案为:3或4-.【点睛】本题考查了两点之间的距离,以及绝对值的几何意义,解题的关键是熟练掌握绝对值的几何意义,正确的把绝对值进行化简.注意利用分类讨论的思想解题.18.(1)9;(2)16.【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)12(18)21---3021=-9=.(2)原式11(29)6=--⨯-11(7)6=--⨯-761=-+16=.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.19.(1)35;(2)5416-.【解析】【分析】(1)根据乘法分配律即可求解;(2)根据351673636=-,再利用乘法分配律即可求解.【详解】解:(1)原式457(36)9612⎛⎫=--⨯- ⎪⎝⎭457(36)(36)(36)9612=⨯--⨯--⨯-163021=-++35=(2)356(6)36⨯- 17(6)36⎛⎫=-⨯- ⎪⎝⎭ 1426=-+ 5416=- 【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.20.在数轴上表示如图所示,见解析;2531203222⎛⎫-<-<-+<<<- ⎪⎝⎭. 【解析】【分析】根据数轴的三要素:原点、正方向、单位长度画出数轴,分别根据绝对值、有理数的乘方、相反数的定义等化简各数,然后在数轴上把点表示出来,再根据数轴上的数,越往右,数越大解题即可.【详解】21533,|3|=3,2,0,,=22242=⎛⎫-----+- ⎪⎝⎭ 在数轴上表示2531203222⎛⎫-<-<-+<<<- ⎪⎝⎭【点睛】本题考查数轴、利用数轴表示数、利用数轴比较大小,涉及绝对值、有理数的乘方、相反数等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.3或7【解析】【分析】由题意可知a+b=0,cd=1,m=±2,然后代入所求代数式进行计算即可.【详解】解:②a,b互为相反数,②a+b=0,②c,d互为倒数,②cd=1,②|m|=2,②m=±2,当m=2时,原式=4+1+0-2=3;当m=-2时,原式=4+1+0-(-2)=7.故m2-(-1)+|a+b|-cdm的值为3或7.22.见解析.【解析】由已知条件可知,主视图有3列,每列小正方形数目分别为4,1,3;左视图有3列,每列小正方形数目分别为2,4,3,据此画出图形解题.【详解】从正面看:从左面看:【点睛】本题考查几何体的三视图画法,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)-14;(2)21.【解析】【分析】(1)根据⊗的含义,以及有理数的混合运算的运算方法,求出(-3)⊗6的值是多少即可.(2)根据⊗的含义,以及有理数的混合运算的运算方法,求出[2⊗(-32)]-[(-5)⊗9]的值是多少即可.【详解】(1)(-3)⊗6,=(-3)2+(-3)×6-5,=9-18-5,=-14;(2)[2⊗(-32)]-[(-5)⊗9],=[22+2×(-32)-5]-[(-5)2+(-5)×9-5],=[4-3-5]-[25-45-5],=-4+25,=21.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.(1)233.4升;(2)B地在A地的正南方,它们相距58千米;(3)4次【解析】【分析】(1)由行驶记录取绝对值相加,算出汽车行驶的总路程,再乘以每千米的耗油量即可得出结果;(2)要求出B地在A地的哪个方向,相距多少千米,只要将汽车行驶的记录相加,如果是正数,就是B在A地的正北方向;如果是负数,就是B在A的正南方向;行驶记录相加的绝对值就是A、B的距离;(3)将行驶记录逐一相加,当每次运算结果与前一次运算结果的符号相反时,汽车会再次经过出发地A.【详解】解:(1)依题意得:行驶的总路程=180+200+110+60+160+68=778(千米),778×0.3=233.4(升),所以小明家的汽车这一天共耗油233.4升;(2)因为(−180)+(+200)+(−110)+(−60)+(+160)+(−68)=−58,所以B地在A地的正南方,它们相距58千米;(3)因为0+(−180)=−180,−180+200=20,20−110=−90,−90−60=−150,−150+160=10,10−68=−58,有4次运算结果与前一次运算结果的符号相反,所以汽车有4次再次经过出发地A.【点睛】本题考查了正负数在实际生活中的应用,特别需要注意绝对值的计算.25.观察:1145-,1120182019-;(1)89;(2)2521009.【解析】【分析】观察阅读材料中的式子得出拆项法,原式利用拆项法变形,计算即可求出值.【详解】观察:1114545=-⨯,1112018201920182019=-⨯;(1)11111111 26122030425672 +++++++=1111111 ++++++ 12233456677889⨯⨯⨯⨯⨯⨯⨯=1-12+12-13+13-14+②②+1189-=1-1 9=89;(2)1111 24466820162018 ++++⨯⨯⨯⨯=1111111 () 2244620162018⨯-+-++-=111() 222018⨯-=252 1009.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分②的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分②面积是12,部分②面积是(12)2,部分②面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是164;(2)原式=12+23456611111163122222264 ++++=-=.【点睛】本题考查了有理数的乘方,解题的关键是仔细观察图形并发现图形变化的规律.。

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试卷2022年一、单选题1.下图中哪个图形经过折叠后可以围成一个棱柱()A .B .C .D .2.如果收入80元记作+80元,那么支出20元记作()A .+20元B .-20元C .+100元D .-100元3.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点为439000米.将439000用科学记数法表示应为()A .60.43910⨯B .64.3910⨯C .54.3910⨯D .34.3910⨯4.用一个平面去截一个如图所示的正方体,截面形状不可能为()A .B .C .D .5.下面说法正确的是()A .13πx 2的系数是13B .13xy 2的次数是2C .﹣5x 2的系数是5D .3x 2的次数是26.下列运算正确的是()A .4a+3b=7abB .4xy-3xy=xyC .-2x+5x=7xD .2y-y=17.“五一”小长假期间,某公园的门票价格是:成人10元,学生5元.某旅行团有成人x 人,学生y 人,该团应付的门票为()A .(105)x y +元B .(105)y x +元C .(1515)x y +元D .15xy 元8.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A .﹣5℃B .﹣6℃C .﹣7℃D .﹣8℃9.已知-5a 6b 2和7a 2nb 2是同类项,则代数式10n-2的值是()A .58B .18C .28D .3810.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭100个这样的小正方形需要小棒()根.A .300B .301C .302D .400二、填空题11.计算:-3+2=_____.12.从正面,左面,上面看到的几何体的形状图都一样的几何体是________(一种即可).13.数轴的单位长度为1,如果点A 表示的数是-2,那么点B 表示的数是_________.14.计算(﹣1)÷6×(﹣16)=_____.15.化简:2(a+1)-a=____16.若a-2b=3,则2a-4b-5=______.17.数a ,b 在数轴上的位置如图所示,化简a a b --的结果是__________.三、解答题18.计算:2108(2)(4)(3)-+÷---⨯-.19.化简:822(52)a b a b ++-.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.21.9月10日这一天下午,出租车司机小王在东西走向的幸福大道上运营,若规定向东为正,向西为负,出租车的行车里程如下:+15,-4,+13,-10,-12,+3,-13,-17(1)将最后一名乘客送到目的地,小王距离出车地点多少千米?(2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?22.如图是分别从正面、左面、上面观察一个几何体得到的图形,请解答以下问题:(1)这个几何体的名称为;(2)若从正面看到的是长方形,其长为10cm ;从上面看到的是等边三角形,其边长为4cm ,求这个几何体的侧面积.23.有一道化简求值题:“当a=-2,b=-3时,求(3a 2b-2ab )-2(ab-4a 2)+(4ab-a 2b )的值.”小芳做题时,把“a=-2”错抄成了“a=2”,但她的计算结果却是正确的,小芳百思不得其解,请你先化简并求值,再帮助她解释一下原因.24.在数轴上把下列各数表示出来,并用“<”连接各数.0,|1|--,-3,112,-(-4)25.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A 点,再从A 点向右移动12个单位到达B 点,把点A 到点B 的距离记为AB ,点C 是线段AB 的中点.(1)点C 表示的数是;(2)若点A以每秒2个单位的速度向左移动,同时C、B点分别以每秒1个单位、4个单位的速度向右移动,设移动时间为t秒,①点C表示的数是(用含有t的代数式表示);②当t=2秒时,求CB-AC的值;③试探索:CB-AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题解题过程;(2)请猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n=.(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).参考答案1.B【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:选项A、D缺少一个面,不能围成棱柱;选项C中折叠后底面重合,不能折成棱柱;只有B能围成三棱柱.所以B选项是正确的.【点睛】考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.B【解析】【详解】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.∵收入80元记作+80元,∴支出20元记作-20元.故选:B.考点:具有相反意义的量.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:439000=4.39×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,截面也不可能有弧度,因此截面形状不可能为圆.解:用一个平面无论如何去截,截面也不可能有弧度,因此截面形状不可能为圆.故选:C .【点睛】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形或其它的弧形.5.D 【解析】【分析】根据单项式的系数和次数的定义即可完成即可.【详解】解:A .13πx 2的系数是13π,故此选项错误;B .12xy 2的次数是3,故此选项错误;C .﹣5x 2的系数是﹣5,故此选项错误;D .3x 2的次数是2,正确.故答案为D .【点睛】本题考查了单项式的系数和次数,解题的关键在于掌握单项式的系数和次数的求法,即系数为单项式的数字部分,注意π为数字,这是解答本题的关键.6.B 【解析】【分析】根据整式加减法的运算法则进行计算判断即可.【详解】A 选项中,因为43a b +中两个项不是同类项,不能合并,所以A 中计算错误,不符合题意;B 选项中,因为43xy xy xy -=,所以B 中计算正确,符合题意;C 选项中,因为253x x x -+=,所以C 中计算错误,不符合题意;D 选项中,因为2y y y -=,所以D 中计算错误,不符合题意.故选B .熟记“整式加减法的运算法则”是正确解答本题的关键.7.A【解析】【分析】门票费=成人门票总价+学生门票总价.【详解】解:门票费为(10x+5y)元.故选A.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.8.A【解析】【详解】=-+-=-℃晚上的气温71195故选A.9.C【解析】【分析】根据同类项定义,相同字母的指数相同,可得出n的值,继而可得出答案.【详解】解:∵-5a6b2和7a2nb2是同类项,∴2n=6,解得:n=3,∴10n-2=28.故选择:C.【点睛】本题考查了同类项,掌握同类项的定义是解题的关键.10.B【解析】【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;…,搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭100个这样的正方形需要3×100+1=301根火柴棒;故选B.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.11.-1【解析】【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【详解】解:﹣3+2=﹣1.故答案为:﹣1.12.球(答案不唯一)【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:球从正面,左面,上面看到的平面图形为全等的圆,故答案为球(答案不唯一).【点睛】本题考查三视图的有关知识,注意三视图都相同的常见的几何体有球、正方体.13.2【解析】由4,AB=点A表示的数是-2,把点A往右移动4个单位可得答案.【详解】解: 点A表示的数是-2,4,AB=∴把点A往右移动4个单位可得点B,B∴表示的数为:242,-+=故答案为:2.【点睛】本题考查的是数轴上两点之间的距离,及点的移动后对应的数的表示,掌握以上知识是解题的关键.14.1 36.【解析】【分析】由有理数的乘除法的运算法则进行计算,即可得到答案.【详解】解:原式=111()66-⨯⨯-=136;故答案为:1 36.【点睛】本题考查了有理数的乘除法混合运算,解题的关键是掌握运算法则进行解题.15.a+2##2+a【解析】【详解】解:原式=2a+2-a=a+2.故答案为:a+216.1【解析】【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.解:a-2b=3,∵2a ﹣4b ﹣5=2(a ﹣2b)-5=2×3-5=1.故答案为:1.17.-b 【解析】【分析】根据数轴可判断a <0,a−b <0,然后去绝对值即可.【详解】解:由数轴可知,a <0,a−b <0,∴()a a b a b a a b a b --=---=--+=-,故答案为-b .【点睛】本题考查了数轴与绝对值,解决此类题目的关键是判断绝对值里式子的符号,熟练运用去绝对值的法则,合并同类项的法则,是各地中考的常考点.18.-20【解析】【分析】根据有理数的运算顺序,先算乘方,再算乘除,最后算加减即得.【详解】解:原式=−10+8÷4−12=-10+2-12=-20【点睛】本题考查有理数的混合运算,按照有理数运算顺序计算是解题关键,按照乘法与除法运算法则确定符号是易错点.19.18a−2b 【解析】【分析】根据整式的运算法则,先去括号,再合并同类项即可求出答案.【详解】解:原式=8a+2b+10a−4b=18a−2b【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.见解析【解析】【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形;从左面看:共有2列,左面一列有2个,右边一列有1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】此题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.21.(1)小王距离出车地点西边25千米(2)这天下午汽车共耗油17.4升【解析】【详解】试题分析:(1)根据有理数的加法,直接可求解;(2)根据行车就要耗油,求其各段行驶过程的绝对值,乘以单位耗油量即可.试题解析:(1)+15-4+13-10-12+3-13-17=-25千米小王距离出车地点西边25千米(2)+15+4+13+10+12+3+13+17=87千米这天下午汽车共耗油87×0.2=17.4升22.(1)三棱柱;(2)这个几何体的侧面积为2120cm.【解析】【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【详解】解:(1)这个几何体是三棱柱;故答案为:三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长,宽是三棱柱的高,所以三棱柱侧面展开图形的面积为:()2S cm=⨯⨯=.3410120120cm.答:这个几何体的侧面积为2【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.2a2b+8a2,8,理由见解析【解析】【分析】先把(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)去括号后合并同类项化为2a2b+8a2,再代入求值即可.无论a=−2,还是a=2,a2都等于4,代入后结果是一样的.【详解】解:(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)=3a2b−2ab−2ab+8a2+4ab−a2b=2a2b+8a2当a=−2,b=−3时,原式=2×4×(−3)+8×4=8.原因:因为无论a=−2,还是a=2,a 2都等于4,代入后结果是一样的,所以计算结果是正确的.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.见解析,-3<|1|--<0<112<-(-4).【解析】【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【详解】解:如图所示,,由图可知,-3<|1|--<0<112<-(-4).故答案为见解析,-3<|1|--<0<112<-(-4).【点睛】本题考查数轴,有理数的大小比较,熟知数轴上右边的数总比左边的大是解题的关键.25.(1)-1(2)①−1+t ;②0;③CB−AC 的值不随着时间t 的变化而改变,CB−AC 的值为0.【解析】【分析】(1)根据题意可以求得点C 表示的数;(2)①根据题意可以用代数式表示点C 运动时间t 时表示的数;②根据题意可以求得当t =2秒时,CB−AC 的值;③先判断是否变化,然后求出CB−AC 的值即可解答本题.(1)解:由题意可得,AC =12×12=6,∴点C 表示的数为:0−7+6=−1,故答案为:−1;(2)解:①由题意可得,点C移动t秒时表示的数为:−1+t,故答案为:−1+t;②当t=2时,CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0;③CB−AC的值不随着时间t的变化而改变,∵CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0,∴CB−AC的值不随着时间t的变化而改变,CB−AC的值为0.【点睛】点评:本题考查数轴,解答本题的关键是明确题意,找出所求问题需要的条件.26.(1)50;5050;(2)n(2n+1);(3)100a+4950b.【解析】【分析】(1)由题意可得从1到100共有100个数据,两个一组,则共有50组,由此即可补全例题的解题过程;(2)观察、分析所给式子可知,所给代数式中共包含了2n个式子,这样参照例题方法解答即可;(3)观察、分析所给式子可知,所给代数式中共包含了100个式子,再参照例题方法解答即可.【详解】解:(1)原式=1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×50=5050;故答案为:50;5050;(2)原式=(1+2n)+(2+2n-1)+(3+2n-2)+…+(n+n+1)=(2n+1)+(2n+1)+(2n+1)+…+(2n+1)=(2n+1)×n=n(2n+1);故答案为:n(2n+1);(3)原式=[a+(a+99b)]+[(a+b)+(a+98b)]+…+[(a+49b)+(a+50b)]=(2a+99b)+(2a+99b)+…+(2a+99b)=50(2a+99b)=100a+4950b.【点睛】本题的解题要点是通过观察、分析得到本题的三个式子都有如下规律:(1)每个算式中都包含了偶数个式子;(2)每个算式中相邻两个式子的差是相等的;(3)每个算式中第1个和最后1个式子相加,第2个式子和倒数第2个式子相加,…,所得的和相等;这样根据上述特点即可按例题中的方法方便的计算出每个小题的结果了.。

