模拟电子技术基础集成运算放大电路
模拟电子技术教学课件-集成运算放大器的应用
小信号进行放大,且具有较强的共模抑制能力。
因为最后一级运算 放大器是双端输入差 分电路,所以:
2021/7/25
4.1 集成运放的线性应用电路
思考与练习
Sikaoyulianxi 1.集成运放构成的基本线性应用电路有哪些?在这些基本 电路中,集成运放均工作在何种状态下?
2.“虚地”现象只存在于线性应用运放的哪种运算电路中?
由一个RC低通电路和一个RC高通 电路形成带通滤波器。
高
低通
通
利用同相输入的比例 放大电路做隔离放大 级。为改善频率特性 引入正反馈。
幅频特性:
2021/7/25
带阻滤波器
将一个RC低通电路和一个RC 高通电路的输出求和,即形 成带阻滤波器。
如果带阻滤波器的阻 带设置为某单一频率 时,则可构成陷波滤 波器。
由虚断可得: 数值代入后整理可得: 通频带内的电压放大倍数:
2021/7/25
4.1.8 有有源源滤波高器通——滤常用波的器有源滤波器
通频带内的电压放大倍数: 传输函数为:
电路的特性频率为: 当输入信号的频率f等于通带截止频率f0时:
幅频特性:
2021/7/25
4.1.8 有源滤4带.波1.8器通有—滤源—滤常波波用器的器有源滤波器
第4单元 集成运算放大器的应用
集成运放的运算应用电路
目
Jichengyunfangdeyunsuanyingyingdianlu
录
集成运算放大器的非线性应用
3zhongzutaifangdadianludexingnengbijiao
集成运算放大器的选择、使用和保护
Danjixingguandedanjifangdadianlu
模拟电子技术 第十章 集成运算放大电路
I I 0
虚断
对于工作在非线性区的应用电路,上述两个特点是分析其 输入信号和输出信号关系的基本出发点。
19
什么情况下放工作于非线性区?
运放在非线性区的条件:
电路开环工作或引入正反馈! iF
ui
UO RF UOPP U+-U-
iI
R1
i+ + i- -
Auo
uO
R
-UOPP
20
实际运放 Auo ≠∞ ,当 u+ 与 u-差值比较小时, 仍有 Auo (u+ u- ),运放工作在线性区。
在运算电路中,无论输入电压,还是输出电压, 均是对“地”而言的。
23
一、比例运算电路
作用:将信号按比例放大。 类型:反相比例放大、同相比例放大。 方法:引入深度电压并联负反馈或电压串联 负反馈。这样输出电压与运放的开环放大倍
数无关,与输入电压和外围网络有关。
24
一、比例运算电路
1.反相比例运算电路
虚短 虚断
2. 理想运放的输入电流等于零。
对于工作在线性区的应用电路,“虚短”和“虚断”是 分析其输入信号和输出信号关系的基本出发点。
17
如何使运放工作在线性区?
理想运放的线性区趋近于0,为了扩大运放的线性区 或使其具有线性区,需给运放电路引入负反馈: 运放工作在线性区的条件: 电路中有负反馈!
但线性区范围很小。
uO
例如:F007 的 UoM = ± 14 V,Auo 2 × 105 , 线性区内输入电压范围
实际特性
0 u+u
U OM u u Auo 14 V 2 105 70 μV
非线性区
电子技术基础第四章 集成运算放大电路
输出电流加倍,使电压放大倍数增大。
共模输入时,
从 以上分析可知,共模信号基本不传递到下一 级,提高了整个电路的共模抑制比。 此外,输入级静态电流增加时,T8与T9管集电 极电流会相应增大,但因为IC10=IC9+IB3+IB4,且IC10 基本恒定,所以IC9的增大势必使IB3 、 IB4减、小,从 而导致输入级静态电流减小,最后使它们基本不变。 综上所述,输入级是一个输入电阻大、输入端耐 压高、对温漂和共模信号抑制能力强、有较大差模放 大倍数的双端输入、单端输出差分放大电路。
说明电流 几乎全部流向了负载。 有源负载使电压放大倍数大大提高。
二、有源负载差分放大电路
图 4.2.11
以上分析说明,用镜像电流源做有源负载, 不但可将T1管的电流变化转换为输出电流,而 且还将使所有的变化电流流向负载RL。 图中的晶体管也可用合适的场效应管代替。
4.3 集成电路运放电路简介
本质:高性能的直接耦合放大电路。品种繁多, 内部电路不同,但基本组成部分、结构 形式、组成原则基本一致。 4.3.1 双极型集成运放 一、F007电路分析
图4.2.3