北师大版七年级上册数学期中考试试卷带答案

北师大版七年级上册数学期中考试试卷带答案

北师大版七年级上册数学期中考试试题一、单选题1.4-的倒数是( )A .14B .4C .14-D .4- 2.把890000这个数据用科学记数法表示为( )A .58.910⨯B .68.910⨯C .78.910⨯D .88.910⨯ 3.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )A .B .C .D . 4.下列各组单项式中,不是同类项的是( )A .3与2-B .313x y 与313x y - C .22ab c 与2acb D .2a -与25- 5.如果一个直棱柱有七个面,那么它一定是( )A .三棱柱B .四棱柱C .五棱柱D .六棱柱 6.绝对值大于2且小于5的所有整数的和是( )A .7B .-7C .0D .5 7.44-=表示的意义是( )A .4-的相反数是4B .表示4的点到原点的距离是4C .4的相反数是4-D .表示4-的点到原点的距离是48.下列计算正确的是( )A .2(1)1-=-B .3(1)1-=-C .211-= D .311-=9.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是( )A .B .C .D .10.有理数a ,b 在数轴上的对应点如图所示,则下列式子错误的是( )A .b <0B .a+b <0C .a <0D .b ﹣a <0二、填空题11.十一月某天,某地最高气温5℃,最低气温-2℃.这一天温差是________℃.12.已知单项式223x y -的系数为a ,次数为b ,则ab 的值为________.13.在22-、3(1)-、(5)-+、213⎛⎫- ⎪⎝⎭中,正数有________个.14.用“>”“<”“=”填空:(1)若0a <,则2a ________a ;(2)若0a c b <<<,则abc ________015.在数轴上,与表示3-的点距离2个单位长度的点表示的数是________.16.已知﹣17x 4my 2+23x 7yn =6x 7y 2,则m ﹣n 的值是 ___.17.用火柴棒按如图在方式搭图形,搭第n 个图形需 ___根火紫棒.三、解答题18.把下列个数填到相应的集合内.1、13、0.5、7+、0、 6.4-、9-、613、0.3、5%、26-、1.010010001…… 整数集合:{_______________…}分数集合:{_______________…}19.计算.(1)(8)4718(27)--+--(2)510.474( 1.53)166----(3)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭(4)202031312(1)468⎛⎫-+-⨯+- ⎪⎝⎭20.化简:(1)()()2237427a ab a ab -+--++(2)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x21.化简求值22352(23)4m m m m ⎡⎤---+⎣⎦,其中4m =-.22.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为3 cm,长方形的长为5 cm,宽为3 cm,请直接写出修正后所折叠而成的长方体的体积是cm3.23.为筹备某项工作,甲、乙、丙三个志愿者团队走上街头做宣传工作,在筹备期间,甲队做宣传工作的时间是乙队所用时间的2倍还多5个小时,丙队所用的时间时乙队的三分之一还少10个小时,若设乙队宣传工作用了x个时,回答下列问题.(1)用含x的代数式表示甲队的工作时间为________小时,丙队的工作时间为________小时;(2)甲队比丙队多宣传的时间为多少?(3)若乙队宣传了330个小时,求甲队比丙队多宣传的时间.24.某厂的某生产合作小组每天平均组装n个某型号电子产品(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周的五个工作日每天实际产量情况(超过计划产量记为正,少于计划产量记为负).(1)用含n的代数式表示合作小组本周五天生产电子产品的总量为________个;(2)该厂实行每日计件工资制,每组装生产一个电子产品可得200元,若超额完成任务,n=时,请求出该小组这一周的工资则超过部分每个另奖55元,少生产一个扣60元,当7总额;(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不n=时,在此方式下这一周此小组的工资总额与按日计件的工资哪个多?请说明理变,当7由.25.在一条不完整的数轴上从左到右有A 、B 、C 三点,其中5cm AC =,2cm BC =,设点A 、B 、C 所对应数的和是p .(1)若以点B 为原点,2cm 长为1个单位长度,则点A 所对应的数为________,点C 所对应的数为________,p 的值为________;(2)若原点O 在数轴上,且15cm =OB ,以1cm 长为一个单位长度,求p 的值.26.老师写出一个整式(ax 2+bx ﹣3)﹣(2x 2﹣3x )(其中a 、b 为常数),然后让同学给a 、b 赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为﹣x 2+4x ﹣3,则甲同学给出a 、b 的值分别是a = ,b = ;(2)乙同学给出一组数,计算的最后结果与x 的取值无关,求出ba+ab 的值.参考答案1.C2.A3.A4.D5.C6.C7.D8.B9.B10.D11.7【分析】利用最高气温减去最低气温计算即可.【详解】解:5-(-2)=7(℃),即这一天温差是7℃,故答案为:7.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.12.2-【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】 解:单项式223x y -的系数为:23-,次数为:3, 则23a =-,3b =. 所以2332ab =-⨯=-.故答案为:2-.【点睛】本题考查了单项式,解题的关键是正确把握单项式的次数与系数确定方法.13.1【解析】【分析】根据正数大于零进行分析即可.【详解】解:224-=-,3(1)1-=-,(5)5-+=-,21319⎛⎫-⎪⎭= ⎝,故在22-、3(1)-、(5)-+、213⎛⎫- ⎪⎝⎭中,正数有213⎛⎫-⎪⎝⎭,共1个,故答案为:1.14.<>【解析】【分析】(1)根据一个小于零的数乘以大于1的数会越乘越小即可得出结论;(2)根据两个小于零的数相乘结果大于零,再乘一个大于零的数结果仍然大于零即可得出结论.【详解】解:(1)℃a<0,2>1℃2a<a;(2)℃ab>0,c>0℃abc>0故答案为:<;>.【点睛】本题考查有理数相乘的符号问题,掌握符号的运算规律是本题关键.15.5-或1-##-1或-5【解析】【分析】与表示3-的点距离2个单位长度的点有两个,分别在-3的左侧和-3的右侧,利用数轴即可得到答案.【详解】解:据题意,作图如下如图,与表示3-的点距离2个单位长度的点有两个,分别是5-、1-故答案为:5-或1-【点睛】本题考查数轴上两点之间的距离,牢记相关知识点是解题的关键.16.14-##-0.25 【解析】【分析】由4277217236m n x y x y x y -+=得,4217m x y -、723n x y 、726x y 是同类项,从而得出m 、n 的值,代入即可求出答案.【详解】4277217236m n x y x y x y -+=,472m n =⎧∴⎨=⎩, 解得:742m n ⎧=⎪⎨⎪=⎩, 71244m n ∴-=-=-. 故答案为:14-. 【点睛】本题考查同类项的定义:所含字母相同且相同字母的指数也相同,掌握同类项的定义是解题的关键.17.6(1)n +【解析】【分析】根据三个图形的变化规律找到图形个数与火柴棒根数的关系,即可得出结论.【详解】根据图形可得:第一个图形需12根火紫棒,即126(11)=⨯+,第二个图形需18根火紫棒,即186(21)=⨯+,第三个图形需24根火紫棒,即246(31)=⨯+,,按照这种方法下去,第n 个图形需6(1)n +根火紫棒,故答案为:6(1)n +.【点睛】本题考查图形类的找规律问题,通过观察分析,用一般式子表示出变化规律是解题的关键.18.1,7+,0,9-,26-;13,0.5, 6.4-,613,0.3,5%. 【解析】【分析】利用整数、分数概念判断即可,即整数是正整数、零、负整数的集合;分数是表示一个数是另一个数的几分之几.【详解】解:整数集合:{1,7+,0,9-,26}-; 分数集合:1{3,0.5, 6.4-,613,0.3,5%}. 故答案为:1,7+,0,9-,26-;13,0.5, 6.4-,613,0.3,5%. 【点睛】本题考查了有理数中整数及分数,解题的关键是熟练掌握各自的定义:即整数是正整数、零、负整数的集合;分数是表示一个数是另一个数的几分之几.19.(1)10-;(2)4-;(3)12-;(4)212-【解析】【分析】(1)把减法转化成加法,利用加法的交换律、结合律,能使运算简便;(2)利用加法的交换律和结合律,把小数、同分母的分数分别相加;(3)根据有理数的乘除法则及减法进行计算;(4)利用乘法对加法的分配律,能使运算简便.【详解】解:(1)(8)4718(27)--+--, 8471827=--++,5545=-+,10=-;(2)510.474( 1.53)166----,510.47 1.53(41)66=+-+, 26=-,4=-;(3)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭, 110(4)2⎛⎫=---⨯- ⎪⎝⎭, 102=--,12=-;(4)202031312(1)468⎛⎫-+-⨯+- ⎪⎝⎭, 99212=-+-+, 212=-. 【点睛】本题考查了有理数的加减、乘除法运算、有理数的乘方,解题的关键是掌握有理数的运算法则,注意:利用运算律可以使运算简便.20.(1)273a ab -;(2)2562x x -- 【解析】【分析】直接根据去括号,合并同类项法则计算即可.【详解】解:(1)()()2237427a ab a ab -+--++ =2237427a ab a ab -++--=273a ab -;(2)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x=221234422x x x x -+--+ =2562x x --. 【点睛】本题考查了整式的加减,熟知相关运算法则是解本题的关键.21.26m m ---,18- 【解析】【分析】去括号合并同类项后,再代入求值.【详解】解:22352(23)4mm m m ⎡⎤---+⎣⎦ =()2235464m m m m --++=2235464m m m m -+-- =26m m ---将4m =-代入,原式=()()2446-----=18-.【点睛】本题主要考查了整式的加减,掌握去括号法则和合并同类项法则是解决本题的关键. 22.(1)见解析;(2)45.【解析】【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、5厘米和3厘米,将数据代入长方体的体积公式即可求解.【详解】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的体积为:3×5×3=45(cm 3).23.(1)(25)x +,1(310)x -;(2)5153x +(小时);(3)565小时【解析】【分析】(1)根据甲队做宣传工作的时间是乙队所用时间的2倍还多5个小时,丙队所用的时间比乙队的三分之一少10个小时列代数式即可;(2)用甲队宣传的时间减去丙队宣传的时间,列出代数式,化简即可;(3)根据(2),将330x =代入5153x +求解即可. 【详解】解:(1)甲队的工作时间为:(25)x +小时, 丙队的工作时间为:1(310)x -小时,故答案是:(25)x +,1(310)x -; (2)15(25)(10)1533x x x +--=+; (3)由(2)知甲队比丙队多宣传的时间为5153x +, 当330x =时, 5153x +, 5330153=⨯+, 565=(小时), 答:甲队比丙队多宣传565小时.【点睛】本题考查了列代数式,整式的加减,解题的关键是注意把甲队宣传的时间和丙队宣传的时间看作整体,用小括号括起来.24.(1)59n +;(2)9250元;(3)每周计件工资制一周工人的工资总额更多,理由见解析【解析】【分析】(1)根据正负数的意义分别表示出5天的生产电子产品的数量,再求和即可;(2)5天的生产电子产品的总数200⨯元+超出部分的奖励-罚款可得工人这一周的工资总额;(3)计算出一周的工资,然后与(2)中数据进行比较即可.【详解】解:(1)51613259n n n n n n ++-+-+++-=+,故答案是:59n +;(2)当7n =时,5957944n +=⨯+=,2004455(513)60(162)9250⨯+++---=,所以该厂工人这一周的工资总额是9250元.(3)5(1)(6)13(2)9+-+-++-=,442009559295⨯+⨯=,92509295<,∴每周计件工资制一周工人的工资总额更多.【点睛】本题主要考查了由实际问题列代数式,解题的关键是正确理解题意,掌握每日计件工资制的计算方法.25.(1)32-;1;12-;(2)46-或44 【解析】【分析】(1)由A 、B 、C 点的位置关系,结合5cm AC =,2cm BC =即可求得点A 、点C 所对应的数,进一步求得p ;(2)原点O 在数轴上,1cm 长为一个单位长度,且15cm =OB ,可以知道点B 所对应的数为15-或15,然后分情况讨论并计算即可.【详解】解:(1)若以点B 为原点,2cm 长为1个单位长度,则点A 所对应的数为32-,点C 所对应的数为1,则:310122p =-++=- 故答案为:32-;1;12- (2)℃原点O 在数轴上,1cm 长为一个单位长度,且15cm =OB ,℃点B 所对应的数为15-或15当点B 所对应的数为15-时,点C 所对应的数为13-,点A 所对应的数为18-,则()()(18)151346p =-+-+-=-;当点B 所对应的数为15时,点C 所对应的数为17,点A 所对应的数为12,则12+15+17=44p =.综上所述,点p 的值为:46-或44【点睛】本题考查数轴上两点之间的距离,牢记数轴的相关知识点是解题关键.26.(1)1,1;(2)3【解析】【分析】(1)先计算出()()22323ax bx x x +---的结果为()()2233a x b x -++-,然后根据甲同学的计算结果为243x x -+-,则()()2223343a x b x x x -++-=-+-,由此求解即可; (2)根据()()()()222323233ax bx x x a x b x +---=-++-的结果与x 无关, 则2030a b -=⎧⎨+=⎩,即可得到23a b =⎧⎨=-⎩然后代值计算即可. 【详解】解:(1)()()22323ax bx x x +---22323ax bx x x =+--+()()2233a x b x =-++-,又℃甲同学的计算结果为243x x -+-,℃()()2223343a x b x x x -++-=-+-,℃2134a b -=-⎧⎨+=⎩,℃11a b =⎧⎨=⎩,故答案为:1,1;(2)℃()()()()222323233ax bx x x a x b x +---=-++-的结果与x 无关, ℃2030a b -=⎧⎨+=⎩,℃23a b =⎧⎨=-⎩,℃()()2323963a b ab +=-+⨯-=-=.。

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试题一、单选题1.下列图形绕虚线旋转一周,能形成圆柱体的是( )A .B .C .D .2.15的相反数是( ) A .-5 B .5 C .15 D .-153.已知622x y 和313m n x y -是同类项,则2m n +的值是( ) A .6 B .5 C .4 D .24.下列图形经过折叠不能围成棱柱的是( )A .B .C .D .5.多项式221543x xy -+中次数最高的项的系数( ) A .5 B .4 C .3 D .-46.下列计算正确的是( )A .﹣5+6=11B .﹣8﹣8=0C .239416-= D .0÷(﹣2)=0 7.已知a 2+5a =1,则代数式3a 2+15a ﹣1的值为( )A .0B .1C .2D .38.下列说法正确的是( )A .有理数分为正数和负数B .互为相反数的两个数的绝对值相等C .两数相加,和一定大于任何一个加数D .两数相减,差一定小于被减数 9.某件商品的成本价为a 元,按成本价提高15%后标价,又以8折销售,这件商品的售价 A .比成本价低了0.08a 元 B .比成本价低了0.2a 元C .比成本价高了0.15a 元D .与成本价相同10.实数a ,b 在数轴上的位置如图所示,下列结论中正确的是( )A.a>b B.|a|>|b|C.﹣a<b D.a+b>0二、填空题11.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都是8,则y=___.12.将数据850000000用科学记数法表示为___.,宽比长少b,则这个长方形的周长是________.13.长方形的长为2b a14.某路公交车从起点经过A,B,C,D站到达终点,各站上下乘客的人数如下(上车为正,下车为负):起点(20,0),A(12,﹣4),B(8,﹣9),C(6,﹣4),D(2,﹣7),终点(0,___).15.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,则该几何体至少是用___个小立方块搭成的.16.若(a+2)2+|b﹣3|=0,则﹣ab的值是_____.17.将一些白色的围棋棋子按如图所示的规律摆成图案,其中第一个图案有4个棋子,第2个图案有9个棋第3个图案有16个棋子,第4个图案有25个棋子,以后每个图案中间一列的棋子都比前一个图案中间一列的棋子多1个,则第N个图案中棋子的个数为_________三、解答题18.计算:(1)42﹣(﹣38)+(﹣27)﹣65;(2)14÷(12-)﹣3×(﹣8);(3)(1574126+-)÷(160-);(4)﹣14274+⨯(113-)÷(﹣3)2.19.化简:(1)a 2+(3a ﹣5)﹣(4a ﹣1);(2)﹣2(a 2b 14-ab 212+a 3)﹣(﹣2a 2b+3ab 2).20.已知A =xy ﹣2y 2+3x 2,B =xy ﹣4y 2,C =2B ﹣5A .(1)求C 的表达式;(2)当x =﹣1,y 12=,求C 的值.21.某零件厂现生产A ,B 两种尺寸的零件,两种零件的成本和售价如表:该厂每天共生产A ,B 两种尺寸的零件800个,设每天生产A 种零件x 个.(1)用含x 的代数式表示该厂每天的生产成本,并进行化简;(2)用含x 的代数式表示该厂每天获得的利润,并进行化简;(3)当x =500时,求该厂每天获得的利润.(利润=售价﹣成本)22.定义一种新运算:a⊗m=a×|m|.如5⊗(﹣3)=5×|﹣3|=15,﹣8⊗4=﹣8×|4|=﹣32.(1)计算:65⊗0=,﹣43⊗|﹣2|=;(2)若n<0,化简48⊗(﹣3n);(3)若a,m,n为任意有理数,等式a⊗(m+n)=a⊗m+a⊗n一定成立吗?请说理由.23.如图,点A、B、C、D在同一条直线上,AD=10cm,AC=16cm,若点B是线段CD 的中点,求线段AB的长.24.粮库3天内进出库的吨数记录如下(“+”表示进库,“-”表示出库):26,32,15,34,38,20+--+--(1)经过3天,粮库里的粮食是增多了还是减少了?(2)经过3天,粮食管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存量有多少吨?(3)如果进库出库的装卸费都是每吨5元,那么这3天要付出多少装卸费?25.已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)a+b=,ba=;a5+b5的值为;(2)若数轴上有点P表示数为﹣1,将点P向左移动2018个单位长度,再向右移动20181 3个单位长度到点Q,那么终点Q表示的数是,P,Q两点间的距离为;(3)化简:|a﹣c|﹣2|b+c|+|c|.26.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影表示可折叠部分),已知折叠前圆形桌面的直径为b m,折叠成正方形后其边长为 a m.如果一块正方形桌布的边长为b m.(π取3)(1)餐桌桌面由圆形折叠成正方形时,面积减少了多少?(2)若按图(3)所示把桌布铺在折叠前的圆形桌面上,则桌布垂下部分的面积是多少?(3)若按图(4)所示把桌布铺在折叠后的正方形桌面上,则桌布垂下部分的面积是.参考答案1.B2.D3.A4.C5.D6.D7.C8.B9.A10.B11.11【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点求出y与-3相对,根据和是8即可得出答案.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“-3”与“y”是相对面,⊗这个正方体的每两个相对面上的数字的和都是8,⊗y =8-(-3)=11;故答案为:11.12.8.5×108【详解】解:850000000=8.5×108.故答案是:8.5×108.13.64b a -【详解】解:⊗长为2b a - ,宽比长少b⊗宽为b a -⊗周长()()()=2223264C b a b a b a b a ⎡⎤⨯-+-=⨯-=-⎣⎦14.-24【分析】根据正负数的意义,利用有理数的加减法计算即可.【详解】由题可知,起点到A 站车上人数为:20,A 站到B 站车上人数为:2012428+-=,B 站到C 站车上人数为:288927+-=,C 站到D 站车上人数为:276429+-=,D 站到终点车上人数为:292724+-=,∴终点下车有24人,故答案为:-24.【点睛】本题考查正负数的意义和有理数的混合运算,理解题意,求出各站点上的人数是解题的关键.15.6根据题意可以得到该几何体从正面和上面看至少有多少个小立方体,综合考虑即可解答本题.【详解】解:从正面看至少有三个小立方体且有两层;从上面看至少有五个小立方体,且有两列;⊗只需要保证从正面看的上面一层有一个,从上面看有五个小立方体即可满足题意,⊗最少是用6个小立方块搭成的,故答案为:6.【点睛】此题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.8【解析】【分析】利用绝对值和偶次方的性质求出a,b的值,再利用有理数的乘方运算法则求出即可.【详解】解:⊗(a+2)2+|b﹣3|=0,⊗a+2=0,b﹣3=0,⊗a=﹣2,b=3,⊗﹣ab=﹣(﹣2)3=8.故答案为:8.【点睛】本题主要考查的是非负数的性质,依据非负数的性质求得a、b的值是解题的关键.17.(N+1)2【解析】【分析】依次计算第1个第4个图形的棋子个数,得到棋子数量的规律,即可得到第N个图案中棋子的个数.【详解】第1个图案中棋子的个数:2⨯2=4,第2个图案中棋子的个数:3⨯3=9,第3个图案中棋子的个数:4⨯4=16,第4个图案中棋子的个数:5⨯5=25依此得到第N 个图形中棋子的个数是:( N+1)2故填:( N+1)2【点睛】此题考查图形类规律的探究,根据前几个图形计算得出个数的规律,由此得到计算公式. 18.(1)-12;(2)-4;(3)30;(4)32-【解析】【分析】(1)直接根据有理数的加减计算法则进行求解即可;(2)直接根据有理数的混合计算法则进行求解即可;(3)根据有理数的混合计算法则进行求解即可;(4)先计算乘方,然后根据有理数的混合计算法则进行求解即可.【详解】解:(1)()()42382765--+--42382765=+--12=-;(2)()114382⎛⎫÷--⨯- ⎪⎝⎭()()14224=⨯---2824=-+4=-;(3)1571412660⎛⎫⎛⎫+-÷- ⎪ ⎪⎝⎭⎝⎭()157604126⎛⎫=+-⨯- ⎪⎝⎭()()()1576060604126=⨯-+⨯--⨯-()()152570=-+---152570=--+30=;(4)()2427111343⎛⎫-+⨯-÷- ⎪⎝⎭9227143⎛⎫=-+⨯-÷ ⎪⎝⎭112⎛⎫=-+- ⎪⎝⎭32=-.【点睛】本题主要考查了有理数的计算,解题的关键在于能够熟练掌握相关计算法则.19.(1)a 2-a ﹣4,(2)52-ab 2-a 3【解析】【分析】先去括号,再运用整式加减法则运算即可.【详解】解:(1)a 2+(3a ﹣5)﹣(4a ﹣1)= a 2+3a ﹣5﹣4a+1= a 2-a ﹣4(2)﹣2(a 2b 14-ab 212+a 3)﹣(﹣2a 2b+3ab 2)=﹣2a 2b 12+ab 2-a 3+2a 2b -3ab 2 =52-ab 2-a 3【点睛】本题考查了整式的运算,解题关键是熟练运用整式加减法则进行计算.20.(1)221532xy x y --+,(2)13-【解析】【分析】(1)根据整式运算法则进行计算即可;(2)把x =﹣1,y 12=,代入求值即可.【详解】解:(1)C =2B ﹣5A ,=2222()5()423xyy xy y x -+﹣﹣, = 2222810551xy y xy y x ---+,=221532xy x y --+,(2)把x =﹣1,y 12=代入,原式= 22115(1)2(13(1)132)2-⨯-⨯-⨯-⨯=-+. 【点睛】本题考查了整式的化简求值,解题关键是熟练运用整式加减法则进行化简,准确求值. 21.(1)该厂每天的成本为()5070800x x +-,化简结果为5600020x -;(2)该厂每天的利润为()3020800x x +-,化简结果为1600010x +;(3)21000元【解析】【分析】(1)分别计算出每天A 零件的成本和B 零件的成本,然后两者的和即为每天的成本; (2)分别计算出每天A 零件的利润和B 零件的利润,然后两者的和即为每天的利润; (3)根据(2)中求得的结果代值计算即可.【详解】解:(1)由题意得:A 零件每天的成本为:50x ;B 零件每天的成本为:()70800x -, ⊗该厂每天的生产成本()50708005600020x x x =+-=-; (2)由题意得:A 零件每天的利润为:()8050x -;B 零件每天的利润为:()()9070800x --, ⊗该厂每天的生产利润()()()805090708001600010x x x =-+--=+;(3)当500x =时,该厂每天的生产利润160001050021000=+⨯=元.【点睛】本题主要考查了列代数式和代数式求值,解题的关键在于能够准确根据题意列出代数式. 22.(1)0,-86.(2)-144 n ;(3)不一定成立;理由见解析【解析】【分析】(1)根据新定义进行运算即可;(2)根据新定义进行运算即可;(3)根据新定义分别进行运算验证即可;【详解】解:(1)65⊗0=65×|0|=0,﹣43⊗|﹣2|=﹣43×2=﹣86,故答案为:0,-86.(2)48⊗(﹣3n)=48×|﹣3n |,⊗n<0,⊗48×|﹣3n |=-144 n;即48⊗(﹣3n)=-144 n;(2)不一定成立;a⊗(m+n)=a×| m+n |,a⊗m+a⊗n=a×| m |+a×| n |= a×(| m |+| n |),当| m+n |=| m |+| n |时,即m,n为同号或m,n中至少有一个为0时,等式a⊗(m+n)=a⊗m+a⊗n一定成立;当| m+n |≠| m |+| n |时,即m,n为异号时,等式a⊗(m+n)=a⊗m+a⊗n不成立;【点睛】本题考查了新定义运算,解题关键是理解题目给出的新定义运算,熟练进行转化与计算.23.13cm【解析】【分析】由CD=AC﹣AD可求解CD的长,根据中点的定义可求得DB的长,进而可求解AB的长.【详解】解:⊗AD=10cm,AC=16cm,⊗CD=AC﹣AD=16﹣10=6cm,⊗B是CD的中点,⊗DB=12CD=3,⊗AB=AD+DB=10+3=13cm.【点睛】本题考查了两点间的距离,利用了线段的和差倍分,正确的理解题意是解题的关键.24.(1)经过3天,粮库里的粮食是减少了;(2)525吨;(3)825元【解析】【分析】(1)求出3天的所记录数据的和即可判断;(2)用剩余的粮食加上减少的粮食即可解决问题;(3)求出数据的绝对值的和,再乘5即可;【详解】解:(1)⊗26-32-15+34-38-20=-45<0,⊗经过3天,粮库里的粮食减少了;(2)⊗480+45=525吨,⊗3天前粮库里的存量有525吨;(3)⊗(26+32+15+34+38+20)×5=825元,⊗这3天要付出825元装卸费.【点睛】本题考查正负数的意义,有理数混合运算的实际应用,解题的关键是理解题意,属于中考基础题.25.(1)0,﹣1,0;(2)21,33;(3)a+2b【解析】【分析】(1)根据数轴上点的位置及|a|=|b|,得到a与b互为相反数,利用相反数性质计算即可得到结果;(2)根据题意列出算式,计算即可得到结果;(3)根据数轴上点的位置判断出a﹣c,b+c,c的正负,原式利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:(1)由题意可得:a>0,b<0,|a|=|b|,⊗a+b=0,ba=﹣1;a5+b5的值为0;故答案为:0,﹣1,0;(2)根据题意得:﹣1﹣2018+201813=﹣1﹣2018+201813 =﹣23, ﹣23﹣(﹣1) =﹣23+1 =13,⊗终点Q 表示的数是﹣23,P ,Q 两点间的距离为13; 故答案为:﹣23;13;(3)由数轴可得:c <b <0<a ,⊗b+c <0,a ﹣c >0,⊗|a ﹣c|﹣2|b+c|+|c|=a ﹣c+2(b+c )+(﹣c )=a ﹣c+2b+2c ﹣c=a+2b .【点睛】本题考查了有理数的混合运算,以及数轴,弄清数轴上点表示的数是解本题的关键.26.(1)餐桌桌面由圆形折叠成正方形时,面积减少了22234b a m ⎛⎫- ⎪⎝⎭;(2)桌布垂下部分的面积是2214b m ;(3)()222b a m -.【解析】【分析】(1)根据圆形的面积减去正方形的面积可得;(2)根据正方形桌布的面积减去圆桌的面积即可得;(3)根据正方形桌布的面积减去正方形方桌面积即可得.(1)解:由题意得:2212b a π⎛⎫- ⎪⎝⎭,2214b a π=⨯-,22134b a =⨯-,2234b a =-, 面积减少了22234b a m ⎛⎫- ⎪⎝⎭;(2)由题意可得:2212b b π⎛⎫- ⎪⎝⎭,2214b b π=-,2234b b =-,214b =; 桌布垂下部分的面积是2214b m ;(3)由题意可得:桌布垂下部分的面积是: 22b a -,故答案为:()222b a m -.。