在设计电路时,首先应确定电流IR和IC1的数值, 然后求出R和Re的数值。在4.2.3电路中,若VCC=15V, IR=1mA,UBE0=0.7V,UT=26mV,IC1=20μA;则可以求得 R=14.3kΩ,Re5.09kΩ。 所以,在微电流源中,能输出很小的电流(20 μA ), 但电阻却不是很大(几~十几kΩ )。
图 4.2.6
图4.2.7所示为多集电极 管多路电流源。S0、S1和S2 是各集电区的面积,则
图 4.2.7 图4.2.8所示为场效应管 多路电流源,S0~S3是各管导 电沟道的宽长比,则
《模拟电子技术基础》(童诗白、华成英第四版)习题解答
模拟电子技术基础第四版清华大学电子学教研组编童诗白华成英主编自测题与习题解答山东大学物理与微电子学院目录第1章常用半导体器件‥‥‥‥‥‥‥‥‥‥3第2章基本放大电路‥‥‥‥‥‥‥‥‥‥‥14 第3章多级放大电路‥‥‥‥‥‥‥‥‥‥‥31 第4章集成运算放大电路‥‥‥‥‥‥‥‥‥41 第5章放大电路的频率响应‥‥‥‥‥‥‥‥50 第6章放大电路中的反馈‥‥‥‥‥‥‥‥‥60 第7章信号的运算和处理‥‥‥‥‥‥‥‥‥74 第8章波形的发生和信号的转换‥‥‥‥‥‥90 第9章功率放大电路‥‥‥‥‥‥‥‥‥‥‥114 第10章直流电源‥‥‥‥‥‥‥‥‥‥‥‥‥126第1章常用半导体器件自测题一、判断下列说法是否正确,用“×”和“√”表示判断结果填入空内。
(1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。
( √ )(2)因为N 型半导体的多子是自由电子,所以它带负电。
( ×)(3)PN 结在无光照、无外加电压时,结电流为零。
( √ )(4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。
( ×)(5)结型场效应管外加的栅一源电压应使栅一源间的耗尽层承受反向电压,才能保证R大的特点。
( √)其GSU大于零,则其输入电阻会明显变小。
( ×) (6)若耗尽型N 沟道MOS 管的GS二、选择正确答案填入空内。
(l) PN 结加正向电压时,空间电荷区将 A 。
A.变窄B.基本不变C.变宽(2)稳压管的稳压区是其工作在 C 。
A.正向导通B.反向截止C.反向击穿(3)当晶体管工作在放大区时,发射结电压和集电结电压应为 B 。
A.前者反偏、后者也反偏B.前者正偏、后者反偏C.前者正偏、后者也正偏(4) U GS=0V时,能够工作在恒流区的场效应管有A 、C 。
A.结型管B.增强型MOS 管C.耗尽型MOS 管三、写出图Tl.3所示各电路的输出电压值,设二极管导通电压U D=0.7V。
模拟电子技术(4.1)--多级放大电路和集成运算放大器
第4章多级放大电路和集成运算放大器例题【例4-1】 已知电路如图4-1所示,V 12CC +=V Ω='100b b r ,6021==ββ,Ω=k 300B1R ,Ω=k 2C1R ,Ω=k 200B2R ,Ω=k 2E R ,Ω=k 2L R ,V 7.0BE =U ,1C 、2C 、3C 对交流看作短路。
(1)估算静态工作点1B I 、1C I 、2B I 、2C I ;(2)计算总的电压放大倍数;(3)求放大电路的输入电阻和输出电阻。
图4-1 例4-1电路【解4-1】 【解题思路】本题是阻容耦合两级放大电路,故前后两级静态工作点独立;第一级为共发射极电路,故输入电阻即第一级放大电路的输入电阻;第二级为共集电极接法的射极跟随器,输出电阻尽管是第二级的输出电阻,但是在计算过程中要考虑前一级放大电路的影响。
【解题过程】(1)静态工作点μA 383003.11B1BEQ1CC 1≈=-=R U V I B 2.3mA μA 3860B11C1≈⨯==I I βμA352612003.11)1(E2B2BEQ2CC B2=⨯+=++-=R R U V I β 2.1mAμA 3560B22C2≈⨯==I I β(2)总的电压放大倍数是各级放大电路电压放大倍数的乘积。
采用教材P127页的方法1:在计算第一级的电压放大倍数时,把第二级的输入电阻作为第一级的负载考虑,然后单独计算第二级的放大倍数。
kΩ8.03.22661100mV 26)1(EQ11b b be1≈⨯+=++='I r r βkΩ8.01.22661100mV 26)1(EQ22b b be2≈⨯+=++='I r r βkΩ47)]2//2(618.0//[200)]//)(1(//[L E 2be2B2i2≈⨯+=++=R R r R R β1440.8)47//2(60)//(be1i2C11.i.o1u1.≈⨯-=-==r R R U U A β99.08.6161)//)(1()//)(1(L E 2be2L E 2.i2.o u2.≈-=+++==R R r R R U U A ββ143u2.u1.u .≈⋅=A A A (3)输入电阻和输出电阻kΩ8.08.0//300//be1B1i1i ≈===r R R R Ω450612//2008.0//21////2C1B2be2o2o ≈+=++==βR R r R R R E 【点 评】本题的难点是输出电阻的计算,由于输出级采用的是射极跟随器,故一方面输出电阻的计算应考虑前一级的影响;另外,在计算过程中,以发射极作为参照基准,在基极回路的电阻要等比缩小21β+倍。
电子技术基础第五章集成运算放大器
2.差模交流信号分析 :
2.差模交流信号分析 : 画出对差模交流信号的交流通路
理想的直流电压源短路 关键是此处对Ree的处理。 在以前画交流通路时,线性电阻在交流通路中保留,阻值 为线性电阻的交流电阻,因为是线性的,所以交流电阻与 直流电阻相等。
A u c(单 u u o ic ) c 1 1 (b R rb )e 2 R c ()1 e R e2 -R R e ce
4 对任意信号的分析方法
ui1=uic+uid/2 ui2=uic-uid/2 uic = (ui1+ui2)/2 uid=ui1-ui2 uid1= -uid2= uid /2
差模信号和共模信号
• 差模信号:有用的信号,包含着信息,要进行 放大的。
• 共模信号:人为引入的一个信号,不是要放大 的,而是用来描述零漂的大小。直接描述、测 量零漂很麻烦,要先后测量两种不同的环境温 度下的静态工作点,求取它们的差值。从另外 一个角度:在同样的环境温度下,在输入端施 加共模信号,测量输出端的信号,求取共模放 大倍数。
2.1差模输入双端输出
某瞬间的真实方向
uid = uid1-uid2 uid1= -uid2
Ree上交流压降为0。 因此,画差模交流信号交流通路时,Ree可视为短路,
即两管的发射极直接接地。
由uc1= -uc2可知RL两端电位一端为正,一端为负,RL的中点应 是地电位,即每管对地的负载电阻为RL/2.
(5)不能制造电感,如需电感,也只能外接。
(6)一般无二极管,用三极管代替(B、C 极接在一起)。
集成运放的组成:输入级
模拟电子技术基础-总复习最终版
其中 RP R1 // R2 // R3 // R4
另外,uN
R R Rf
uo,uN
uP
ui1 R1 ui2i1 R2 ui3i2R3
P+ + u
o
R4 i4
uo
RP 1
Rf R
ui1 R1
ui 2 R2
ui3 R3
i3
4、 电路如图所示,各引入那种组态的负反馈?设集成运放 输出电压的最大幅值为±14V,填表。
11
14
5、求解图示电路的运算关系式。
同相求和电路 电压串联负反馈
6、求解图示电路的运算关系式。
R2
R1 ui R3
_
R4
+A1+ uo1
R5
_ +A2+
uo
7、求解图示电路的运算关系式。
电压并联负反馈。 电压放大倍数为:-R2/R1。
(3)交流负反馈是指 。 A.阻容耦合放大电路中所引入的负反馈 B.只有放大交流信号时才有的负反馈 C.在交流通路中存在的负反馈
解:(1)D (2)B (3)C
4、选择合适答案填入空内。
A.电压 B.电流 C.串联 D.并联
(1)为了稳定放大电路的输出电压,应引入 负反馈;
(2)为了稳定放大电路的输出电流,应引入 负反馈;
解:将电容开路、变压器线圈短路即为直流通路,图略。 各电路的交流通路如解图P2.2所示。
5.在图示电路中,已知晶体管β,rbe,RB,RC=RL,VCC。
(1)估算电路的静态工作点、电压放大倍数、输入电阻和输出电阻。
(2)当考虑信号源内阻为RS时,Aus的数值。
6. 电路如图所示,晶体管的=100,=100Ω。
模拟电子技术 华成英6-集成运算放大电路
讨论三
已知某放大电路的幅频特性如图所示,讨论下列问题: 1. 该放大电路为几级放大电路? 2. 耦合方式? 3. 在 f =104Hz 时,增益下降多少?附加相移φ’=? 4. 在 f =105Hz 时,附加相移φ’≈? 5. 画出相频特性曲线; 6. fH=?