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试题一、单选题1.﹣22=()A .﹣2B .﹣4C .2D .42.一个七棱柱的顶点的个数为()A .7个B .9个C .14个D .15个3.我国正在设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是()A .1678×104千瓦B .16.78×106千瓦C .1.678×107千瓦D .0.1678×108千瓦4.多项式1+2xy ﹣3xy 2的次数为()A .1B .2C .3D .55.如图,点A 表示的实数是a ,则a ,a -和1的大小顺序为()A .1a a <-<B .1a a -<<C .1a a <<-D .1a a<-<6.下列说法正确的是()A .23表示2×3B .﹣32与(﹣3)2互为相反数C .(﹣4)2中﹣4是底数,2是幂D .a 3=(﹣a )37.下列说法中正确的是()A .5不是单项式B .2x y+是单项式C .2x y 的系数是0D .32x -是整式8.一次知识竞赛共有20道选择题,规定:答对一道得5分,不答或答错一道扣1分,如果某位学生答对了x 道题,则用式子表示他的成绩为()A .5x ﹣(20+x)B .100﹣(20﹣x)C .5xD .5x ﹣(20﹣x)9.一种袋装面粉的质量标识为“25±0.25千克”,则下列合格的有()A .25.30千克B .24.70千克C .25.51千克D .24.80千克10.若||2a =,||5b =,则a b +的值应该是()A .7B .-7和7C .3D .±7或±3二、填空题11.-9的绝对值是______.12.如图所示是一个立体图形的展开图,请写出这个立体图形的名称:________.13.计算:3π-=________.14.若650x y -++=,则x y -=____;15.(1011)(1112)(100101)=--- ________.16.比较大小:-3_______13-.(填:“<”或“>”)17.绝对值不大于5的所有整数的和是______.18.单项式256x y-的系数是____________.19.若a<0,b <0,则()a b --一定是_________(填负数,0或正数)20.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.三、解答题21.计算:(1)0.5(15)(17)|12|-+-----;(2)313()(24)864+-⨯-;(3)2113()()3838---+-;(4)31175(3)24(2)412÷--⨯-.22.-13.5,2,-5,0,0.128,-2.236,3.14,+27,45-,-15℅,32-,227,.0.3,π.正有理数数集合:{},整数集合:{},负分数集合:{}23.如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图.24.a,b分别是数轴上两个不同的点A,B所表示的有理数,且a=5,b=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点B点的距离是C点到A点距离的13,求C点表示的数;25.一个几何体的三种视图如图所示.(1)这个几何体的名称是____;(2)求这个几何体的表面积;(3)求这个几何体的体积.26.股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元):星期一二三四五每股涨跌3+ 2.5+4-2+ 1.5-(1)星期三结束时,该股票每股多少元?(2)该股票本周内每股的最高价和最低价分别是多少元?(3)已知王先生买进该股票时付了0.1%的手续费,卖出股票时须支付0.15%的手续费和0.1%的交易税,若他在星期五结束时将股票全部卖出,则他的收益情况如何?(注:股票市场周末不交易)27.出租车司机小李某天下午营运全是在东西走向的长清清河街,如果规定向东为正,向西为负,他这天下午行车里程如下:+15,-3,+14,-11,+10,-12,+4,-15,+16,-20.(1)将最后一名乘客送到目的地时,小李在出车地的什么方向?距下午出车地点的距离是多少千米?(2)小李将最后一名乘客送到目的地,总共行驶了多少千米?(3)若每千米耗油0.1升,这天下午共耗油多少升?参考答案1.B【解析】【分析】根据有理数的乘方的运算法则计算即可.【详解】解:根据有理数的乘方的运算法则,可得﹣22=﹣4,故选B.【点睛】本题考查了有理数的乘方,解题的关键是掌握相应的运算法则.2.C【解析】【分析】一个七棱柱是由两个七边形的底面和7个四边形的侧面组成,根据其特征进行填空即可.【详解】解:一个七棱柱共有:7×2=14个顶点.故选C.【点睛】本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将16780000千瓦用科学记数法表示为:1.678×107千瓦.故选:C.4.C【解析】【分析】根据多项式的次数是多项式中最高次项的次数进行作答即可得.【详解】解:多项式1+2xy-3xy2的最高次项是-3xy2,次数为3,故多项式的次数为3,故选C.【点睛】本题考查了多项式的次数,解题的关键是熟知多项式的次数是多项式中最高次项的次数.5.A【解析】【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等,数轴上右边表示的数总大于左边表示的数进行解答即可.【详解】解:因为-1<a<0,所以0<-a<1,可得:a<-a<1.故选:A.【点睛】此题考查有理数大小的比较问题,要让学生结合数轴理解这一规律:数的大小变化和数轴上表示这个数的点在数轴上移动的关系:左减右加.给学生渗透数形结合的思想.6.B【解析】【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【详解】A、23表示2×2×2,故本选项错误;B、-32=-9,(-3)2=9,-9与9互为相反数,故本选项正确;C、(-4)2中-4是底数,2是指数,故本选项错误;D、a3=-(-a)3,故本选项错误.故选:B.【点睛】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.7.D 【解析】【分析】根据整式的概念、单项式的相关概念即可确定.【详解】解:A 选项5是单独的数字,是单项式,故A 错误;B 选项222x y x y+=+是两个单项式的和,是多项式,故B 错误;C 选项2x y 的系数是1,故B 错误;D 选项32x -是多项式,当然是整式,故D 正确.故选:D.【点睛】本题考查了整式的分类及单项式和多项式的相关概念,整式分为单项式和多项式,单项式是由数字或字母的积组成的代数式,单独的一个数或字母也叫做单项式,单项式中的数字因数叫做单项式的系数,几个单项式的和叫多项式,熟练掌握相关的概念是解题的关键.8.D 【解析】【分析】根据答对题目的得分-不答或答错的题数,列式可得结论.【详解】解:由题意可得,他的成绩是:5x-(20-x ),故选D .【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.D 【解析】【分析】根据题意可确定合格的范围是24.75千克到25.25千克之间,判断即可.【详解】解:根据题意可确定合格的范围是24.75千克到25.25千克之间,只有24.80符合标准,故选:D.【点睛】本题考查了正负数的意义,解题关键是根据负数的意义确定合格的范围.10.D【解析】【分析】求出a=±2,b=±5,分为四种情况①当a=2,b=5时,②当a=2,b=−5时,③当a=−2,b=5时,④当a=−2,b=−5时,代入求出即可.【详解】解:因为|a|=2,|b|=5,所以a=±2,b=±5,①当a=2,b=5时,a+b=2+5=7;②当a=2,b=−5时,a+b=2+(−5)=−3;③当a=−2,b=5时,a+b=−2+5=3;④当a=−2,b=−5时,a+b=−2+(−5)=−7;即a+b的值为7或−3或3或−7,故选D.【点睛】本题考查了绝对值,解题的关键是熟知绝对值等于一个正数的数有两个,它们互为相反数.11.9【解析】【分析】根据负数的绝对值是它的相反数,即可得到答案.【详解】-9的绝对值是9,故填9.【点睛】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.此题主要考查了绝对值,关键是掌握①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.12.圆锥【解析】【详解】因为圆锥的展开图为一个扇形和一个圆形,所以这个立体图形是圆锥.故答案为∶圆锥13.3π-【解析】【分析】先分析3π-的符号,再关键绝对值是含义可得答案.【详解】解:3 <π,3π∴-<0,()333,πππ∴-=--=-故答案为: 3.π-【点睛】本题考查的是绝对值的含义,掌握绝对值的含义是解题的关键.14.11【解析】【分析】先根据非负数的性质求出x 、y 的值,再代入x-y 进行计算即可.【详解】解:∵|x-6|+|y+5|=0,∴x-6=0,y+5=0,解得x=6,y=-5,∴原式=6+5=11.故答案为11.【点睛】本题考查非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.15.-1【解析】【分析】根据有理数的乘法和乘方运算法则进行计算即可.【详解】解:(1011)(1112)(100101)--- =(1)(1)(1)--- =91(1)-=-1.故答案为:-1.【点睛】本题主要考查了有理数的乘法和乘方,熟练掌握有理数的乘法和乘方运算法则是解答本题的关键.16.<【解析】【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】解:11133,,3333-=-=> 133∴-<-故答案为:<.【点睛】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键.17.0【解析】【分析】根据有理数大小比较的方法,可得:绝对值不大于5的所有整数有:±5、±4、±3、±2、±1、0,再把它们相加,求出绝对值不大于5的所有整数的和是多少即可.【详解】解:绝对值不大于5的所有整数为5-、4-、3-、2-、1-、0、1、2、3、4、5,它们的和为0.故答案为:0【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.56-【解析】【详解】单项式256x y -的系数是5.6-故答案为:5.6-【点睛】本题考查单项式的系数,单项式中的数字因数就是单项式的系数.19.负数【解析】【分析】由于a <0,b <0,然后根据有理数减法法则即可判定a-(-b )是正数还是负数.【详解】解:∵a <0,b <0,而a-(-b )=a+b ,∴a-(-b )一定是负数.故答案为:负数.【点睛】此题主要考查了正负数的定义及实数的大小的比较,判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.20.﹣29【解析】【分析】根据a ⊕b=ab+(a-b ),可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊕b=ab+(a-b ),∴(-4)⊕5=(-4)×5+[(-4)-5]=(-20)+(-9)=-29,故答案为-29.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.(1)-10.5;(2)5;(3)12;(4)50【解析】【详解】解:(1)0.5(15)(17)|12|-+-----0.5151712=--+-10.5=-(2)313()(24)864+-⨯-9418=--+5=(3)2113()()3838---+-21133388⎛⎫=+-+ ⎪⎝⎭112=-12=(4)31175(3)24(2)412÷--⨯-15357524412=-÷+⨯4757015=-⨯+2070=-+50=【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.22.2,0.128,3.14,+27,227,.0.3;2,-5,0,+27;-13.5,-2.236,45-,-15℅,32-.【解析】【分析】根据有理数的分类填写即可【详解】正有理数数集合:{2,0.128,3.14,+27,227,.0.3,……},整数集合:{2,-5,0,+27,……},负分数集合:{-13.5,-2.236,45-,-15℅,32-……}【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.23.见解析【解析】【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形.24.(1)a=-5,b=-2;(2)3个单位长度;(3)1-2或11 -4【解析】【分析】(1)根据绝对值的定义结合由数轴得出a、b的符号即可得;(2)根据数轴上两点间的距离公式即可得;(3)设C点表示的数为x,分以下两种情况:点C在A、B之间、点C在点B右侧,利用两点间距离公式列方程求解.【详解】解:(1)∵|a|=5,|b|=2,∴a=5或-5,b=2或-2,由数轴可知,a<b<0,∴a=-5,b=-2;(2)A、B两点间的距离是-2-(-5)=3;(3)设C点表示的数为x,当点C在A、B之间时,根据题意有:x-(-5)=3(-2-x),解得:114x=-;当点C在点B右侧时,根据题意有:x-(-5)=3[x-(-2)],解得:12x=-.∴C点表示的数为12-或114-.【点睛】本题主要考查绝对值和数轴及两点间的距离公式,根据题意分类讨论思想的运用是解题的关键.25.(1)圆柱体;(2)这个几何体的表面积为32π;(3)这个几何体的体积为24π.【解析】【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积×高求解即可.【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,∴这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,∴这个圆柱的表面积=底面积×2+侧面积=22222682432πππππ⨯⨯+⨯⨯⨯=+=;(3)这个圆柱的体积=底面积×高=22624ππ⨯⨯=.【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式.26.(1)星期三结束时,该股票每股19.5元;(2)本周内最高价是每股23.5元,最低价每股19.5元;(3)他赚了1932元.【解析】【分析】(1)根据表格列出算式,即可得到结果;(2)根据表格求出每天的股价,即可得到最高与最低股价;(3)根据题意列出算式,计算即可得到结果.【详解】解:(1)根据题意列得:18+3+2.5-4=19.5(元);答:星期三结束时,该股票每股19.5元;(2)根据表格得:星期一每股18+3=21元,星期二每股21+2.5=23.5元,星期三每股23.5-4=19.5元,星期四每股19.5+2=21.5元,星期五每股21.5-1.5=20元,则本周内最高价是每股23.5元,最低价每股19.5元;(3)根据题意列得:1000×20×(1-0.15%-0.1%)-1000×18×(1+0.1%)=19950-18018=1932(元).则他赚了1932元.【点睛】本题考查了有理数的混合运算的应用,弄清题意是解本题的关键.27.(1)小李在出车地的西面方向,距下午出车地点的距离是2千米;(2)小李将最后一名乘客送到目的地,总共行驶了120千米;(3)若每千米耗油0.1升,这天下午共耗油12升.【解析】【分析】(1)根据有理数的加法运算,可得和,根据和的大小,可得答案;(2)根据行车就耗油,距离乘以单位耗油量,可得到答案.【详解】解:(1)15+(-3)+14+(-11)+10+(-12)+4+(-15)+16+(-20)=-2,答:将最后一名乘客送到目的地时,小李在出车地的西方,距下午出车地点的距离是2千米;++-+++-+++-+++-+++-(2)|15||3||14||11||10||12||4||15||16||20|=120(千米)所以,小李将最后一名乘客送到目的地,总共行驶了120千米(3)120×0.1=12(升),答:这天下午共耗油12升.。