Au ?
13
讨论四:电路如图所示
Ri Ri1
3. 输出电阻
Ro Ron
对电压放大电路的要求:Ri大, Ro小,Au的数值 大,最大不失真输出电压大。
7
2. 分析举例
Au1 g m ( R4 ∥ Ri2 ) (1+ ) ( R7 ∥ RL ) rbe (1+ ) ( R7 ∥ RL ) Au Au1 Au 2 Au 2
1.若所有的电容容量都相同, 则下限频率等于多少? 2.信号频率为0~∞时电压放大 倍数的表达式?
ቤተ መጻሕፍቲ ባይዱ
1 ( Rs Rb1 ∥ Rb2 ∥rbe )C1
2 ( Rc RL )C2
rbe Rs ∥ Rb1 ∥ Rb2 e ( Re ∥ )Ce 1
两式无本质 区别
' π
6dB 3dB
≈0.643fH1
fL fH
9
fL> fL1, fH< fH1,频带变窄!
2. 多级放大电路的频率响应与各级的关系
对于n级放大电路,若各级的下、上限频率分别为fL1~ fLn、 fH1~ fHn,整个电路的下、上限频率分别为fL、 fH,则
f L f Lk f H f Hk f f bwk bw (k 1,2, , n)
三、具有恒流源的差分放大电路
Re 越大,每一边的漂移越小,共模负反馈越 强,单端输出时的Ac越小,KCMR越大,差分放 大电路的性能越好。 但为使静态电流不变,Re 越大,VEE越大,以 至于Re太大就不合理了。 需在低电源条件下,设置合适的IEQ,并得到 得到趋于无穷大的Re。 解决方法:采用电流源取代Re!
第3章模拟集成电路基础
模电拟 电子子 技技术 术
集成运放的电路结构特点
(1)因为硅片上不能制作大电容,所以集成运放均采用直 接耦合方式。 (2)因为相邻元件具有良好的对称性,而且受环境温度和 干扰等影响后的变化也相同,所以集成运放中大量采用各种 差分放大电路(作输入级)和恒流源电路(作偏置电路或有 源负载)。
(3)因为制作不同形式的集成电路,只是所用掩模不同, 增加元器件并不增加制造工序,所以集成运放允许采用 复杂的电路形式,以达到提高各方面性能的目的。
由场效应管同样可以组成镜像电流源、比例电流源等。T0~T3均为N沟道增强型 MOS管,它们的开启电压UGS(th)等参数相等。在栅-源电压相等时,MOS管的漏极 电流正比于沟道的宽长比。设宽长比W/L=S,且T0~T3的宽长比分别为S0、S1、 S2、S3。这样就可以通过改变场效应管的几何尺寸来获得各种数值的电流。
模电拟 电子子 技技术 术
比例电流源
基准电流 输出电流
分析
模电拟 电子子 技技术 术 比例电流源分析
微电流
输出电流可以大于或小于基准电流,与基准电流成比例关系。
模电拟 电子子 技技术 术
微电流源
基准电流 输出电流
分析
模电拟 电子子 技技术 术
微电流源分析
在已知Re的情况下,上式对输 出电流IC1而言是超越方程,可 以通过图解法或累试法解出IC1。
模电拟 电子子 技技术 术
长尾式差分放大电路
电路参数理想对称,Rb1=Rb2=Rb,Rc1=Rc2=Rc;T1管与 T2管的特性相同,β1= β 2= β ,rbe1=rbe2=rbe;Re为 公共的发射极电阻。
静态分 析 共模信 号作用
差模信 号作用
模电拟 电子子 技技术 术
《模拟电子技术基础》第6章 集成运算放大器
RF R RF [ R1 (R2 // R ')uI1 R2 (R1 // R ')uI2 ] RF R R1 R1 (R2 // R ') R2 R2 (R1 // R ')
RF Rn
( RP R1
uI1
RP R2
uI2 )
当 R1 R2 R Rp Rn
uO
RF R
(uI1
uI2 )
t /ms
-2
0
-2
12 34 5
t /ms
uO /V
uO /V
12345 0 -1
t /ms
12345
0
t /ms
-2
-1
-2
输入方波不完全对称,导致输出偏移,以致饱和。 旁路电阻只对直流信号起作用,对交流信号影响要尽量小。
积分电路应采用失调电压、偏置电流和失调电流较小的运放,并在同相输 入端接入可调平衡电阻;选用泄漏电流小的电容,可以减少积分电容的漏电流 产生的积分误差。
iR
iD
uI R
uO uD
由二极管的伏安特性方程:
uo
iD
ISexp