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试题一、单选题1.在式子3n -,2a b ,2m s +≤,x ,ah-,s ab =中代数式的个数有()A .6个B .5个C .4个D .3个2.牛奶盒的包装上印有260±5ml ,下列四盒送去质检,不合格的是()A .265mlB .262mlC .258mlD .250ml3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.下列说法中正确的个数为()(1)4a 一定是偶数;(2)单项式237xy 的系数是37,次数是3;(3)小数都是有理数;(4)多项式325322x xy -+是五次三项式;(5)连接两点的线段叫做这两点的距离;(6)射线比直线小一半.A .1个B .2个C .3个D .4个5.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A .①B .②C .③D .④6.已知x y y x -=-,2x =,3y =,则2x y -的值为()A .-1B .1C .-1或7D .1或-77.有理数a 、b 在数轴上对应的位置如图所示,则下列结论正确的是()A .0ab >B .b a >-C .0a b +<D .0b a ->8.已知221a a -=,则2364a a -+的值为()A .-1B .1C .-2D .59.如图所示的几何体是由哪个图形绕虚线旋转一周形成的()A .B .C .D .10.若实数a 、b 、c 在数轴上对应点的位置如下图所示,则||||||c b a b c -++-等于()A .2a c --B .2a b -+C .a-D .2a b-二、填空题11.数9899万用科学记数法表示为____________.12.某棱柱共有8个面,则它的棱数是___________.13.若42n xy 与25m x y -是同类项,则n m =___________.14.若m ,n 为相反数,则m +(-2021)+n 为______.15.化简:3π4π---=____________.16.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数.则2x y -的值为___________.17.两根长度分别为8cm 和10cm 的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为________.18.有一个数值转换器的原理如图所示,若开始输入x 的值是23,可发现第1次输出的结果是3-,第2次输出的结果是1,第3次输出的结果是2-,依次继续下去…,第2021次输出的结果是________.三、解答题19.计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭;(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭;(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(4)224323(2)2⎡⎤---+-÷⎣⎦;(5)()222233a b ab ab a b -++;(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 20.如图,是由8个大小相同的小立方体块搭建的几何体,请分别画出从这个几何体的三个不同方向看到的形状图.21.先化简,再求值:()()23233a ab b ab b ---+⎡⎤⎣⎦,其中()23310a b ++-=.22.已知关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项.求232m m -+()51m -的值.23.已知:点C 、D 、E 在直线AB 上,且点D 是线段AC 的中点,点E 是线段DB 的中点,若点C 在线段EB 上,且DB =6,CE =1,求线段AB 的长.24.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.25.某日下午,出租车司机小王在南北走向的南海大道上运营.如果规定向南为正,向北为负,出租车的行车情况记录如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣17.(1)将最后一名乘客送到目的地时,小王距出车地点的距离是多少千米?(2)如果每百公里耗油10升,那么小王下午耗油多少升?26.在数轴上,四个不同的点,,,A B C D 分别表示有理数a b c d ,,,,且,a b c d <<.(1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为;②求点M 表示的有理数m 的值(用含,a b 的代数式表示);(2)已知ab c d+=+,①若三点,,A B C 的位置如图所示,请在图中标出点D 的位置;②a b c d ,,,的大小关系为(用“<”连接)参考答案1.C 2.D 3.B 4.A 5.A 6.D 7.C 8.B 9.A 10.A 11.79.89910⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.据此解答即可.【详解】解:9899万=98990000=9.899×107.故答案为:9.899×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要确定a 的值以及n 的值.12.18【详解】某棱柱共有8个面,可知这个棱柱为6棱柱,6棱柱有18条棱.13.16【分析】根据同类项的定义示出m ,n 的值,再代入求解即可.【详解】解:∵42n xy 与25m x y -是同类项,∴m=4,n=2.∴nm =24=16.故答案为:16.14.-2021【分析】根据相反数的意义得出0m n +=,从而可计算m +(-2021)+n 的值.【详解】解:∵m ,n 为相反数,∴0m n +=,∴m +(-2021)+n=0-2021=-2021故答案为:-2021【点睛】本题主要考查互为相反数的概念和性质.只有符号不同的两个数互为相反数,互为相反数的两个数的和为0.15.2π7-【解析】【分析】根据绝对值的定义即可得.【详解】解:3π4π3427πππ---=--+=-;故答案为:2π7-【点睛】此题考查了绝对值,掌握绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值是解题的关键.16.12【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字互为相反数列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形.“-3”与“23x -”是相对面,“y”与“x”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴()2330x -+-=,0x y +=,解得3x =,3y =-,∴()22339312x y -=--=+=.故答案为:12.17.1cm 或9cm 【分析】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:BC 不在AB 上和BC 在AB 上时,分别代入数据进行计算即可得解.【详解】解:设较长的木条为AB=10cm ,较短的木条为BC=8cm ,∵M 、N 分别为AB 、BC 的中点,∴BM=5cm ,BN=4cm ,①如图1,BC 不在AB 上时,MN=BM+BN=5+4=9(cm),②如图2,BC在AB上时,MN=BM−BN=5−4=1(cm),综上所述,两根木条的中点间的距离是1cm或9cm,故答案为:1cm或9cm.如图,18.-1【分析】根据数值转换器依次求出前几次的输出的数值,再根据数值的变化规律求解.【详解】解:第4次输出的结果是2,第5次输出的结果是-1,第6次输出的结果是1,第7次输出的结果是-2,第8次输出的结果是2,第9次输出的结果是-1,所以,从第5次开始,每4次输出为一个循环组依次循环,(2021-4)÷4=504…1,所以,第2021次输出的结果是-1.故答案为:-1.19.(1)1(2)1 5(3)-27(4)3(5)2 6a b(6)2562x x--【分析】(1)根据有理数加法运算法则进行计算;(2)根据乘法分配律进行运算即可;(3)根据有理数加减乘除四则混合运算法则进行计算即可;(4)根据含乘方的有理数混合运算法则进行计算即可;(5)根据整式加减混合运算法则进行计算即可;(6)先去括号,然后合并同类项进行运算即可.(1)解:110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭110.573(2.75)24⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎝⎭⎝⎭76=-1=(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭112112112253545⎛⎫⎛⎫⎛⎫=⨯--⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭643555=-++15=(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369=-+27=-(4)22323(2)42⎡⎤---+-÷⎣⎦4(92)=---+47=-+3=(5)()222233a b ab ab a b -++222233a b ab ab a b=-++26a b=(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 221234422x x x x -+=-+-2562x x --=20.见解析【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,3,1;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方形数目分别为1,3,1;据此可画出图形.【详解】解:如图所示:21.233a ab -,30【分析】原式去括号,合并同类项进行化简,然后利用绝对值和偶次幂的非负性确定a 和b 的值,从而代入求值.【详解】解:()()23233a ab b ab b ---+⎡⎤⎣⎦236333a ab b ab b=--++233a ab =-;∵()23310a b ++-=∵30a +≥,()2310b -≥,∴30a +=,310b -=,∴3a =-,13b =,当3a =-,13b =时原式()()227330133333⨯--⨯-⨯==+=;22.3【分析】先根据关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项,求出m 的值,然后化简()23251m m m -+-,最后代入求值即可.【详解】解:222622452x mxy y xy x --+-+()224222x m xy y =+--+∵化简后的结果中不含xy 项,∴420m -=,∴2m =,()23251m m m -+-23255m m m=-+-2375m m =-+当2m =时,原式232725=⨯-⨯+12145=-+3=23.线段AB 的长为10【分析】由题意知AB AD DB =+,116322DE DB ==⨯=,314DC DE EC =+=+=,4AD DC ==,将各值代入AB AD DB =+计算即可.【详解】解:∵点E 是线段DB 的中点,且6DB =∴116322DE DB ==⨯=∵1EC =∴314DC DE EC =+=+=∵点D 是线段AC 的中点∴4AD DC ==∴4610AB AD DB =+=+=.24.见解析【分析】主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.【详解】解:如图所示:25.(1)小王距出车地点的北边12千米处;(2)小王下午耗油7.4升.【分析】(1)根据题意可直接进行求解即可;(2)先求出每次出车的距离之和,然后再进行求解即可.【详解】解:(1)由题意得:()()()()15413101231712++-++-+-++-=-(千米);答:小王距出车地点的北边12千米处.(2)由题意得:15413101231774++++++=(千米),10747.4100⨯=(升);答:小王下午耗油7.4升.26.(1)①0a b +=,②2a b+;(2)①见解析,②a c d b <<<或者c a b d<<<【分析】(1)①根据相反数的性质即可得出答案②根据数轴上两点间的距离公式结合已知条件即可求得(2)①根据数轴上两点间的距离公式可得出AC=DB ,从而确定点D 的位置②根据数轴上的点所表示的数,右边的总比左边的大即可得出答案【详解】解:(1)①∵M 为线段AB 的中点,点M 与原点O 重合∴0a b +=M ②为AB 中点,AM BM ∴=.m a b m ∴-=-.2a bm +∴=(2)①∵a b c d +=+,,a b c d <<.∴c-b-a d =,∴AC=DB∴点D 的位置如图所示②∵a b c d +=+,∴c-b-a d =,∴AC=DB如图或∴a c d b <<<或c a b d<<<故答案为:a c d b <<<或c a b d<<<。

北师大版七年级上册数学期中试卷及答案【完整版】

北师大版七年级上册数学期中试卷及答案【完整版】

北师大版七年级上册数学期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+=5.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.若264a =3a =________.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程组4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β. ①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、B6、A7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、40°3、724、-405、±26、1800°三、解答题(本大题共6小题,共72分)1、23 xy=⎧⎨=⎩2、x=3或-3是原方程的增根;m=6或12.3、(1)90°;(2)①α+β=180°;②α=β.4、(1)略;(2)略.5、(1)30;(2)①补图见解析;②120;③70人.6、25元超市一共购进1200个魔方。

最新北师大版七年级上学期数学期中试卷(含参考答案)

最新北师大版七年级上学期数学期中试卷(含参考答案)

最新北师大版七年级上学期数学期中试卷(含参考答案)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、﹣5的相反数是()A.﹣5B.5C.D.﹣2、如果向北走5米记作+5米,那么﹣7米表示()A.向东走7米B.向南走7米C.向西走7米D.向北走7米3、袋大米的质量标识为“10±0.15千克”,则下列大米中质量合格的是()A.9.80千克B.10.16千克C.9.90千克D.10.21千克4、如图,这个几何体是由哪个图形绕虚线旋转一周形成的()A.B.C.D.5、下列平面图形不能够围成正方体的是()A.B.C.D.6、下列计算正确的是()A.2x+3y=5xy B.﹣2ba2+a2b=﹣a2bC.2a2+2a3=2a5D.4a2﹣3a2=17、数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4B.﹣4C.±8D.±48、一个两位数,十位数字是a,十位数字比个位数字小2,这个两位数是()A.a(a+2)B.10a(a+2)C.10a+(a+2)D.10a+(a﹣2)9、已知x﹣2y=2,则代数式3x﹣6y+2014的值是()A.2016B.2018C.2020D.202110、关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=()A.4B.C.3D.11、已知:有理数a、b、c,满足abc<0,则的值为()A.±1B.1或﹣3C.1或﹣2D.不能确定12、高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[﹣1]=﹣3;②[x]+[﹣x]=0;③若[x﹣1]=1,则x的取值范围是2≤x<3;④当﹣1⩽x<1时,[x+1]+[﹣x+1]的值为0,1,2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,满分18分)13、比较大小:(填>,=,<).14、如果3x2y m与﹣2x n﹣1y3是同类项,那么m+n=.15、若等式|x﹣2|+(y+1)2=0成立,那么y x的值为.16、一个多项式加上x2﹣2y2等于3x2+y2,则这个多项式是;17、下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要根火柴棒.18、如图,5个棱长为1cm的正方体摆在桌子上,为了美观,将这个几何体的所有露出部分(不包含底面)都喷涂油漆,若喷涂1cm2需要油漆0.2克,则喷涂这个几何体需要克油漆.最新北师大版七年级上学期数学期中试卷(答卷)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号123456789101112答案二、填空题13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计72分,解答题要有必要的文字说明)19、计算:(1)﹣9+5﹣(﹣12)+(﹣3);(2);20、如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.21、化简与计算:(1)化简:3(2a2﹣4b)﹣2(a2﹣4b);(2)先化简再求值:2(a2b+ab2)﹣2(a2b﹣1)+2ab2﹣2,其中a=﹣2,b=2.22、已知A=3x2+bx+2y﹣xy,B=ax2﹣3x﹣y+xy.(1)若A+B的值与x无关,求a b.(2)若|a﹣2|+(b+1)2=0且x+y=,xy=﹣2时,求2A﹣3B的值.23、某县教育局倡导全民阅读行动,婷婷同学坚持阅读,她每天以阅读30分钟为标准,超过的时间记作正数,不足的时间记作负数.如表是她一周阅读情况的记录(单位:分钟):星期一二三四五六日+9+10﹣10+13﹣20+8与标准的差(分钟)(1)星期五婷婷读了分钟;(2)她读得最多的一天比最少的一天多了分钟;(3)求她这周平均每天读书的时间.24、有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.25、某服装厂生产一种西装和领带,西装每套定价600元,领带每条定价80元,厂方在开展“双11”促销活动期间,可以同时向客户提供两种优惠方案,方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款,现某客户要到该服装厂购买西装20套,领带x条(x超过20).(1)若该客户按方案①购买,需付款元(用含x化简后的式子表示);若该客户按方案②购买,需付款元(用含x化简后的式子表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,请给出一种更为省钱的购买方案,并计算出所需的钱数.26、结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣2和﹣6的两点之间的距离是.③数轴上表示﹣4和3的两点之间的距离是.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.参考答案1-12:BBCABB DCACBA13、<14、6 15、1 16、2x2+3y2 17、(7n+1 18、3.219、(1)原式=﹣42(2)原式=120、解:如图所示:21、(1)原式=4a2﹣4b (2)原式=﹣3222、解:(1)、﹣27(2)、1623、解:(1)、28;(2)、23;(3)、她这周平均每天读书的时间为34分钟.24、解:(1)b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=a﹣b;(3)|a+b|+|a﹣c|﹣|b|+|b﹣c|=a.25、解:(1)答案为:(10400+80x);(10800+72x);(2)按方案①购买较为合算;(3)更为省钱的购买方案为:先按方案①购买20套西装,则领带赠送20条,再按方案②购买剩余的10条领带,共需花费12720元.26、解:(1)探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7,(3)①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或﹣4,故答案为:3,4,7,10或﹣4;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|=a+4+3﹣a=7;=5+0+2=7,③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小理由是:a=1时,正好是3与﹣4两点间的距离.。