uD UT
对数运算电路
uO
UTln
iD IS
U T ln
uI RI S
只有uI>0时,此对数函数关系才成立。
6.6 对数和指数运算电路
6.6.2 指数运算电路
将对数运算电路中的二极管VD和电阻R互换,可得指数运算电路。
uP
A
uN
uO
UoM 非线性区
uo
+Uom
uO
O
uId =uP -uN
非线性区 uId
非线性区 0
模拟电子技术基础第4章
图4.2.2 同相输入放大电路
放大电路的输入电阻Ri→∞ 放大电路的输出电阻Ro=0 图4.2.3 电压跟随器
4.2.3 差动输入(Differential input)放大电路
图 4.2.5 所示为差动输入放大电路,它的两个输入端都有 信号输入。 ui1通过R1接至运放的反相输入端,ui2通过R2、R3分压后接 至同相输入端,而uo通过Rf、R1反馈到反相输入端。
三、开方运算
平方根运算电路如图4.3.5 所示,与图4.3.2所示的除法电路比 较可知,它是上述除法电路的一个特例,如将除法电路中乘法 器的两个输入端都接到运放的输出端,就组成了平方根运算电 路。
图4.3.5 平方根运算电路
4.4
有源滤波器
滤波器的功能及其分类
4.4.1
滤波器是从输入信号中选出有用频率信号并使其顺利通过, 而将无用的或干扰的频率信号加以抑制的电路。 只用无源器件R、L、C 组成的滤波器称为无源滤波器,采用 有源器件和R、C元件组成的滤波器称为有源滤波器。 同无源滤波器相比,有源滤波器具有一定的信号放大和带 负载能力可很方便的改变其特性参数等优点; 此外,因其不使用电感和大电容元件,故体积小,重量轻。 但是由于集成运放的带宽有限,因此有源滤波器的工作频率较 低,一般在几千赫兹以下,而在频率较高的场所,采用LC无源 滤波器或固态滤波器效果较好。
通常用分贝数dB表示,则为
一般情况希望Aod越大越好, Aod越大,构成的电路性能 越稳定,运算精度越高。 Aod一般可达100dB,最高可达140dB 以上。 2、输入失调电压UIO及其温漂 dUIO/dT 如果集成运放差动输入级非常对称,当输入电压为零时,
输出电压也应为零(不加调零装置)。但实际上它的差动输入
模拟电子技术(西电第三版)第4章 差动放大电路与集成运算放大器
4
实图4.1 LM741的管脚排列及序号 (a) 外引脚排列顺序;(b) 符号
5
2. 负反馈的引入 由第3章可知,放大器引入负反馈后,可以改善很多性 能。集成运放若不接负反馈或接正反馈,只要有一定的输入 信号(即使是微小的输入信号),输出端就会达到最大输出值 (即饱和值),运放的这种工作状态称为非线性工作状态。非 线性工作状态常用在电压比较器和波形发生器等电路中,这 里暂不考虑。集成运放引入负反馈后,就可工作于线性状态。 线性状态时,输出电压Uo与输入电压Ui之间的运算关系仅取 决于外接反馈网络与输入端的外接阻抗,而与运算放大器本 身参数无关。这一点大家在实训中要充分体会。
6
3. 反相比例运算电路 依外接元件连接的不同,集成运放可以构成比例放大、 加减法、微分、积分等多种数学运算电路。本实训只进行其 中一种运算——反相比例运算的练习。 反相比例运算电路如实图4.2所示。输入信号Ui从反相 输入端输入,同相输入端经电阻接地。这个电路的输出与输 入之间有如下关系:
7
即输出电压与输入电压成比例,比例系数仅与外接电阻Rf、 R1有关,与运放本身的参数无关。同相端所接R2、R3称为平 衡电阻,其作用是避免由于电路的不平衡而产生误差。
43
图 4.1.9 加调零电位器的差动放大器 (a) 射极调零;(b) 集电极调零
44
例4.1.2 图4.1.10(a)为带恒流源及调零电位器的差动 放大器,二极管VD的作用是温度补偿,它使恒流源IC3基本 不受温度变化的影响。设UCC=UEE=12 V,Rc=100 kΩ, RP=200 Ω,R1=6.8 kΩ,R2=2.2 kΩ,R3=33 kΩ,Rb= 10 kΩ,UBE3=UVD=0.7 V,各管的β值均为72,求静态时的 UC1,差模电压放大倍数及输入、输出电阻。
5模拟电子技术基础简明教程(第三版)杨素行_PPT课件_第五章
~+1 2 uId
~+1 2
uId
R
+ uo
VT1
VT2