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题一、单选题1.若盈余2万元记作2+万元,则2-万元表示( )A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损 2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )A .B .C .D .3.将5亿这个数用科学记数法表示为( )A .7510⨯B .8510⨯C .9510⨯D .10510⨯ 4.如图是某几何体的展开图,该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱 5.下列运算正确的是( )A .6a 2b ﹣a 2b =5abB .6a 2b ﹣a 2b =5C .6a 2b ﹣a 2b =5a 2bD .6a 2b ﹣a 2b =5ab 26.下表是几种液体在标准大气压下的沸点:则沸点最高的液体是( )A .液态氧B .液态氢C .液态氮D .液态氦 7.一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是()A.B.C.D.8.已知点C是线段AB的中点,下列说法:①AB=2AC;①BC=12AB;①AC=BC.其中正确的个数是()A.0 B.1 C.2 D.39.有三堆棋子,数目相等,每堆至少有4枚.从左堆中取出3枚放入中堆,从右堆中取出4枚放入中堆,再从中堆中取出与左堆剩余棋子数相同的棋子数放入左堆,这时中堆的棋子数是()A.3 B.4 C.7 D.1010.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.ab>0 B.a+b<0 C.ab>0 D.|a|>|b|二、填空题11.﹣(﹣2)=___.12.“x的2倍与5的和”用代数式表示为_________.13.如图,点C,D在线段AB上,且AD=BC,则AC___BD(填“>”、“<”或“=”).14.数轴上表示数m和m﹣4的点到原点的距离相等,则m的值为____.15.已知点C是直线AB上一点,且AC:BC=7:3,若AB=10,则AC=___.16.根据如图所示的程序进行计算,若输入x的值为1 ,则输出y的值为______.17.若有理数a 、b 互为相反数,cd 互为倒数,则2014(a +b )2016+(1ab)2015=________. 三、解答题18.计算:(1)321()(2)433-⨯-+-;(2)3228(2)0.5()(2)5-⨯--÷-.19.先化简,再求值:2(2mn ﹣2m +1)﹣3(2m ﹣mn +2),其中m =2,n =320.尺规作图:已知:如图,线段AB .求作:线段A B '',使2A B AB ''=.21.已知三角形第一条边长为4m +2n ,第二条边比第一条边长m ﹣2n ,第三条边比第一条边短2m +n .(1)第二条边长为 ,第三条边长为 .(2)求这个三角形的周长.22.如图是由若干个大小相同的小立方块搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.23.已知点C,D是线段AB上两点,点M,N分别为AC,DB的中点.(1)如图,若点C在点D的左侧,AB=12,CD=5,求MN的长.(2)若AB=a,CD=b,请直接用含a,b的式子表示MN的长.24.定义“*”运算:当a,b同号时,a*b=+(a2+b2);当a,b异号时,a*b=﹣(a2﹣b2).(1)求4*1的值.(2)求52*[(﹣2)*3]的值.25.某公交车原有乘客(3a-b)人,中途有一半人下车,又上车若干人,使车上共有乘客(8a-5b)人(注:题目中给定的a,b 符合实际意义)试求(1)上车的乘客人数是多少人?(2)当a=10 时,b=8 时,上车的乘客有多少人?26.如图,点A在数轴上所对应的数为2,(1)点B在点A左侧且距点A为3个单位长度,则点B所对应的数为,请在数轴上标出点B的位置;(2)在(1)的条件下,点A以每秒1个单位长度沿数轴向右运动,点B以每秒2个单位长度沿数轴向左运动,当点A运动到5所在的点处时停止运动,同时点B也停止运动,求此时A,B两点间距离;(3)在(2)的条件下,若点A不动,点B沿数轴向右运动,经过t秒A,B两点相距3个单位长度,求t值;(4)在(1)的条件下,点A以每秒1个单位长度,点B以每秒2个单位长度同时沿数轴向左运动,当点B运动到所对应的数为m时停止运动,请直接写出此时点A所对应的数为;若点A继续运动,请直接写出当AB=2时,点A继续运动的距离为.(用含m的式子表示)参考答案1.B2.D3.B4.B5.C6.A7.B8.D9.D10.B11.2【分析】根据相反数的意义计算即可.【详解】①﹣(﹣2)=+2=2,故答案为:2.【点睛】本题考查了有理数的化简,熟练掌握相反数的意义是解题的关键.12.2x+5【解析】【分析】首先表示x 的2倍为2x ,再表示“与5的和”为2x+5.【详解】由题意得:2x+5,故答案为2x+5.【点睛】此题主要考查了列代数式,关键是列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.13.=【解析】【分析】利用线段的和差关系与AD BC =可得:,AC CD CD BD 从而可得答案.【详解】 解: AD =BC ,,AC BD ∴=故答案为:=【点睛】本题考查的是线段的和差关系,等式的基本性质,利用图形掌握线段的和差关系是解题的关键.14.2【分析】表示数m 和m -4的点到原点的距离相等可以表示为|m|=|m -4|.然后,进行分类讨论,即可求出对应的m 的值.【详解】解:由题意得|m|=|m -4|,①m=m -4或m=-(m -4),①m=2.故答案为:2.【点睛】本题在根据绝对值的几何意义列出方程之后,在解方程的时候要注意分类讨论,除了同一个数的绝对值相等之外,相反数的绝对值也相等.并且,在解方程之后,会发现有一个方程是无解的.这是一个易错题.15.7或175.【解析】【分析】分两种情况讨论:如图,当C 在线段AB 上时,如图,当C 在线段AB 的延长线上时,再利用线段的和差关系列运算式或方程,从而可得答案.【详解】解:如图,当C 在线段AB 上时,AC :BC =7:3,AB =10,如图,当C 在线段AB 的延长线上时,:7:3,10,AC BC AB设7,AC x 则3,BC x故答案为:7或175.【点睛】本题考查的是线段的和差关系,一元一次方程的应用,掌握利用方程解决线段问题是解题的关键.16.4【详解】试题分析:观察可得计算顺序,可以看出当输入的数输出时时可能会有两种结果,一种是输入后结果小于0,此时就需要将结果返回重新计算,直到结果大于0才能输出结果;另一种是结果大于0,此时可以直接输出结果.将输入得[(-1)+2]×(-2)-4,结果为-6,-6<0,再次输入可得[(-6)+2]×(-2)-4,结果为4,输出即可.考点:有理数的混合运算.17.1【解析】【分析】根据互为相反数两数相加得0,乘积为1的两个数互为倒数,代入计算即可.【详解】解:①有理数a、b互为相反数,cd互为倒数,①0a b+=,1cd=,①2014(a+b)2016+(1ab)2015=2014×02016+12015=1.故答案为:1.【点睛】本题考查了相反数的意义以及倒数的性质,熟知互为相反数两数相加得0,乘积为1的两个数互为倒数是解本题的关键.18.(1)54;(2)8425【解析】【分析】(1)先计算括号,再计算乘法;(2)先计算乘方,把除法转化乘法,最后计算加减即可.【详解】(1)321 ()(2) 433 -⨯-+-=31 ()(2) 43 -⨯-+=35()()43-⨯- =54; (2)3228(2)0.5()(2)5-⨯--÷-641=8240.55-⨯⨯ 16=425- =8425. 【点睛】本题考查了有理数的混合运算,熟练掌握运算顺序,准确计算是解题的关键.19.-52m +7mn -4, 18【解析】【分析】先去括号,后合并同类项,最后代入求值即可.【详解】①2(2mn ﹣2m +1)﹣3(2m ﹣mn +2)=4mn ﹣22m +2﹣32m +3mn -6=-52m +7mn -4,当m =2,n =3时,原式=-5×22+7×2×3-4= -20+42-4,=18.20.作图见解析【分析】利用直尺先作射线,再利用圆规依次在射线上截取两条与AB 相等的线段,从而可得答案.【详解】则线段A B ''即为所求作的线段.【点睛】本题考查的是尺规作图,作一条线段等于已知线段的2倍,掌握“作一条线段等于已知线段”是解题的关键.21.(1)5,2m m n ;(2)113m n【解析】【分析】(1)根据第二条边比第一条边长用加法列运算式,第三条边比第一条边短用减法列运算式,再合并同类项即可;(2)把三角形的三边相加,再合并同类项即可.【详解】解:(1) 三角形第一条边长为4m +2n ,第二条边比第一条边长m ﹣2n ,第三条边比第一条边短2m +n ,∴ 第二条边为:4225,m n m n m第三条边为:4224222,m nm n m n m n m n故答案为:5,2m m n (2)这个三角形的周长为:4252113.m n m m n m n【点睛】本题考查的是列代数式,整式的加减运算的应用,掌握列出正确的代数式是运算的基础,是解题的关键.22.见解析【解析】【分析】观察几何体,作出三视图即可.【详解】解:如图所示:【点睛】此题考查了作图-----三视图,熟练掌握三视图的画法是解本题的关键.23.(1)172;(2)2a b【解析】【分析】(1)先根据AC+CD+DB=AB,计算AC+DB,再根据MN=MC+CD+DN,线段的中点计算即可;(2)利用(1)的结论一般化即可.【详解】(1)如图,①点M,N分别为AC,DB的中点,①AM=MC= 12AC,DN=NB= 12DB,①MC+DN=12AC+12DB=12(AC+BD)=12(AB-CD),①MN=MC+CD+DN=12(AB-CD)+CD=12(AB+CD),①AB=12,CD=5,①MN= 12(12+5)=172;(2)①点M,N分别为AC,DB的中点,①AM=MC= 12AC,DN=NB= 12DB,①MC+DN=12AC+12DB=12(AC+BD)=12(AB-CD),①MN=MC+CD+DN=12(AB -CD )+CD=12(AB+CD ), ①AB =a ,CD =b , ①MN=2a b +. 【点睛】本题考查了线段的中点,线段的和差计算,熟练掌握线段中点,线段和差的意义是解题的关键.24.(1)17;(2)1254. 【解析】【分析】(1)原式利用已知新定义计算即可得到结果;(2)原式利用已知新定义先计算中括号内的,再行计算即可得到结果. 【详解】解:(1)根据已知新定义得:4*1=42+12=17;(2)根据已知新定义得:(﹣2)*3=-(a 2﹣b 2)= b 2-a 2=32-(-2)2=5, 则52*[(﹣2)*3]=5 2*5=(52)2+52=1254.25.(1)13922a b ⎛⎫- ⎪⎝⎭人;(2)29人 【解析】【分析】(1)根据公交车原有乘客()3a b -人,中途有一半人下车,则下车的人数()132a b =-人,再由又上车若干人,使车上共有乘客()85a b -人,即可得到上车的乘客人数()()()185332a b a b a b ⎡⎤=-----⎢⎥⎣⎦人; (2)根据(1)求得的结果把a=10 ,b=8 代入计算即可.【详解】解:(1)公交车原有乘客()3a b -人,中途有一半人下车,①下车的人数()132a b =-人,又①又上车若干人,使车上共有乘客()85a b -人,①上车的乘客人数()()()185332a b a b a b ⎡⎤=-----⎢⎥⎣⎦ ()18532a b a b =--- 13922a b ⎛⎫=- ⎪⎝⎭人 答:上车的乘客人数是13922a b ⎛⎫- ⎪⎝⎭人; (2)当 a=10 时,b=8 时,1391391086536292222a b ⎛⎫-=⨯-⨯=-= ⎪⎝⎭人, ①上车的乘客有29人,答:上车的乘客有29人.【点睛】本题主要考查了整式的加减计算和代数式求值,解题的关键在于能够根据题意准确求出上车的乘客的代数式.26.(1)-1,点B 的位置见解析;(2)此时A ,B 两点间距离为12;(3)t=6或t=3;(4)52m +,12m -或92m - 【分析】(1)根据数轴的意义,即在数轴上标出点B 的位置;(2)根据题意,点A 运动了4个单位长度,用时4秒,则可计算点B 运动的距离,可得到此时点B 在数轴上所对应的数,根据两点距离公式即可求解;(3)经过t 秒,点B 在数轴上所对应的数为2t -1,根据两点距离公式列出方程解答便可; (4)点B 运动的距离为-1-m ,则时间为12m --,即可得点A 所对应的数,再分类求解即可. 【详解】解:(1)点B 在点A 左侧且距点A 为3个单位长度,则点B 所对应的数为-1, 点B 的位置如图所示:(2)根据题意,点A 运动了523-=个单位长度,则用时31=3秒, ①点B 运动了:3⨯2=6(个长度单位),①点B 在数轴上所对应的数为-1-6=-7,①A ,B 两点间距离为5-(-7)=12(个长度单位);(3)经过t 秒,点B 在数轴上所对应的数为2t -7, 根据题意得:2723t --=,即2t -9=3或2t -9=-3,解得t=6或t=3;(4)根据题意,点B 运动的距离为-1-m ,则时间为12m--,①点A 所对应的数为15222mm--+-=,当点A 继续运动到点B 的右侧,此时点A 所对应的数为2m +, ①点A 继续运动的距离为()51222mmm +--+=;当点A 继续运动到点B 的左侧,此时点A 所对应的数为2m -, ①点A 继续运动的距离为()59222mmm +---=. 故答案为:52m +,12m-或92m-.。

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试题一、单选题1.3-的相反数是( )A .3B .3-C .13D .13-2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D .五次二项式 3.已知长方形周长为20cm ,设长为x cm ,则宽为( )A .20x -B .202x- C .202x - D .10x -4.下列各式的化简,正确的是( )A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -85.我国最长的河流长江全长约6300千米,6300千米用科学记数法表示为( ) A .6.3×102千米 B .6.3×103千米C .0.63×104千米D .630×10千米6.有理数a b ,在数轴上的位置如图,则下列各式成立的是( )A .a b >B .0a b +<C .0ab >D .||a b < 7.已知:32m x y -与5n xy 是同类项,则代数式2m n -的值是( )A .6-B .5-C .2-D .58.如图,边长为a 的正方形中,阴影部分的面积是( )A .22a a π-B .22a a π-C .222a a π⎛⎫- ⎪⎝⎭ D .2()a π-9.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是( )A .4B .5C .7D .不能确定10.将下面平面图形绕直线l 旋转一周,可得到如图所示立体图形的是( )A .B .C .D .二、填空题11.如果﹣20%表示减少20%,那么+6%表示_____.12.单项式25xy -的系数是______.13.表示“x 与4的差的3倍”的代数式为_____.14.在(﹣25)4中,底数是___,指数是___;在﹣63中,底数是______.15.用“<”“=”或“>”号填空:-3_____0 89- _____89- -(+6) _____-|-6|16.根据你学过的数学知识,写出一个运算结果为2a -的多项式______________. 17.观察一列单项式:234,2,4,8,...a a a a -- 根据你发现的规律,第7个单项式为_____________;第n 个单项式为________.三、解答题18.计算:(1)341119-+--+--()()()()(2)321210.5233---⨯⨯--()[()](3)372a b a b ++-()()(4)222(8)3(2)x y y x y y +--19.先化简,再求值:222[7(43)2]x x x x ----,其中12x =-.20.已知:a b ,互为相反数,c d ,互为倒数,(3)m =--.求2||a b m cd m m+---的值.21.如图,由5个相连的正方形可以折成一个无盖的正方体盒子.请你再画出3种不同的由5个正方形相连组成的图形,使它可以折成一个无盖的正方体盒子.22.已知:已知:A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1.(1)求2A ﹣3B ;(2)若A+2B 的值与a 的取值无关,求b 的值.23.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?24.某自然风景区的门票价格为:成人票20元,学生票10元.某中学七年级共有学生m人,老师n人,八年级学生人数是七年级学生人数的32倍,八年级老师人数是七年级老师人数的6 5倍,若他们一起去此风景区,买门票要花多少钱?若200m=,10n=,你能具体求出门票是多少钱吗?25.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并化简;(3)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.参考答案1.A2.A3.D4.B5.B6.B7.B8.C9.B10.B11.增加6%【分析】根据正负是相反意义的量,“正”和“负”相对,即可解题.【详解】如果﹣20%表示减少20%,那么+6%表示增加6%.故答案为增加6%.12.1 5 -【分析】单项式中的数字因数是单项式的系数,根据定义可得答案.【详解】因为:22155xyxy-=-,所以25xy-的系数是15-.故答案是:1 5 -【点睛】本题考查单项式的系数,掌握单项式系数概念是解题关键.13.3(x-4)【详解】x与4的差为:x-4,差的3倍为:3(4)x-.故答案为3(4)x-.14.﹣2546【分析】根据乘方的定义,即可解答.【详解】解:在425⎛⎫-⎪⎝⎭中,底数是25-,指数是4;在﹣63中,底数是6,故答案为:﹣25,4,6.【点睛】本题考查了有理数的乘方,熟练掌握乘方的定义是解题的关键.15. < = =【解析】【详解】解:因为负数小于0,所以-3<0;89-=89-;因为-(+6)=-6,-|-6|=-6,所以-(+6) =-|-6|.故答案是:<,=,=.16.222a a -(答案不唯一)【分析】运用合并同类项、单项式乘法、单项式除法等知识均可求解,注意答案不唯一.【详解】解:例如:2222a a a -=-故答案为222a a -(答案不唯一)【点睛】本题考查了合并同类项、单项式乘法、单项式除法等知识,属于开放型题目.17. 64a 7(或26a 7) (-2)n -1an【解析】通过观察已知条件,找出这列单项式的规律即可求出结果.【详解】解:根据观察可得,系数是(-2)n -1,a 的指数是n ,∴第7个单项式为64a 7,第n 个单项式为(﹣2)n ﹣1an .故答案为64a 7,(﹣2)n ﹣1an .18.(1)1(2)-416(3)10a ﹣b(4)222x y y -+根据有理数的混合运算和整式的加减的运算法则进行计算即可.(1)解:341119-+--+--()()()()71119--=+1819=-+1=(2) 解:321210.5233---⨯⨯--()[()] 1182923-⨯⨯-=-() 786+=- 416=- (3)解:372a b a b ++-()() 372a a b b ++-=()()10a b -=(4)解:222(8)3(2)x y y x y y +--2221636x y y x y y =+-+2223616x y x y y y =-++222x y y =-+【点睛】本题主要考查了有理数的混合运算和整式的加减,牢固掌握有理数的混合运算和整式的加减的运算法则并准确计算是做出本题的关键.19.12- 【解析】先对222[7(43)2]x x x x ----进行化简,然后将x 的值代入即可求解.【详解】解:222[7(43)2]x x x x ---- 222(7432)x x x x =--+-2227432x x x x =-+-+2433x x =--. 当12x =-时,原式1131433134222⎛⎫=⨯-⨯--=+-=- ⎪⎝⎭. 【点睛】本题主要考查代数式的化简求值,代数式的化简是解答本题的关键.20.5【解析】【分析】根据a ,b 互为相反数,c ,d 互为倒数的性质,以及求出m 的值,代入代数式,即可求解.【详解】解:由已知得0a b +=,1cd =,3m =.20||91|3|91353a b m cd m m +---=---=--=. 【点睛】考查了代数式求值,此题的关键是把a+b ,cd 当成一个整体求值.21.见解析【解析】【分析】根据正方体展开图的特征,画出能折叠成正方体纸盒的展开图即可,注意答案不唯一.【详解】解:画出3种图形如下(答案不唯一):【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.22.(1)7a2+3ab﹣4a+1;(2)b=25.【解析】【分析】(1)把A与B代入原式,去括号合并即可得到结果;(2)由A+2B的结果与a的取值无关,即a的系数为0,确定出b的值即可.【详解】解:(1)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴2A﹣3B=2(2a2+3ab﹣2a﹣1)﹣3(﹣a2+ab﹣1)=4a2+6ab﹣4a﹣2+3a2﹣3ab+3=7a2+3ab﹣4a+1;(2)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴A+2B=2a2+3ab﹣2a﹣1﹣2a2+2ab﹣2=5ab﹣2a﹣3=(5b﹣2)a﹣3,由结果与a的取值无关,得到5b﹣2=0,解得:b=25.【点睛】本题考查整式的加减,熟练掌握运算法则是解本题的关键.23.(1)当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)每套儿童服装的平均售价是54.5元.【解析】【分析】(1)将数据求和,就是和55元偏离的值,用总价减去成本就是盈利.(2)用总售价除以总件数,就是平均售价.【详解】解:(1)售价:55×8+(2﹣3+2+1﹣2﹣1+0﹣3)=440﹣4=436,盈利:436﹣400=36(元);答:当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)平均售价:436÷8=54.5(元),答:每套儿童服装的平均售价是54.5元.24.门票为5440元【解析】【分析】先用m 、n 表示出八年级的学生数和老师数,然后运用总票价=人数×单价即可.【详解】 解:八年级的学生数和老师数32n ,65m 则七八年级一起去景区,应付票钱为:365111020102025442525m m n n m n m n ⎛⎫⎛⎫+++=⨯+⨯=+ ⎪ ⎪⎝⎭⎝⎭. 当200m =,10n =时,原式25200441050004405440=⨯+⨯=+=(元).答:门票为5440元.【点睛】本题主要考查了列代数式以及代数式求值问题,根据已知得出式子表示该支付门票费用是解题关键.25.(1)5a+3b ,2a+3b ;(2)9a+11b ;(3)78【解析】【详解】解:(1)∴三角形的第一条边长为2a +5b ,第二条边比第一条边长3a -2b ,第三条边比第二条边短3a ,∴第二条边长=(2a +5b)+(3a -2b)=2a +5b +3a -2b=5a +3b ,第三条边长=(5a +3b)-3a11 =5a +3b -3a=2a +3b ;故答案为:5a+3b ,2a+3b ;(2)周长:()()()255323911a b a b a b a b +++++=+; (3)∴|a ﹣5|+(b ﹣3)2=0,∴a -5=0,b -3=0,即a =5,b =3,∴周长:9a +11b =45+33=78.。