Re
VEE
无负反馈。
图 5.2.8 长尾式差分放大电路
(2)静态分析
当 uId = 0 时,由于电路结构对称,故: IBQ1 = IBQ2 = IBQ,ICQ1 = ICQ2 = ICQ ,UBEQ1 = UBEQ2
= UBEQ,UCQ1 =UCQ2 = UCQ, 1= 2=
第五章 集成运算放大电路
5.1 集成放大电路的特点 5.2 集成运放的基本组成部分 5.3 集成运放的典型电路 5.4 集成运放的主要技术指标 5.5 理想运算放大器 5.6 各类集成运放的性能特点 5.7 集成运放使用中的几个具体问题
5.1 集成放大电路的特点
集成电路简称 IC (Integrated Circuit)
当 uId = 0,时
+ uId
UCQ1 = UCQ2
UO = 0
Rb1
Rc1 + uo
Rc2 Rb2
R1
~+1 2 uId
~+1 2
uId
R2
VT1
VT2
图 5.2.6 差分放大电路的基本形式
(2)电压放大倍数 VT1 和 VT2 基极输入电压大小相等,极性相反,— —称为差模输入电压(uId)。
由于 UBE1 = UBE2,VT1 与 VT2 参数基本相同,则
IB1 = IB2 = IB;IC1 = IC2 = IC
R IREF
2IB
IC2
VT1
IB1 +
UBE1
IC2 IB2
U+BE2 VT2
模拟电子技术基础第5章ppt课件
u-o 2
Rc T2 Rb
+ u i1
-
.
+
R
_
e
V
EE
u i2 -
6
3. 差模信号与共模信号
差模信号: uid=ui1ui2
1 共模信号: uic =2(ui1ui2)
+ V CC
Rc
Rc
差模电压增益: Aud
=
uod u id
Rb
共模电压增益:
A uc
=
uoc u ic
+ u i1
-
总输出电压:
第五章 集成运算放大器
5.1 差动放大电路 5.2 集成运算放大器中的单元电路 5.3 集成运放简介 5.4 集成运算放大器中的主要参数 5.5 特殊集成运算放大器
.
1
什么是集成运算放大器?
集成运算放大器——高增益的直接耦合的集成 的多级放大器。
集成电路的工艺特点:
(1)元器件具有良好的一致性和同向偏差,因而特别有利于实现 需要对称结构的电路。
u-i2
2
-
EE
IRe不变 UE不变 所以,Re对差模
信号相当于短路。
.
10
①求差模电压放大倍数:
因为ui1 =- ui2
Rc + uo - Rc
设ui1 ,ui2 uo1 ,uo2 。
电路对称│uo1│=│uo2│ +
Rb T1
+
u-o1 E
+
u-o2 T2 Rb
+
uo= uo1 – uo2=2 uo1
+ uo _
T1
T2
R
_
模拟电子技术基础课件第8章集成运算放大电路的线性应用
3.差动输入特点
利用“虚短”、“虚断 ”和叠加原理,并利用静 态 平 衡 条 件 ( R1=R2 , R3=RF ),可以求出Uo 与 Ui2和Ui1的差成比例。
输出电压Uo只与输入的差模部分有关,输入的共 模电压和运放偏置电流引起的误差被消除 。
17
电路静态平衡条件
由于集成运放输入级一般 采用差动电路,要求输入电 路两半的参数对称。 Rn=Rp Rn :运放反相端到地之间 向外看的等效电阻; Rp:运放同相端到地之间 向外看的等效电阻。
Ri 100k
可以看出,该电路的比例系数为-50,输入电 阻得到了提高而反馈电阻不必很大。
30
8.2.3 加减运算电路
1. 加法运算电路 (1)反相端输入
U U 0
1) 节点电流法求解:
I f I i1 I i 2 I i 3 U i1 U i 2 U i 3 R1 R2 R3
2
本章的重点和难点
重点: 掌握基本运算电路(比例、加减、积分、 微分、对数、指数、乘法、除法)运算电路的 工作原理和运算关系,利用“虚短”和“虚断 ”的概念分析这些运算电路输出电压和输入电 压的运算关系。 理解模拟乘法器在运算电路中的应用。
3
本章的重点和难点
难点: 运算电路运算关系的分析和识别;对数、指 数运算电路和有源滤波电路的分析计算。
RF 整理得: O U i U R
输入电阻: Ri R
输出电阻:Ro 0
电压并联负反馈
R R // R f
'
20