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试题一、单选题1.下列说法正确的个数有()①0是整数;② 1.2-是负分数;③1π是分数;④自然数一定是正数;⑤负分数一定是负有理数.A .1个B .2个C .3个D .4个2.3-的倒数是()A .3B .13C .13-D .3-3.有下列式子:①2;②2a ;③31x -;④39s t+;⑤12S ab =;⑥4x y +>;⑦2x .其中代数式有()A .4个B .5个C .6个D .7个4.在﹣(﹣8),(﹣1)2017,﹣32,0,﹣|﹣1|,﹣23中,负数的个数有()A .2个B .3个C .4个D .5个5.如图,是一个正方体的平面展开图,把展开图折成正方体后,“党”字一面相对的字是()A .一B .百C .周D .年6.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为()A .316410⨯B .416.410⨯C .51.6410⨯D .60.16410⨯7.下面图形经过折叠不能围成棱柱的是()A .B .C .D .8.数轴上,到原点距离是8的点表示的数是()A .8和﹣8B .0和﹣8C .0和8D .﹣4和49.下列各组数中,数值相等的是()A .-22和(-2)2B .212-和212⎛⎫- ⎪⎝⎭C .(-2)2和22D .212⎛⎫-- ⎪⎝⎭和212-10.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为()A .4B .﹣2C .8D .311.如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A .B .C .D .12.已知()29320x y z -++++=,则2x y z-+=()A .4B .6C .10D .13二、填空题13.如果一个棱柱共有15条棱,那么它一定是______棱柱.14.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作______.15.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.16.如果用c 表示摄氏温度(℃),f 表示华氏温度(℉),c 和f 的关系是:()5329c f =-,某日兰州和银川的最高气温分别是72℉和88℉,则他们的摄氏温度分别是:______℃和______℃.三、解答题17.计算:(1)()281510---+;(2)22523963⎛⎫-⨯+-⎪⎝⎭;(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭;18.如图所示,a 、b 是有理数,请化简式子|a|﹣|b|+|a+b|+|b ﹣a|.19.a 的绝对值2b+1,b 的相反数是其本身,c 与d 互为倒数,求23cd a b ++的值.20.人体血液的质量约占人体体重的6%-7.5%.(1)如果某人体重是a kg ,那么他的血液质量大约在什么范围?(2)亮亮体重是35kg ,他的血液质量大约在什么范围?21.商店出售甲、乙两种书包,甲种书包每个38元,乙种书包每个26元,现已售出甲种书包a 个,乙种书包b 个.(1)用代数式表示销售这两种书包的总金额;(2)当a=2,b=10时,求销售总金额.22.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m-6)2+|n-8|=0,求出该广场的面积.23.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地.约定向北为正,向南为负,当天记录如下:(单位:千米)﹣18.3,﹣9.5,+7.1,﹣14,﹣6.2,+13,﹣6.8,﹣8.5(1)问B地在A地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?25.某公司仓库一周内货物进出的吨数记录如下:(“+”表示进库,“-”表示出库)日期星期日星期一星期二星期三星期四星期五星期六吨数+22-29-15+37-25-21-19(1)若星期日开始时仓库内有货物465吨,则星期六结束时仓库内还有货物多少吨?(2)如果该仓库货物进出的装卸费都是每吨5元,那么这一周内共需付多少元装卸费?26.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A 点、B 点表示的数为a 、b ,则A ,B 两点之间的距离AB a b =-,若a>b ,则可简化为AB a b =-;线段AB 的中点M 表示的数为2a b+.【问题情境】已知数轴上有A 、B 两点,分别表示的数为10-,8,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动.设运动时间为t 秒(t>0).【综合运用】(1)运动开始前,A 、B 两点的距离S 为多少;线段AB 的中点M 所表示的数是多少?(2)点A 运动t 秒后所在位置的点C 表示的数为多少;点B 运动t 秒后所在位置的点D 表示的数为多少;(用含t 的式子表示)(3)它们按上述方式运动,A 、B 两点经过多少秒会相距4个单位长度?27.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分①面积的一半,部分③是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++ 的值吗?参考答案1.C 【解析】【分析】根据有理数的意义,逐一判断即可.【详解】①0是整数,故①正确;②-1.2是负分数,故②正确;③1π是无理数,故③错误;④自然数一定是非负数,故④错误;⑤负分数一定是负有理数,故⑤正确;综上,正确的有3个,故选:C .【点睛】本题考查了有理数的分类,熟记有理数的意义是解题关键.2.C 【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C 3.B 【解析】【分析】根据代数式的定义,即可求解.【详解】解:代数式有2;2a ;31x -;39s t+;2x ,共5个.故选:B 【点睛】本题主要考查了代数式的定义,熟练掌握用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式是解题的关键.4.C 【解析】【分析】先根据有理数的乘方、绝对值、相反数化简,再根据负数的定义即可.【详解】解:-(-8)=8,(-1)2017=-1,-32=-9,-|-1|=-1,负数有:(-1)2017,-32,-|-1|,23-,负数的个数有4个,故选:C .【点睛】本题考查了有理数的乘方、绝对值、相反数和负数,解决本题的关键是先根据有理数的乘方、绝对值、相反数化简.5.B 【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定隔着一个正方形,据此作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“周”是相对面,“党”与“百”是相对面,“一”与“年”是相对面.故选:B .【点睛】本题考查了正方体的展开图,解题的关键是从相对面入手进行分析及解答问题.6.C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:16.4万=51.6410 ,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D 【解析】【详解】A 可以围成四棱柱,B 可以围成五棱柱,C 可以围成三棱柱,D 选项侧面上只有三个长方形,而两个底面都是长方形,因此从图形中看少了一个侧面,故不能围成长方体,故选D .【点睛】本题考查了展开图,解决此题的关键是要有一定的空间想象能力.8.A 【解析】【分析】根据数轴上的点到原点的距离的意义解答.数a 到原点的距离为a .【详解】解:数轴上距离原点是8的点有两个,表示﹣8的点和表示+8的点.故选:A .【点睛】本题考查了数轴上点到原点的距离,根据数轴的意义解答.9.C 【解析】根据有理数的乘方的运算方法,求出每组中的两个算式的值各是多少,判断出各组数中,数值相等的是哪个即可.【详解】解:224-=- ,2(2)4-=,222(2)-≠-,∴选项A 不符合题意;21122-=- ,211(24-=,2211(22-≠-,∴选项B 不符合题意;2(2)4-= ,224=,22(2)2-=,∴选项C 符合题意;211(24--=- ,21122-=-,2211(22--≠-,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了有理数的乘方的运算方法,要熟练掌握.10.A 【解析】【详解】根据题意中的计算程序,可直接计算为:12×2-4=-2<0,把-2输入可得(-2)2×2-4=4>0,所以输出的数y=4.故选A.11.D 【解析】【详解】只有D,可以还原回去,所以选D.12.D 【解析】【分析】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,分别求出x,y,z 的值,然后代入2x y z -+求值.【详解】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,所以x=9,y=-3,z=-2,2x y z -+=9-2×(-3)+(-2)=13,故选:D.【点睛】本题考查了绝对值和平方的非负性以及代数式求值,熟练掌握非负数和为0的解题方法是本题的解题关键.13.五【解析】【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五楼柱.【详解】解:一个棱柱共有15条棱,那么它是五棱柱,故答案为:五【点睛】本题主要考查了认识立体图形,关键是掌握五棱柱的构造特征.14.-0.15米【解析】【分析】根据多于标准记为正,可得少于标准记为负.【详解】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作-0.15米,故答案为:-0.15米.【点睛】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.15.﹣2916.20092809【解析】【分析】把兰州和银川的最高气温的华氏温度代入c 和f 的关系式()5329c f =-,即可求出最高气温的摄氏温度.【详解】当f=72℉时,()5329c f =-=()572329-=2009,当f=88℉时,()5329c f =-=()588329-=2809,所以兰州和银川的最高摄氏温度分别是2009℃和2809℃.【点睛】本题考查了代数式的求值,会进行代数式的代入求值是本题的解题关键.17.(1)3-(2)72-(3)0(4)16【解析】(1)解:28(15)10---+281510=-++3=-(2)解:22523963⎛⎫-⨯+- ⎪⎝⎭415129181818⎛⎫=-⨯+- ⎝⎭7918=-⨯72=-(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭1188⎛⎫=-+ ⎪⎝⎭0=(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭()113292=--÷⨯-()11372=--÷⨯-()111723=--⨯⨯-761=-+16=【点睛】本题考查有理数的加、减、乘、除、乘方运算,熟练掌握运算顺序和运算法则是解决本题的关键.18.b ﹣a【解析】【分析】先根据a 、b 两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.【详解】∵由数轴上a 、b 两点的位置可知,﹣1<a <0,b >1,∴a+b >0,b ﹣a >0,∴原式=﹣a ﹣b+a+b+b ﹣a=b ﹣a .【点睛】本题考查了绝对值与数轴的知识点,解题的关键是根据数轴确定取值范围去绝对值.19.1或3【解析】【分析】根据题意可知:b=0,所以|a|=1,又因为cd=1,分别代入原式即可求出答案.【详解】解:由题意可知:cd =1,b =0,∴|a|=2b+1=1,∴a =±1,当a =1时,∴原式=2+1+0=3,当a =-1时,∴原式=2-1=1【点睛】本题考查代数式求值,涉及绝对值,相反数与倒数的性质.20.(1)0.06a kg -0.075a kg(2)2.1kg -2.625kg【解析】【分析】(1)根据人体血液的质量占人体体重的6%-7.5%,再根据人体体重a kg ,分别相乘即可.(2)根据人体血液的质量占人体体重的6%-7.5%,再根据亮亮体重35kg ,分别相乘求解即可.(1)解:6%0.06a a ⨯=,7.5%0.075a a⨯=答:血液质量大约在0.06a kg -0.075a kg 范围.(2)解:356% 2.1kg ⨯=,357.5% 2.625kg⨯=答:血液质量大约在2.1kg -2.625kg 范围.【点睛】本题主要考查列代数式的问题,解题关键是找出所求量的等量关系.21.(1)(38a+26b )元;(2)336元.【解析】【分析】(1)根据“销售总金额=销售甲种书包的金额+销售乙种书包的金额”列代数式即可;(2)将a,b的值代入(1)中代数式求解即可.【详解】解:(1)根据题意得,销售这两种书包的总金额为:(38a+26b)元;(2)将a=2,b=10代入38a+26b得,38a+26b=38×2+26×10=336.答:销售总金额为336元.【点睛】本题主要考查列代数式以及求代数式的值,解题关键是根据题意正确列出代数式.22.(1)3.5mn;(2)168.【解析】【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【详解】(1)S=2m×2n–m(2n–n–0.5n)=4mn–0.5mn=3.5mn;(2)由题意得m–6=0,n–8=0,∴m=6,n=8,∴原式=3.5×6×8=168.【点睛】此题考查了整式的加减-化简求值,非负数的性质,不规则图形的面积等知识,解本题的关键是学会利用分割法求不规则图形的面积.23.(1)见解析(2)7千米(3)3.4【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)可直接进行求解;(3)先求出货车总的路程,然后再进行求解即可.(1)解:如图所示:(2)解:由(1)数轴可知:小明家与小刚家相距:4-(-3)=7(千米);答:小明家与小刚家相距7千米(3)解:这辆货车此次送货共耗油:(4+1.5+8.5+3)×0.2=3.4(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油3.4升.【点睛】本题主要考查数轴及有理数混合运算的应用,熟练掌握数轴上数的表示及有理数的运算是解题的关键.24.(1)B地在A地南方,相距43.2千米;(2)这一天共耗油16.68升.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【详解】解:(1)-18.3+(-9.5)+7.1+(-14)+(-6.2)+13+(-6.8)+(-8.5)=-43.2(km),答:B地在A地南方,相距43.2千米;(2)(|-18.3|+|-9.5|+7.1+|-14|+|-6.2|+13+|-6.8|+|-8.5|)×0.4=83.4×0.2=16.68(升).答:这一天共耗油16.68升.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是注意理解相反意义的量的含义,耗油量=行使的路程×单位耗油量.25.(1)415吨(2)840元【解析】【分析】(1)首先计算出表格中的数据的和,再利用465加上表格中的数据的和即可;(2)首先计算出表格中数据绝对值的和,再乘以5元即可.(1)22-29-15+37-25-21-19=-50(吨),465-50=415(吨).答:星期六结束时仓库内还有货物415吨;(2)5×(22+|-29|+|-15|+37+|-25|+|-21|+|-19|)=840(元).答:这一周内共需付840元装卸费.【点睛】此题主要考查了正负数,关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(1)18,1-(2)103t-+;8-2t(3)2.8秒或4.4秒【解析】【分析】(1)根据数轴两点距离求AB的距离,利用数轴中点坐标公式计算即可;(2)先求距离,再利用起点表示的数加或减距离即可求解;(3)根据相遇前与相遇后的等量关系分类讨论列一元一次方程,解方程即可.(1)解:S=|-10-8|=18∵1081 2-+=-∴M表示的数是:-1;(2)解:AC=3t,BD=2t,C表示的数:-10+3t,D表示的数:8-2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时∶依题意列式,得3t+2t=18-4,解得t=2.8;当点A在点B右侧时∶3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.【点睛】本题考查数轴上点数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程,数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程是解题关键.27.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分⑥的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分①面积是1 2,部分②面积是(12)2,部分③面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是1 64;(2)原式=12+23456611111163122222264 ++++=-=.。

北师大版七年级上册数学期中考试试卷带答案

北师大版七年级上册数学期中考试试卷带答案

北师大版七年级上册数学期中考试试题2022年一、单选题1.2020年初,新冠肺炎疫情袭卷全球,截至今日,据不完全统计,全球累计确诊人数约为23000000人,23000000用科学记数法表示为()A .0.23×108B .2.3×107C .23×106D .2.3×1062.下列不是三棱柱展开图的是()A .B .C .D .3.0.2-的倒数是()A .2-B .5-C .15-D .12-4.下列运算正确的是()A .23=5-+B .2(3)6-⨯-=-C .224()36-=D .22(3)3÷-=-5.当x+y =3时,5﹣x ﹣y 等于()A .6B .4C .2D .36.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b>0B .a b ->0C .a<b -D .|a|<|b|7.如图,下列图形全部属于柱体的是()A .B .C .D .8.-a 表示的数一定是()A .负数B .正数C .正数或负数D .a 的相反数9.下列说法:①最大的负数是-1;②数轴上表示5的点和表示-5的点到原点的距离相等;③当0a ≤时,a a =-成立;④a 的倒数是1a;⑤2(3)-和23-相等,其中正确的个数有()A .2个B .3个C .4个D .5个10.如果四个互不相同的正整数m 、n 、p 、q 满足(4)(4)(4)(4)9m n p q ----=,那么m n p q +++的值是()A .14B .15C .16D .17二、填空题11.单项式23x y -的系数是_______,次数是_______.12.比较大小:①12-___23-;②若0a <,则a _____10a 13.15-xa -1y 与-3x 2yb +3是同类项,则a +3b =__________.14.规定了一种新运算*:若a 、b 是有理数,则*32a b a b =-,请你计算()2*5-=______.15.在直线上截取线段AB 和BC ,使AB =8cm ,BC =3cm 则线段AC 的长为__________cm 16.某个数值转换器原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2021次输出的结果是_______三、解答题17.计算:25(1)|3|(5)3⎛⎫---+-÷- ⎪⎝⎭.18.把下列各数分别填在相应的方框里:2021-,3.5, 1.2+,0,56,113-,102, 3.14-,18%,2.7 整数负分数非负数19.先化简,再求值:3x2﹣3(x2+2y)+2(x2﹣y),其中,11,2 x y=-=.20.化简:(1)-3m+2m-5m;(2)(2a2-1+2a)-(a-1+a2).21.如图,已知线段AB,请用尺规按下列要求作图(不写作法,保留作图痕迹):(1)延长线段AB到C,使BC=AB;(2)延长线段BA到D,使AD=AC.(3)如果AB=2cm,那么BD=cm,CD=cm.22.一位出租车司机某日中午的营运全在市区的环城公路上进行.如果规定:顺时针方向为正,逆时针方向为负,那天中午他拉了五位乘客所行车的里程如下:(单位:千米)+10,﹣7,+4,﹣9,+2.(1)将最后一名乘客送到目的地时,这位司机距离出车地点的位置如何?(2)若汽车耗油为a升/千米,那么这天中午这辆出租车的油耗多少升?(3)如果出租车的收费标准是:起步价10元,3千米后每千米2元,问:这个司机这天中午的收入是多少?23.某商场销售一种西装和领带,西装每套定价400元,领带每条定价80元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款多少元(用含x的式子表示)?若该客户按方案二购买,需付款多少元(用含x的式子表示)?(2)若x=30,通过计算说明此时按哪种方案购买较为合算.(3)当x=30时,你能给出一种更为省钱的购买方法吗?试写出你的购买方法和并求出所需费用.24.如图,已知点A,B,C是数轴上三点,O为原点,点C对应的数为3,BC=2,AB=6.(1)点A,B对应的数分别为:__________、__________。

2023-2024学年北师大新版七年级上册数学期中复习试卷(含答案)

2023-2024学年北师大新版七年级上册数学期中复习试卷(含答案)