2.同相比例运算电路
U U Ui
I I 0
U 0 Uo U R RF
整理得:
华南理工大学 模拟电子技术基础 5集成运算放大器单元电路PPT
VCC
Rc
Rc
uC1
+
uC2
iC1
RL uO
iC2
+ uI
Rb +
uI1 -
iB1
V1
iE1 iEE
-
V2
e
iE2 Re
Rb iB2
uI2 -+
VEE
Aud1
Uod1 Uid
Uod1 2Uid1
RL
2(Rb rbe )
RL Rc // RL
Rid 2(Rb rbe ) ,Rod Rc
5.2.3-- 1.双端输入单端输出差放电路
单端输入
单端输出
双端输入
双端输出
1)差模信号 uI1 uI2
V1、V2管相对应极电流或电 压的变化量也是差模信号。
长尾式差分 放大电路
2)共模信号uI1 uI2
V1、V2管相对应极电流或电 压的变化量也是共模信号。
5.2.1 差分放大电路的组成及特点
2.基本特点 3)一般信号uI1 uI2
差模分量 uId uI1 uI2
由于输入回路没有变 化,所以IEQ、IBQ、ICQ 与双端输出时一样。但 是UCEQ1≠ UCEQ2。
VCC
RL Rc RL
VCC
Rc Rc // RL
UCQ1 VCC ICQ Rc UCQ2 VCC ICQ Rc
5.2.3-- 1.双端输入单端输出差放电路
(2)动态分析 1)对差模信号的作用
5.1.2 有源负载放大电路
5.1.1 基本电流源电路
电流源电路:提供恒定输出电流 1) 作为各级电路的偏置电路,以提供合适的静态电流; 2) 作为放大电路的有源负载,提高电路的增益。
模拟电子技术基础(完整课件)
>100000
封装好的集成电路
课程的教学方法
模电——“魔”电 特点:电路形式多、公式多、工程性强 教学方法: 课堂讲课 ——每章小结 ——自我检测题
——作业 ——作业反馈
——实验 ——答疑
总成绩=期末(70%)+平时(30%) 平时:作业、课堂、实验等
教材:《模拟电子技术基础》,李国丽王涌李如 春主编,高等教育出版社,国家级十二 五规划教材
就在这个过程中,爱迪生还发现了一 个奇特 的现象:一块烧红的铁会散发出电子云。后人 称之为爱迪生效应,但当时不知道利用这一效 应能做些什么。
1904年,英国发明家弗莱明在真空中加热的 电丝(灯丝)前加了一块板极,从而发明了第一 只电子管,称为二极管。
1906 年,美国发明家德福雷斯特,在二极管 的灯丝和板极之间巧妙地加了一个栅板,从而 发明了第一只真空三极管,建树了早期电子技 术上最重要的里程碑——电子工业真正的诞生 起点 。
2000年10月10日,基尔比 与另外两位科学家共同分享 诺贝尔物理学奖。
获得2000年Nobel物理奖
1958年第一块集成电路:TI公司的Kilby,12个器件,Ge晶片
1959年7月30日,硅谷的仙童半导体公司的诺依斯 采用先进的平面处理技术研制出集成电路,也申请到 一项发明专利 ,题为“半导体器件——导线结构”; 时间比基尔比晚了半年,但确实是后来微电子革命的 基础。
1959年仙童制造的IC
诺依斯
1971年:全球第一个微处理器4004由Intel 公司推出,在它3毫米×4毫米的掩模上,有 2250个晶体管,每个晶体管的距离是10微米, 每秒运算6万次。也就是说,一粒米大小的芯片 内核,其功能居然与世界上第一台计算机—— 占地170平方米的、拥有1.8万个电子管的 “爱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 基本电流源电路
(以镜像电流源为例)
在电流源电路中充分利用集成运放中晶体管性能的一致性。
ቤተ መጻሕፍቲ ባይዱ
T0 和 T1 特性完全相同。
基准电流
I R (VCC U BE ) R
IC
2
IR
若 2 ,则I C I R
4.2.2 改进型电流源电路
(以 加射级输出器的电流源为例) 已知:镜像电流源, IC IR 2
作业
4.3
4.9
§4.2 集成运放中的电流源电路
4.2.1、基本电流源电路 4.2.2、改进型电流源电路 4.2.3、多路电流源电路
4.2.1、基本电流源电路
(以镜像电流源为例)
在电流源电路中充分利用集成运放中晶体管性能的一致性。 T0 和 T1 特性完全相同。 基准电流