2023-2024学年北师大新版七年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.已知a,b为有理数,且a>0,b<0,a<|b|,则a,b,﹣a,﹣b的大小关系是( )A.﹣a<a<b<﹣b B.﹣a<b<a<﹣b C.﹣b<﹣a<a<b D.b<﹣a<a<﹣b 2.2019年10月1日,天安门广场迎来新中国成立以来的第15次国庆阅兵.据统计,截止至当天下午6点,央视新闻置顶的“国庆阅兵”阅读数已超过34亿.数据34亿用科学记数法表示为( )A.0.34×1010B.3.4×109C.3.4×108D.34×1083.如图,四个几何体分别为四棱锥、三棱柱、圆柱体和长方体,这四个几何体中截面可能是圆形的几何体是( )A.四棱锥B.三棱柱C.圆柱体D.长方体4.下列式子中和3x2y3是同类项的是( )A.xy4B.3x2+3y3C.x3y2D.y3x25.如图,有理数m,n在数轴上对应的点分别为M,N,则m﹣n的结果可能是( )A.﹣1B.1C.2D.36.如图是一个正方体展开图,把展开图折叠成正方体后,“牢”字一面的相对面上的字是( )A.初B.心C.使D.命7.通道县出租车的收费标准是:起步价5元(行驶距离不超过3km,都需付5元车费),超过3km每增加1km(不足1km时,以1km计算),加收1.5元,设小陈乘出租车到达目的地的路程为xkm(x>3),[x]是大于x的最小整数,则小陈应付的车费是( )A.(5+1.5x)元B.(5+1.5[x])元C.(0.5+1.5[x])元D.(0.5+1.5x)元8.若A为五次多项式,B为四次多项式,则A+B一定是( )A.次数不高于九次多项式B.四次多项式C.五次多项式或五次单项式D.次数不定9.下列说法正确的个数有( )(1)若a2=b2,则|a|=|b|;(2)若a、b互为相反数,则;(3)绝对值相等的两数相等;(4)单项式7×102a4的次数是6;(5)﹣a一定是一个负数;(6)平方是本身的数是1A.1B.2C.3D.410.72021+1的个位数字是( )A.8B.4C.2D.0二.填空题(共5小题,满分15分,每小题3分)11.将一个长3cm宽2cm的长方形沿着边所在直线旋转形成的几何体体积是 .12.若有理数m、n满足|2m﹣1|+(n+1)2=0,则mn= .13.如果单项式﹣3x2m y3与2x6y n是同类项,那么m的值为 .14.已知x+3y=﹣3,则2x+6y+3= .15.已知A,B,C三点在数轴上对应的数为a,b,c,它们在数轴上的位置如图所示,化简:|a+b+c|﹣|c﹣b﹣a|= .三.解答题(共7小题,满分75分)16.计算:(1)(﹣2)2×5﹣(﹣2)3÷4.(2)(﹣10)3+[(﹣4)2﹣(1﹣32)×2].17.先化简,再求值:3(x2y+xy)﹣(2x2y﹣xy)﹣5xy,其中x=﹣1,y=1.18.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图,并将形状图的内部用阴影表示.19.出租车司机小王某天上午营运是在东西走向的大街上进行的.如果规定向东为正,向西为负;他这天上午行车里程(单位:千米)如下:﹣2,﹣1,+10,﹣9,+11,﹣5.(1)将最后一名乘客送到目的地时,小王距出发点多远?(2)若汽车耗油量为0.05升/千米,小王的汽车共耗油多少升?(3)出租车在营运过程中,离开出发点最远多少千米?20.为了提高业主的宜居环境,在某居民区的建设中,因地制宜规划修建一个草坪(图中阴影部分).(1)用字母表示图中阴影部分的面积(写出化简后的结果);(2)若a=2,b=4,计算阴影部分的面积(π取3)21.爱读书的乐乐在读一本古书典籍上有这么一段记载:相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和= ;(2)若b=4,c=6,求a的值;(3)通过研究问题(1)和(2),利用你发现的规律,将5,7,﹣5,3,9,﹣1,11,﹣3,1这九个数字分别填入图3的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.22.如图,数轴上点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7.(1)请写出点A表示的数为 ,点B表示的数为 ,A、B两点的距离为 ;(2)若一动点P从点A出发,以3个单位长度/秒的速度向右运动;同一时刻,另一动点Q从点B出发,以1个单位长度/秒的速度向右运动.①点P刚好在点C追上点Q,请你求出点C对应的数;②经过多长时间PQ=5?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵a>0,b<0,a<|b|,∴﹣a<0,﹣b>0,﹣b>a,﹣a>b,即b<﹣a<a<﹣b.故选:D.2.解:34亿=3400000000=3.4×109.故选:B.3.解:四棱锥、三棱柱和长方体的截面不可能是圆,圆柱的截面可能是圆.故选:C.4.解:下列式子中和3x2y3是同类项的是y3x2.故选:D.5.解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,1<m﹣n<3∴m﹣n的结果可能是2.故选:C.6.解:牢”字一面的相对面上的字是命,故选:D.7.解:∵x>3,∴小陈应付的车费是:5+1.5(x﹣3)=5﹣4,5+1.5x=0.5+1.5x,∵不足1km时,以1km计算,∴陈应付的车费是:(0.5+1.5[x])元.故选:C.8.解:∵A是五次多项式,B是四次多项式,∴A+B的次数是5.∴A+B一定是五次多项式或五次单项式,9.解:(1)若a2=b2,则|a|=|b|,原说法正确;(2)若a、b互为相反数且ab≠0时,,原说法错误;(3)绝对值相等的两数相等或互为相反数,原说法错误;(4)单项式7×102a4的次数是4,原说法错误;(5)当a=0时,说法“﹣a一定是一个负数”错误;(6)平方是本身的数是1或0,原说法错误.故选:A.10.解:∵71=7,72=49,73=343,74=2401,75=16807,…,∴这列数的个位数字依次以7,9,3,1循环出现,∵2021÷4=505……1,∴72021的个位数字是7,∴72021+1的个位数字是8,故选:A.二.填空题(共5小题,满分15分,每小题3分)11.解:长方形沿着长或宽旋转的圆柱,故答案为:圆柱.12.解:∵m、n满足|2m﹣1|+(n+1)2=0,∴2m﹣1=0,m=;n+1=0,n=﹣;则mn=×(﹣)=﹣.故答案为:﹣.13.解:∵单项式﹣3x2m y3与2x6y n是同类项,∴2m=6,故答案为:3.14.解:2x+6y+3=2(x+3y)+3=2×(﹣3)+3=﹣6+3=﹣3.故答案为:﹣3.15.解:由题意得:a<b<0<c,|a|>|b|>|c|,∴a+b+c<0,c﹣b﹣a>0,∴|a+b+c|﹣|c﹣b﹣a|=﹣a﹣b﹣c﹣(c﹣b﹣a)=﹣a﹣b﹣c﹣c+b+a=﹣2c,故答案为:﹣2c.三.解答题(共7小题,满分75分)16.解:(1)(﹣2)2×5﹣(﹣2)3÷4=4×5+8÷4=20+2=22.(2)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=﹣1000+16+8×2=﹣968.17.解:3(x2y+xy)﹣(2x2y﹣xy)﹣5xy =3x2y+3xy﹣2x2y+xy﹣5xy=x2y﹣xy;当x=﹣1,y=1时,原式=1×1﹣(﹣1)×1=2.18.解:如图所示:19.解:(1)﹣2+(﹣1)+(+10)+(﹣9)+(+11)+(﹣5)=4(千米),答:将最后一名乘客送到目的地时,小王距出发点4千米;(2)0.05×(2+1+10+9+11+5)=1.9(升),答;小王的汽车共耗油1.9升;(3)将第一名乘客送到目的地时离出发点的距离为|﹣2|=2(千米),将第二名乘客送到目的地时离出发点的距离为|﹣2﹣1|=3(千米),将第三名乘客送到目的地时离出发点的距离为|﹣2﹣1+10|=7(千米),将第四名乘客送到目的地时离出发点的距离为|﹣2﹣1+10﹣9|=2(千米),将第五名乘客送到目的地时离出发点的距离为|﹣2﹣1+10﹣9+11|=9(千米),将最后一名乘客送到目的地时,小王距出发点4千米;所以离开出发点最远9千米.20.解:(1)阴影部分的面积=ab﹣﹣=ab﹣﹣=ab﹣;(2)当a=2,b=4时,阴影部分的面积=2×4﹣3×22=8﹣=.21.解:(1)由题意可得,幻和=﹣2×3=﹣6,故答案为:﹣6;(2)如图:由(1)知:b﹣2+x=﹣6=c﹣2+y,∵b=4,c=6,∴4﹣2+x=﹣6=6﹣2+y,∴x=﹣8,y=﹣10,∵c+x+z=﹣6,∴6﹣8+z=﹣6,∴z=﹣4,∵y+a+z=﹣6,∴﹣10+a﹣4=﹣6,∴a=8;(3)如图:22.解:(1)∵点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7,∴点A表示的数为﹣5,点B表示的数为7,AB=AO+BO=12.故答案为:﹣5;7;12.(2)当运动时间为t秒时,点P表示的数为3t﹣5,点Q表示的数为t+7.①依题意,得:3t﹣5=t+7,解得:t=6,∴3t﹣5=13.答:点C对应的数为13.②当点P在点Q的左侧时,t+7﹣(3t﹣5)=5,解得:t=;当点P在点Q的右侧时,3t﹣5﹣(t+7)=5,解得:t=.答:经过秒或秒时,PQ=5.。

北师大版七年级上册数学期中考试试卷附答案

北师大版七年级上册数学期中考试试卷附答案

北师大版七年级上册数学期中考试试题一、单选题1.下列几何体中,面的个数最多的是( )A .B .C .D .2.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、①、①、①的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是( )A .①B .①C .①D .①3.在数12-,﹣1,227,75-,0中,负分数有( ) A .1个 B .2个 C .3个 D .4个4.﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .20215.下列算式正确的是( )A .0-(-3)=-3B .-5+(-5)= 0C .512()663-++=- D .-5-(-3)= -8 6.下列代数式符合书写要求的是( )A .712xyB .ab×9C .35xy D .1÷a 7.下列各式中,与22a b 为同类项的是( )A .22a b -B .2ab -C .22abD .22a 8.下列计算结果相等的为( )A .23和32B .﹣23和|﹣2|3C .﹣32和(﹣3)2D .(﹣1)2和(﹣1)49.下列各式中,其中两项是同类项的是( )A .2a b 和2a cB .2mn 和2mnpC .0.2pq 和0.3pqD .33a b 和32ab10.如图是一个正方体展开图,若在其中的三个正方形A 、B 、C 内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形A 、B 、C 内的三个数依次为( )A .1,-2,0B .0,-2,1C .-2,0,1D .-2,1,0二、填空题11.用一个平面去截正方体,边数最多的截面是___边形.12.绝对值不大于10的所有整数的和等于_______.13.数据98990000这个数用科学记数法应表示为__________.14.计算﹣100÷5×15=______________________. 15.已知单项式2325x y -的系数是m ,次数是n ,则mn =______. 16.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系式是_____.17.已知|x ﹣1|+|y+2|=0,则2x ﹣y =___.18.按照如图计算转换机计算,输出结果为______.三、解答题19.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)(﹣134)+(﹣613)+(﹣2.25)+103;(3)(3774126+-)×(﹣60);(4)211[55()]()24-⨯-÷-.20.化简下列各式:(1)﹣3(2x ﹣3)+7x+8;(2)3(x 2﹣12y 2)﹣12(4x 2﹣3y 2);(3)3x ﹣[5x ﹣(12x ﹣4)];(4)3b ﹣2c ﹣[﹣4a ﹣(c ﹣3b )]+c .21.先化简,再求值:(1) 2(a 2+3a ﹣2)﹣3(2a+2),其中a =﹣3;(2) 3x 2y ﹣[2xy ﹣(2xy ﹣x 2y )]﹣xy 的值,其中x =﹣2,y =﹣1.22.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)请在下面方格纸中分别画出它的左视图和俯视图;(2)图中共有个小正方体.23.快递员骑车从快递公司出发,先向北骑行200m到达A小区,继续向北骑行400m到达B 小区,然后向南骑行1000m到达C小区,最后回到快递公司.(1)以快递公司为原点,以向南方向为正方向,用1cm表示100m画出数轴,并在该数轴上A B C三个小区的位置;表示出、、(2)C小区离B小区有多远;(3)快递员一共骑行了多少干米?24.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8 吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)(1)若经过这一周,该粮仓存有大米88吨,求m的值,并说明星期五该粮仓是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.25.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a米,宽为b米.(1)用代数式表示该跑道的周长C.(2)用代数式表示该跑道的面积S.(3)当100a =,40b =时,求跑道的周长()π3C ≈.26.观察所示图形的面积:图1的面积可表示为13=12;图2的面积可表示为13+23=32;图3的面积可表示为13+23+33=62.(1)猜想:13+23+33+…+n 3=_____(用含有n 的代数式表示);(2)计算:33332123100101+++⋅⋅⋅+.参考答案1.C2.A3.B4.B5.C6.C7.A8.D9.C11.六【详解】解:①用一个平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,①最多可以截出六边形.故答案为:六.12.0【分析】根据绝对值的意义,结合数轴找到所有符合条件的数,再进一步根据数的运算法则进行计算,互为相反数的两个数的和为零.【详解】绝对值不大于10的所有整数有10,9,8,7,6,5,4,3,2,1,0±±±±±±±±±±,共有21个, 再根据互为相反数的两个数的和为0 ,得它们的和是0.故答案是:0【点睛】此类题中,符合条件的数一般都是成相反数出现的,根据互为相反数的两个数的和为0,进行计算.13.79.89910⨯【解析】【分析】根据科学记数法表示方法进行表示即可.【详解】因为7989900009.89910=⨯,所以98990000这个数用科学记数法应表示为79.89910⨯,故答案为:79.89910⨯【点睛】本题考查了用科学记数法表示比较大的数,考查了数学运算能力,属于基础题. 14.-4根据有理数的乘除混合运算法则,按顺序进行计算即可.【详解】 解:110055-÷⨯ 1=205-⨯ =4-,故答案为:-4.【点睛】本题主要考查有理数的乘除混合运算,掌握运算法则和运算顺序,是解题的关键. 15.2-【解析】【分析】根据单项式的系数和次数的定义得出m 和n 的值即可.【详解】 解:单项式2325x y -的系数是25-,次数是235+=, ①25m =-,5n =, ①2525mn =-⨯=-. 故答案是:2-.【点睛】本题考查单项式的系数和次数,解题的关键是掌握单项式的系数和次数的定义. 16.y =2n+n .【解析】【分析】由题意可得各三角形中下边第三个数是上边两个数字的和,而上边第一个数的数字规律为:1,2,…,n ,第二个数的数字规律为:2,22,…,2n ,由此得出下边第三个数的数字规律为:n+2n ,继而求得答案.【详解】解:①观察可知:各三角形中左边第一个数的数字规律为:1,2,…,n,右边第二个数的数字规律为:2,22,…,2n,下边第三个数的数字规律为:1+2,2+22,…,n+2n,①最后一个三角形中y与n之间的关系式是y=2n+n.故答案为:y=2n+n.【点睛】此题主要考查了数字规律性问题.注意根据题意找到规律y=2n+n是解题的关键.17.4【解析】【分析】根据绝对值的非负性求出x,y,故可求解.【详解】①|x﹣1|+|y+2|=0,①x-1=0,y+2=0①x=1,y=-2①2x﹣y=2+2=4故答案为:4.【点睛】此题主要考查绝对值的性质应用,解题的关键是熟知绝对值里的数大于等于零.18.3 2【解析】【分析】把-3输入计算转换机中计算即可得到结果.【详解】解:根据题意得:[(-3+3)×2-3]÷(-2)=32,故答案为:32.【点睛】此题考查了有理数的混合运算,弄清计算转换机中的运算是解本题的关键.19.(1)﹣101(2)﹣7(3)﹣10(4)﹣15【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)利用加法的交换律与结合律,把和为整数的两数先加,再计算即可; (3)利用乘法的分配律进行简便计算即可;(4)先计算括号内的运算,再计算除法运算即可.(1)解:(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=﹣5﹣4﹣101+9=﹣101;(2)3110(1)( 2.25)(6)433⎡⎤⎡⎤=-+-+-+⎢⎥⎢⎥⎣⎦⎣⎦=(﹣4)+(﹣3)=﹣7;(3)377()(60)4126+-⨯-377(60)(60)(60)4126=⨯-+⨯--⨯-=﹣45﹣35+70=﹣10;(4)21155()()24⎡⎤-⨯-÷-⎢⎥⎣⎦1(55)(4)4=-⨯⨯-515(5)(4)(4)44=-⨯-=⨯-=﹣15.20.(1) x+17(2) x 2(3)32x﹣4(4) 4a【解析】【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,最后合并同类项即可;(4)先去小括号,再去中括号,最后合并同类项即可.(1)﹣3(2x﹣3)+7x+8=﹣6x+9+7x+8=(﹣6x+7x)+(9+8)=x+17;(2)3(x2﹣12y2)﹣12(4x2﹣3y2)=3x2﹣32y2﹣2x2+32y2=3x2﹣2x2+(﹣32y2+32y2)=x2;(3)3x﹣[5x﹣(12x﹣4)]=3x﹣[5x﹣12x+4]=3x﹣5x+12x﹣4=﹣32x﹣4;(4)3b﹣2c﹣[﹣4a﹣(c﹣3b)]+c =3b﹣2c﹣(﹣4a﹣c+3b)+c =3b﹣2c+4a+c﹣3b+c=4a.【点睛】本题考查整式加减法的混合运算,正确去括号和合并同类项是解题的关键.21.(1)2a2﹣10,8(2)2x2y﹣xy,-10【解析】【分析】(1)先去括号,再合并同类项即可,再代a=﹣3进行求解;(2)根据整式运算的法则中,去括号,再合并同类项即可,再代x=﹣2,y=﹣1求解.(1)解:原式=2a2+6a﹣4﹣6a﹣6=2a2﹣10当a=﹣3时,原式=2×(﹣3)2﹣10=8;(2)解:原式=3x2y﹣(2xy﹣2xy+x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy当x=﹣2,y=﹣1时,原式=﹣8﹣2=﹣10.【点睛】本题考查整式的加减,解题的关键是先化简,然后再代入求值即可.22.(1)见解析;(2)9【解析】【分析】(1)直接利用左视图以及俯视图的观察角度分析得出答案;(2)结合几何体的形状得出答案.【详解】解:(1)如图所示:;(2)底层有7个,第二层有2个,所以图中共有9个小正方体.故答案为:9.【点睛】本题主要考查了简单几何体的三视图,正确注意观察角度是解题关键.23.(1)见解析;(2)1000米;(3)2千米.【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据题意列出算式,即可得出答案.【详解】解:(1)如图所示:(2)快递员从B小区向南骑行1000m到达C小区所以C小区离B小区的距离是:1000m;+++=(3)①2410420【点睛】本题考查了数轴,有理数的加减的应用,能读懂题意是解此题的关键.24.(1)星期五该粮仓是运出大米,运出大米20吨;(2)这一周该粮仓需要支付的装卸总费用2700元【分析】(1)根据原有的大米与一周内运进运出的大米的和是88吨列方程求解;(2)计算出一周内运进运出大米的总和乘以每吨的装卸费用即可求解.【详解】解:(1)132﹣32+26﹣23﹣16+m+42﹣21=88,解得m=﹣20,答:星期五该粮仓是运出大米,运出大米20吨;(2)|﹣32|+26+|﹣23|+|﹣16|+|﹣20|+42+|﹣21|=180,180×15=2700元, 答:这一周该粮仓需要支付的装卸总费用2700元.25.(1)()2πa b +米 (2)2π44b ab+平方米(3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2) 两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米), 因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.26.(1)22(1)4n n +(2)2500【分析】(1)根据所给的式子的特点进行分析,即可得出结果; (2)根据(1)所得的结论进行解答即可.(1)解:(1)①13=12;13+23=32;13+23+33=62;…①13+23+33+…+n 3=(1+2+3+…+n )2=222(1)(1)24n n n n ++⎛⎫= ⎪⎝⎭,故答案为:22(1)4n n +;(2)33332123100101+++⋅⋅⋅+ =222100(1001)4101⨯+ =2221001014101⨯ =21004=2500.。

北师大版七年级上册数学期中试卷含答案

北师大版七年级上册数学期中试卷含答案

北师大版七年级上册数学期中考试试题一、单选题1.﹣5的绝对值是( )A .﹣5B .5C .0.2D .﹣0.22.用式子表示“比a 的平方的一半小1的数”是( )A .(12a )2-1B .12a 2-1C .12(a-1)2-1D .(12a-1)2 3.单项式-3πxy 2z 3的系数和次数分别是( )A .-π,5B .-1,6C .-3π,6D .-3,74.2005年末,我国外汇储备达到8 189亿美元,用科学记数法表示(保留3个有效数字)是( )A .8.19×1011B .8.18×1011C .8.19×1012D .8.18×10125.下列各式去括号不正确...的是( ) A .113322x y x y ⎛⎫--=-+ ⎪⎝⎭; B .m+(-n+a-b)=m-n+a-b;C .()14632332x y x y --+=-++; D .11112323a b c a b c ⎛⎫⎛⎫+--=++ ⎪ ⎪⎝⎭⎝⎭ 6.已知15m x n 和﹣29m 2n 是同类项,则|2﹣4x|+|4x ﹣1|的值为( ) A .1 B .3 C .﹣3 D .137.下列各对数中互为相反数的是( )A .−(+3)和+(−3)B .+(−3)和+|−3|C .−(−3)和+|−3|D .+(−3)和−|+3|8.已知22x y -=-,则324x y +-的值是( ).A .0B .-1C .3D .59.0x y +<,0xy <,x y >,则有( )A .0x >,0y <,x 绝对值较大B .0x >,0y <,y 绝对值较大C .0x <,0y >,x 绝对值较大D .0x <,0y >,y 绝对值较大 10.已知a+b=0,a≠b ,则化简(1)(1)b a a b a b +++得( ) A .2aB .2bC .+2D .﹣2二、填空题 11.+5.7的相反数与﹣7.1的绝对值的和是_____.12.|3.14﹣π|﹣(+π)=_____.13.规定一种新的运算:a △b=ab ﹣a ﹣b+1,比如 3△4=3×4﹣3﹣4+1,请比较大小:(﹣3)△4_______4△(﹣3)(填“>”、“=”或“<”).14.若│x+2│+│y-3│=0,则xy=________.15.绝对值不大于3.2的非负整数分别有_____.16.多项式x 3﹣7x ﹣5是_____次_____项式,它的一次项系数是_____,常数项是_____. 17.礼堂第一排有a 个座位,后面每排都比前一排多一个座位.用式子表示第n 排的座位数_____.18.﹣5xy+7xy=_____,﹣4a 3b 2﹣8a 3b 2=_____.19.已知a ,b 互为倒数,c ,d 互为相反数,m 的绝对值为2,求315197ab ++(c+d )﹣m 的值_____.20.a ,b ,c 在数轴上表示的点如图所示,则化简|b|+|a+b|﹣|a ﹣c|=_____.三、解答题21.计算下列各题:(1)(-12)+(+67)-(+0.5)-(-117)(2)42×(-23)+(-34)÷(-0.25)(3)-19+17×(-1)2014-52×(-15)3(4)5311 ()() 67342-+÷-22.计算:(1)化简:(2x2﹣12+3x)﹣4(x﹣x2+12)(2)化简:3(xy﹣2x)﹣5(y﹣3xy)(3)先化简再求值:2(3a2b﹣ab2)﹣3(ab2+2a2b),其中a=﹣12,b=1323.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣3,+14,﹣11,+10,﹣12.(1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是多少千米?(2)若汽车耗油量为0.5升/千米,这天下午汽车耗油共多少升?24.在数轴上表示下列各数,并用“<”号连接起来.﹣(﹣2),﹣|2|,﹣112,0.5,﹣(﹣3),﹣|﹣4|,3.5.25.把下列各数填入相应的大括号内:﹣13.5,0,+27,﹣45,227,﹣10,3.14(1)正数集合:{ }(2)负数集合:{ }(3)整数集合:{ }(4)分数集合:{ }(5)非负整数集合:{ }26.一位同学做一道题:“已知两个多项式A ,B ,计算2A +B .”他误将“2A +B ”看成“A +2B ”,求得的结果为9x 2−2x +7.已知B =x 2+3x −2,请求出正确答案.27.三角形一边长a+2,另一边长b+3,周长为2a+b+22,求第三边长为多少?28.某商场对顾客购物实行优惠,规定:(1)如一次购物不超过200元的,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元和423元,如果他只去一次购买同样的商品,则应付款多少元?参考答案1.B【解析】【分析】根据负数的绝对值等于它的相反数解答.【详解】﹣5的绝对值是|﹣5|=5.故选B .【点睛】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.B【解析】【分析】此题只需根据题意用a 的平方的一半减1即可.【详解】解:由题意得,比a 的平方的一半小1的数为21 1.2a 故选B .【点睛】本题考查了代数式的列法,正确理解题意是解决这类题的关键.3.C【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:根据单项式系数、次数的定义,单项式-3πxy 2z 3的系数和次数分别是-3π,6. 故选:C .【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.4.A【解析】试题分析:8189亿=8189×108=8.189×1011≈8.19×1011. 故选A .考点:科学记数法与近似数5.C【解析】【分析】根据去括号法则逐项分析即可.【详解】 A. 113322x y x y ⎛⎫--=-+ ⎪⎝⎭,正确; B. m +(-n +a -b )=m -n +a -b ,正确; C.()134632322x y x y --+=-+- ,不正确; D.11112323a b c a b c ⎛⎫⎛⎫+--=++ ⎪ ⎪⎝⎭⎝⎭ ,正确. 故选C.【点睛】本题考查了去括号法则,当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号. 6.D【解析】【分析】同类项的相同字母的指数相同,由此可得x=2,继而代入可得出正确答案.【详解】由题意得:x=2,则|2﹣4x|+|4x ﹣1|=|2﹣8|+|8﹣1|=6+7=13.故选D.【点睛】本题考查同类项的知识,难度不大,掌握同类项的相同字母的指数相同是关键.7.B【解析】【分析】先化简,再根据相反数的定义判断即可.【详解】A、∵-(+3)=-3,+(-3)=-3,∴-(+3)和+(-3)不是互为相反数,选项错误;B、∵+(-3)=-3,+|−3|=3,∴+(-3)和+|−3|互为相反数,选项正确;C、∵-(-3)=3,+|-3|=3,∴-(-3)与+|-3|不是互为相反数,选项错误;D、∵+(-3)=-3,-|+3|=-3,∴+(-3)与-|+3|不是互为相反数,选项错误;故选B.【点睛】本题考查相反数的知识,属于基础题,比较简单,关键是熟练掌握相反数这一概念.8.B【解析】【分析】先将原式变形为3+2(x-2y),把x-2y=-2代入求值即可.【详解】解:∵3+2x-4y=3+2(x-2y),∴当x-2y=-2时,原式=3+2×(-2)=-1,故选B.【点睛】此题考查了代数式求值,数学的整体思想.熟练掌握运算法则是解决问题的关键.9.B【解析】根据有理数的加法运算法则和乘法运算法则进行判断即可.【详解】解:∵xy <0,∴x 、y 异号,∵x >y ,∴x >0,y <0,∵x +y <0,∴负数的绝对值大,即y 绝对值较大.故选B .【点睛】本题考查了有理数的乘法和有理数的加法的实际应用,熟记运算法则是解题的关键. 10.D【解析】∵0a b a b +=≠,,∴00a b ≠≠,,∴0ab ≠.∴原式=b a b a a b+++ =22b a a b ab ab+++ =2()2()a b ab a b ab+-++ =2ab ab- =2-.故选D.11.1.4【解析】试题分析:根据题意可得:-5.7+7.1-=1.4考点:有理数的计算【解析】【分析】原式利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】原式=π﹣3.14﹣π=﹣3.14.故答案为:﹣3.14.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13.=【解析】【分析】根据新定义运算法则,分别计算,再作比较.【详解】(3-)△4=(3-)×4-(3-)-4=-13,4△(3-)=4×(3-)-4-(3-)=-13,所以,(3-)△4=4△(3-)故答案为=【点睛】本题考核知识点:新定义运算. 解题关键点:理解新运算法则.14.-6【解析】【分析】根据非负数的性质列出方程组求出x 、y 的值,代入代数式求值即可.【详解】解|x+2|+|y-3|=0,∴x+2=0,解得x=-2;y-3=0,解得y=3.∴xy=-2×3=-6.故答案为:-6.【点睛】本题考查非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.15.0,1,2,3【解析】【分析】先找出绝对值不大于3.2的整数,再求出非负整数即可.【详解】绝对值不大于3.2的整数分别有0,±1,±2,±3, 即绝对值不大于3.2的非负整数分别有0,1,2,3,故答案为0,1,2,3.【点睛】本题考查了绝对值和有理数的大小比较,能求出绝对值不大于3.2的所有整数是解此题的关键.16.三 三 -17-5 【解析】【分析】多项式的次数是多项式中最高次项的次数,每一个单项式都是它的项,每一项的数字因数是 该项的系数.【详解】 多项式357x x --是三次三项式,一次项系数是17-,常数项是 5.- 故答案为三,三,17-, 5.- 【点睛】本题考查了多项式的项,次数和各项的系数,是基础知识要熟练掌握.17.a+(n ﹣1)【解析】【分析】分别列出n=1、2、3…对应的座位数,再归纳总结出n=n 时的情况即可求解.【详解】设座位数为x,则当n=1时,x=a,n=2时,x=a+1,n=3时,x=a+2,…当n=n时,x=a+(n﹣1).故答案为a+(n﹣1).【点睛】此题考查数的规律,首先应找出哪些部分发生了变化,是按照什么规律变化的,再进一步利用规律解决问题.18.2xy ﹣12a3b2【解析】【分析】根据合并同类项解答即可.【详解】解:﹣5xy+7xy=2xy,﹣4a3b2﹣8a3b2=﹣12a3b2,故答案为2xy;﹣12a3b2.【点睛】此题考查合并同类项,关键是根据合并同类项法则解答,字母与字母的指数保持不变,系数相加减.19.215或﹣145【解析】试题解析:∵a,b互为倒数,∴ab=1.∵c,d互为相反数,∴c+d=0.∵m的绝对值为2,∴m=±2当ab =1,c +d =0,m =2时∴原式1902.55=+-=- 当ab =1,c +d =0,m =−2∴原式()11102.55=+--= 故答案为:95-或11.5 20.-c【解析】【分析】根据数轴上点的位置判断出b ,a+b 及a ﹣c 的正负,利用绝对值的代数意义化简, 去括号合并即可得到结果.【详解】解:由数轴得:a <c <0,b >0,|a|>|b|,∴a+b <0,a ﹣c <0,则|b|+|a+b|﹣|a ﹣c|=b ﹣(a+b )+(a ﹣c )=b ﹣a ﹣b+a ﹣c=﹣c .故答案为﹣c【点睛】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练 掌握法则是解本题的关键.21.(1)1(2)-25(3)-145 (4)-31 【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘除运算,再计算加减运算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式利用除法法则变形,再利用乘法分配律计算即可求出值.【详解】(1)原式1610.51121277;=--++=-+= (2)原式28325=-+=-;(3)原式141917155=-++=-; (4)原式()53142,673⎛⎫=-+⨯- ⎪⎝⎭ ()()()531424242,673=⨯--⨯-+⨯- 351814,=-+-31.=-【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)6x 2﹣x ﹣52(2)18xy ﹣6x ﹣5y (3)﹣5ab 2,518 【解析】【分析】(1)先去括号,再合并同类项即可得;(2)先去括号,再合并同类项即可得;(3)原式去括号、合并同类项化简,再将a ,b 的值代入计算可得.【详解】(1)原式2221523442622x x x x x x =-+-+-=--; (2)原式365151865xy x y xy xy x y =--+=--;(3)原式22226236,a b ab ab a b =---25ab =-,当1123a b =-=,时, 原式115,29⎛⎫=-⨯-⨯ ⎪⎝⎭ 5.18= 【点睛】本题主要考查整式的加减﹣化简求值,解题的关键是掌握整式的加减运算其实质是去括号、合并同类项.23.(1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是13千米;(2)65a 升.【解析】试题分析:(1)把所有行车里程相加,再根据正数和负数的意义解答;(2)求出所有行车里程的绝对值的和,再乘以a 即可.试题解析:(1)15-3+14-11+10-12=15+14+10-3-11-12=39-26=13千米,答:将最后一名乘客送达目的地时,小石距下午出发地点的距离是13千米;(2)15+3+14+11+10+12=65千米,∵汽车耗油量为a 升/千米,∴这天下午汽车耗油共65a 升.24.见解析【解析】【详解】试题分析:进行有理数的比较时可以先将有理数化为最简,再在数轴上表示各数,即可比较出大小试题解析:()2--=2,2-=-2,112-=-1.5,()3--=3,4--=-4,在数轴上表示如下图()()1--4210.523 3.52<-<-<<--<--< 25.见解析【解析】【分析】利用正数,负数,整数,分数,以及非负整数定义判断即可.【详解】(1)正数集合:{+27,227,3.14};(2)负数集合:{−13.5,−45,−10};(3)整数集合:{0,+27,−10};(4)分数集合:{−13.5,−45,227,3.14};(5)非负整数集合:{0,+27},【点睛】此题考查了有理数,熟练掌握各自的定义是解本题的关键.26.15x 2−13x +20【解析】【分析】根据题意列出式子,先求出A 表示的多项式,然后再求2A +B .【详解】解:由A +2B =9x 2−2x +7,B =x 2+3x −2,得A =(9x 2−2x +7)−2(x 2+3x −2)=9x 2−2x +7−2x 2−6x +4=7x 2−8x +11. 所以2A +B =2(7x 2−8x +11)+(x 2+3x −2)=14x 2−16x +22+x 2+3x −2=15x 2−13x +20.【点睛】本题考查整式的加减运算,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.根据题中的关系可先求出A ,进一步求得2A +B .27.a+17【解析】【分析】用周长减去其它两边的和,据此列出算式,再去括号、合并同类项即可得.【详解】根据题意知,第三边长为(2a+b+22)﹣(a+2+b+3)=2a+b+22﹣a ﹣2﹣b ﹣3=a+17.【点睛】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.28.560.4(元)【解析】【分析】理解优惠规则,列出算式并计算.【详解】第二次的价格是423÷0.9=470(元),两次合并,则总价格是:168+470=638(元),应付500×90%+(638-500)×80%=450+138×0.8=450+110.4=560.4(元),【点睛】考核知识点:有理数运算应用.。

北师大版七年级数学上册期中考试题

北师大版七年级数学上册期中考试题

北师大版七年级数学上册期中考试题考试范围:第1—3章(总分150,考试时间90分钟)一、选择题:(四选一,每小题2分,共24分)1.若是水库水高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记 作( )A +3mB 3-mC 13+m D 13-m 2.一个负整数a ,其倒数1a与相反数a -相较较,正确的是( ) A 1a a >- B 1a a =- C 1a a <- D 无法肯定 3.下面各组数中,相等的一组是( )A 22-2与(-2) B 232233与() C 22----与() D 3333--()与 4.两位数的十位数字为x ,个位上的数字为y ,用式子表示这个两位数是( )A xyB x+yC 10x+yD 10y+x5、下面几何体的截面图不可能是圆的是 ( )A 、 圆柱B 、 圆锥C 、 球D 、 棱柱6、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一路拉伸,再捏合,再拉伸,反复几回,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第( )次后可拉出64根细面条.(A) 5; (B) 6; (C) 7; (D) 8.7、式子(21-103+52)×4×25=(21-103+52)×100=50-30+40顶用的运算律是( )(A )乘法互换律及乘法结合律; (B )乘法互换律及分派律;(C )加法结合律及分派律; (D )乘法结合律及分派律.8.下列说法中不正确的是( )①1是绝对值最小的数;②0既不是正数,也不是负数;③一个有理数不是整数就是分数; ④0的绝对值是0. ⑤负数的偶数次方是正数A 1个B 2个C 3个D 4个9.用代数式表示“与5的差”为( )A. B. C. D.2m 25m -52m -2(5)m -2(5)m-10.当时,代数式的值为( )A.1 B. C.5 D.311.下列计算正确的是( )A .B .C .D .12.若代数式的值与字母的取值无关,则的值是( ) A .2 B .-2 C .-3 D .0二、填空题:(每小题4分,共24分)13.(1)若3313m n a b a b +--与是同类项,则32m n -= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省那龙镇2017-2018学年七年级数学上学期期中试题
2017—2018学年度第学期
七年级期中教学质量检测数学参考答案
一、选择题(本大题共10小题,每小题3分,共30分)
CBDDD CCCCD
二、填空题(本大题共6小题,每小题4分,共24分)
11. 2 12. > 13. 百万 14. 12 15. 2 16. -6
三、解答题(一)(本大题共3小题,每小题6分,共18分)
17. 解:原式=41………………………………………………………………6分
18. 解:
…………………………………………………………………………6分
19. 解:原式=2a2﹣3b2-4a2+4b2
=﹣2a2+b2. ………………………………………………………6分四、解答题(二)(本大题共3小题,每小题7分,共21分)
20. 解:原式=
1
28
2
+-…………………………………………………………5分
=
1
5
2 -.…………………………………………………………7分
21. 解:(1)阴影部分面积为(2-a)a=2a-a2…………………………4分
(2)依题意得a=1,
∴2a―a2=2―12=1………………………………………………7分
22. 解:(1)根据数轴可知:-1<c<0<b<1<a<2,
∴a-b>0,b-c>0,c-a<0,b+c<0;……………………4分(2)原式=(a-b)+(b-c)+(c-a)-(b-c)
=a-b+b-c+c-a-b+c
=-b-c. ……………………………………………………7分
五、解答题(三)(本大题共3小题,每小题9分,共27分)
23. 解:7a2b+(-4a2b+5ab2)-2(2a2b+3ab2)
=7a2b-4a2b+5ab2-4a2b-6ab2
=-a2b-ab2,……………………………………………………………5分
∵(a-2)2+|b+1|=0,
∴a=2,b=-1,…………………………………………………………7分
∴原式=4-2=2.………………………………………………………9分
24. 解:(1)星期一100+35=135吨;
星期二135-20=115吨;
星期三115-30=85吨;
星期四85+25=110吨;
星期五110-24=86吨;
星期六86+50=136吨;
星期日136-26=110吨.
故星期六最多,是136吨;…………………………………………3分(2)2300×(20+30+24+26)-2000×(35+25+50)
=2300×100-2000×110
=230000-220000
=10000元;………………………………………………………………6分(3)(200-100)÷(35+25+50-20-30-24-26)
=100÷10
=10(周)……………………………………………………………………8分
10-1=9(周)
故再过9周粮库存粮食达到200吨.………………………………………9分
25. 解:(1)数轴上表示5与-2两点之间的距离是|5-(-2)|=|5+2|=7;………1分
(2)数轴上表示x与2的两点之间的距离可以表示为|x-2|;……………2分
(3)∵|x-2|=5,
∴x-2=5或x-2=-5,
解得:x=7或x=-3;……………………………………………………4分(4)∵|x+3|+|x-1|表示数轴上有理数x所对应的点到-3和1所对应的点的距离之和,|x+3|+|x-1|=4,
∴这样的整数有-3、-2、-1、0、1;………………………………7分
(此问全答对时给3分,答对1个给1分,答对2个给2分)
(5)有最小值是3.…………………………………………………………9分。

相关文档
最新文档