I R (VCC U BE ) R
3 集成运放的种类及选择
为满足实际使用中对集成运放性能的特殊要 求,除性能指标比较适中的通用型(F007、 A741)运放外,发展了适应不同需要的专用型集 成运放。它们在某些技术指标上比较突出。 根据运算放大器的技术指标可以对其进行分 类,主要有通用、高速、宽带、高精度、高输入 电阻和低功耗等几种。
二、集成运放电路的组成
两个 输入端 一个 输出端
若将集成运放看成为一个“黑盒子”,则可等效为一 个双端输入、单端输出的差分放大电路。
集成运放电路四个组成部分的作用
偏置电路:为各 级放大电路设置 合适的静态工作 点。采用电流源 电路。 输入级:前置级,多采用差分放大电路。要求Ri大,Ad 大, Ac小,输入端耐压高。 中间级:主放大级,多采用共射放大电路。要求有足够 的放大能力。 输出级:功率级,多采用准互补输出级。要求Ro小,最 大不失真输出电压尽可能大。
整理后可得
IC1 = IR 2 1 (1+)
若 10,I C1 0.982I R , 可见,I C1和I R保持更好的镜像关系。
注: T0 和 T1 特性完全相同。但与T2 的 特性不相同。
4.2.3 多电流源
通过一个基准电流源稳定多个三极管的工作点 电流,即可构成多路电流源。通过作业题讲解。
第4章 集成运算放大电路
§4.1 概述 §4.2 集成运放中的电流源 §4.3 集成运放的电路分析及其性能指标
一、集成运放的特点
集成运算放大电路,简称集成运放,是一个高性能的直 接耦合多级放大电路。因首先用于信号的运算,故而得名。 (1)直接耦合方式,充分利用管子性能良好的一致性采用 差分放大电路和恒流源电路。 (2)用复杂电路实现高性能的放大电路,因为电路的复杂 化并不带来工艺的复杂性。 (3)用有源元件替代无源元件,如用晶体管取代难于制作 的大电阻。 (4)采用复合管。
u- u+
-
+
uo
2 运算放大器的引线
运算放大器的符号中有三个引线端,两个输入 端,一个输出端。一个称为同相输入端,即该端输 入信号变化的极性与输出端相同,用符号‘+’ 表示; 另一个称为反相输入端,即该端输入信号变化的极 性与输出端相异,用符号“-” 。输出端一般画在输 入端的另一侧,在符号边框内标有‘+’号。 实际的运算放大器通常必 u- - A0 须有正、负电源端,有的品种 u + o u+ + 还有补偿端和调零端。
继续讲课
若 10,IC1 0.833IR
如果电流放大倍数不是足够大,则 上面的结论误差过大,怎么办? 精密镜像电流源和普通镜象电 流源相比,其精度提高了。电路如 图所示。 由于有T2存在,IB2和将比镜像 电流源的2IB小。因此IC1和IR更加接 近。
I E2 IC1 =IC0 I R I B2 I R 1+ 2IC1 2I B IR IR 1+ (1+)
T0 、T1、T2的特性均相同 试求IC1、IC2各为多少?
4.3 集成运放电路简介
1 运放的特点和符号
运放的特点: 理想运放: ri KCMMRR ro 0 Ao
ri 高:几十k 几百k KCMRR很大 ro 小:几十 ~ 几百 A o 很大:104以上~ 107 运放符号: u- - A0 + uo u+ +
几代产品中输入级的变化最大!
三、集成运放的电压传输特性
uO=f(uP-uN)
在线性区: uO=Aod(uP-uN) Aod是开环差模放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时 的最大输入电压(uP-uN)的数值仅为几十~一百多微伏。
(uP-uN)的差值大于一定值时,集成运放的输出不是 +UOM , 就是-UOM,即集成运放工作在非线性区。
U BE1 U BE0,I B1 I B0 I C1 I C0 I C
I R I C0 I B0 I B1 I C
IC
2I C
2
IR
镜像电流源: IC1 IR
若 2 ,则I C I R
课程回顾
1、集成运放电路
(1) 在线性区: uO=Aod(uP-uN) Aod是开环差模放大倍数。 (2) 在非线性区: (uP-uN)的差值大于一定值时,集成运放的输出不是 +UOM , 就是-UOM,即集成运放工作在非线性区。